TW201028045A - Light emitting apparatus - Google Patents

Light emitting apparatus Download PDF

Info

Publication number
TW201028045A
TW201028045A TW98100789A TW98100789A TW201028045A TW 201028045 A TW201028045 A TW 201028045A TW 98100789 A TW98100789 A TW 98100789A TW 98100789 A TW98100789 A TW 98100789A TW 201028045 A TW201028045 A TW 201028045A
Authority
TW
Taiwan
Prior art keywords
circuit
signal
electrically connected
illuminating device
variable frequency
Prior art date
Application number
TW98100789A
Other languages
Chinese (zh)
Inventor
Shao-Wei Chiu
Shi-Ming Chen
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW98100789A priority Critical patent/TW201028045A/en
Priority to JP2009160391A priority patent/JP5220699B2/en
Publication of TW201028045A publication Critical patent/TW201028045A/en

Links

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A light emitting apparatus includes plural light emitting diode (LED) modules and a variable-frequency control converter. The variable-frequency control converter is electrically connected to the LED modules and outputs a driving signal to drive the LED modules. The variable-frequency control converter includes a variable-frequency circuit, a switch driving circuit and a power conversion circuit. The variable-frequency circuit is electrically connected to the switch driving circuit, and the switch driving circuit is electrically connected to the power conversion circuit. The variable-frequency driving circuit outputs a variable-frequency signal according to plural feedback signals of the LED modules. The switch driving circuit outputs a switch-driving signal according to the variable-frequency signal. The power conversion circuit outputs the driving signal, which provides the substantially fixed current to each LED module, according to the switch-driving signal and a direct current (DC) signal.

Description

201028045 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光裝置,特別關於一種具有發光 二極體的發光裝置。 【先前技術】 發光二極體(Light Emitting Diode,LED)具有低耗 電量、使用壽命長、安全性高、發光響應時間短及體積小 • 等特性,而且壽命又是日光燈管的10倍,並且其發光效 率不斷地提升。因此,近幾年來,發光二極體已廣泛應用 於顯示器、指示燈及各式電子產品。 圖1係依據一種習知LED發光裝置的示意圖。如圖1 所示,由市電提供交流電源Vs依序經由一電磁干擾濾波 (EMI Filter)電路C卜一功因校正電路C2及一轉換電路 C3而輸出一定電流IC0N以驅動複數發光二極體模組Lin — L0N,其中電流 ICON 為一定值,且 ICON = I! + I2 Η-----h ΙΝ。 由於上述LED發光裝置係利用三級電路Cl〜C3來驅動發 光二極體模組Lfn — LoN,以致電力經過三次的功率消耗而 降低使用效率。此外,若是某些發光二極體模組因使用壽 - 命而損壞或移除,將使電流Icon平均分配給其餘之發光二 ^ 極體模組而使得流經其餘各發光二極體模組之電流變 大,以致各發光二極體模組之發光亮度變大而不穩定,甚 至因電流過大而燒毀。 因此,如何提供一種能夠穩定電流、電壓或功率的發 4 201028045 光裝置以避免發光二極體之發光亮度不穩定甚至燒毁,實 為當前重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種能夠穩定 電流、電壓或功率的發光裝置。 為達上述目的,依本發明之一種發光裝置包含複數發 光二極體模組及一變頻式控制轉換器。變頻式控制轉換器 ❿ 與該等發光二極體模組電性連接,並產生一驅動訊號以驅 動該等發光二極體模組。變頻式控制轉換器包含一變頻電 路、一開關驅動電路及一能量轉換電路。變頻電路與開關 驅動電路電性連接,開關驅動電路與能量轉換電路電性連 接,且變頻電路係依據該等發光二極體模組之複數回饋訊 號以輸出一變頻訊號,開關驅動電路係依據變頻訊號輸出 一開關驅動訊號,而能量轉換電路係依據開關驅動訊號及 _ 一直流訊號輸出驅動訊號使各發光二極體模組之電流實 馨 質為定值。 為達上述目的,依本發明之一種發光裝置包含複數發 光二極體模組以及一變頻式控制轉換器。變頻式控制轉換 - 器與該等發光二極體模組電性連接,並產生一驅動訊號以 - 驅動該等發光二極體模組。變頻式控制轉換器包含一變頻 電路、一開關驅動電路及一能量轉換電路。變頻電路與開 關驅動電路電性連接,開關驅動電路與能量轉換電路電性 連接,且變頻電路係依據驅動訊號以輸出一變頻訊號,開 5 201028045 關驅動電路係依據變頻訊號輸出一驅動開關訊號,而能量 轉換電路係依據驅動開關訊號及一直流訊號輸出驅動訊 號使各發光二極體模組之電壓實質為定值。 為達上述目的,依本發明之一種發光裝置包含複數發 光二極體模組以及一變頻式控制轉換器。變頻式控制轉換 器與該等發光二極體模組電性連接,並產生一驅動訊號以 驅動该等發光二極體模組。變頻式控制轉換器包含一變頻 電路、一開關驅動電路及一能量轉換電路。變頻電路與開 關驅動電路電性連接,開關驅動電路與能量轉換電路電性 連接,且變頻電路係依據該等發光二極體模組之複數回饋 机號及驅動訊號以輸出一變頻訊號,開關驅動電路係依據 變頻訊號輸出’動_訊號’而能量轉換電路係依據驅 動開關訊號及-直流訊號輸出驅動訊號使各發光二極體 模組之功率實質為定值。 魯 包含一變頻電路、 承上所述’纟發明之發光裝i,其變頻式控制轉換器 一開關驅動電路及一能量轉換電路。變201028045 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting device, and more particularly to a light-emitting device having a light-emitting diode. [Prior Art] Light Emitting Diode (LED) has low power consumption, long service life, high safety, short response time and small size, and has 10 times longer life than fluorescent tubes. And its luminous efficiency continues to increase. Therefore, in recent years, light-emitting diodes have been widely used in displays, indicator lights, and various electronic products. Figure 1 is a schematic illustration of a conventional LED lighting device. As shown in FIG. 1, the AC power supply Vs is supplied by the mains to sequentially output a certain current IC0N through an electromagnetic interference filtering circuit (EMI) circuit C, a power factor correction circuit C2 and a conversion circuit C3 to drive the plurality of LEDs. Group Lin — L0N, where current ICON is a fixed value and ICON = I! + I2 Η-----h ΙΝ. Since the LED lighting device uses the three-stage circuits C1 to C3 to drive the light-emitting diode modules Lfn_LoN, the power is consumed three times to reduce the use efficiency. In addition, if some of the light-emitting diode modules are damaged or removed due to the life-span, the current Icon will be evenly distributed to the remaining light-emitting diode modules so as to flow through the remaining light-emitting diode modules. The current becomes large, so that the luminance of each of the light-emitting diode modules becomes large and unstable, and even burns due to excessive current. Therefore, how to provide a light device capable of stabilizing current, voltage or power to avoid unstable or even burned light of the light-emitting diode is one of the current important topics. