TW201028782A - Method of preparing optical device - Google Patents

Method of preparing optical device Download PDF

Info

Publication number
TW201028782A
TW201028782A TW98102830A TW98102830A TW201028782A TW 201028782 A TW201028782 A TW 201028782A TW 98102830 A TW98102830 A TW 98102830A TW 98102830 A TW98102830 A TW 98102830A TW 201028782 A TW201028782 A TW 201028782A
Authority
TW
Taiwan
Prior art keywords
electrode
optical device
oxide film
nickel oxide
preparing
Prior art date
Application number
TW98102830A
Other languages
Chinese (zh)
Inventor
Chia-Ching Liao
Original Assignee
Hitekcorps Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitekcorps Co Ltd filed Critical Hitekcorps Co Ltd
Priority to TW98102830A priority Critical patent/TW201028782A/en
Publication of TW201028782A publication Critical patent/TW201028782A/en

Links

Abstract

A method of preparing an optical device is described. On a conductive substrate, a nickel oxide film is formed by cathodic electrodeposition. The electrode of nickel oxide film is processes by heat treatment, to have a good property of inserting and extracting lithium ions. The temperature of the heat treatment is in about 150 Celsius Degrees to about 450 Celsius Degrees.

Description

201028782 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種具有良好經離子礙入及遷出之鎳氧 化物層之電致色變電極以及其製備方法,其中該電極可用 於一種電致色變裝置中的氧化電極。 【先前技術】 電致色變薄膜電極的特性為當陽離子和電子嵌入或遷 出薄膜結構時會改變其光學性質,一般是從透明狀態改變 φ 成著色狀態或從著色狀態變化成透明狀態,其顏色變化為 可逆過程。此種電致色變材料具有許多工業上的應用,例 如:智慧型節能窗、汽車頂窗、防眩後視鏡、顯示器和感測 器等。 電致色變材料的著色方式可以分為兩種:第一種稱為 陰極著色(cathodic coloration),即陽離子與電子欲入薄膜 電極時著色,而當陽離子與電子遷出薄膜電極時去色,以 此種著/去色方式的薄膜材料有氧化鎢、氧化鉬、氧化鈦、 © Viology和PEDOT等;第二種稱為陽極著色(anodic coloration),即陽離子與電子被入薄膜電極時去色,而當 陽離子與電子遷出薄膜電極時著色,以此種著/去色方式的 薄膜材料有氧化錄、氧化銀和普魯士藍等。 氧化鎳薄膜是常見的陽極著色電致色變材料,當陽離 子與電子嵌入薄膜時呈現透明狀態,而當陽離子與電子遷 出薄膜時呈現黑褐色。氧化鎳薄膜電極的製備方法有熱蒸 鍍、濺鍍、溶膠-凝膠法和電化學沉積等。在這些製備方法 3 201028782 中’電化學沉積法是最方便和便宜,而且容 流大小,鍍液成分及沉積溫度來 易藉由調整電 大部分研究氧化錄薄膜電_電致色變=的厚度。 驗金屬水溶液做為電解s,而氧化鎳薄 ,,都以 表示如下: 在巴的反應可以201028782 VI. Description of the Invention: [Technical Field] The present invention relates to an electrochromic electrode having a good ion-implanted and removed nickel oxide layer and a preparation method thereof, wherein the electrode can be used for an electric An oxidizing electrode in a color changing device. [Prior Art] The characteristics of the electrochromic thin film electrode are such that when the cation and the electron are embedded or removed from the film structure, the optical property is changed, and generally the φ is changed from the transparent state to the colored state or from the colored state to the transparent state. The color change is a reversible process. Such electrochromic materials have many industrial applications, such as smart energy-saving windows, automotive roof windows, anti-glare rearview mirrors, displays, and sensors. The coloring of electrochromic materials can be divided into two types: the first one is called cathodic coloration, that is, the cations and electrons are colored when they are applied to the film electrode, and the cations and electrons are decolored when they move out of the film electrode. The film materials in such a coloring/decoloring mode are tungsten oxide, molybdenum oxide, titanium oxide, ©Viology and PEDOT, etc.; the second type is called anodic coloration, that is, when cations and electrons are incorporated into the film electrode, the color is removed. When the cation and the electron migrate out of the film electrode, the film material is oxidized, silver oxide and Prussian blue. Nickel oxide thin films are common anodically colored electrochromic materials that exhibit a transparent state when the cations and electrons are intercalated into the film, and a dark brown color when the cations and electrons move out of the film. Nickel oxide thin film electrodes are prepared by thermal evaporation, sputtering, sol-gel method, and electrochemical deposition. In these preparation methods 3 201028782 'electrochemical deposition method is the most convenient and cheap, and the size of the flow, the composition of the bath and the deposition temperature are easy to adjust the thickness of the electricity by most of the oxidation film. . The aqueous solution of the metal is used as the electrolysis s, and the nickel oxide is thin, which is expressed as follows:

Ni(OH)2 + OH* -> NiOOH + H2〇 + e' ϋ ^ (transparent) 暗咖細) 上式中二價的氧化鎳被氧化成三價的氧化 明轉變成黑褐色。當上述的反應逆轉時,鎳^膜由透 成透明無色。然而’在互補型電致色變 化 合做為元件中的電解質,因為驗性電解質水液不適 化鑛薄膜電極的溶解。因此,以轉子為=^會造成氧 參 ㈣喊)形成的電解制為互補式 鋰離子嵌入/遷出氧化鎳薄膜的性質 =:n鎳氧化物薄臈中進行快迷二= 程序。初始活化錄氧化物的== =薄rr_子嵌入鎳氧化物薄二 騍巩化物溥膜,其化學反應式如下:Ni(OH)2 + OH* -> NiOOH + H2〇 + e' ϋ ^ (transparent) The divalent nickel oxide in the above formula is oxidized to trivalent oxidized to a dark brown color. When the above reaction is reversed, the nickel film is transparent and colorless. However, the complementary electrochromic composition acts as an electrolyte in the element because the electrolyte solution is not suitable for dissolution of the ore film electrode. Therefore, the electrolysis made by the rotor as the =^ will cause the oxygen (4) shouting to be complementary. The nature of the lithium ion intercalation/evolving nickel oxide film =: n nickel oxide thin crucible in the fast 2 = program. The initial activation of the oxide == = thin rr_ sub-embedded nickel oxide thin bismuth compound ruthenium film, its chemical reaction formula is as follows:

