TW201029480A - Thermal acoustic device - Google Patents

Thermal acoustic device Download PDF

Info

Publication number
TW201029480A
TW201029480A TW98101581A TW98101581A TW201029480A TW 201029480 A TW201029480 A TW 201029480A TW 98101581 A TW98101581 A TW 98101581A TW 98101581 A TW98101581 A TW 98101581A TW 201029480 A TW201029480 A TW 201029480A
Authority
TW
Taiwan
Prior art keywords
electrode
thermo
acoustic
substrate
thermoacoustic
Prior art date
Application number
TW98101581A
Other languages
Chinese (zh)
Other versions
TWI411314B (en
Inventor
Liang Liu
Original Assignee
Beijing Funate Innovation Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Funate Innovation Tech filed Critical Beijing Funate Innovation Tech
Priority to TW98101581A priority Critical patent/TWI411314B/en
Publication of TW201029480A publication Critical patent/TW201029480A/en
Application granted granted Critical
Publication of TWI411314B publication Critical patent/TWI411314B/en

Links

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

The present invention relates to a thermal acoustic device. The thermal acoustic device includes a substrate, a first electrode, a second electrode and a thermal acoustic element. The thermal acoustic element is electrically connected to the first electrode and the second electrode. The thermal acoustic element has a first surface faced with the substrate and a second surface opposite the first surface. The thermal acoustic device further includes a spacer disposed on the substrate. The spacer is connected to the thermal acoustic element between the first electrode and the second electrode. A space is defined by the thermal acoustic element, the spacer and the substrate.

Description

201029480 ^ 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種熱致發聲裝置。 【現有技術】 * 發聲裝置一般由訊號輸入裝置和發聲元件組成,通過訊號輸 入裝置輸入訊號到該發聲元件,進而發出聲音。熱致發聲裝置為 發聲裝置中的一種,其為基於熱聲效應的一種發聲裝置,請參見 , 文獻“The Thermophone”,EDWARD C. WENTE,Vol.XIX,No.4, ❹ p333-345 及 “On Some Thermal Effects of Electric Currents”,201029480 ^ VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a thermo-acoustic device. [Prior Art] * The sounding device generally consists of a signal input device and a sounding element, and a signal is input through the signal input device to the sounding element to emit sound. The thermoacoustic device is one of the sounding devices, which is a sounding device based on the thermoacoustic effect, see, the document "The Thermophone", EDWARD C. WENTE, Vol. XIX, No. 4, ❹ p333-345 and " On Some Thermal Effects of Electric Currents",

William Henry Preece > Proceedings of the Royal Society of London5 V〇1.30,p408-411(1879-1881)。該文獻揭示一種熱致發聲裝置, 該熱致發聲裝置通過向一導體中通入交流電來實現發聲。該導體 具有較小的熱容(Heat capacity),較薄的厚度,且可將其内部產 生的熱量迅速傳導給周圍氣體介質的特點。當交流電通過導體 時,隨交流電電流強度的變化,導體迅速升降溫,而和周圍氣體 介質迅速發生熱交換,促使周圍氣體介質分子運動,氣體介質密 ❿ 度隨之發生變化,進而發出聲波。 另外,ILD-Amold 和 I.B.Crandall 在文獻“The thermophone as a precision source of sound”,Phys. Rev· 10,p22-38 (1917)中揭示 了一種簡單的熱致發聲裝置,其採用一鉑片作熱致發聲元件。熱 致發聲元件的發聲頻率與其單位面積熱容密切相關,即熱致發聲 元件的單位面積熱容愈大,發聲頻率範圍愈窄,聲波強度愈低; 反之,單位面積熱容愈小,發聲頻率範圍愈寬,聲波強度愈高。 因此,欲獲得較寬的發聲頻率範圍及較高的聲波強度,熱致發聲 元件的單位面積熱容則愈小愈好。而具有較小單位面積熱容的金 4 201029480 屬鉑片,受材料本身的限制,其厚度最小只能達〇7微米,且採用 該鉑片作熱致發聲元件的熱致發聲裝置,其所產生的發聲頻率最 . 高僅可達4千赫茲。 2008年,汜守善等人公開了一種應用奈米碳管的熱致發聲裝 置明參見文獻 Flexible, Stretchable,Transparent Carbon NanotubeWilliam Henry Preece > Proceedings of the Royal Society of London 5 V〇 1.30, p408-411 (1879-1881). This document discloses a thermo-acoustic device that achieves vocalization by introducing alternating current into a conductor. The conductor has a small heat capacity, a thin thickness, and the ability to rapidly transfer heat generated inside it to the surrounding gaseous medium. When the alternating current passes through the conductor, the conductor rapidly rises and falls with the change of the alternating current intensity, and the heat exchange with the surrounding gas medium rapidly causes the surrounding gas medium molecules to move, and the density of the gas medium changes accordingly, thereby generating sound waves. In addition, ILD-Amold and IBCrandall disclose a simple thermoacoustic device in the literature "The thermophone as a precision source of sound", Phys. Rev. 10, p22-38 (1917), which uses a platinum sheet. Thermal sounding element. The vocalization frequency of the thermo-acoustic component is closely related to the heat capacity per unit area, that is, the larger the heat capacity per unit area of the thermo-acoustic component, the narrower the vocalization frequency range, and the lower the acoustic wave intensity; conversely, the smaller the heat capacity per unit area, the vocalization frequency The wider the range, the higher the sound wave intensity. Therefore, in order to obtain a wide range of vocal frequencies and a high sound intensity, the heat capacity per unit area of the thermoacoustic element is as small as possible. The gold 4 201029480 with a small unit area heat capacity is a platinum sheet, which is limited by the material itself, and the thickness can be as small as 7 microns, and the platinum sheet is used as a thermo-acoustic device for the thermo-acoustic element. The resulting vocal frequency is as high as 4 kHz. In 2008, Yan Shoushan et al. disclosed a thermoacoustic device using carbon nanotubes. See the document Flexible, Stretchable, Transparent Carbon Nanotube.