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a light-emitting device capable of stabilizing current, voltage or power. To achieve the above object, a light-emitting device according to the present invention comprises a plurality of light-emitting diode modules and a variable-frequency control converter. The variable frequency control converter 电 is electrically connected to the light emitting diode modules and generates a driving signal to drive the light emitting diode modules. The variable frequency control converter comprises a frequency conversion circuit, a switch drive circuit and an energy conversion circuit. The frequency conversion circuit is electrically connected to the switch drive circuit, the switch drive circuit is electrically connected to the energy conversion circuit, and the frequency conversion circuit outputs a frequency conversion signal according to the plurality of feedback signals of the light emitting diode modules, and the switch drive circuit is based on the frequency conversion The signal outputs a switch driving signal, and the energy conversion circuit is based on the switch driving signal and the _ a DC signal output driving signal to make the current enthalpy of each LED module a constant value. To achieve the above object, a light-emitting device according to the present invention comprises a plurality of light-emitting diode modules and a variable-frequency control converter. The variable frequency control converter is electrically connected to the light emitting diode modules and generates a driving signal to drive the light emitting diode modules. The variable frequency control converter comprises a frequency conversion circuit, a switch drive circuit and an energy conversion circuit. The frequency conversion circuit is electrically connected to the switch drive circuit, the switch drive circuit is electrically connected to the energy conversion circuit, and the frequency conversion circuit outputs a variable frequency signal according to the driving signal, and the driving circuit is driven according to the variable frequency signal to output a driving switch signal. The energy conversion circuit converts the voltage of each of the LED modules to a constant value according to the driving switch signal and the DC signal output driving signal. To achieve the above object, a light-emitting device according to the present invention comprises a plurality of light-emitting diode modules and a variable-frequency control converter. The variable frequency control converter is electrically connected to the light emitting diode modules and generates a driving signal to drive the light emitting diode modules. The variable frequency control converter comprises a frequency conversion circuit, a switch drive circuit and an energy conversion circuit. The frequency conversion circuit is electrically connected to the switch drive circuit, and the switch drive circuit is electrically connected to the energy conversion circuit, and the frequency conversion circuit outputs a frequency conversion signal according to the plurality of feedback machine numbers and driving signals of the light emitting diode modules, and the switch drive The circuit is based on the variable frequency signal output 'moving_signal' and the energy conversion circuit is based on the driving switch signal and the -dc signal output driving signal so that the power of each of the light emitting diode modules is substantially constant. Lu includes a frequency conversion circuit, an illumination device i of the invention, a variable frequency control converter, a switch drive circuit and an energy conversion circuit. change

除,本發明可因回饋訊號及/或驅動訊號 變頻而調整輸出,使其餘的發光二極體 6 201028045 模組發光亮度保持穩定而不致燒毀。 【實施方式】 以下將參照相關圖式,說明本發明較佳實施例之發光 裝置。 第一實施例 請參照圖2所示,圖2係為本發明第一實施例之一種 發光裝置1的示意圖。發光裝置1包含複數發光二極體模 • 組Ln〜L1N及一變頻式控制轉換器10。其中,各發光二極 體模組例如可包含一串聯及/或並聯之複數發光二極體,而 變頻式控制轉換器10分別與發光二極體模組Ln〜L1N電 性連接,且產生一驅動訊號11以驅動發光二極體模組Ln 〜L1N。其中變頻式控制轉換器10係可依據直流電源或交 流電源而產生驅動訊號11,在本實施例中,係以交流電源 為例。 ^ 變頻式控制轉換器10包含一變頻電路1〇卜一開關驅 動電路102及一能量轉換電路103,且變頻電路101與開 關驅動電路102電性連接,開關驅動電路102與能量轉換 電路103電性連接。變頻電路101係依據該等發光二極體 • 模組Lu〜L1N之複數回饋訊號12以輸出一變頻訊號Π, - 開關驅動電路102係依據變頻訊號13輸出一開關驅動訊 號14,而能量轉換電路103係依據開關驅動訊號14及一 直流訊號17輸出驅動訊號11,而使驅動各發光二極體模 組Ln〜L1N的電流實質穩定於一定值。 7 201028045 第二實施例 清參照圖3所示,圖3係為本發明第二實施例之—種 發光裝置2的示意圖,其係應用發光裝置1之架構。發光 裝置2包含一變頻式控制轉換器2〇及複數發光二極體模 .組Lu、La,且變頻式控制轉換器2〇與該等發光二極體模 組LZ1、La電性連接並輸出一驅動訊號21以驅動該等發 光一極體模組Lai、La。本實施例是以2組發光二極體模 鲁組1^及La為例,而發光二極體模組[^及[η各包含2 組並聯之3只串聯的發光二極體、一電阻及一二極體,此 包阻及一極體之目的分別是為了取得回饋訊號22之電壓 及限流作用。 