NiOx + yLi+ + ye- -> LiyNi〇x 其中,初始嵌人的娜子活化了鎳氧化物薄膜的主體結 4 201028782 構,使得此薄膜可以接下去進行可逆的鋰離子嵌入/遷出的 過程。然而,要施加多少循環次數的氧化還原電位於鎳氧 化物薄膜電極才能使之具有良好的鋰離子嵌入/遷出的過 程,主要依據原本鎳氧化物薄膜的沉積條件,通常至少需 要進行數十次的薄膜活化過程。但是,如果薄膜電極在使 用前需要先在電解液中進行活化處理才能使用,這樣會增 加額外的清潔薄膜電極的程序步驟,造成製程上的複雜 度,而且增加製造成本。有鑑於此,M. Rubin等人使用 _ LiNi02做為靶材,以濺鍍的方式直接沉積出鋰鎳氧化物薄 膜電極,降低薄膜所需活化的循環次數為一次。但是,使 用濺鍍法沉積薄膜需要昂貴的真空設備,將無法有效降低 製造成本。 【發明内容】 本發明揭示一具有較大的電致色變範圍之電極,電化 學方法所沉積的薄膜電極,只需經過適當的熱處理,即具 有良好的鋰離子嵌入/遷出特性,直接可以使用做為互補式 ^ 電致色變元件之電致色變電極。 本發明之目的之一,係為改善過去鎳氧化物薄膜電極 在使用鋰離子電解質為變色驅動陽離子來源時,需要經過 一電化學氧化還原循環之活化過程的不便利性。 本發明提供一種光學裝置的製備方法,其包括利用電 鍍的方式,在該透明導電玻璃基材上,利用電鍍液,進行 電鍍,以在該透明導電玻璃基材上形成一鎳氧化物薄膜, 完成一鎳氧化物薄膜電極。其中,該鎳氧化物薄膜電極具 有一光學調制能力範圍。該方法可更包括熱處理該鎳氧化 5 201028782 物薄膜電極,以使該鎳氧化物薄膜電極具有良好的裡離子 嵌入/遷出的性質,並增廣該光學調制能力範圍。 熱處理的溫度最好是介於約攝氏15〇度至攝氏450度 之間,其中又以約攝氏250度為佳。熱處理的步驟,可以 將該鎳氧化物薄膜電極置於一烤箱中進行,時間可以是約 1小時。熱處理後的錄氧化物薄膜的著/去色穿透率差可達 到約50.3%。當薄膜厚度愈厚時,薄膜的著色體積增加可 以提升薄膜著色深度,使得薄膜電致色變的光學穿透度變 ❹ 化變大。所以本發明之薄膜厚度愈厚時,其著/去色穿透率 差可以進一步增加。 本發明的鎳氧化物薄膜電極不需要利用電解液進行活 化,因而也不需要清洗步驟洗掉電解液。本發明可更包括 以錄氧化物薄膜電極做為氧化電極,以氧化鎢薄膜電極做 為還原電極,製備一電致色變元件。 本發明所述的電致色變元件,可包括形成在透明或半 透明基材上的第一電極與第二電極,以及電解質。而其第 ❿一電極、第二電極以及電解質或其組合,可包括一電致色 變材料。 第一電極與第二電極之基材的選用有如下的選擇:玻 璃基材(glass panels or substrate) > PET(polyethylene terephthalate)、PVC(polyvinyl chloride)和 PE(polyethlene) 等,但並非以此為限。 在第一電極、第二電極或該兩電極上的導電基材可為 一形成於透明基材上之透明導電層。透明導電層的材料可 以選擇金屬氧化物薄膜如氧化銦錫(IT0)、氧化錫摻氟 6 201028782 (FTO)、氧化錫摻銻(AT〇)、氧化鋅摻鋁;以及其混合物所 組成的群組,但並非以此為限。 在第一電極透明導電層上的電致色變薄膜層的材料可 選擇為鎢氧化物、鉬氧化物、鈮氧化物和PED0T等,但 並非以此為限。 在第二電極透明導電層上的離子儲存層或電致色變層 的材料可選擇為鎳氧化物、銥氧化物和普魯士藍等,但並 非以此為限。 在兩電極之間所夾的電解質層為一含鋰離子之材料,而 链離子的來源可例如為Licl〇4、UI、UPF6、LiBF4和NiOx + yLi+ + ye- -> LiyNi〇x Among them, the initial embedded Nazi activates the bulk structure of the nickel oxide film 4 201028782, so that the film can be followed by reversible lithium ion insertion/emission process. . However, how many cycles of redox is applied to the nickel oxide film electrode to make it have a good lithium ion insertion/emission process, mainly depending on the deposition conditions of the original nickel oxide film, usually at least several times. The film activation process. However, if the membrane electrode needs to be activated in the electrolyte before use, this will increase the additional procedure for cleaning the membrane electrode, resulting in process complexity and increased manufacturing costs. In view of this, M. Rubin et al. used _LiNi02 as a target to directly deposit a lithium nickel oxide thin film electrode by sputtering, thereby reducing the number of cycles required for activation of the film. However, the use of sputtering to deposit thin films requires expensive vacuum equipment and will not effectively reduce manufacturing costs. SUMMARY OF THE INVENTION The present invention discloses an electrode having a large electrochromic range, and the thin film electrode deposited by the electrochemical method has good lithium ion embedding/migrating characteristics only after proper heat treatment. An electrochromic electrode is used as a complementary electrochromic element. One of the objects of the present invention is to improve the inconvenience of the activation process of an electrochemical redox cycle in the past when a nickel oxide thin film electrode is used to drive a cation source using a lithium ion electrolyte. The invention provides a method for preparing an optical device, which comprises performing electroplating on a transparent conductive glass substrate by using a plating solution to form a nickel oxide film on the transparent conductive glass substrate by using electroplating. A nickel oxide film electrode. Among them, the nickel oxide film electrode has an optical modulation capability range. The method may further comprise heat-treating the nickel oxide 5 201028782 film electrode to impart good ionic ion embedding/migration properties to the nickel oxide film electrode and to broaden the optical modulation capability range. The heat treatment temperature is preferably between about 15 degrees Celsius and 450 degrees Celsius, and more preferably about 250 degrees Celsius. In the heat treatment step, the nickel oxide film electrode can be placed in an oven for about 1 hour. The difference in the color/decoloration transmittance of the recorded oxide film after heat treatment was as high as about 50.3%. When the thickness of the film is thicker, the increase in the coloring volume of the film can increase the depth of coloration of the film, and the optical transmittance of the electrochromic change of the film becomes larger. Therefore, when the thickness of the film of the present invention is thicker, the difference in the coloring/decoloring transmittance can be further increased. The nickel oxide thin film electrode of the present invention does not need to be activated by the electrolytic solution, and thus does not require a washing step to wash away the electrolytic solution. The invention further comprises preparing an electrochromic element by using an oxide film electrode as an oxidizing electrode and a tungsten oxide film electrode as a reducing electrode. The electrochromic element of the present invention may comprise a first electrode and a second electrode formed on a transparent or semi-transparent substrate, and an electrolyte. And the first electrode, the second electrode, and the electrolyte or a combination thereof may include an electrochromic material. The substrate of the first electrode and the second electrode is selected as follows: glass panels or substrates > PET (polyethylene terephthalate), PVC (polyvinyl chloride), and PE (polyethlene), but not Limited. The conductive substrate on the first electrode, the second electrode or the two electrodes may be a transparent conductive layer formed on the transparent substrate. The material of the transparent conductive layer may be selected from the group consisting of a metal oxide film such as indium tin oxide (IT0), tin oxide doped fluorine 6 201028782 (FTO), tin oxide doped germanium (AT〇), zinc oxide doped aluminum, and a mixture thereof. Group, but not limited to this. The material of the electrochromic thin film layer on the first electrode transparent conductive layer may be selected from the group consisting of tungsten oxide, molybdenum oxide, tantalum oxide, and PEDOT, but is not limited thereto. The material of the ion storage layer or the electrochromic layer on the second electrode transparent conductive layer may be selected from nickel oxide, cerium oxide and Prussian blue, but is not limited thereto. The electrolyte layer sandwiched between the two electrodes is a lithium ion-containing material, and the source of the chain ions may be, for example, Licl〇4, UI, UPF6, LiBF4, and