Thin Film Loudspeakers” ’ 范守善过 ai.,Nano Letters, Vol.8 (12), 4539-4545 (2008)。請參見圖!,該熱致發聲裝置6〇包括一基底 -602 ’ 一奈米碳管膜606 ’與兩個電極604。該奈米碳管膜6〇6設 ❹置於該基底602,該兩個電極6〇4分別與該奈米碳管膜6〇6直接接 觸形成電連接’通獅個電極_提縣流至該奈米碳管膜6〇6, 使該奈米碳管膜606熱致發聲。由於奈米碳管膜6〇6具有極大的 比表面積錄小的單飾積齡,賴致發較置⑻可發出人耳 能夠聽到的聲音強度,且具有極薄的厚度以及較寬的發聲頻率範 圍(100Hz 〜100kHz) 〇 准由於不米碳官膜606 I接貼合在基底6〇2,奈米碳管膜 606與周圍介質的接觸面積較小,且由奈求碳管膜_所產生而用 2聲的熱置大部分均被基底6〇2所吸收,因而降低了熱致發聲 裝置60的發聲效果。 【發明内容】 、有雲於itb提供種有效提升發聲效果的熱致發聲裝置實為 必要。 -種熱致發較置,其包m — f極;以及一熱致發聲元件,該熱致發聲元件與所述第-電極與 第-電極t連接’賴猶聲树时— 及與該第-表面相對的第H〃基底㈣-表面 弟一表面,其中,該熱致發聲裝置進一步 5 201029480 件’該_元件設置於所述基底,與連接於該第 一種熱致發聲裝置,包括:—個基底;—_致發聲元 條繼,用於使該献 轉熱致發聲;其中,雜致發聲裝置進-步包括-烟 參 ’該間隔树錄雜致發聲楊無基絲面之間,以 二熱致發聲元件無基絲面之間職有―郎,該間隔 與該致熱裝置電性絕緣。 與現有技術相比較,所述熱致發聲裝置中包括一間隔元件, 該間隔树_熱致發聲元件與基底,使熱致發聲元件與基 底之間具有H因此提高熱致發聲元件與周質的接觸面 積’亚可通過此空騎其内部產生的熱量迅速料給周圍介質, 故有效提升了該熱致發聲裝置的發聲效果。 【實施方式】 以下將結合附圖詳細說明本發明實施例提供的熱致發聲裝 Q 置。 睛參閱圖2及圖3’本發明第一實施例提供一種熱致發聲裝置 1〇,該熱致發聲裝置10·包括一基底1〇2、一第一電極1〇4、一第 二電極108、一間隔元件118及一熱致發聲元件1〇6。 所述第一電極108間隔該第一電極1〇4 —定距離設置。所述 間隔元件118設置於所述第一電極1〇4與所述第二電極1〇8之間 的基底102。所述熱致發聲元件1〇6設置於所述第一電極1〇4、所 述第二電極108以及所述間隔元件118,且與該第一電極1〇4和第 二電極108電連接。所述熱致發聲元件1〇6具有一相對基底1〇2 6 201029480 的第表面1062及與第一表面1〇62相對的第二表面⑽4。所述 間隔元件118設置於基底如與熱致發聲元件·的第一表面齡 . 之間。 —…所述基底102主要起承載第-電極104、第二電極1〇8與間 #作用。該基底1〇2的形狀與大小不限,材料為絕緣 昭^導電性差的材料。另外,該基底1〇2的材料應具有較好的 、、’邑熱性能,從而防止該熱致發聲元件產生的熱量被該基底ι〇2 ❹而無法達到加熱周圍介質進而發聲的目的,該基底ι〇2的 .^料可為玻璃、樹脂或喊等。本實施例中,所述基底搬為一 正方形的玻璃板’其邊長為17釐米,厚度為工毫米。 發整所ΪίηΓίΓ04和第二電極⑽可設置於基底⑽與熱致 Γ 一表面1062之間,亦可分別設置於熱致發聲元 tittr62及第:表面1G64。本實施财,所述間隔 電極104及第二電極108均設置於基底102與轨致 ,聲讀106的第-表面贿之間。該第一電極ι〇4和該第二電 • 二呈』二T狀、帶狀、棒狀、條狀、塊狀或其他形狀, 广截面雑顧型、方型、梯形、三㈣或其他不規則形狀。 為:方^致發聲元件1G6的熱量被該第—電極·和該第二電極 1〇8過多吸收而影聲效果,該第—電極_ $致發聲元件1G6的接觸面積較小為好,因此該第—電極· 第的形狀優選為絲狀或帶狀。所述第一電極1〇4和 t電極⑽材料可選擇為金屬、導電膠、導賴料或鋼錫氧化 t IT0)等。所述第一電極104和第二電極 f10微米〜1餐米。本實施例中,第一電極104和第二電極= 為絲狀銀電極,其高度為2G «。鱗、驗t 8 7 201029480 方法形成於基底102。 所述間隔耕m設置於所述第—電極1G4和所述第二電極 108之間的基底102 ’與第一電極104和第二電極⑽用於間隔所 述熱致發聲元似06絲底1G2’使雜轉聲元件1G6與該基底 1〇2之間形成有-空間肌,從而保持熱致發聲元件伽良好的發 聲效果。 所述間隔元件U8與基底102可以為分離的元件,該間隔元 癱件118通過例如螺栓連接或粘結劑粘結等方式固定於基底膨另 β外,該間隔元件U8也可以與基底102 _體成型,即間隔元件ιΐ8 的材料與基底102的材料相同。該間隔元件118的形狀不限可 為球形、絲狀或帶狀結構。為保持熱致發聲元件1〇6具有良好的 發聲效果’該間隔元件118在支撐熱致發聲元件1〇6的同^應與 熱致發聲兀件106具有較小的接觸面積,優選為該間隔元件⑽ 與熱致發聲元件106之間為點接觸或線接觸。 在本實施例中,該間隔元件118的材料不限,可為玻璃、陶竞 或樹脂等的絕緣材料,也可為金屬、合金或銦錫氧化物等的導電 β材料。當間隔元件118為導電材料時,其與第一電極104和第二 電極108電性絕緣。該間隔元件118的高度不限,優選為1〇微米 〜1爱米。本實施例中’關隔元件118 $採用絲網印刷方法職 的絲狀銀,該間隔元件118與第一電極104、第二電極1〇8平行設 置。該間隔元件118的高度與所述第一電極1〇4及第二電極工 的高度相同’為20微米。由於間隔元件118的高度與第一電極1〇4 和第二電極108的高度相同,因此,所述熱致發聲元件1〇6位於 同一平面。 所述熱致發聲元件106設置於間隔元件118、第一電極1〇4 8 201029480 及第二電極108。該熱致發聲元件1〇6通過該間隔元件118與基底 102間隔設置,且與該基底1〇2形成有一空間1〇1,該空間ι〇ι • 係由所述第一電極104或所述第二電極108、所述間隔元件118、 .基底102以及熱致發聲元件106共同形成。進一步地,為防止熱 致發聲元件106產生駐波’保持熱致發聲元件1〇6良好的發聲效 果’該熱致發聲元件1〇6與基底1〇2之間的距離優選為1〇微米^ 釐米。本實施例中,由於第一電極1〇4、第二電極1〇8及間隔元件 118的尚度為20微米,所述熱致發聲元件106設置於第一電極 ^ 104、第一電極108及間隔元件118,因此,該熱致發聲元件106 與基底102之間的距離為2〇微米。 可以理解’第一電極104和第二電極108對熱致發聲元件1〇6 也有-定的支樓作用,但當第一電極1〇4和第二電極1〇8之間的 距離較大時’對熱致發聲元件1〇6的支撐效果不佳,在第一電極 104和第二電極⑽之間設置間隔祕118,可起到較好支撐熱致 發聲元件106的作用,使熱致發聲元件1〇6與基底1〇2間隔言^置 並與基底102形成有101,從而保證熱致發聲元件106且右 響良好的發聲效果。 所述熱致發聲元件106包括一奈米碳管結構,該奈米碳管結 構包括至;一奈米碳管膜、一奈米碳管線或奈米碳管膜與奈米碳 管線的複合結構。所述奈米碳管結構的厚度為05奈米〜i亳米。 所述奈米碳管結構的單位面積熱容可小於2χ1σ4焦耳每平方着米 開爾,。優親,所述奈米破管結構的單位面積熱容小於17塌: 焦耳母平方釐米開_文。所述奈米碳管結構巾的奈米碳管包括 壁奈米碳管、雙壁奈米碳管及錢奈米碳管中的—種或多種。所 述單壁奈米碳管的直徑為0.5奈米〜50奈来,所述雙壁奈米碳管的 201029480 直徑為1.0奈米〜50奈米’所述多壁奈米碳管的直徑為15夺米〜% 奈米。 本實施例中,該奈米碳管膜通過拉取一奈来碳管陣敎接獲 得,該奈米碳管膜包括複數個沿同—方向擇優取向排列的奈米碳 管’且該奈米碳管之間通過凡德瓦爾力首尾相連。優選地,該太 米碳管膜包括複數個平行的奈米碳管沿其軸向從所述第一電^ 104延伸至所述第二電極1G8。即,奈米碳管的軸向方向與第 極104垂直。 ❹ φ 在本實施例中’奈米碳管結構除了由單個奈米碳管膜構成 外’亦可包括複數個層疊設置的奈米碳管顧複數顧面設置的 奈米碳管膜。由複數個層疊設置的奈米碳管成的奈米碳管結 構相對由單個奈米碳管膜組成的奈祕管結構具有更高的強度, 因此’可確健絲碳管概不被麵或改變。由於單個奈米碳 管膜的透級佳’在本實施财,為雜奈米碳管結構具有較好 的透光性,所述奈米碳管結構巾的絲碳管膜_數小於*個。 另外,當單個奈米碳管膜的寬度不能滿足實際應用的要求 時’可以將複數個奈米碳管膜無間隙共面設置,形成—具有更大 寬度的奈米碳管膜,以便於實際應用。 本實施例中’所述作為熱致發聲元件1〇6的奈米碳管結構包 =四個層疊設置的奈米碳管膜’其中,相㈣兩個奈米碳管財 ^碳管的排财向相技直。所絲祕管結構的長度和寬度 J髮米’所述奈米碳管結構的厚度Λ 5G奈米。由四個奈米碳 S膜構成的奈錢管結構·魏触發聲元件_具有較好的 透光度。 斤述,、、、致發聲元件1〇6的工作介質不限,只需滿足其電阻率 201029480 大於所述熱致發聲元件U)6的電阻率即可。所述介質包括氣態介 質或液態介質。雜氣態介質可為找。所述絲介質包括非電 -解質溶液、水及有機溶鮮中的-種或多種。所述液態介質的電 阻率大於_歐姆·米,優選地,所述液態介質為純淨水。純淨水 的電導率可達到L5XK)7歐姆.米,且其單位面積熱容也較大,可以 傳導出發聲元件106產生的熱量,從而可對發聲元件1〇6進行散 熱。 龜 上述熱致發聲裝置10可通過第一電極104與第二電極108接 ’入外部訊號發聲。由於發聲元件106包括奈米石炭管結構,該奈米 碳管結構由均勻分佈的奈米碳管組成,由於奈米碳管本身具有較 大的比表面積,且該奈米碳管結構為層狀或線狀,因而該奈米碳 管結構具有較大的比表面積,較小的單位面積熱容以及較大的散 熱面積。在輸入訊號後,所述熱致發聲元件1〇6可迅速升降溫’ 產生週期性的溫度變化,並和周圍介質快速進行熱交換,使周圍 介質的密度週期性地發生改變,進而發出聲音。簡而言之,本發 明實施例的熱致發聲元件106係通過“電-熱-聲,,的轉換來達到發 聲。另外,由於該奈米碳管結構的高透光度,該熱致發聲裝置1〇 為一透明的熱致發聲裝置。 本實施例提供的熱致發聲裝置10的聲壓級大於5〇分貝每瓦聲 壓級’發聲頻率範圍為1赫茲至1〇萬赫兹(即1抱_1〇〇以包)。所述 熱致發聲裝置在5〇〇赫茲-4萬赫茲頻率範圍内的失真度可達到小 於 3%。 ' 另外’本發明實施例中的奈米碳管結構具有較好的韌性和機械 強度’所以奈米碳管結構可方便地製成各種形狀和尺寸的熱致發 聲裝置,進而,該熱致發聲裝置10可方便地應用於各種可發聲 11 201029480 器件中,如音響、手機、MP3、MP4、電視、電腦等。 請參見圖4及圖5,本發明第二實施例提供一種熱致發聲裝置 20,該熱致發聲裝置20與第一實施例提供的熱致發聲裝置1〇的 結構基本相同。該熱致發聲裝置20包括一基底202、複數個第一 ' 電極204、複數個第二電極2〇8、複數個間隔元件218、一熱致發 聲元件206、一第一導電元件21〇以及一第二導電元件212。 所述複數個第一電極2〇4和第二電極208交替間隔設置,且 - 該複數個第一電極204和第二電極208彼此相互平行且等間距設 碜 置。相鄰的第一電極204和第二電極208之間的距離不限,優選 地,相鄰的第一電極204和第二電極208之間的距離為i毫米〜3 釐米。 ❹ 所述間隔元件218設置於相鄰的第一電極204與第二電極208 之間,該間隔元件218的數量不限。該複數個間隔元件在相 鄰的第一電極204和第二電極208之間平均分佈,且與第一電極 204、第二電極208平行設置。即相鄰的第一電極204及第二電極 208與其之間的間隔元件218等間距設置,將該相鄰的第一電極 204及第二電極208之間的距離均等分。 所述熱致發聲元件206設置於所述複數個第一· 2〇4、所述 複數個第二電極208以及所述間隔元件218,且與該複數個第一電 極2〇4和複數個第二電極2〇8電連接。即,所述間隔元件218、第 第二電極2〇8設置於基底2〇2與熱致發聲元件 之間。所述熱致發聲元件包括一奈米Thin Film Loudspeakers” 'Fan Shoushan over ai., Nano Letters, Vol. 8 (12), 4539-4545 (2008). Please refer to the picture!, the thermoacoustic device 6〇 includes a base-602 'one carbon nanotube Membrane 606' and two electrodes 604. The carbon nanotube film 6〇6 is disposed on the substrate 602, and the two electrodes 6〇4 are in direct contact with the carbon nanotube film 6〇6 to form an electrical connection respectively. The lion electrode _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The age of the body, the relative to the hair (8) can emit the sound intensity that can be heard by the human ear, and has a very thin thickness and a wide range of vocal frequencies (100 Hz ~ 100 kHz) 〇 由于 由于 由于 由于 由于 由于 606 606 606 606 606 606 606 6〇2, the contact area of the carbon nanotube film 606 with the surrounding medium is small, and most of the heat generated by the carbon tube film is absorbed by the substrate 6〇2, thereby reducing the heat. The sounding effect of the sounding device 60. [Summary of the Invention] The cloud provides a kind of heat-induced sounding device for effectively improving the sounding effect. It is necessary to set it up. - a kind of heat-induced light, which is a m-f pole; and a thermo-acoustic element, which is connected to the first-electrode and the first-electrode t — and an H-th substrate (four)-surface-surface opposite the first surface, wherein the thermo-acoustic device further 5 201029480 pieces are disposed on the substrate and connected to the first thermal The sounding device comprises: a substrate; a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Between the faces, the two heat-induced sounding elements have no ground between the base wires, and the interval is electrically insulated from the heat generating device. Compared with the prior art, the thermal sound generating device includes a spacing element. The spacer tree _ the thermo-acoustic element and the substrate, such that the thermo-acoustic element and the substrate have H, thereby increasing the contact area of the thermo-acoustic element with the periplasm, can be quickly supplied to the surrounding by the heat generated inside the air-riding element Medium, which effectively enhances the heat-induced sound The vocalization effect of the present invention will be described in detail below with reference to the accompanying drawings. The second embodiment of the present invention provides a thermo-acoustic sounding device 1 with reference to FIG. 2 and FIG. The thermal sound generating device 10 includes a substrate 1 , a first electrode 1 , 4 , a second electrode 108 , a spacer element 118 , and a thermal sound generating element 1 6 . The first electrode 1〇4 is spaced apart from each other. The spacer element 118 is disposed on the substrate 102 between the first electrode 1〇4 and the second electrode 1〇8. The thermoacoustic element 1〇6 is disposed on the first electrode 1〇4, the second electrode 108, and the spacer element 118, and is electrically connected to the first electrode 1〇4 and the second electrode 108. The thermoacoustic element 1〇6 has a first surface 1062 opposite the substrate 1〇2 6 201029480 and a second surface (10) 4 opposite the first surface 1〇62. The spacer element 118 is disposed between the substrate, such as the first surface age of the thermoacoustic element. The substrate 102 mainly functions to carry the first electrode 104, the second electrode 1〇8 and the interlayer #. The shape and size of the substrate 1〇2 are not limited, and the material is a material having poor electrical conductivity. In addition, the material of the substrate 1〇2 should have a good heat capacity, so as to prevent the heat generated by the thermoacoustic element from being smashed by the substrate and unable to reach the surrounding medium for sound generation. The material of the substrate ι〇2 may be glass, resin or shouting. In this embodiment, the substrate is moved into a square glass plate having a side length of 17 cm and a thickness of millimeters. The conditioning unit and the second electrode (10) may be disposed between the substrate (10) and the surface 1062 of the thermally induced surface, or may be disposed on the thermo-acting element tittr62 and the surface: 1G64, respectively. In the implementation, the spacer electrode 104 and the second electrode 108 are disposed between the substrate 102 and the track, and the first surface of the acoustic reading 106. The first electrode ι〇4 and the second electrode are two T-shaped, strip-shaped, rod-shaped, strip-shaped, block-shaped or other shapes, and the wide-section cross-cut type, square type, trapezoidal shape, three (four) or other irregular shape. Therefore, the heat of the sound generating element 1G6 is excessively absorbed by the first electrode and the second electrode 1〇8, and the contact area of the first electrode _ _ 声 声 声 声 1 1 The shape of the first electrode is preferably a filament or a ribbon. The material of the first electrode 1〇4 and the t electrode (10) may be selected from metal, conductive paste, lead material or steel tin oxide (IT0). The first electrode 104 and the second electrode f10 are micrometers ~ 1 meter. In this embodiment, the first electrode 104 and the second electrode = are filamentary silver electrodes having a height of 2G «. Scale, test t 8 7 201029480 The method is formed on the substrate 102. The substrate 102' disposed between the first electrode 1G4 and the second electrode 108 and the first electrode 104 and the second electrode (10) are used to space the thermo-acoustic element like a wire 1G2 A space-forming muscle is formed between the hybrid acoustic element 1G6 and the substrate 1〇2, thereby maintaining a good vocalization effect of the thermoacoustic element. The spacer element U8 and the substrate 102 may be separate