變頻式控制轉換器20包含一變頻電路201、一開關驅 動電路202及—能量轉換電路203,且變頻電路201與開 關驅動電路202電性連接,開關驅動電路202與能量轉換 電路203電性連接。於本實施例中,能量轉換電路203例 魯如係為返馳式轉換器(Flyback Converter)電路。返驰式 轉換器電路具有成本低、電路成熟及架構簡單的特點,且 各易達到多組輸出的目的,其電路架構係具有隔離特性的 降升型轉換器(Buck_B〇〇st Converter)。於本實施例中, •係應用於能量的轉換及降壓作用,以驅動發光二極體模組 -L2!及L22。其中,返馳式轉換器電路係一習知技術,在此 不再贅述其詳細作動。 請參照圖3所示,變頻式控制轉換器20更包含一比 較電路204與發光二極體模組&及b及變頻電路2〇1 8 201028045 電性連接。比較電路204係依據發光二極體模組^】及 之回饋訊號22及一基準電壓νπ,以輸出一比較訊號232。2 於本實施例中,比較電路2〇4例如為具有比較器之積體電 路(integrated circuit,1C)。以上述驅動為例’其作動方式 . 為.若回饋訊號22之電壓大於基準電壓,則輸出為高準 位,若輸入電壓小於基準電壓,則輸出為低準位(例如接 地準位)’其目的是使輸出之比較訊號23具有高準位或低 準位之工作電源。 於本實施例中,比較訊號23係輸入變頻電路2〇1,經 變頻電路201的作用後產生變頻訊號24,即變頻訊號24 的頻率可在不同時間而不同。要注意的是比較訊號23的 電壓與變頻訊號24的頻率呈一對應變化關係,例如可為 線性或非線性變化關係’其中非線性變化關係例如係為呈 指數變化。 圖4係為變頻電路201的示意圖,其中,及V2係 參 為基準電壓,VD是工作電壓。於圖4中,輸入訊號之電壓 與輸出訊號之頻率係呈正比的對應變化關係,即經過此電 路之調變後,比較訊號23之電壓與變頻訊號24之頻率係 呈正比的對應變化。 ' 請參照圖3所示,變頻式控制轉換器20更包含一主 • 動功因校正電路205,其係與比較電路204及開關驅動電 路202電性連接,並依據比較訊號23產生一功因校正訊 號26輸入開關驅動電路202。於本實施例中,主動功因校 正電路205、變頻電路201及開關驅動電路202可為一積 9 201028045 體電路。主動功因校正電路205所輸出之功因校正訊號26 可讓開關驅動訊號25之脈衝訊號的低準位具有固定時間 (Constant Off),並藉以將功率因數(Power Factor )提高 至0.9以上,甚至接近1的程度。 藉由變頻電路201輸出之變頻訊號24具有變頻之特 徵及主動功因校正電路205輸出之功因校正訊號26能達 到高功因之特性,使開關驅動電路202輸出之開關驅動訊 號25驅動能量轉換電路203之電晶體丁2的導通與截止, ® 以控制能量轉換電路203輸出之驅動訊號21之電流變化。 此外,請參照圖3所示,變頻式控制轉換器20更包 含一電磁干擾濾波(EMI Filter)電路206及一整流電路 207,且整流電路207與電磁干擾濾波電路206及能量轉 換電路203電性連接,並輸出直流訊號27以輸入能量轉 換電路203。其中,電磁干擾濾波電路206是一低通濾波 器,其將輸入之交流訊號所含高頻的雜訊旁路,只讓特定 ❹ 頻率(例如60HZ )之訊號通過,以避免干擾變頻式控制 轉換器20的作動。而整流電路207例如係為全波整流電 路,其係將經電磁干擾濾波電路206之交流訊號加以整 流,並藉由濾波電容濾除漣波成分,以輸出直流訊號27。 • 第三實施例 - 請參照圖5所示,圖5係為本發明第三實施例之一種 發光裝置3的示意圖,其係應用發光裝置1的架構。發光 裝置3包含一變頻式控制轉換器30及複數發光二極體模 組L31、L32,且變頻式控制轉換器30與該等發光二極體模 201028045 組L31、L32電性連接並輸出一驅動訊號31以驅動該等發 光二極體模組L31、L32。本實施例是以2組發光二極體模 組L31及L32為例,而發光二極體模組L31及L32各包含2 組並聯之3只举聯的發光二極體、一電阻及一二極體,此 電阻及二極體的目的分別是為了取得回饋訊號32之電壓 及限流作用。 變頻式控制轉換器30包含一變頻電路301、一開關驅 動電路302及一能量轉換電路303,且變頻電路301與開 ® 關驅動電路302電性連接,開關驅動電路302與能量轉換 電路303電性連接。 變頻式控制轉換器30更包含一比較電路304,其與發 光二極體模組L31及L32及變頻電路301電性連接。比較電 路304係依據發光二極體模組L31及L32之回饋訊號32及 一基準電壓V3R,以輸出一比較訊號33。 此外,請參照圖5所示,變頻式控制轉換器30更包 ^ 含一電磁干擾濾波電路306、一整流電路307及一被動功 因校正電路305,且整流電路307與電磁干擾濾波電路306 及被動功因校正電路305電性連接,而被動功因校正電路 305與整流電路307及能量轉換電路303電性連接,並輸 ' 出直流訊號37。 - 被動功因校正電路305的作用係將整流電路307輸出 之訊號的波形加以調整,以使得發光裝置3中的電壓波形 與電流波形的相位較一致,藉以提高功率因數。 第三實施例之變頻式控制轉換器30與第二實施例之 11 201028045 變頻式控制轉換器20的技術特徵主要不同點在於:第二 實施例之變頻式控制轉換器20包含主動功因校正電路 205,而第三實施例之變頻式控制轉換器30包含被動功因 校正電路305,其目的均為提高功率因數,使發光裝置的 電路特性得以提升。其餘技術特徵與作動方式可參考第一 實施例,於此不再贅述。 承上所述,交流的輸入訊號輸入第二實施例之變頻式 控制轉換器20或第三實施例之變頻式控制轉換器30,經 ® 電磁干擾濾波電路206或306及整流電路207或307的濾 波整流後,不管是採用主動功因校正電路205或被動功因 校正電路305,其開關驅動電路502或602之輸入均使用 自發光二極體模組L21及L22之回饋訊號22或發光二極體 模組L31& L32之回饋訊號32以進行控制與調變,並藉由 變頻電路201或301的作動,使開關驅動電路202或302 輸出之開關驅動訊號25或35具有變頻之特徵,進而控制 φ 能量轉換電路203或303之電晶體T2或T3之導通與截止, 藉由電晶體丁2或Τ3之導通與截止以調整能量轉換電路203 或303輸出之驅動訊號21或31之電流,使驅動各發光二 極體模組L21及L22或L3 1及L32的電流保持一定值。此外* 變頻式控制轉換器20或30也因使用功因校正電路而提高 - 發光裝置的功率因數以減少損耗。 當某組發光二極體模組損壞或移除時,本發明可透過 回饋訊號22或32的變化加以調整能量轉換電路203或303 輸出之驅動訊號21或31的電流,使驅動其餘各發光二極 12 201028045 體模組之電流保持一定值,而使發光的亮度保持穩定並不 致燒毀。 第四實施例 請參照圖6所示,圖6係為本發明第四實施例之一種 發光裝置4的示意圖。發光裝置4包含複數發光二極體模 組L41〜L4N及一變頻式控制轉換器40。其中,各發光二極 體模組例如可包含一串聯、並聯、或串並聯之複數發光二 極體,而變頻式控制轉換器40分別與發光二極體模組L41 〜L4N電性連接,且產生一驅動訊號41以驅動發光二極體 模組L41〜L4N。 變頻式控制轉換器40包含一變頻電路401、一開關驅 動電路402及一能量轉換電路403,且變頻電路401與開 關驅動電路402電性連接,開關驅動電路402與能量轉換 電路403電性連接。變頻電路401係依據驅動訊號41以 輸出一變頻訊號43,開關驅動電路402係依據變頻訊號 43輸出一開關驅動訊號44,而能量轉換電路403係依據 開關驅動訊號44及一直流訊號47輸出驅動訊號41,而使 驅動各發光二極體模組L41〜L4N的電壓實質穩定於一定 值。 第五實施例 請參照圖7所示,圖7係為本發明第五實施例之一種 發光裝置5的示意圖,其係應用發光裝置4之架構。發光 裝置5包含一變頻式控制轉換器50及複數發光二極體模 組L51、L52,且變頻式控制轉換器50與該等發光二極體模 13 201028045 組L51、L52電性連接並輸出一驅動訊號51以驅動該等發 光二極體模組L51、L52。本實施例是以2組發光二極體模 組L51& L52為例,而發光二極體模組L51及L52各包含2 組並聯之3只串聯的發光二極體及一電阻。 變頻式控制轉換器50包含一變頻電路501、一開關驅 動電路502及一能量轉換電路503,且變頻電路501與開 關驅動電路502電性連接,開關驅動電路502與能量轉換 電路503電性連接。 ❹ 請參照圖7所示,變頻式控制轉換器50更包含一比 較電路504,且與能量轉換電路503及變頻電路501電性 連接。比較電路504係依據驅動訊號51所產生之一分壓 訊號58及一基準電壓V5R,以輸出一比較訊號53。於本 實施例中,分壓訊號58為驅動訊號51經電阻R51及R52 所造成之分壓,即分壓訊號58之電壓等於驅動訊號51的 電壓乘以電阻R52,再除以電阻(R51 + R52 )。 ^ 變頻式控制轉換器50更包含一主動功因校正電路 505,其係與比較電路504及開關驅動電路502電性連接, 並依據比較訊號53產生一功因校正訊號56並輸入開關驅 動電路502。 • 此外,請參照圖7所示,變頻式控制轉換器50更包 - 含一電磁干擾濾波電路506及一整流電路507,且整流電 路507與電磁干擾濾波電路506及能量轉換電路503電性 連接,並輸出直流訊號57。 第五實施例之變頻式控制轉換器50與第二實施例之 14 201028045 變頻式控制轉換器20的技術特徵主要不同點在於:第二 實施例之回饋訊號22係依據各發光二極體模組L21及L22 而來,而第五實施例之分壓訊號58係由驅動訊號51透過 電阻分壓而來,二者皆分別輸入比較器。發光裝置5之其 餘技術特徵與作動方式可參考第二實施例,於此不再贅 述。 第六實施例 請參照圖8所示,圖8係為本發明第六實施例之一種 ® 發光裝置6的示意圖,其係應用發光裝置4之架構。發光 裝置6包含一變頻式控制轉換器60及複數發光二極體模 組L61、L62,且變頻式控制轉換器60與該等發光二極體模 組L61、L62電性連接並輸出一驅動訊號61以驅動該等發 光二極體模組L61、L62。本實施例是以2組發光二極體模 組L61及L62為例,而發光二極體模組L61及L62各包含2 組並聯之3只串聯的發光二極體及一電阻。 _ 變頻式控制轉換器60包含一變頻電路601、一開關驅 動電路602及一能量轉換電路603,且變頻電路601與開 關驅動電路602電性連接,開關驅動電路602與能量轉換 電路603電性連接。 • 變頻式控制轉換器60更包含一比較電路604,其與發 - 光二極體模組L61及L62及變頻電路601電性連接。比較電 路604係依據驅動訊號61經分壓後所產生之一分壓訊號 68及一基準電壓V6R,以輸出一比較訊號63。於本實施例 中,分壓訊號68為驅動訊號61經電阻R61及R62所造成 15 201028045 之分壓,即分壓訊號68之電壓等於驅動訊號61的電壓乘 以電阻R62,再除以電阻(R61 + R62)。 此外,請參照圖8所示,變頻式控制轉換器60更包 含一電磁干擾濾波電路606、一整流電路607及一被動功 因校正電路605,且整流電路607與電磁干擾濾波電路606 及被動功因校正電路605電性連接,而被動功因校正電路 605與整流電路607及能量轉換電路603電性連接,並輸 出直流訊號67。 ® 被動功因校正電路605的作用係調整整流電路607輸 出之整流訊號的相位,使發光裝置6之電壓波形與電流波 形的相位較一致。 第六實施例之變頻式控制轉換器60與第五實施例之 變頻式控制轉換器50的技術特徵主要不同點在於:第五 實施例之變頻式控制轉換器50包含主動功因校正電路 505,而第六實施例之變頻式控制轉換器60包含被動功因 φ 校正電路605,其目的均為提高功率因數,使發光裝置的 電路特性得以提升。發光裝置6之其餘技術特徵與作動方 式可參考第五實施例,於此不再贅述。 承上所述,交流的輸入訊號輸入第五實施例之變頻式 • 控制轉換器50或第六實施例之變頻式控制轉換器60,經 - 電磁干擾濾波電路506或606及整流電路507或607的濾 波整流後,不管是採用主動功因校正電路505或被動功因 校正電路605,其開關驅動電路502或602之輸入均使用 自驅動訊號51或61經分壓後所產生之一分壓訊號58或 16 201028045 68以進行控制與調變,並藉由變頻電路501或601的作 動,使開關驅動電路502或602輸出之開關驅動訊號55 或65具有變頻之特徵,進而控制能量轉換電路503或603 之電晶體T5或T6之導通與截止,藉由電晶體T5或T6之 導通與截止以調整能量轉換電路503或603輸出之驅動訊 號51或61之電壓,使驅動各發光二極體模組L51及L52 或l61及l62的電壓保持一定值。此外,變頻式控制轉換器 也因使用功因校正電路而提高發光裝置的功率因數以減 ❹少損耗。 當某組發光二極體模組損壞或移除時,本發明可透過 分壓訊號58或68的變化加以調整能量轉換電路503或603 輸出之驅動訊號51或61的電壓,使驅動其餘各發光二極 體模組之電壓保持一定值,而使發光的亮度保持穩定而不 致燒毁。 第七實施例 @ 請參照圖9所示,圖9係為本發明第七實施例之一種 發光裝置7的示意圖。發光裝置7包含複數發光二極體模 組L71〜L7N及一變頻式控制轉換器70。其中,各發光二極 體模組例如可包含一串聯、或並聯、或串並聯之複數發光 ' 二極體,而變頻式控制轉換器70分別與發光二極體模組 -L71〜L7N電性連接,且產生一驅動訊號71以驅動發光二極 體模組L71〜L7N。 變頻式控制轉換器70包含一變頻電路701、開關驅動 電路702及一能量轉換電路703,且變頻電路701與開關 17 201028045 驅動電路702電性連接,開關驅動電路702與能量轉換電 路703電性連接。變頻電路701係依據該等發光二極體模 組之複數回饋訊號72及驅動訊號71以輸出一變頻訊號 73,開關驅動電路702係依據變頻訊號73輸出一開關驅 動訊號74,而能量轉換電路703係依據開關驅動訊號74 及一直流訊號77輸出驅動訊號71,而使驅動各發光二極 體模組L71〜L7N的功率實質穩定於一定值。 第八實施例 ® 請參照圖10所示,圖10係為本發明第八實施例之一 種發光裝置8的示意圖,其係應用發光裝置7之架構。發 光裝置8包含一變頻式控制轉換器80及複數發光二極體 模組L81、L82,且變頻式控制轉換器80與該等發光二極體 模組L81、L82電性連接並輸出一驅動訊號81以驅動該等 發光二極體模組L81、L82。本實施例是以2組發光二極體 模組Lsi及Lg2為例,而發光二極體模組Lgi及L82各包含 φ 2組並聯之3只串聯的發光二極體、一電阻及一二極體, 而電阻及二極體的目的分別是為了取得回饋訊號82及限 流作用。 變頻式控制轉換器80包含一變頻電路801、一開關驅 ' 動電路802及一能量轉換電路803,且變頻電路801與開 關驅動電路802電性連接,開關驅動電路802與能量轉換 電路803電性連接。 請參照圖10所示,變頻式控制轉換器80更包含一比 較電路804,其與發光二極體模組L81及L82、能量轉換電 18 201028045 路803及變頻電路801電性連接。比較電路804係依據驅 動訊號81所產生之一分壓訊號88、發光二極體模組L81 及L82之回饋訊號82及一基準電壓V8R,以輸出一比較訊 號83。於本實施例中,分壓訊號88為驅動訊號81經電阻 . R81及尺82所造成之分壓,即分壓訊號88之電壓等於驅動 訊號81的電壓乘以電阻R82,再除以電阻(R81 + R82)。 於本實施例中,比較電路804例如包含一比較器809 及一乘法器808 (或一加法器)。分壓訊號88及回饋訊號 ® 82先輸入乘法器808進行乘法運算,因功率等於電壓乘以 電流,因此,再輸出以成為比較器809之輸入,與基準電 壓V8R進行比較後,輸出功率之比較訊號83。 變頻式控制轉換器80更包含一主動功因校正電路 805,與比較電路804及開關驅動電路802電性連接,並 依據比較訊號83產生一功因校正訊號86並輸入開關驅動 電路802。 @ 此外,請參照圖10所示,變頻式控制轉換器80更包 含一電磁干擾濾波電路806及一整流電路807,且整流電 路807與電磁干擾濾波電路806及能量轉換電路803電性 連接,並輸出直流訊號87。 * 第八實施例之變頻式控制轉換器80與第二實施例之 - 變頻式控制轉換器20的技術特徵主要不同點在於:第二 實施例之回饋訊號22係依據各發光二極體模組L21及L22 而來,而第八實施例之比較器809之輸入係為乘法器808 之輸出,而乘法器808之輸入分別為來自驅動訊號81之 19 201028045 分壓訊號88及各發光二極體模組L81及L82之回饋訊號 82。發光裝置8之其餘技術特徵與作動方式可參考第二實 施例與第五實施例,於此不再贅述。 第九實施例 請參照圖11所示,圖11係為本發明第九實施例之一 種發光裝置9的示意圖。發光裝置9包含一變頻式控制轉 換器90及複數發光二極體模組L91、L92,且變頻式控制轉 換器90與該等發光二極體模組L91、L92電性連接並輸出 參一驅動訊號91以驅動該等發光二極體模組L91、L92。本實 施例是以2組發光二極體模組L91及L92為例,而發光二極 體模組L91& L92各包含2組並聯之3只串聯的發光二極 體、一電阻及一二極體,而電阻及二極體的目的分別是為 了取得回饋訊號92及限流作用。 變頻式控制轉換器90包含一變頻電路901、一開關驅 動電路902及一能量轉換電路903,且變頻電路901與開 φ 關驅動電路902電性連接,開關驅動電路902與能量轉換 電路903電性連接。 請參照圖11所示,變頻式控制轉換器80更包含一比 較電路904,其與發光二極體模組L91及L92、能量轉換電 ' 路903及變頻電路901電性連接。比較電路904係依據驅 - 動訊號91所產生之一分壓訊號98、發光二極體模組L91 及L92之回饋訊號92及一基準電壓V9R,以輸出一比較訊 號93。於本實施例中,分壓訊號98為驅動訊號91經電阻 R9i及R92所造成之分壓,即分壓訊號98之電壓等於驅動 20 201028045 訊號91的電壓乘以電阻R92,再除以電阻(R91 + R92 )。 此外,請參照圖11所示,變頻式控制轉換器90更包 含一電磁干擾濾波電路906、一整流電路907及一被動功 因校正電路905,且整流電路907與電磁干擾濾波電路906 及被動功因校正電路905電性連接,而被動功因校正電路 905與整流電路907及能量轉換電路903電性連接,並輸 出直流訊號97。 被動功因校正電路905的作用係將整流電路907輸出 ® 之訊號的波形加以調整,以使得發光裝置9中的電壓波形 與電流波形的相位較一致,藉以提高功率因數。 第九實施例之變頻式控制轉換器90與第八實施例之 變頻式控制轉換器80的技術特徵主要不同點在於:第八 實施例之變頻式控制轉換器80包含一主動功因校正電路 805,而第九實施例之變頻式控制轉換器90包含一被動功 因校正電路905,其目的均為提高功率因數,使發光裝置 φ 的電路特性得以提升。發光裝置9之其餘技術特徵與作動 方式可參考第八實施例,故於此不再贅述。 承上所述,交流的輸入訊號輸入第八實施例之變頻式 控制轉換器80或第九實施例之變頻式控制轉換器90,經 ' 電磁干擾濾波電路806或906及整流電路807或907的濾 波整流後,不管是採用主動功因校正電路805或被動功因 校正電路905,其開關驅動電路802或902之輸入均使用 自驅動訊號81或91所產生之一分壓訊號88或98及發光 二極體L81及L82之回饋訊號82或發光二極體L91及L92 21 201028045 之回饋訊號92,先進行乘法運算後再進行控制與調變,使 開關驅動電路802或902輸出之開關驅動訊號85或95具 有變頻之特徵,進而控制能量轉換電路803或903之電晶 體丁8或A之導通與截止,藉由電晶體几或A之導通與 .截止以調整能量轉換電路隐$ 9G3輪出之驅動訊號Μ •或91之功率’使驅動各發光二極體模組L81及L82或l91 及l92的功率保持—定值。此外,第八實施例及第九實施 譽例之憂頻式控制轉換器也因使用功因校正電路而提高發 光裝置的功率因數以減少損耗。 當某組發光二極體模組損壞或移除時,本發明將可透 過分麼訊號88或98及回饋訊號82或92的變化加以調整 能量轉換電路803 < 9G3輸出之驅動訊號81或.91的功 率’使驅動其餘各發光二極體模組之功率保持一定值,而 使發光的7C度保持穩定而不致燒毁。 綜上所述,本發明之發光襄置,其變頻式控制轉換器 修包含-變頻電路、-開關驅動電路及一能量轉換電路。變 頻電路可依據δ亥等發光二極體模組之複數回饋訊號及/或 驅動訊號以輸出-變頻訊號,開關驅動電路依據變頻訊號 .輸出一開關驅動訊號。此開關驅動訊號係依據回饋訊號及 /或驅動訊號有所調整,而能量轉換電路依據開關驅動訊號 所輸出之驅動訊號亦隨之調整,使得輸入各發光二極體模 組之電流、電壓或功率實質為定值。因此,若某些發光二 極體模組損壞或移除’本發明可因回饋訊號及/或驅動訊號 的變化加以回饋、變頻而調整輸出,使其餘的發光二極體 22 201028045 模組發光亮度保持穩定而不致燒毁。 此外,本發明之能量轉換電路及主動功因校正電路係 合併為單級電路,另外電磁干擾濾波電路、整流電路及被 動功因校正電路係合併為單級電路,與習知之LED發光裝 置相較,本發明節省一級的電路,以致降低功率損耗,進 而提升電力使用效率。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 ^ 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1係一種習知LED發光裝置的示意圖; 圖2係本發明第一實施例之一種發光裝置的示意圖; 圖3係本發明第二實施例之一種發光裝置的示意圖; 圖4係本發明較佳實施例之一種變頻電路的示意圖; φ 圖5係本發明第三實施例之一種發光裝置的示意圖; 圖6係本發明第四實施例之一種發光裝置的示意圖; 圖7係本發明第五實施例之一種發光裝置的示意圖; 圖8係本發明第六實施例之一種發光裝置的示意圖; _ 圖9係本發明第七實施例之一種發光裝置的示意圖; - 圖10係本發明第八實施例之一種發光裝置的示意 圖;以及 圖11係本發明第九實施例之一種發光裝置的示意圖。 23 201028045 【主要元件符號說明】 I、 2、3、4、5、6、7、8、9:發光裝置 10、20、30、40、50、60、70、80、90 :變頻式控制轉換 器 . 