LiTFSI(lithium trifluoromethanesulfonimide)等,但並非以此 為限。電解質溶劑可以選自碳酸丙烯酯、丁酸内酯、乙 腈、7-汀内醯酮、曱氧基丙腈、3_以氧基丙腈以及三甘醇 一曱醚組成之群組,但非以此為限。另外,可加入高分子 聚合物形成膠態或固態電解質,例如為ρΜΜΑ、ρΕ〇、ρνΒ 等等,但非以此為限。 【實施方式】 做為實施與代表本發明的範例係闡明如下。 然而’應可理解於本領域中具通常知識者,在不悖離 本發明之精神與料下,均可對本發明有種種修改及修飾。 t發明一第—較佳實施例提供-種光學裝置的製備方 法’可包括一第一配置步H、一帛二配置步驟、一混合步 驟、-調整步驟、-形成步驟、—熱處理步驟。 於該第一配置步驟,係配置250 mL、約0.01 Μ〜0.1 Μ 的硝酸鎳(ΝΚΝ03)2)溶液。其中,又以約ο』Μ為佳。 201028782 (ΚΝΟ^Ϊ^ 一配置步驟’係配置25〇mL、〇.2M的石肖酸钟 D步驟’以等體積混合上述兩溶液形成〇·1Μ硝 二“奋液及G.1M確酸鉀溶液之電鑛液系統,其中混合石肖酸 钟溶液係為了維持姐跟離子的濃度。 於該调整步驟’係添加硝酸溶液於該電鍍溶液中,將 其PH值調整至3〜4之間,又以約3 5為佳。 ❿ 於3亥形成步驟’係利用陰極電鍍方式,以一透明導電 玻璃基材為工作電極’將該透明導電玻璃基材浸在該電鍍 液以一白金鈦網為對電極,以電流密度為0.25 mA/cm2 =疋電流,在該透明導電玻璃基材上,利用該電鍍液,進 盯,錢約30分鐘,以在該透明導電玻璃基材上形成一透明 的氫氧化鎳薄膜’完成—鎳氧化物薄膜電極具有該透明導 t破璃基材及該錄氧化物薄膜,其中該錄氧化物薄膜電極 具有一光學調制能力範圍。 ❹ 於该形成步驟進行之前,可先以清潔劑清洗該透明導 坡璃基材’再用去離子水將清潔劑完全洗淨,隨後用氮 氣將該透明導電玻縣材上的水吹乾 。接著,將該透明導 ^坡蹲基材浸在稀釋過的硝酸溶液中,對其施加固定正電 =維持一段時間’隨後取出以去離子水將該透明導電玻璃 土材上的硝酸溶液洗淨,再用氮氣將該透明導電玻璃基材 上的水吹乾,以進行後續的形成步驟。 上述形成步驟’是一種電化學沉積(eiectr〇dep0sjti〇n) 步驟。上述透明導電玻璃基材,可以是銦摻雜之氧化錫 8 201028782 (ITO ; indium tin oxide)玻璃基材或氟摻雜之氧化錫(FT〇 ; fluorine doped tin oxide)玻璃基材。LiTFSI (lithium trifluoromethanesulfonimide), etc., but not limited to this. The electrolyte solvent may be selected from the group consisting of propylene carbonate, butyrolactone, acetonitrile, 7-indolone, decyloxypropionitrile, 3- oxypropionitrile, and triethylene glycol monoterpene ether, but not This is limited to this. Further, a polymer or a solid electrolyte may be added to form a colloidal or solid electrolyte, for example, ρΜΜΑ, ρΕ〇, ρνΒ or the like, but is not limited thereto. [Embodiment] As an example of carrying out and representing the present invention, the following is clarified. However, it is to be understood that the invention may be modified and modified without departing from the spirit and scope of the invention. The invention provides a first configuration step H, a second configuration step, a mixing step, an adjustment step, a formation step, and a heat treatment step. In the first configuration step, 250 mL of a solution of nickel nitrate (ΝΚΝ03) 2) of about 0.01 Μ to 0.1 Μ is disposed. Among them, it is better to use about οΜ. 201028782 (ΚΝΟ^Ϊ^ A configuration step' is to configure 25 〇mL, 〇.2M lithograph clock D step' to mix the above two solutions in equal volume to form 〇·1Μ 二二二 奋液 and G.1M potassium silicate The electro-mineral system of the solution, wherein the mixed solution of the sulphuric acid clock is used to maintain the concentration of the sigmoid ion. In the adjusting step, a nitric acid solution is added to the electroplating solution, and the pH value is adjusted to between 3 and 4, Further, about 3 5 is preferred. 于 The formation step of the 3 hai is performed by a cathode plating method using a transparent conductive glass substrate as a working electrode. The transparent conductive glass substrate is immersed in the plating solution to a platinum-titanium mesh. The counter electrode has a current density of 0.25 mA/cm2 = 疋 current, and on the transparent conductive glass substrate, the plating solution is used for about 30 minutes to form a transparent layer on the transparent conductive glass substrate. The nickel hydroxide film 'finished|the nickel oxide film electrode has the transparent conductive glass substrate and the oxide film, wherein the oxide film electrode has an optical modulation capability range. 之前 Before the forming step, Cleaner Washing the transparent glass substrate, and then completely cleaning the cleaning agent with deionized water, and then drying the water on the transparent conductive glass material with nitrogen. Then, immersing the transparent conductive material in the substrate In the diluted nitric acid solution, a fixed positive charge is applied thereto for a period of time. Then, the nitric acid solution on the transparent conductive glass soil material is washed with deionized water, and then the transparent conductive glass substrate is replaced with nitrogen. The water is blown dry to carry out the subsequent forming step. The above forming step 'is an electrochemical deposition process. The transparent conductive glass substrate may be indium doped tin oxide 8 201028782 (ITO; indium Tin oxide) glass substrate or fluorine doped tin oxide (FT) glass substrate.