components. The spacer element 118 is fixed to the substrate by means of, for example, bolting or adhesive bonding. The spacer element U8 may also be associated with the substrate 102 _ The body molding, that is, the material of the spacer member ι 8 is the same as that of the substrate 102. The shape of the spacer member 118 is not limited to a spherical, filamentary or ribbon-like structure. In order to maintain the thermal audible element 1 〇 6 with a good vocalization effect, the spacer element 118 has a small contact area with the thermoacoustic element 106 in supporting the thermoacoustic element 1 〇 6 , preferably the interval The element (10) is in point or line contact with the thermally audible element 106. In the present embodiment, the material of the spacer member 118 is not limited, and may be an insulating material such as glass, ceramics, or resin, or may be a conductive β material such as a metal, an alloy, or an indium tin oxide. When the spacer element 118 is a conductive material, it is electrically insulated from the first electrode 104 and the second electrode 108. The height of the spacer element 118 is not limited, and is preferably 1 〇 micrometer to 1 metre. In the present embodiment, the spacer element 118$ is a filament-like silver of a screen printing method, and the spacer element 118 is disposed in parallel with the first electrode 104 and the second electrode 1〇8. The height of the spacer element 118 is the same as the height of the first electrode 1〇4 and the second electrode worker' of 20 μm. Since the height of the spacer element 118 is the same as the height of the first electrode 1〇4 and the second electrode 108, the thermoacoustic elements 1〇6 are located on the same plane. The thermoacoustic element 106 is disposed on the spacer element 118, the first electrode 1〇4 8 201029480, and the second electrode 108. The thermo-acoustic element 1〇6 is spaced apart from the substrate 102 by the spacer element 118, and forms a space 1〇1 with the substrate 1〇2, the space ι〇ι is connected by the first electrode 104 or the The second electrode 108, the spacer element 118, the substrate 102, and the thermally audible element 106 are formed together. Further, in order to prevent the thermo-acoustic element 106 from generating a standing wave 'to maintain the good sound-emitting effect of the thermo-acoustic element 1 〇 6', the distance between the thermo-acoustic element 1 〇 6 and the substrate 1 〇 2 is preferably 1 〇 micron ^ cm. In this embodiment, since the first electrode 1〇4, the second electrode 1〇8, and the spacer element 118 have a degree of 20 micrometers, the thermoacoustic element 106 is disposed on the first electrode 104, the first electrode 108, and Spacer element 118, therefore, the distance between the thermally audible element 106 and substrate 102 is 2 〇 microns. It can be understood that 'the first electrode 104 and the second electrode 108 also have a fixed branching effect on the thermo-acoustic element 1〇6, but when the distance between the first electrode 1〇4 and the second electrode 1〇8 is large 'The support effect on the thermo-acoustic element 1 〇 6 is not good, and a spacer 118 is provided between the first electrode 104 and the second electrode (10), which can better support the thermo-acoustic element 106 and make the heat-induced sound The element 1〇6 is spaced apart from the substrate 1〇2 and formed with the substrate 102101, thereby ensuring that the thermoacoustic element 106 and the right sounding sound are good. The thermo-acoustic element 106 comprises a carbon nanotube structure comprising a composite structure of a carbon nanotube membrane, a nano carbon pipeline or a carbon nanotube membrane and a nano carbon pipeline. . The carbon nanotube structure has a thickness of 05 nm to 1 mil. The carbon nanotube structure may have a heat capacity per unit area of less than 2χ1σ4 joules per square meter of Kel. Excellent parent, the heat capacity per unit area of the nano-tube structure is less than 17 collapse: Joule square centimeter open _ text. The carbon nanotubes of the carbon nanotube structure towel include one or more of a wall carbon nanotube, a double-walled carbon nanotube, and a carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm. The diameter of the multi-walled carbon nanotube is 15 wins rice ~% nano. In this embodiment, the carbon nanotube film is obtained by drawing a carbon nanotube array, and the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation along the same direction and the nanometer The carbon tubes are connected end to end by Van der Waals force. Preferably, the carbon nanotube film comprises a plurality of parallel carbon nanotube tubes extending from the first electrode 104 to the second electrode 1G8 along its axial direction. That is, the axial direction of the carbon nanotube is perpendicular to the first pole 104. ❹ φ In the present embodiment, the 'nanocarbon tube structure except for being composed of a single carbon nanotube film' may include a plurality of stacked carbon nanotube films of a plurality of stacked carbon nanotube films. The carbon nanotube structure formed by a plurality of stacked carbon nanotubes has a higher strength than the nacre structure composed of a single carbon nanotube film, so that the carbon nanotubes are not covered by the surface or change. Since the permeability of the single carbon nanotube film is good, in the present implementation, the carbon nanotube film structure has better light transmittance, and the number of carbon nanotube films of the carbon nanotube structure towel is less than * . In addition, when the width of a single carbon nanotube film can not meet the requirements of practical applications, a plurality of carbon nanotube membranes can be coplanar without gaps to form a carbon nanotube membrane with a larger width for practical use. application. In the present embodiment, the carbon nanotube structure package as the thermoacoustic element 1〇6=four stacked carbon nanotube membranes, wherein the phase (four) two carbon nanotubes Straight to the phase. The length and width of the silk tube structure J J. The thickness of the carbon nanotube structure is G 5G nanometer. The nephron tube structure·Wei trigger acoustic element _ composed of four nano carbon S films has good light transmittance. The working medium of the sound-emitting element 1〇6 is not limited, and only needs to satisfy the resistivity of 201029480 which is larger than the resistivity of the thermo-acoustic element U)6. The medium comprises a gaseous medium or a liquid medium. Miscellaneous gaseous media can be found. The silk medium includes one or more of a non-electric-decomposing solution, water, and organic solvent. The liquid medium has a resistivity greater than _ ohm·meter. Preferably, the liquid medium is purified water. The pure water has a conductivity of up to 7 ohms per meter (L5XK) and has a large heat capacity per unit area, which can conduct heat generated by the starting acoustic element 106, thereby dissipating the sound generating element 1〇6. The above-mentioned thermo-acoustic device 10 can be connected to the second electrode 108 through the first electrode 104 to input an external signal. Since the sounding element 106 comprises a nano-carboniferous tube structure, the carbon nanotube structure is composed of a uniformly distributed carbon nanotube tube, since the carbon nanotube itself has a large specific surface area, and the carbon nanotube structure is layered. Or linear, so the carbon nanotube structure has a large specific surface area, a small heat capacity per unit area and a large heat dissipation area. After the signal is input, the thermo-acoustic element 1〇6 can rapidly rise and fall to generate periodic temperature changes, and rapidly exchange heat with the surrounding medium to periodically change the density of the surrounding medium to emit sound. In short, the thermoacoustic element 106 of the embodiment of the present invention achieves sound generation by "electric-thermal-acoustic," conversion. In addition, due to the high transmittance of the carbon nanotube structure, the thermal sound is generated. The device 1 is a transparent thermo-acoustic device. The sound-induced sound level of the thermo-acoustic device 10 provided in this embodiment is greater than 5 〇 decibels per watt of sound pressure level 'sound frequency range is 1 Hz to 1 10,000 Hz (ie 1 The heat-induced sounding device can have a distortion of less than 3% in the frequency range of 5 Hz to 10,000 Hz. 'In addition, the carbon nanotube structure in the embodiment of the present invention. It has good toughness and mechanical strength'. Therefore, the carbon nanotube structure can be conveniently fabricated into thermoacoustic devices of various shapes and sizes. Further, the thermoacoustic device 10 can be conveniently applied to various audible speakers 11 201029480 devices. For example, the audio, mobile phone, MP3, MP4, TV, computer, etc. Referring to FIG. 4 and FIG. 5, a second embodiment of the present invention provides a thermo-acoustic device 20, which is provided by the first embodiment. The structure of the thermo-acoustic device 1〇 is basically the same The thermoacoustic device 20 includes a substrate 202, a plurality of first 'electrodes 204, a plurality of second electrodes 2〇8, a plurality of spacer elements 218, a thermo-acoustic element 206, a first conductive element 21〇, and a The second conductive element 212. The plurality of first electrodes 2〇4 and the second electrode 208 are alternately spaced apart, and the plurality of first electrodes 204 and second electrodes 208 are parallel to each other and equidistantly disposed. The distance between the adjacent first electrode 204 and the second electrode 208 is not limited. Preferably, the distance between the adjacent first electrode 204 and the second electrode 208 is i mm to 3 cm. ❹ The spacer element 218 Arranged between the adjacent first electrode 204 and the second electrode 208, the number of the spacer elements 218 is not limited. The plurality of spacer elements are evenly distributed between the adjacent first electrode 204 and the second electrode 208, and The first electrode 204 and the second electrode 208 are disposed in parallel with the first electrode 204 and the second electrode 208. The adjacent first electrode 204 and the second electrode are disposed at equal intervals with the spacer element 218 therebetween. The distance between 208 is equally divided. The acoustic element 206 is disposed on the plurality of first electrodes 2, the plurality of second electrodes 208, and the spacer element 218, and the plurality of first electrodes 2〇4 and the plurality of second electrodes 2〇 8 is electrically connected. That is, the spacer element 218 and the second electrode 2〇8 are disposed between the substrate 2〇2 and the thermo-acoustic element. The thermo-acoustic element comprises a nanometer.