101、201、301、401、501、601、701、801、901 :變頻 電路 102、 202、302、402、502、602、702、802、902 :開關 驅動電路 103、 203、303、403、503、603、703、803、903 :能量 轉換電路 II、 21、31、41、51、61、71、81、91 :驅動訊號 12、 22、32、72、82、92 :回饋訊號 13、 24、34、43、54、64、73、84、94 ··變頻訊號 14、 25、35、44、55、65、74、85、95 :開關驅動訊號 17、27、37、47、57、67、77、87、97 :直流訊號 φ 204、304、504、604、804、904 :比較電路 205、 505、805 :主動功因校正電路 206、 306、506、606、806、906、C1 :電磁干擾濾波電路 207、 307、507、607、807、907 :整流電路 23、33、53、63、83、93 :比較訊號 26、56、86 :功因校正訊號 305、605、905 :被動功因校正電路 58、68、88、98 :分壓訊號 808、908 :乘法器 24 201028045 809、909 :比較器 C2 :功因校正電路 C3 :轉換電路 工1、In、Icon :電流 L01〜Lon、Ln〜L1N、L21 〜L22、L31〜L32、L4i 〜L4n、L51 〜L52、L61 〜L>62、L71 〜L7N、Lgi 〜Lg2、L91 〜L92 ·發光二 極體模組 R5I、R52、尺61、Κ·62、R81、尺82、R9I、R92 :電阻 —τ2、τ3、τ5、τ6、τ8、τ9:電晶體In addition, the present invention can adjust the output due to the feedback of the feedback signal and/or the driving signal, so that the brightness of the remaining LEDs 6 201028045 module is stable without burning. [Embodiment] Hereinafter, a light-emitting device according to a preferred embodiment of the present invention will be described with reference to the related drawings. First Embodiment Referring to Fig. 2, Fig. 2 is a schematic view showing a light-emitting device 1 according to a first embodiment of the present invention. The light-emitting device 1 includes a plurality of light-emitting diode modules • Ln to L1N and a variable-frequency control converter 10. Each of the LED modules may include a plurality of LEDs connected in series and/or in parallel, and the inverter control converters 10 are electrically connected to the LED modules Ln L L1N, respectively, and generate one. The driving signal 11 drives the LED modules Ln to L1N. The variable frequency control converter 10 can generate the driving signal 11 according to the DC power source or the AC power source. In the embodiment, the AC power source is taken as an example. The variable frequency control converter 10 includes a frequency conversion circuit 1 and a switch drive circuit 102 and an energy conversion circuit 103, and the frequency conversion circuit 101 is electrically connected to the switch drive circuit 102, and the switch drive circuit 102 and the energy conversion circuit 103 are electrically connected. connection. The frequency conversion circuit 101 outputs a variable frequency signal 依据 according to the plurality of feedback signals 12 of the LEDs L1 to L1N, and the switch driving circuit 102 outputs a switching driving signal 14 according to the frequency conversion signal 13, and the energy conversion circuit The 103 system outputs the driving signal 11 according to the switch driving signal 14 and the constant current signal 17, so that the current for driving each of the LED modules Ln to L1N is substantially stabilized at a constant value. 7 201028045 Second Embodiment As shown in Fig. 3, Fig. 3 is a schematic view of a light-emitting device 2 according to a second embodiment of the present invention, which is applied to the structure of the light-emitting device 1. The illuminating device 2 includes a variable frequency control converter 2 复 and a plurality of illuminating diode modules. Groups Lu and La, and the variable frequency control converter 2 电 is electrically connected to the LED modules LZ1 and La and outputs A driving signal 21 drives the light-emitting one-pole modules Lai, La. In this embodiment, two sets of light-emitting diodes, the mold group 1 and La, are taken as an example, and the light-emitting diode modules [^ and [n each include two sets of three parallel-connected light-emitting diodes and one resistor. And a diode, the purpose of the package and the one pole are respectively to obtain the voltage and current limiting effect of the feedback signal 22. The variable frequency control converter 20 includes a frequency conversion circuit 201, a switch drive circuit 202, and an energy conversion circuit 203. The frequency conversion circuit 201 is electrically connected to the switch drive circuit 202, and the switch drive circuit 202 is electrically connected to the energy conversion circuit 203. In the present embodiment, the energy conversion circuit 203 is exemplified as a flyback converter circuit. The flyback converter circuit has the characteristics of low cost, mature circuit and simple structure, and each of them easily achieves the purpose of multiple sets of outputs, and its circuit architecture is a down converter (Buck_B〇〇st Converter) with isolation characteristics. In this embodiment, the system is applied to energy conversion and voltage reduction to drive the LED modules -L2! and L22. The flyback converter circuit is a conventional technique, and the detailed operation thereof will not be described herein. Referring to FIG. 3, the variable frequency control converter 20 further includes a comparison circuit 204 electrically connected to the LED module & b and the inverter circuit 2〇1 8 201028045. The comparison circuit 204 outputs a comparison signal 232 according to the LED module and the feedback signal 22 and a reference voltage νπ. 2 In this embodiment, the comparison circuit 2〇4 is, for example, a product having a comparator. Integrated circuit (1C). Taking the above drive as an example, the operation mode is. If the voltage of the feedback signal 22 is greater than the reference voltage, the output is at a high level, and if the input voltage is less than the reference voltage, the output is at a low level (for example, a ground level). The purpose is to make the output comparison signal 23 have a high or low level operating power. In the present embodiment, the comparison signal 23 is input to the frequency conversion circuit 2〇1, and after the action of the frequency conversion circuit 201, the frequency conversion signal 24 is generated, that is, the frequency of the frequency conversion signal 24 can be different at different times. It should be noted that the voltage of the comparison signal 23 has a corresponding relationship with the frequency of the frequency conversion signal 24, for example, a linear or nonlinear variation relationship, wherein the nonlinear variation relationship is, for example, exponentially changed. Fig. 4 is a schematic diagram of the inverter circuit 201, wherein the V2 is a reference voltage and VD is an operating voltage. In Fig. 4, the voltage of the input signal is proportional to the frequency of the output signal, that is, after the modulation of the circuit, the voltage of the comparison signal 23 and the frequency of the frequency conversion signal 24 are proportionally changed. As shown in FIG. 3, the variable frequency control converter 20 further includes a main power factor correction circuit 205, which is electrically connected to the comparison circuit 204 and the switch drive circuit 202, and generates a power factor according to the comparison signal 23. The correction signal 26 is input to the switch drive circuit 202. In the present embodiment, the active power factor correction circuit 205, the frequency conversion circuit 201, and the switch drive circuit 202 can be a product of 2010. The power factor correction signal 26 output by the active power factor correction circuit 205 can have a constant level of the low level of the pulse signal of the switch driving signal 25, thereby increasing the power factor to 0.9 or more, even Close to the extent of 1. The frequency conversion signal 24 outputted by the frequency conversion circuit 201 has the characteristics of frequency conversion and the power output of the active power factor correction circuit 205 can be used to correct the signal 26 to achieve high power characteristics, so that the switch driving circuit 202 outputs the switching drive signal 25 to drive energy conversion. The transistor 203 of the circuit 203 is turned on and off, and the current of the driving signal 21 outputted by the energy conversion circuit 203 is controlled. In addition, as shown in FIG. 3, the variable frequency control converter 20 further includes an EMI filter circuit 206 and a rectifier circuit 207, and the rectifier circuit 207 and the electromagnetic interference filter circuit 206 and the energy conversion circuit 203 are electrically connected. The DC signal 27 is connected and output to the energy conversion circuit 203. The electromagnetic interference filter circuit 206 is a low-pass filter, which bypasses the high-frequency noise contained in the input AC signal, and only passes the signal of a specific ❹ frequency (for example, 60 Hz) to avoid interference with the frequency conversion control conversion. The action of the device 20. The rectifying circuit 207 is, for example, a full-wave rectifying circuit that rectifies the alternating current signal of the electromagnetic interference filtering circuit 206 and filters the chopping component by the filtering capacitor to output the direct current signal 27. Third Embodiment - Referring to Fig. 5, Fig. 5 is a schematic view showing a light-emitting device 3 according to a third embodiment of the present invention, which is an architecture of a light-emitting device 1. The illuminating device 3 includes a variable frequency control converter 30 and a plurality of illuminating diode modules L31 and L32, and the variable frequency control converter 30 is electrically connected to the LED illuminating diodes 201028045 group L31 and L32 and outputs a driving. The signal 31 drives the LED modules L31 and L32. In this embodiment, two sets of LED modules L31 and L32 are taken as an example, and the LED modules L31 and L32 respectively comprise two sets of three LEDs connected in parallel, one resistor and one second. The pole body, the purpose of the resistor and the diode are