於该熱處理步驟’係不以電化學方法活化該鎳氧化物薄 膜電極,而將該鎳氧化物薄膜電極置於一烤箱中,以適當 的溫度進行熱處理,處理時間為約一至兩小時,此時鎳氧 化物薄膜呈現淺褐色,以使該鎳氧化物薄膜電極具有良好 的鋰離子嵌入/遷出的性質,並增廣該光學調制能力範圍。 上述適當的溫度,可以是約攝氏15〇度至攝氏45〇度其 中又以約攝氏250度者為佳。 根據該第一較佳實施例,本發明在經過該熱處理後,該 鎳氧化物薄膜具有良好的電致色變性質。 根據該第-較佳實施例,本發明可更包括以—方法測量 該鎳氧,物薄膜電極的電容量’以得知該雜子嵌入/遷出 的f生貝疋否良好。該方法係以該錄氧化物膜薄電極為工作 電極,以-白金鈇網為對電極,以銀/氣化銀(Ag/A柳為參 考電極’卩i Μ過氯酸滩咖4)溶解於碳酸丙烯醋為電 解質溶液,對該工作電極進行循環伏安掃瞒分析。第4圖 為經過熱處理的鎳氧化物薄膜電極的初始前三圈循環伏安 ,圖譜,參閱第4 ’根據該循環伏安掃猫分析出的 則-圈循壤伏安圖,可以明顯地看出前三圈循環伏安圖沒 有特別的I化’可以得知該鎳氧化物薄膜具有良好的電致 色變性質’故不f要先前技術所說的活化過程㈣。 測量錄氧化物薄膜電極之電化學特性的裝置以錄氧化 物膜薄電極為卫作電極,白金鈦網為對電極,銀/氣化銀 (Ag/AgC1)為參考電極,電解質溶液為1 Μ過氯義(LiC1〇4) 9 201028782 溶解於碳酸丙烯酯。對工作電極進行循環伏安掃瞄分析, 第1圖和第2圖顯示經過熱處理以及未經熱處理的錦氧化 物薄膜電極之循環伏安圖譜。比較第1圖和第2圖的掃聪 迴路所圍的面積,經過25(TC熱處理的氧化鎳薄膜電極明 顯有較大的電容量,而沒有經過熱處理的薄膜電極之電容 量很小,顯示經過熱處理的電鍍氧化鎳薄膜電極有良好的 鋰離子嵌入/遷出的性質。而且經過熱處理的氧化鎳薄膜電 極在鋰離子嵌入/遷出的同時,表現出顯著的顏色變化,當 鋰離子嵌^薄膜時,薄膜電極呈現透明狀態;當鋰離子遷出 薄膜時,薄膜電極呈現暗褐色。第3圖顯示經過熱處理的 鎳氧化物薄膜在鋰離子嵌入/遷出時所做的光譜量測圖。鎳 氧化物薄膜著色時,在波長550 nm的穿透率為27.8% ;而 薄膜在去色狀態下,在波長550 nm的穿透率為78.1〇/0。所 以’鎳氧化物薄膜的著/去色穿透率差達到約5〇3〇/。,有大 範圍的光學調制能力。但是其光學調制能力不限於該值, 當薄膜厚度愈厚時,其光學調制能力愈大。 瘳 根據該第一較佳實施例,本發明可更包括以鎳氣化物薄 膜電極做為氧化電極,以氧化鎢薄膜電極做為還原電極: 製備一電致色變元件。例如,將其中一電極四周貼上固定 厚度的間隔物’將1M高氣酸鋰-碳酸丙晞酯-聚甲基丙烯 酸甲酯體系(LiClCU+PC+PMMA)膠態電解質塗佈在該電極 上,把另一個電極與前述的電極對貼合,把多餘掷出來的 電解質擦拭乾淨,四周以環氧樹酯(epoxy)封合起來,即可 完成本發明之電致色變裝置。 上述電致色變元件製備步驟,可另以一聚乙歸醇縮丁駿 201028782 固癌電解質薄膜製作步驟、一貼合步驟以及一壓合步驟進 行。 於該聚乙烯醇縮丁醛(PVB)固態電解質薄膜製作步驟, 係將聚乙烯醇縮丁醛固態薄膜浸在低溫的1M過氯酸鋰 (UCl〇4)/Y-丁酸内酯電解液,製作成含有導離子性的聚乙烯 醇縮丁醛固態電解質薄膜。 於該貼合步驟’將聚乙烯醇縮丁醛固態電解質薄膜貼合 在該鎳氧化物薄膜電極與一氧化鶴薄膜電極之間,環境溫 ❹度為約23 c,且相對濕度為約50〇/。。 於該壓合步驟,係根據標準的膠合玻璃壓合過程,壓合 該貼口物’以完成該電致色變元件。其中,該電致色變元 件於氧化(+1.5V)_還原(-2.0V)之施加電壓下,在耗與去色 其間’在波長550 nm#穿透率介於約12%〜62%,如第5 圖所示,該元件具有良好的操作穩定性。 第6圖繪示根據本發明一第二較佳實施例,一種光學 裝置的製備方法流程示意圖。請參閱第6圖,該方法可包 ❹括一形成步驟602以及一熱處理步驟6〇4。 於该形成步驟6G2 ’係在—導電基材上進行電鐘,以形 成-鎳氧化物薄膜,完成-鎳氧化物薄膜電極包括該錄氧 化物薄膜及該導電基材。該導電基材,可以是金屬或鐘有 導電性薄膜的非導電性基材。 於該熱處理步驟604’係熱處理該鎳氧化物薄膜電極, 以使該鎳氧化物薄膜電極具有良好的鋰離子嵌入/遷出的 性質。該熱處理的溫度約介於攝氏15〇度至攝氏45〇度, 其中又以約攝氏250度為佳。該熱處理的步驟6〇4,可以 201028782 1該鎳乳化物薄膜電極置於—烤箱中進行, 鎳氧化物薄膜電極具有-光學調制能力範圍其: =Γ 604 ,該光學調制能力範圍。二」 膜厚产命厚Ξ有:者/去色穿透率差可達到約50·3%。:ϊ ;厚度愈厚時,薄膜的著色體積增加可以提升薄膜菩:4 得薄膜電致色變的光學穿透度變化變 力膜厚度愈厚時,其著/去色穿透率差可以進 ❿ 上述形成步驟纽’較佳的做法,係利 進仃,且付以定電流或定電 電鍍方式 密度可以約為0.25 —。此^二。定1流的電流 用-電鑛液進行。其中,該電鍍丄:=步驟咖,可利 :二含水氯化錦、過氯酸錦:其他錄之:酸鎳、 =中所形成的溶液。至於電鑛液的ΡΗ值=溶解 、、力3〜4之間,又以約3.5為佳。 值最好是在 根據該第二較伟訾故 ❹ 利用電解液或其㈣物薄模電極不需要 洗步驟洗掉該電解液。本發明=、’因而也不需要清 極做為氧化電極,以氧 二::氧化物薄獏電 一電致色變元件。 電極做為還原電極,製備 過適者ϋ發明’利用陰極沈積法電鍍的錦4各 性,同^展、ί理後具有良好可逆⑽離子嵌入經 Π時展現—較廣的 遷出的特 牛時,相較於使用傳統的鐵2 =腹在製作電致色 …、处理的錄氧化物薄膜不需要 化 用本發明 电化予法或其他方法 201028782 活化鎳氧化物薄膜就具有良好的電致色變特性,直接可以 應用在電致色變元件中的氧化電極。因此,根據本發明的 鎳氧化物薄膜使用在電致色變元件中的氧化電極時,在製 造電致色變元件的過程中,可以減少製程步驟,降低製造 成本且增加製程良率。 以上所述係利用實施例說明本發明,而非限制本發明 之範疇,而且熟知此類似技藝人士皆能明瞭,適當而做些 微的改變及調整,仍將不失本發明之要義所在,亦不脫離 本發明之精神和範。 ® 【圖式簡單說明】 第1圖:係顯示經過250°C熱處理的鎳氧化物薄膜電 極之循環伏安圖譜; 第2圖:係顯示未經熱處理的鎳氧化物薄膜電極之循 環伏安圖譜; 第3圖:係顯示經過250°C熱處理的鎳氧化物薄膜電 極在著色/去色時之穿透光譜; _ 第4圖:係顯示經過25(TC熱處理的鎳氧化物薄膜電 φ 極之初始前三次的循環伏安圖譜; 第5圖:係顯示電致色變元件(氧化鎢/導離子PVB/氧 化鎳)在著色/去色時之穿透光譜;以及 第6圖繪示根據本發明一第二較佳實施例,一種光學 裝置的製備方法流程示意圖。 【主要元件符號說明】 602形成步驟 604熱處理步驟 13In the heat treatment step, the nickel oxide film electrode is not electrochemically activated, and the nickel oxide film electrode is placed in an oven and heat-treated at an appropriate temperature for about one to two hours. The nickel oxide film exhibits a light brown color so that the nickel oxide film electrode has good lithium ion insertion/emission properties and amplifies the optical modulation capability range. The above suitable temperature may be about 15 degrees Celsius to 45 degrees Celsius, and preferably about 250 degrees Celsius. According to the first preferred embodiment, the nickel oxide film of the present invention has good electrochromic properties after the heat treatment. According to the first preferred embodiment, the present invention may further comprise measuring the capacitance of the nickel oxide, the film electrode by a method to know whether the impurity is embedded/escaped. The method uses the thin electrode of the oxide film as the working electrode, the platinum-platinum mesh as the counter electrode, and the silver/vaporized silver (Ag/A willow as the reference electrode '卩i Μperchloric acid beach coffee 4) to dissolve The working electrode was subjected to cyclic voltammetry analysis on the propylene carbonate acrylate as an electrolyte solution. Figure 4 is the initial first three cycles of cyclic voltammetry of the heat-treated nickel oxide film electrode. See Figure 4 for the volt-ampere voltammogram based on the cyclic voltammetric brush. The first three cycles of the cyclic voltammogram have no special I's known that the nickel oxide film has good electrochromic properties, so it is not required to be the activation process described in the prior art (4). The device for measuring the electrochemical characteristics of the oxide film electrode is a thin electrode made of oxide film as a servo electrode, a platinum titanium mesh as a counter electrode, silver/vaporized silver (Ag/AgC1) as a reference electrode, and an electrolyte solution of 1 Μ. Perchlorinated (LiC1〇4) 9 201028782 Dissolved in propylene carbonate. Cyclic voltammetric analysis of the working electrode was carried out, and Figures 1 and 2 show the cyclic voltammogram of the heat-treated and unheated ruthenium oxide film electrode. Comparing the area enclosed by the sweeping circuit of Fig. 1 and Fig. 2, after 25 (the TC heat treated nickel oxide film electrode has a large capacitance, the capacitance of the film electrode without heat treatment is small, the display shows The heat-treated electroplated nickel oxide film electrode has good lithium ion intercalation/evolving properties, and the heat-treated nickel oxide film electrode exhibits a remarkable color change while intercalating/migrating lithium ions, when the lithium ion is embedded in the film. When the lithium ion migrates out of the film, the film electrode appears dark brown. Figure 3 shows the spectral measurement of the heat-treated nickel oxide film during lithium ion insertion/removal. When the oxide film is colored, the transmittance at a wavelength of 550 nm is 27.8%; and when the film is decolored, the transmittance at a wavelength of 550 nm is 78.1 Å/0. The difference in color transmittance is about 5 〇 3 〇 /. There