結構包括至少-奈米碳管膜、—夺 :&未W 碳管線的複合結構。 U線或奈米碳管膜與奈米 的數量分別為四 本實施例中’第—電極204和第二電極2〇8 12 201029480 個,相鄰的第-電極2齡第二電極2〇8之間包括兩個間隔元件 別。相鄰的兩個間隔元件218之間的距離不限,優選為1〇微米 至3嫠米。本實施例中,該兩個間隔元件218之間的間隔距離為7 宅米。該兩個間隔元件218將相鄰的第一電極2〇4和第二電極· 之間的距離分為三等份,所以,相鄰的第—_ 與第二電極 208之間的距離為2.1釐米。The structure includes a composite structure of at least a carbon nanotube film, a :: & un-carbon pipeline. The number of U-line or carbon nanotube film and nanometer is 'the first electrode 204 and the second electrode 2〇8 12 201029480 respectively in the fourth embodiment, and the adjacent first electrode 2nd second electrode 2〇8 Between the two spacer elements. The distance between adjacent two spacing elements 218 is not limited, preferably from 1 〇 micrometer to 3 嫠 meters. In this embodiment, the spacing distance between the two spacing elements 218 is 7 house meters. The two spacer elements 218 divide the distance between the adjacent first electrode 2〇4 and the second electrode· into three equal parts, so the distance between the adjacent first and second electrodes 208 is 2.1. cm.