respectively to obtain the voltage and current limiting action of the feedback signal 32. The variable frequency control converter 30 includes a frequency conversion circuit 301, a switch drive circuit 302 and an energy conversion circuit 303, and the frequency conversion circuit 301 is electrically connected to the open/close drive circuit 302, and the switch drive circuit 302 and the energy conversion circuit 303 are electrically connected. connection. The variable frequency control converter 30 further includes a comparison circuit 304 electrically connected to the light emitting diode modules L31 and L32 and the frequency conversion circuit 301. The comparison circuit 304 is based on the feedback signal 32 of the LED modules L31 and L32 and a reference voltage V3R to output a comparison signal 33. In addition, as shown in FIG. 5, the variable frequency control converter 30 further includes an electromagnetic interference filter circuit 306, a rectifier circuit 307, and a passive power factor correction circuit 305, and the rectifier circuit 307 and the electromagnetic interference filter circuit 306 and The passive power factor correction circuit 305 is electrically connected, and the passive power factor correction circuit 305 is electrically connected to the rectifier circuit 307 and the energy conversion circuit 303, and outputs a DC signal 37. - The function of the passive power factor correction circuit 305 is to adjust the waveform of the signal output from the rectifier circuit 307 so that the voltage waveform in the light-emitting device 3 is more consistent with the phase of the current waveform, thereby improving the power factor. The variable frequency control converter 30 of the third embodiment is different from the technical feature of the 1128028045 variable frequency control converter 20 of the second embodiment in that the variable frequency control converter 20 of the second embodiment includes an active power factor correction circuit. 205, while the variable frequency control converter 30 of the third embodiment includes a passive power factor correction circuit 305 for the purpose of improving the power factor and improving the circuit characteristics of the light emitting device. For the rest of the technical features and the manner of operation, reference may be made to the first embodiment, and details are not described herein again. As described above, the input signal of the alternating current is input to the variable frequency control converter 20 of the second embodiment or the variable frequency control converter 30 of the third embodiment, via the electromagnetic interference filter circuit 206 or 306 and the rectifier circuit 207 or 307. After the filter rectification, whether the active power factor correction circuit 205 or the passive power factor correction circuit 305 is used, the input of the switch driving circuit 502 or 602 uses the feedback signal 22 or the light emitting diode of the self-luminous diode modules L21 and L22. The feedback signal 32 of the body module L31 & L32 is controlled and modulated, and by the operation of the frequency conversion circuit 201 or 301, the switch driving signal 25 or 35 outputted by the switch driving circuit 202 or 302 has the characteristics of frequency conversion, thereby controlling The transistor T2 or T3 of the φ energy conversion circuit 203 or 303 is turned on and off, and the current of the driving signal 21 or 31 outputted by the energy conversion circuit 203 or 303 is adjusted by turning on and off the transistor D or Τ3 to drive the current. The current of each of the light-emitting diode modules L21 and L22 or L3 1 and L32 is kept constant. In addition, the variable frequency control converter 20 or 30 also increases the power factor of the illuminating device to reduce losses due to the use of the power factor correction circuit. When a certain group of LED modules is damaged or removed, the present invention can adjust the current of the driving signal 21 or 31 outputted by the energy conversion circuit 203 or 303 by changing the feedback signal 22 or 32, so as to drive the remaining LEDs. Pole 12 201028045 The current of the body module is kept at a certain value, so that the brightness of the light is kept stable and does not burn. Fourth Embodiment Referring to Fig. 6, Fig. 6 is a schematic view showing a light-emitting device 4 according to a fourth embodiment of the present invention. The light-emitting device 4 includes a plurality of light-emitting diode modules L41 to L4N and a variable-frequency control converter 40. Each of the LED modules may include a plurality of LEDs connected in series, in parallel, or in series and in parallel, and the inverter control converters 40 are electrically connected to the LED modules L41 to L4N, respectively. A driving signal 41 is generated to