is a wide range of optical modulation capability. However, the optical modulation capability is not limited to this value, and the thicker the film thickness, the greater the optical modulation capability. According to the first preferred embodiment, the present invention may further comprise using a nickel vaporized film electrode as an oxidizing electrode and a tungsten oxide film electrode as a reducing electrode: preparing an electrochromic element. For example, one of the electrodes is surrounded by Applying a spacer of fixed thickness '1M high lithium niobate-propyl acrylate-polymethyl methacrylate system (LiClCU + PC + PMMA) colloidal electrolyte on the electrode, the other electrode and the foregoing The electrode pair is bonded, the excess electrolyte is wiped clean, and the epoxy resin is sealed around the epoxy resin to complete the electrochromic device of the present invention. The method further comprises the steps of: preparing a solidar electrolyte film of a polyvinyl butyral (PVB) solid electrolyte film, and preparing a polyethylene. The solid film of butyral is immersed in a low-temperature 1M lithium perchlorate (UCl〇4)/Y-butyrolactone electrolyte to prepare a polyvinyl butyral solid electrolyte membrane containing an ion-conducting property. Step by step The butyral solid electrolyte membrane is bonded between the nickel oxide film electrode and the oxidized crane film electrode, and the ambient temperature is about 23 c, and the relative humidity is about 50 〇 /. In the pressing step, Applying the applicator ' according to a standard glued glass pressing process to complete the electrochromic element. wherein the electrochromic element is applied by oxidation (+1.5 V)-reduction (-2.0 V) Under voltage, during the consumption and decolorization, the transmittance at wavelength 550 nm# is between about 12% and 62%. As shown in Figure 5, the component has good operational stability. Figure 6 shows A second preferred embodiment of the invention is a schematic flow chart of a method for preparing an optical device. Referring to FIG. 6, the method may include a forming step 602 and a heat treating step 6〇4. In the forming step 6G2', an electric clock is applied to the conductive substrate to form a nickel oxide film, and the finished-nickel oxide thin film electrode includes the oxide film and the conductive substrate. The conductive substrate may be a metal or a non-conductive substrate having a conductive film. The nickel oxide thin film electrode is heat-treated in the heat treatment step 604' so that the nickel oxide thin film electrode has a good lithium ion intercalation/migration property. The heat treatment temperature is about 15 degrees Celsius to 45 degrees Celsius, and preferably about 250 degrees Celsius. The step of heat treatment is 6〇4, and the nickel emulsion film electrode can be placed in an oven. The nickel oxide film electrode has an optical modulation capability range: = 604 604, the optical modulation capability range. 2) The thickness of the film is thicker and the thickness of the film is less than 50.3%. :ϊ; the thicker the thickness, the increase in the coloring volume of the film can improve the optical transparency of the film: 4, the optical penetration of the film is changed, and the thickness of the film becomes thicker. ❿ The above-mentioned formation steps are better, and the density can be about 0.25-by constant current or electroplating. This ^ two. The current of the constant current is carried out with -electron ore. Among them, the electroplating 丄: = step coffee, can be profit: two aqueous chlorinated bromine, perchloric acid bromine: other recorded: acid nickel, = formed in the solution. As for the enthalpy of the electro-mineral solution = dissolution, the force is between 3 and 4, and preferably about 3.5. Preferably, the value is washed by the electrolyte or its (4) thin film electrode without a washing step according to the second higher order. The present invention =, 'and thus does not require the electrode as an oxidizing electrode, and the oxygen bis:: oxide thin 貘 an electrochromic element. The electrode is used as a reduction electrode, and the preparation has been made. The invention has been invented by the cathodic deposition method. It has a good reversible (10) ion embedding in the warp--the wide-time migration of the special cattle. Compared with the use of the traditional iron 2 = the abdomen in the production of electrochromic ..., the processed oxide film does not need to use the electrochemical method of the present invention or other methods 201028782 activated nickel oxide film has good electrochromic The characteristics can be directly applied to the oxidation electrode in the electrochromic element. Therefore, when the nickel oxide film according to the present invention is used in an oxidizing electrode in an electrochromic element, in the process of manufacturing the electrochromic element, the process steps can be reduced, the manufacturing cost can be reduced, and the process yield can be increased. The above description of the present invention is intended to be illustrative of the present invention, and is not to be construed as limiting the scope of the present invention. Without departing from the spirit and scope of the invention. ® [Simplified Schematic] Fig. 1 shows the cyclic voltammogram of a nickel oxide film electrode treated at 250 °C; Figure 2 shows the cyclic voltammogram of a non-heat treated nickel oxide film electrode Figure 3: shows the transmission spectrum of the nickel oxide film electrode heat-treated at 250 °C during coloring/decoloring; _ Figure 4: shows that after 25 (TC heat-treated nickel oxide film electricity φ pole The first three cycles of cyclic voltammetry; Figure 5: shows the transmission spectrum of the electrochromic element (tungsten oxide / ion-conducting PVB / nickel oxide) in the coloring / decoloring; and Figure 6 shows A second preferred embodiment of the invention is a schematic flow chart of a method for preparing an optical device. [Description of main component symbols] 602 forming step 604 heat treatment step 13