本實施例中’所述熱致發聲|置2()的第—導電祕21〇與第 二導電元件犯分別與熱致發絲置2G中的複數個帛_^極_ 和複數個第二電極2〇8電連接。熱致發聲裝置如通過該第一導電 元件210和第二導電元件212與外部電路電連接。 請參見圖6,設置於相鄰第一電極2〇4與第二電極2〇8之間 的間隔元件2ir可齡該触發聲元件2〇6。本實施例中,間隔元 件218,的材料為可固化的液體材料,如絲、银膠等。當間隔元 件2職材料在一定溫度τ (一般為室溫或常溫)呈液態時,將 熱致發聲元件2〇6鋪設於間隔树218',間隔元件218旧化之後, 熱致發聲元件206便粘合於該_元件挪中。當 施枯合於間隔元件㈣時,熱致發聲元件2〇6可以更 =;件固 定。 請參閱圖7及圖8,本發明第三實施例提供—種熱致發聲裝置 3〇 ’該熱致發聲裝i 3〇與第二實施例提供的熱致發聲裝置2〇的 結構基本相同。該熱致發聲製置3〇包括一基底3〇2、複數個第一 電極304、複數個第二電極308、複數個間隔元件318、一熱致發 聲元件3〇6、-第-導電元件31〇以及一第二導電元件si2。 所述複數個第一電極304與複數個第二電極3〇8平行且交替 間隔設置於所述基底302。所述間隔元件318設置於相鄰的第一電 13 201029480 極304與第二電極308之間的基底302。所述熱致發聲元件306 設置於所述第一電極304、所述第二電極308以及所述間隔元件 • 318’且與該第一電極304和第二電極308電連接。即,所述間隔 元件318、第一電極304及第二電極308設置於基底302與熱致發 ' 聲元件306之間。 本實施例所提供的熱致發聲裝置30與第二實施例提供的熱致 發聲裝置20的結構不同之處在於間隔元件318為球狀結構。由於 間隔元件318為球狀結構,因此其與熱致發聲元件306的接觸為 —點接觸。 請參閱圖9及圖1〇,本發明第四實施例提供一種熱致發聲裝 置40。該熱致發聲裝置4〇包括一基底4〇2、一第一電極4〇4、一 第二電極408、一間隔元件418、一熱致發聲元件4〇6、一第一導 電元件410以及一第二導電元件412。 所述間隔元件418設置於基底402,所述熱致發聲元件4〇6設 置於間隔元件418遠離該基底4〇2的表面。該熱致發聲元件4〇6 φ 具有一第一表面4062及與該第一表面4062相對的第二表面 4064。該熱致發聲元件4〇6的第一表面4〇62面對該間隔元件· 且與其接觸連接,該熱致發聲元件—通過該間隔元件418與基 底402間隔一定距離,玄熱致發聲元件406、間隔元件418與基 底402共同形成有複數個空間。 所述熱致發聲裝置4〇與第二實施例提供的熱致發㈣番况的In the present embodiment, the first conductive 〇 21 〇 〇 〇 置 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The electrodes 2〇8 are electrically connected. The thermally audible device is electrically coupled to an external circuit, such as by the first conductive element 210 and the second conductive element 212. Referring to Fig. 6, the spacer element 2ir disposed between the adjacent first electrode 2〇4 and the second electrode 2〇8 can be aged to the triggering acoustic element 2〇6. In this embodiment, the spacer element 218 is made of a curable liquid material such as silk or silver glue. When the spacer element 2 material is in a liquid state at a certain temperature τ (generally room temperature or normal temperature), the thermo-acoustic element 2〇6 is laid on the spacer tree 218', and after the spacer element 218 is oldized, the thermo-acoustic element 206 is Bonded to the _ component. When the spacer element (4) is applied, the thermo-acoustic element 2〇6 can be more =; the piece is fixed. Referring to Figures 7 and 8, a third embodiment of the present invention provides a thermo-acoustic device 3A' which is substantially identical in structure to the thermo-acoustic device 2A provided in the second embodiment. The thermally audible device 3 includes a substrate 3〇2, a plurality of first electrodes 304, a plurality of second electrodes 308, a plurality of spacer elements 318, a thermoacoustic element 3〇6, and a first conductive element 31. And a second conductive element si2. The plurality of first electrodes 304 are disposed in parallel with and alternately spaced apart from the plurality of second electrodes 3A8. The spacer element 318 is disposed on the substrate 302 between the adjacent first power 13 201029480 pole 304 and the second electrode 308. The thermoacoustic element 306 is disposed on the first electrode 304, the second electrode 308, and the spacer element 318' and is electrically coupled to the first electrode 304 and the second electrode 308. That is, the spacer element 318, the first electrode 304, and the second electrode 308 are disposed between the substrate 302 and the thermally induced acoustic element 306. The thermo-acoustic device 30 of the present embodiment is different from the structure of the thermo-acoustic device 20 of the second embodiment in that the spacer member 318 has a spherical structure. Since the spacer element 318 has a spherical structure, its contact with the thermally audible element 306 is in point contact. Referring to Figures 9 and 1B, a fourth embodiment of the present invention provides a thermo-acoustic device 40. The thermal sound generating device 4 includes a substrate 4〇2, a first electrode 4〇4, a second electrode 408, a spacer element 418, a thermal sound generating element 4〇6, a first conductive element 410, and a Second conductive element 412. The spacer element 418 is disposed on the substrate 402, and the thermo-acoustic element 4〇6 is disposed on a surface of the spacer element 418 away from the substrate 4〇2. The thermally-sounding element 4〇6 φ has a first surface 4062 and a second surface 4064 opposite the first surface 4062. The first surface 4〇62 of the thermoacoustic element 4〇6 faces and is in contact with the spacer element, and the thermo-acoustic element is spaced apart from the substrate 402 by the spacer element 418, and the thermal-induced acoustic element 406 The spacer element 418 and the substrate 402 are formed together with a plurality of spaces. The thermo-acoustic device 4〇 and the thermally induced (four) condition provided by the second embodiment