Claims (1)

201028782 七、申清專利範圍·· 1. 一種光學裝置的製備方法,包括: 配置0.01〜1M硝酸鎳溶液; 形成電鍍液; 添加硝酸溶液於該電鍍溶液中,將其pH值調整至3〜4 之間; *利用陰極電鑛方式在—導電基材上形成—鎳氧化物 薄膜,,成一錦氧化物薄膜電極具有該透明導電玻璃基材 ❹及„玄鎳氧化物薄膜,其中該鎳氧化物薄膜電極具有一光學 調制能力範圍;以及 不。以電化學方法活化該鎳氧化物薄膜電極,而以溫度 約200 C〜30〇c進行熱處理,以使該錄氧化物薄膜電極具 有良好的鐘離子嵌入/遷出的性質,並增廣該光學調制能力 範圍。 2·如申μ專利範圍第1項所述之光學裝置的製備方法,為 了,維持電鍵液中叾肖酸根離子的濃度,可以添加G.1M〜1Μ的 ❺硝酸鉀、硝酸鈉或硝酸鋰溶液於電鍍液中。 3·如申μ專利範圍第丨項所述之光學裝置的製備方法,更 包括以下列方法測量該鎳氧化物薄膜電極的電 容量,以得 知該鋰離子嵌入/遷出的性質是否良好: 以該鎳氧化物臈薄電極為工作電極,以一白金欽網為 極卩銀/氯化銀為參考電極’以過氣酸鐘(u⑽4) :解於碳酸㈣料電解質溶液,對該工作電極進行循環 伏安掃瞄分析。 •如U利1&圍第i項所述之光學裝置的製備方法,其 201028782 中在經過該熱處理後,該鎳氧化物薄膜具有良好的電致色 變性質。 5. 如申請專利範圍第3項及第4項所述之光學裝置的製備 方法,其中根據該循環伏安掃瞄分析出的前三圈循環伏安 圖,可得知該鎳氧化物薄膜具有良好的電致色變性質,故 不需要被活化。 6. 如申請專利範圍第1項所述之光學裝置的製備方法,其 中該鎳氧化物薄膜的著/去色穿透率差達到約50.3%。 7. 如申請專利範圍第6項所述之光學裝置的製備方法,其 中在該鋰離子嵌入/遷出時,更包括製作一光譜量測圖,根 據該光譜量測圖,該鎳氧化物薄膜著色時,在波長5 5 0 nm 的穿透率為27.8%,而該鎳氧化物薄膜在去色狀態下,在 波長550nm的穿透率為78.1%,所以該鎳氧化物薄膜的著/ 去色穿透率差達到約50.3%。 8. 如申請專利範圍第1項所述之光學裝置的製備方法,更 包括以鎳氧化物薄膜電極做為氧化電極,以氧化鎢薄膜電 _ 極做為還原電極,製備一電致色變元件。 9. 如申請專利範圍第8項所述之光學裝置的製備方法,該 電致色變元件製備步驟更包括: 將聚乙烯醇縮丁醛固態薄膜浸在低溫的過氣酸鋰/γ-丁 酸内酯電解液,製作成含有導離子性的聚乙烯醇縮丁醛固 態電解質薄膜; 將聚乙烯醇縮丁醛固態電解質薄膜貼合在該鎳氧化物 薄膜電極與一氧化鎢薄膜電極之間,環境溫度為約23°C, 且相對濕度為約50% ;以及 15 201028782 壓合該貼合物,以完成該電致色變元件 10. 一種光學裝置的製備方法,包括·· ^電基材上進行電鍍,以形成—錄氧化物薄膜,6 :「:及氧化物薄膜電極包括該錄氧化物薄膜及該導電: 熱處理該鎳氧化物薄膜電 具有良好驗離子嵌人/遷“性/ 4减物相電極 ❹ 申料難㈣1G項所叙絲裝置㈣備方法, =熱處^溫度約介於攝氏150度至攝氏450度備方法 該熱處理所度述。之光學裝置的製備方法, 該熱處:二1;==項:述之光學裝置的製備方法’ :熱範:第10項所述之光學裝置的製備方法’ 中進行。/ 係、以將該錄氧化物薄膜電極置於-烤箱 其二C圍第10項所述之光學裝置的製備方法, 中該薄膜電極具有一光學調制能力範圍,且其 16:f理步驟得以增廣該光學調制能力範圍。 其中該第1G摘叙絲裝㈣製備方法, 50.3%/、 ㈣膜具有一著/去色穿透率差達到約 :41::利範圍第10項所述之光學裝置的製備方法’ is.如極電鑛方式進行。 0月利fe圍第10項所述之光學裝置的製備方法, 201028782 該電鍍係以定電流或定電壓進行。 19. 如申請專利範圍第18項所述之光學裝置的製備方法, 該定電流的電流密度為約0.1〜0.5 mA/cm。 20. 如申請專利範圍第10項所述之光學裝置的製備方法, 該電鍍步驟,係利用一電鍍液進行,其中該電鍍液是硝酸 鎳、含水硝酸鎳、氯化鎳、含水氣化鎳、過氯酸鎳或其他 鎳之化合物,溶解在液體中所形成的溶液。 21. 如申請專利範圍第20項所述之光學裝置的製備方法, 該電鍍液的pH值在至3〜4之間。 22. 如申請專利範圍第10項所述之光學裝置的製備方法, 該導電基材的材質是金屬或鍍有導電性薄膜的非導電性基 材。 23. 如申請專利範圍第10項所述之光學裝置的製備方法, 該鎳氧化物薄膜電極不需要利用電解液進行活化。 24. 如申請專利範圍第23項所述之光學裝置的製備方法, 該鎳氧化物薄膜電極不需要清洗步驟洗掉該電解液。 @ 25.如申請專利範圍第10項所述之光學裝置的製備方法, 更包括以鎳氧化物薄膜電極做為氧化電極,以氧化鎢薄膜 電極做為還原電極,製備一電致色變元件。 17201028782 VII. Shenqing Patent Range·· 1. A method for preparing an optical device, comprising: configuring a 0.01~1M nickel nitrate solution; forming a plating solution; adding a nitric acid solution to the plating solution, and adjusting the pH to 3~4 * forming a nickel oxide film on a conductive substrate by means of cathodic electrowinning, and forming a transparent conductive glass substrate and a thin nickel oxide film, wherein the nickel oxide The thin film electrode has an optical modulation capability range; and no. electrochemically activates the nickel oxide thin film electrode and heat treatment at a temperature of about 200 C to 30 〇c to make the recorded oxide thin film electrode have good clock ions The nature of the embedding/exiting, and augmenting the range of the optical modulation capability. 2. The method for preparing an optical device according to the first aspect of the application of the invention, in order to maintain the concentration of osalate ions in the electrophoresis liquid, may be added G.1M~1Μ of potassium nitrate, sodium nitrate or lithium nitrate solution in the plating solution. 3. The preparation method of the optical device according to the invention of claim Further, the capacitance of the nickel oxide thin film electrode is measured by the following method to know whether the lithium ion intercalation/ejecting property is good: the nickel oxide thin electrode is used as a working electrode, and a platinum alloy net is used. Extremely silver/silver chloride is the reference electrode 'to the gas clock (u(10)4): solution to the carbonic acid (four) electrolyte solution, the working electrode is subjected to cyclic voltammetric scanning analysis. • For example, U Li 1 & The method for producing the optical device, wherein the nickel oxide film has good electrochromic properties after the heat treatment in 201028782. 5. The optical device according to claim 3 and 4 The preparation method, wherein the nickel oxide film has good electrochromic properties according to the first three cycles of cyclic voltammograms analyzed by the cyclic voltammetric scan, and thus does not need to be activated. The method for producing an optical device according to the above aspect, wherein the nickel oxide film has a difference in the color/diffusion transmittance of about 50.3%. 