<処牡於:第一電極404和第二電極408 電極404及第二電極408設置於熱致發聲 ^件406的第二表面4〇64上,分別與每個間隔元件仙相對設置, 使該熱致發聲元件4〇6 406夾持於第一電極404和第二電極408與間 201029480 隔兀件418之間。所述間隔元件418的數量與第一電極4〇4和第 二電極4G8的總數量相同,@此,_树的數量為至少兩 .個。本實關巾,間隔元件418係通補網印獅方法形成於基 底402,該間隔元件的數量為8個,其高度為2〇微米。所述 熱致發聲元件4〇6設置於該間隔元件遠離基底4〇2的表面, 且該熱致發聲元件406的第一表面键通過枯結劑枯結在該間隔 疋件418。第-電極4〇4和第二電極4〇8為不録鋼金屬絲,數量分 別為四個’通過導電枯結継結在所述熱致發聲元件咖的第二 ψ 表面4064,其高度為2〇微米。 由於熱致發聲元件406夾持於第一電極4〇4和第二電極4〇8盘 間隔元件418之間,可使熱致發聲元件306分別與第一電極3〇4、 和第二 308之間的電接觸更好,提高熱致發聲元件3〇6的發 聲效果。 «月參見圖11 ’本發明第五實施例提供一種熱致發聲裝置50該 熱致發聲裝置50包括-基底5〇2、一間隔元件51S、一熱致發聲 元件506及一致熱裝置52〇。 . B 該基底502具有-表面’該熱致發聲元件5〇6錄該基底5〇2 的-侧且朝向該基底502的表面。該熱致發聲元件5〇6具有一第 -表面5G62及與該第-表㈣62相對的第二表㈣糾。間隔元 件518設置於熱致發冑元件5〇6與基底5〇2之間。該熱致發聲元 件506的第-表面5062面對該間隔元件518且與其接觸連接該 熱致發聲元件506通過該間隔元件518與基底5〇2間隔一定距離, 使該熱致發聲元件506、間隔元件518與基底5〇2共同形成有複數 個空間。所述熱致發聲元件506具有一第一區域5〇66及一第二區 域5068。該第-區域5066的熱致發聲元件5〇6補於基底5〇2 15 201029480 =設ί、Γ^_5()6δ賴致發聲树506與制隔元件518 接觸,並通過間隔元件518支撐。 致縣裝置5G鮮四㈣贿觸誠魏錢40的 :構基本綱,其不狀處祕:_紐發聲裝㈣進 括一致熱裝置520。 用H發聲元件5〇6與該致熱裝置520間隔設置,致熱裝㈣ ;11…發聲7G件506提供能量,使熱致發聲元件5〇6產生熱 路4 ^聲Γ。該致熱裝置520為一雷射器,或其他電磁波訊號 祕獻。從該致熱裝置520發出的電磁波訊號5202傳遞至該熱 致發聲7L件506,該熱致發聲元件5〇6發聲。<Study in: first electrode 404 and second electrode 408 electrode 404 and second electrode 408 are disposed on the second surface 4〇64 of the thermoacoustic component 406, respectively, opposite to each spacer element The thermo-acoustic component 4〇6 406 is sandwiched between the first electrode 404 and the second electrode 408 and the interlayer 201029480 spacer 418. The number of the spacer elements 418 is the same as the total number of the first electrodes 4〇4 and the second electrodes 4G8, @ this, the number of _trees is at least two. In the actual sealing towel, the spacer element 418 is formed on the base 402 by a complementary lion printing method. The number of the spacer elements is eight and the height is 2 〇 micrometer. The thermo-acoustic element 4〇6 is disposed on a surface of the spacer element away from the substrate 4〇2, and the first surface key of the thermo-acoustic element 406 is dried at the spacer element 418 by a clotting agent. The first electrode 4〇4 and the second electrode 4〇8 are unrecorded steel wires, and the number is respectively 'by the conductive dry knot knotted on the second tantalum surface 4064 of the thermoacoustic component, the height of which is 2 〇 micron. Since the thermo-acoustic element 406 is sandwiched between the first electrode 4〇4 and the second electrode 4〇8, the thermo-acoustic element 306 can be combined with the first electrode 3〇4, and the second 308, respectively. The electrical contact between the two is better, and the sounding effect of the thermoacoustic element 3〇6 is improved. «Monthly Referring to Figure 11' A fifth embodiment of the present invention provides a thermo-acoustic device 50. The thermo-acoustic device 50 includes a substrate 5〇2, a spacer element 51S, a thermo-acoustic element 506, and a uniform thermal device 52A. B. The substrate 502 has a surface - the thermoacoustic element 5 〇 6 records the - side of the substrate 5 〇 2 and faces the surface of the substrate 502. The thermoacoustic element 5〇6 has a first surface 5G62 and a second table (four) opposite to the first table (four) 62. Spacer element 518 is disposed between thermally induced hairpin element 5〇6 and substrate 5〇2. The first surface 5062 of the thermoacoustic element 506 faces the spacer element 518 and is in contact therewith. The thermo-acoustic element 506 is spaced apart from the substrate 5〇2 by the spacer element 518, such that the thermo-acoustic element 506 is spaced apart. Element 518 is formed with a plurality of spaces in conjunction with substrate 5〇2. The thermoacoustic element 506 has a first region 5〇66 and a second region 5068. The thermo-acoustic element 5〇6 of the first region 5066 complements the substrate 5〇2 15 201029480=Set ί, Γ^_5() 6δ Depends on the audible tree 506 in contact with the spacer element 518 and is supported by the spacer element 518. Zhixian installation 5G fresh four (four) bribes to contact Wei Wei 40: the basic outline, its secrets: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The H-sounding element 5〇6 is spaced from the heating device 520, and the heating device (4); 11...the sounding 7G member 506 provides energy to cause the thermo-acoustic element 5〇6 to generate a thermal path. The heat generating device 520 is a laser, or other electromagnetic wave signal. The electromagnetic wave signal 5202 emitted from the heating device 520 is transmitted to the thermally audible sound 7L member 506, and the thermoacoustic element 5〇6 sounds.