7. The preparation of the optical device according to claim 6 Method, wherein When the lithium ion is embedded/escaped, the method further comprises: preparing a spectrogram according to the spectrogram, the transmittance of the nickel oxide film at a wavelength of 550 nm is 27.8%, and the In the decolored state, the nickel oxide film has a transmittance of 78.1% at a wavelength of 550 nm, so that the difference in the color/diffusion transmittance of the nickel oxide film is about 50.3%. The preparation method of the optical device further comprises: using a nickel oxide film electrode as an oxidation electrode and a tungsten oxide film as a reduction electrode to prepare an electrochromic device. 9. The method for preparing an optical device according to the invention, the step of preparing the electrochromic device further comprises: immersing a polyvinyl butyral solid film in a low-temperature lithium persulfate/γ-butyrolactone electrolyte to prepare a polyvinyl butyral solid electrolyte membrane containing a ionic ion; a polyvinyl butyral solid electrolyte membrane is bonded between the nickel oxide film electrode and the tungsten oxide film electrode at an ambient temperature of about 23 ° C , and the relative humidity is about 50%; 15 201028782 Pressing the composition to complete the electrochromic element 10. A method for preparing an optical device, comprising: electroplating on an electric substrate to form an oxide film, 6: ": and The oxide film electrode comprises the oxide film and the conductive: the heat treatment of the nickel oxide film has good ion-embedding/migration/4 subtraction phase electrode 申 application difficulty (4) 1G item description device (4) preparation method , = heat ^ temperature is about 150 degrees Celsius to 450 degrees Celsius. The method for preparing an optical device, wherein the heat is: 2; == Item: Preparation method of the optical device described in the following: Thermal method: Preparation method of the optical device described in Item 10]. The method for preparing an optical device according to item 10, wherein the film electrode has an optical modulation capability range, and the 16:f step is Amplify the range of optical modulation capabilities. Wherein the first G-reported silk-loading (four) preparation method, 50.3% /, (four) film having a difference in the color / transmittance of the film to reach: 41:: the range of the optical device described in the 10th item 'is. Such as the polar electric mining method. The method for preparing an optical device according to Item 10 of the Japanese Patent Publication No. 10, 201028782. The electroplating is performed at a constant current or a constant voltage. 19. The method of producing an optical device according to claim 18, wherein the constant current has a current density of about 0.1 to 0.5 mA/cm. 20. The method of preparing an optical device according to claim 10, wherein the electroplating step is performed by using a plating solution, wherein the plating solution is nickel nitrate, aqueous nickel nitrate, nickel chloride, water vaporized nickel, A solution of nickel perchlorate or other nickel compound dissolved in a liquid. 21. The method of preparing an optical device according to claim 20, wherein the plating solution has a pH of between 3 and 4. 22. The method of producing an optical device according to claim 10, wherein the conductive substrate is made of a metal or a non-conductive substrate coated with a conductive film. 23. The method of producing an optical device according to claim 10, wherein the nickel oxide film electrode does not need to be activated by an electrolyte. 24. The method of preparing an optical device according to claim 23, wherein the nickel oxide film electrode does not require a washing step to wash away the electrolyte. The method for preparing an optical device according to claim 10, further comprising preparing a photochromic element by using a nickel oxide film electrode as an oxidation electrode and a tungsten oxide film electrode as a reduction electrode. 17
TW98102830A 2009-01-23 2009-01-23 Method of preparing optical device TW201028782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98102830A TW201028782A (en) 2009-01-23 2009-01-23 Method of preparing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98102830A TW201028782A (en) 2009-01-23 2009-01-23 Method of preparing optical device