了乂理解’該雷射器可正對該熱致發聲元件506設置。當該芙 板50J為可使雷㈣過騎縣板時,該奸對胁該基板土 遠離該熱致發聲元件5〇6的表面設置,從而使從雷射II發出的 雷射穿過基板502傳遞至該熱致發聲元件5〇6。另外,當該致熱裝 置520發出的是一電磁波信號時,該電磁波信號可透過一絕緣基 板502傳遞至該熱致發聲元件5〇6,此時,該致熱裝置52〇也可^ 對應於該基板502遠離該熱致發聲元件5〇6的表面設置。 本實施例的熱致發聲裝置50中,當熱致發聲元件5〇6受到如 ,射等電磁波的照射時,該熱致發聲元件5〇6因吸收電磁波的能 量而嗳激發,並通過非輻射使吸收的光能全部或部分轉變為熱。 該熱致發聲元件506溫度根據電磁波訊號52〇2頻率及強度的變化 而變化,並和周圍的空氣或其他氣體或液體介質進行迅速的熱交 換,從而使其周圍介質的溫度也產生等頻率的變化,造成周圍介 質迅速的%脹和收縮,從而發出聲音。進一步地,所述熱致發聲 元件506包括維奈米材料結構,該一維奈米材料結構包括複 16 201029480 數個同方向U幅轉米材料。所述—維奈米材料結構包 括奈米線麟、奈米管結構或奈米棒結構等。本實施例中,該一 維奈米材料結構為-奈米碳管結構。該奈米碳管結構包括一夺米 碳管膜、層疊設概财㈣时或共面設㈣複數個夺米 碳管膜。該奈米碳管膜包括·個奈祕f,絲碳管對電磁波 的吸收接近麟黑體,該奈米碳管結騎發㈣聲音的頻率範圍 較寬(1Hz~100kHz)、發聲效果較好。可以理解,當電磁波訊號 的頻率增高時’該熱致發聲元件5G6可以發出超聲波。 可以理解,由於該熱致發聲裝置的讀原理為將—定形式的 能量以極㈣速度雜為熱量’並和氣體或紐介質進行快 速的熱交換,㈣使該介#膨脹及收縮,從而發出聲音因此在 上述第-實關至第四實施例中,所述第—電極及第二電極也可 看作-致紐置’其通過為該触發聲元件施加—功率放大的音 頻電訊號’㈣使該触發聲元件發熱,進而加熱觸介質發二 聲音。因此’本技術領域的人可以知道,所述能量形式不局限於 電能或光能,紐熱裝置也不局限於上述實施财㈣極或電磁 波訊號發生器’任何可贿賴致發聲元件發熱,並按照音頻變 化加熱周圍介質的裝置均可看作-致熱裝置,並在本發明保護範 圍内。 紅上所述,本發明確已符合發明專利之要件,遂依法提出專 利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此 限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明 之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍 【圖式簡單說明】 圖1係現有技術中一種熱致發聲裝置的剖面圖。 17 201029480 圖2係本發明第一實施例提供的熱致發聲裝置的俯視圖。 圖3係沿圖2中ΠΙ_ΙΠ線剖開的刮面圖。 . 圖4係本發明第二實施例提供的熱致發聲裝置的俯視圖。 . 圖5係沿圖4中V-V線剖開的剖面圖。 圖6係本發明第二實施例提供的另一種熱致發聲裝置的剖面 圖。 • 圖7係本發明第三實施例提供的熱致發聲裝置的俯視圖。 ^ 圖8係沿圖7中VIII-VIII線剖開的剖面圖。 圖9係本發明第四實施例提供的熱致發聲裝置的俯視圖。 圖10係沿圖9中Χ-Χ線剖開的剖面圖。 圖11係本發明第五實施例提供的熱致發聲裝置的剖面圖。It is understood that the laser can be placed in the thermo-acoustic element 506. When the slab 50J is such that the ray (4) is overridden, the substrate is disposed away from the surface of the thermally audible element 5〇6, so that the laser emitted from the laser II passes through the substrate 502. It is transmitted to the thermoacoustic element 5〇6. In addition, when the electromagnetic device 520 emits an electromagnetic wave signal, the electromagnetic wave signal can be transmitted to the thermo-acoustic component 5〇6 through an insulating substrate 502. At this time, the heating device 52 can also correspond to The substrate 502 is disposed away from the surface of the thermo-acoustic element 5〇6. In the thermoacoustic device 50 of the present embodiment, when the thermoacoustic element 5〇6 is irradiated with electromagnetic waves such as, for example, radiation, the thermoacoustic element 5〇6 is excited by the energy of the electromagnetic wave and passes through the non-radiation. The absorbed light energy is converted into heat in whole or in part. The temperature of the thermoacoustic element 506 varies according to the frequency and intensity of the electromagnetic wave signal 52〇2, and is rapidly exchanged with the surrounding air or other gas or liquid medium, so that the temperature of the surrounding medium also generates the same frequency. The change causes a rapid % expansion and contraction of the surrounding medium, which causes a sound. Further, the thermo-acoustic element 506 comprises a Venn material structure comprising a plurality of U-turn materials in the same direction. The structure of the Venn material includes a nanowire, a nanotube structure or a nanorod structure. In this embodiment, the one-dimensional nano material structure is a carbon nanotube structure. The carbon nanotube structure comprises a carbon nanotube film, a stack of carbon (4) or a total of (4) a plurality of carbon nanotube films. The carbon nanotube film includes a naf f, and the carbon tube absorbs electromagnetic waves close to the lining black body, and the carbon nanotubes have a wide frequency range (1 Hz to 100 kHz) and good sounding effect. It can be understood that the thermoacoustic element 5G6 can emit ultrasonic waves when the frequency of the electromagnetic wave signal is increased. It can be understood that the reading principle of the thermo-acoustic device is that the energy of the form is mixed with heat at the end (four) speed and is rapidly exchanged with the gas or the medium, and (4) the expansion and contraction of the medium is issued. The sound is thus in the above-described first to fourth embodiment, the first electrode and the second electrode may also be regarded as a "contact" by applying a power amplified audio signal for the triggering acoustic element' (4) The triggering acoustic element is heated, and the second sound is heated by the touch medium. Therefore, the person skilled in the art can know that the energy form is not limited to electric energy or light energy, and the heat generating device is not limited to the above-mentioned implementation of the (four) pole or the electromagnetic wave signal generator, A device for heating a surrounding medium in accordance with an audio change can be regarded as a heat generating device and is within the scope of the present invention. As stated on the red, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention cannot be limited thereby. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be included in the following claims. FIG. 1 is a cross-sectional view of a prior art thermoacoustic device. 17 201029480 FIG. 2 is a top plan view of a thermo-acoustic device according to a first embodiment of the present invention. Figure 3 is a plan view of the scraping taken along line ΠΙ_ΙΠ in Figure 2. Figure 4 is a plan view of a thermo-acoustic device according to a second embodiment of the present invention. Figure 5 is a cross-sectional view taken along line V-V of Figure 4 . Figure 6 is a cross-sectional view showing another thermoacoustic device according to a second embodiment of the present invention. Figure 7 is a plan view of a thermoacoustic device provided by a third embodiment of the present invention. ^ Figure 8 is a cross-sectional view taken along line VIII-VIII of Figure 7. Figure 9 is a plan view of a thermo-acoustic device according to a fourth embodiment of the present invention. Figure 10 is a cross-sectional view taken along line Χ-Χ in Figure 9. Figure 11 is a cross-sectional view showing a thermoacoustic device according to a fifth embodiment of the present invention.