Publications (1)

Publication Number Publication Date
TW201028782A true TW201028782A (en) 2010-08-01

Family

ID=44853785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98102830A TW201028782A (en) 2009-01-23 2009-01-23 Method of preparing optical device

Country Status (1)

Country Link
TW (1) TW201028782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550331B (en) * 2014-10-24 2016-09-21 行政院原子能委員會核能研究所 Method for fabricating an all-solid-state electrochromic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550331B (en) * 2014-10-24 2016-09-21 行政院原子能委員會核能研究所 Method for fabricating an all-solid-state electrochromic device

Similar Documents

Publication Publication Date Title
Ling et al. One-pot sequential electrochemical deposition of multilayer poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties
CN101418214B (en) Electrochromic material and preparation method thereof
Eh et al. A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states
Islam et al. Dual tinting dynamic windows using reversible metal electrodeposition and prussian blue
Hong et al. A red-to-gray poly (3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT: PSS composite counter electrode
Sydam et al. Electrochromic device response controlled by an in situ polymerized ionic liquid based gel electrolyte
Jiao et al. A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films
CN103172274A (en) Preparation method of nickel oxide/polyaniline composite electrochromic film
CN107045241B (en) A kind of full-solid electrochromic device and preparation method thereof based on Al3+ ion
CN105807525B (en) A kind of electrochomeric films that can efficiently change colour in non-aqueous neutral electrolyte based on polyacid
Djafri et al. Electrochemical synthesis of highly stable and rapid switching electrochromic Ni (OH) 2 nanoflake array films as low-cost method
Chen et al. A complementary electrochromic system based on Prussian blue and indium hexacyanoferrate
Pham et al. RETRACTED ARTICLE: Porous NiO via pulsed electrodeposition towards enhanced electrochromic properties
Su et al. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte
Chen et al. Solvothermally grown WO3· H2O film and annealed WO3 film for wide-spectrum tunable electrochromic applications
Solovyev et al. Electrochromic device with polymer electrolyte
Xie et al. Electrochromic electrode with high optical contrast and long cyclic life using nest-like porous doped-Sm WO3 films
KR20160084246A (en) Manufacturing method of complex for photoelectrochromic device and photoelectrochromic device
Xie et al. Proton and Redox Couple Synergized Strategy for Aqueous Low Voltage-Driven WO3 Electrochromic Devices
TW201028782A (en) Method of preparing optical device
Feng et al. Reversible Zn 2+/Al 3+ intercalation in niobium-substituted polyoxometalates and demonstration of energy storage smart windows
CN102191526B (en) Preparation method of optical device
CN208872988U (en) Electrochromic device component and electrochromic device
KR101544489B1 (en) Electrochromic device driven in gel elctrolyte and preparation method thereof
Bhoumik et al. Nonaqueous electrolytes for reversible zinc electrodeposition for dynamic windows with excellent optical contrast and durability