【主要元件符號說明】 發聲裝置 10,20,30,40,50 間隙 101 基底 102,202,302,402,502 第一電極 104,204,304,404 第二電極 108,208,308,408 發聲元件 106,206,306,406,506 第一表面 1062 , 4062 , 5062 第二表面 1064 , 4064 , 5064 間隔元件 118,218,218',318,418,518 18 201029480 第一導電元件 210,310,410 第二導電元件 212,312,412 第一區域 5066 第二區域 5068 致熱裝置 520 電磁波訊號 5202 19[Main component symbol description] Sounding device 10, 20, 30, 40, 50 Clearance 101 Base 102, 202, 302, 402, 502 First electrode 104, 204, 304, 404 Second electrode 108, 208, 308, 408 Element 106, 206, 306, 406, 506 first surface 1062, 4062, 5062 second surface 1064, 4064, 5064 spacer element 118, 218, 218', 318, 418, 518 18 201029480 first conductive element 210, 310, 410 second conductive element 212, 312, 412 first region 5066 second region 5068 heat device 520 electromagnetic wave signal 5202 19

Claims (1)

201029480 七、申請專利範圍: 1. 一種熱致發聲裝置,其包括: 一基底; 一第一電極; 一第二電極;以及 -熱致發聲耕,賴致魏树朗料—電 π,該熱致發聲元件具有··面向該基底的第-表面 第一表面相對的第二表面;201029480 VII. Patent application scope: 1. A thermo-acoustic device comprising: a substrate; a first electrode; a second electrode; and - a thermo-acoustic ploughing, Laizhi Wei Shulang-electric π, the thermal vocalization The element has a second surface facing the first surface of the first surface of the substrate; 其=良在於,該熱致發聲裝置進_步包括_間隔元件該間隔 兀件设置於所述基底,與電連接於該第—和第 分熱致發聲元件相接觸,以使該部分 命B、斗 間形成有-空間。 卩刀熱致發聲耕與該基底之 2. 如申請專利範圍第丄項所述之熱致發聲裝置 =r均設置於該基底,且與該熱致發聲:;= 3. 如申請專利範圍第1項所述之熱致發聲震置,其中,所述第一 電極及第一電極均設置於該熱致發聲元件的 4. 所述之熱致發聲裝置;中,所述熱致 個嶋7^,麵個間隔元件分別 與該第t極及第二電極相對以使該熱致發聲 該兩個間隔7L件與該第一電極及第二電極 、 5. 如申請:利範圍第1項所述之熱致發聲褒置二中,所述第一 =第二電極分別連接於該熱致發聲元件的第一表=第 6. 如申請專利範圍第i項所述之熱致發聲裝置,其中,所述間隔 20 201029480 兀件的形狀為片狀、棒狀、條狀、球狀絲狀 7.如申請專利範圍第i項所述 :狀或意狀。 •元件的橫截面形狀為圓型、方型^ ^所述間隔 -發縣L 述之熱致發聲裝置,其中,所述熱致 等括複數個該間隔元件,每相鄰的兩個間隔元 9· 項所述之熱致發聲裝置,其中,該熱致發 ❹ 件之間的距離件’每相鄰的兩個該間隔元 ια 第1項所述之熱致發聲裝置,其中,所述間隔 件”熱致發杉叙間為點細猶接觸。 让如申請專利範圍第!項所述之熱致發聲裝置,其中,所述間隔 几件通過職連接或餘_結設胁該基底。、 12.=Ξ=Γ熱致發聲裝置,其中,所述間隔 ❹ 性絕緣。 興所过第一電極和所述第二電極電 1申圍第13項所述之熱致發聲褒置,其中,所述間 隔疋件與第—電極和第二平行設置。 15.利範圍第14項所述之熱致發聲裝置,其中,所述間 16=ϊ材料與該第一電極及第二電極的材料相同。 •:月利圍第1項所述之熱致發聲裝置,其中,所述熱致 發聲兀件粘合於該間隔元件中。 17.如申請專利範圍第1項所述之熱致發聲裝置,其中,所述熱致 21 201029480 發聲元件與基底之間的空間的距離為1〇微米至工爱米。 讥如申請專利範圍第:ι項所述之熱致發聲裝置,其中,所述熱致 “ 發聲裝置包括複數個第—電極與複數個第二電極,該複數個第 , —電極與複數個第二電極交制隔設置且均與該熱致發聲元 件形成電接觸。 仪如申請專利範圍第18項所述之熱致發聲裝置,其中,所述複 數個第-電極與複數個第二電極等距間隔役置。 鲁2〇.如申請專利範圍第19項所述之熱致發聲裝置,其中,所述每 . 相鄰的第—電極與第二電極之間的距離為1毫米至3釐米。 此如申請專利範圍第i所述之熱致發聲裝置,其中,該熱致發聲 兀件包括-奈米碳管結構,該奈米碳管結構與該第—電極和該 第二電極電連接,且包括複數個平行的奈米石炭管,該複數個平 行的奈米碳管的軸向·從所述第1極延伸至所述第二電極。 22.如申請專利範圍第21項所述之熱致發聲装置其中,該奈米 碳管軸向方向與第一電極大致垂直。 ❿ 23. —種熱致發聲裝置,包括: 一基底,該基底具有一表面; 熱致u元件’該熱致發聲元件位於該基底的一侧,且朝 向該基底的表面; -致熱裝置,用於使該熱致發聲元件熱致發聲; 其改良在於’該熱致發聲裝置進_步包括—間隔元件,該間隔 70件位於該熱致發聲元件與該基底表面之間,以使該熱致發聲 兀件與該基底表面之間形成有—空間,該間隔元件與該致熱裝 置電性絕緣。 24.如申明專利範圍第23項所述之熱致發聲裝置其中,該熱致 22 201029480 發聲讀包括-個—維奈料構,該 沿同-方向延伸的一維奈米材料構成。u、材料結構由 5. ^中明專利範圍第%項所述之熱致發聲裝置,上 奈米材料結構為奈米碳管結構。 /、中,该一維 26. 如申嘴專利範圍第π項所述之熱致發聲裝 碳管結構包括-奈米碳管膜、層雜置的複數^ ^奈米 共面設置的複數個奈米碳管膜。 不只碳賞膜或 ❹ 27. 如::專利範圍第23項嫩熱致發聲裝置,其中,該間隔 凡件與該基底的材料相同。 ^ 5乂過隔 說如申請專利範圍第23項所述之熱致發聲衷置,談 發聲裝置進-步包括複數個 件之間的距離相等。 件母相鄰的兩個間隔元 改如申請專利範圍第23撕述之熱致發 發,基絲面之間的空間的距離為1〇微辛= 3α如申請專利範圍第23項所述之熱致發聲裝置 裝置包括-第-電極和-第二電極,該間隔元件的材料與該第 一及第二電極的材料相同。 31.如申請專利範圍第23項所述之熱致發聲裝置,其中,該致孰 裝置包括一雷射器。 ^ 32.如申請專利範圍第23項所述之熱致發聲裳置,其令,該間隔 7G件由可ΕΙ化驗體材料喊,賴致發聲元件齡於該間隔 元件。 23It is preferable that the thermo-acoustic device further includes a spacer member disposed on the substrate, and electrically connected to the first and second thermo-acoustic elements to make the portion B There is a space between the buckets. The heat-induced sounding device of the squeegee and the substrate are as follows: 2. The thermo-acoustic device as described in the scope of claim 2 is disposed on the substrate, and the heat-induced sound is:; The heat-induced sounding device according to any one of the above, wherein the first electrode and the first electrode are disposed in the thermo-acoustic device; ^, the surface spacer elements are respectively opposed to the tth pole and the second electrode to cause the heat to utter the two spacers 7L and the first electrode and the second electrode, 5. As claimed in the application: In the above-mentioned thermo-acoustic device, the first and second electrodes are respectively connected to the first table of the thermoacoustic element. , the spacing 20 201029480 The shape of the element is a sheet shape, a rod shape, a strip shape, a spherical filament shape 7. As described in the scope of claim i: shape or meaning. The cross-sectional shape of the element is a circular shape, a square type, and the thermal-inducing device described in the above-mentioned section, wherein the thermal element includes a plurality of the spacer elements, and each adjacent two spacer elements The thermoacoustic device according to the above aspect, wherein the distance between the heat-generating members is 'the two adjacent ones of the spacers ια, the thermo-acoustic device according to Item 1, wherein The heat-inducing device of the present invention is the heat-inducing device of the present invention, wherein the spacers are provided with a plurality of parts by means of a joint connection or a balance. And a thermal audible device according to claim 13, wherein the first electrode and the second electrode are electrically insulated, wherein The spacer device is provided in parallel with the first electrode and the second electrode. The thermoacoustic device according to claim 14, wherein the intermediate 16=the bismuth material and the first electrode and the second electrode The material is the same. The thermoacoustic device according to item 1, wherein the heat is generated The heat-inducing device of claim 1, wherein the distance between the acoustic element 21 201029480 sounding element and the substrate is 1 micron to the workpiece. A thermo-acoustic device according to the invention of claim 1, wherein the thermally-induced sounding device comprises a plurality of first electrodes and a plurality of second electrodes, the plurality of electrodes, and the plurality of electrodes A plurality of second electrode interposed spacers are disposed in electrical contact with the thermo-acoustic element. The thermoacoustic device of claim 18, wherein the plurality of first electrodes and the plurality of second electrodes are equally spaced apart. The thermoacoustic device according to claim 19, wherein the distance between each of the adjacent first electrodes and the second electrodes is from 1 mm to 3 cm. The thermoacoustic device of claim 1, wherein the thermoacoustic element comprises a carbon nanotube structure, the carbon nanotube structure being electrically connected to the first electrode and the second electrode, And comprising a plurality of parallel carboniferous tubes, the axial direction of the plurality of parallel carbon nanotubes extending from the first pole to the second electrode. 22. The thermoacoustic device according to claim 21, wherein the carbon nanotube has an axial direction substantially perpendicular to the first electrode. ❿ 23. A thermoacoustic device comprising: a substrate having a surface; a thermally induced u element 'on the side of the substrate facing the surface of the substrate; a heating device, For thermally causing the thermoacoustic element to be audible; the improvement is that the thermoacoustic device comprises a spacer element, the spacer 70 being located between the thermoacoustic element and the surface of the substrate to cause the heat A space is formed between the acoustic stimulator and the surface of the substrate, and the spacer element is electrically insulated from the heating device. 24. The thermo-acoustic device according to claim 23, wherein the thermal-sensing 22 201029480 vocal read comprises a one-Veneer structure, the one-dimensional nanomaterial extending in the same direction. u. The material structure is the thermo-acoustic device described in Section 5. ^Zhongming Patent Scope, and the nano-material structure is a carbon nanotube structure. /, medium, the one-dimensional 26. The thermo-acoustic carbon tube structure as described in the πth patent scope of the patent application includes a plurality of carbon nanotube membranes, a plurality of layers of miscellaneous Nano carbon tube membrane. Not only carbon film or ❹ 27. For example: Patent No. 23, the hot-induced sounding device, wherein the spacing is the same as the material of the substrate. ^ 5 乂 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说 说The two spacer elements adjacent to the mother are changed to the heat-induced haircut as described in claim 23, and the distance between the space of the base yarn faces is 1 〇 microxin = 3α as described in claim 23 of the patent application. The thermoacoustic device comprises a -first electrode and a second electrode, the spacer element being of the same material as the first and second electrodes. The thermoacoustic device of claim 23, wherein the sputum device comprises a laser. ^ 32. The thermally audible skirt according to claim 23, wherein the spacer 7G is shouted by the tamperable test material, and the vocal component is older than the spacer element. twenty three
TW98101581A 2009-01-16 2009-01-16 Thermal acoustic device TWI411314B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98101581A TWI411314B (en) 2009-01-16 2009-01-16 Thermal acoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98101581A TWI411314B (en) 2009-01-16 2009-01-16 Thermal acoustic device

Publications (2)

Publication Number Publication Date
TW201029480A true TW201029480A (en) 2010-08-01
TWI411314B TWI411314B (en) 2013-10-01

Family

ID=44854044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98101581A TWI411314B (en) 2009-01-16 2009-01-16 Thermal acoustic device

Country Status (1)

Country Link
TW (1) TWI411314B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420508B (en) * 2011-03-29 2013-12-21 Hon Hai Prec Ind Co Ltd Thermal acoustic device and electric device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186097A (en) * 2000-12-15 2002-06-28 Pioneer Electronic Corp Speaker
US6803840B2 (en) * 2001-03-30 2004-10-12 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
JP4816109B2 (en) * 2006-01-30 2011-11-16 株式会社デンソー Ultrasonic generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420508B (en) * 2011-03-29 2013-12-21 Hon Hai Prec Ind Co Ltd Thermal acoustic device and electric device

Also Published As

Publication number Publication date
TWI411314B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
TW201240486A (en) Thermal acoustic device and electric device
US8811633B2 (en) Thermoacoustic device
TWI500331B (en) Thermoacoustic device
TW200950569A (en) Acoustic device
CN101771920A (en) Sounding device
TW201125373A (en) Speaker
CN101771922B (en) Sounding device
CN101783996B (en) Thermoacoustic device
CN103841481B (en) Earphone
TW201029480A (en) Thermal acoustic device
US20110215673A1 (en) Ultrasonic wave generator
JP5356992B2 (en) Thermoacoustic device
CN103841480B (en) Earphone
TWI450601B (en) Thermal acoustic device and electric device
TWI380283B (en) Acoustic generator for ultrasound
TWI382771B (en) Thermoacoustic device
TWI373760B (en) Acoustic device
TWI375946B (en) Acoustic device
TWI382399B (en) Acoustic device
TWI420508B (en) Thermal acoustic device and electric device
TWI391913B (en) Acoustic device
TWI455604B (en) Thermal acoustic device and electric device
TWI351681B (en) Acoustic device
TWI399740B (en) Acoustic device
TWI379286B (en) Acoustic device