drive the LED modules L41 to L4N. The variable frequency control converter 40 includes a frequency conversion circuit 401, a switch drive circuit 402 and an energy conversion circuit 403, and the frequency conversion circuit 401 is electrically connected to the switch drive circuit 402, and the switch drive circuit 402 is electrically connected to the energy conversion circuit 403. The variable frequency circuit 401 outputs a variable frequency signal 43 according to the driving signal 41. The switch driving circuit 402 outputs a switching driving signal 44 according to the frequency conversion signal 43. The energy conversion circuit 403 outputs the driving signal according to the switching driving signal 44 and the constant current signal 47. 41, the voltage for driving each of the light-emitting diode modules L41 to L4N is substantially stabilized at a constant value. Fifth Embodiment Referring to Fig. 7, Fig. 7 is a schematic view showing a light-emitting device 5 according to a fifth embodiment of the present invention, which is applied to the structure of the light-emitting device 4. The illuminating device 5 includes a variable frequency control converter 50 and a plurality of illuminating diode modules L51 and L52, and the variable frequency control converter 50 is electrically connected to the LED dies 13 201028045 group L51 and L52 and outputs one. The driving signal 51 drives the LED modules L51 and L52. In this embodiment, two sets of light-emitting diode modules L51 & L52 are taken as an example, and the light-emitting diode modules L51 and L52 each comprise two sets of three serially connected light-emitting diodes and a resistor. The variable frequency control converter 50 includes a frequency conversion circuit 501, a switch drive circuit 502 and an energy conversion circuit 503, and the frequency conversion circuit 501 is electrically connected to the switch drive circuit 502, and the switch drive circuit 502 is electrically connected to the energy conversion circuit 503. Referring to FIG. 7, the variable frequency control converter 50 further includes a comparison circuit 504 and is electrically connected to the energy conversion circuit 503 and the frequency conversion circuit 501. The comparison circuit 504 outputs a comparison signal 53 according to one of the voltage division signal 58 and the reference voltage V5R generated by the driving signal 51. In this embodiment, the voltage dividing signal 58 is a voltage division caused by the driving signal 51 via the resistors R51 and R52, that is, the voltage of the voltage dividing signal 58 is equal to the voltage of the driving signal 51 multiplied by the resistor R52, and divided by the resistor (R51 + R52). The variable frequency control converter 50 further includes an active power factor correction circuit 505 electrically connected to the comparison circuit 504 and the switch drive circuit 502, and generates a power factor correction signal 56 according to the comparison signal 53 and input to the switch drive circuit 502. . In addition, as shown in FIG. 7, the variable frequency control converter 50 further includes an electromagnetic interference filter circuit 506 and a rectifier circuit 507, and the rectifier circuit 507 is electrically connected to the electromagnetic interference filter circuit 506 and the energy conversion circuit 503. And output a DC signal 57. The technical characteristics of the variable frequency control converter 50 of the fifth embodiment and the 1428028045 variable frequency control converter 20 of the second embodiment are mainly different in that the feedback signal 22 of the second embodiment is based on each of the light emitting diode modules. L21 and L22 are derived, and the voltage dividing signal 58 of the fifth embodiment is divided by the driving signal 51 through a resistor, and both are respectively input to the comparator. For the remaining technical features and operation modes of the illuminating device 5, reference may be made to the second embodiment, which will not be described again. Sixth Embodiment Referring to FIG. 8, FIG. 8 is a schematic view of a light-emitting device 6 according to a sixth embodiment of the present invention, which is applied to the structure of the light-emitting device 4. The illuminating device 6 includes a variable frequency control converter 60 and a plurality of LED modules L61 and L62, and the variable frequency control converter 60 is electrically connected to the LED modules L61 and L62 and outputs a driving signal. 61 to drive the LED modules L61, L62. In this embodiment, two sets of LED modules L61 and L62 are taken as an example, and the LED modules L61 and L62 each include two sets of three LEDs connected in series and one resistor. The variable frequency control converter 60 includes a frequency conversion circuit 601, a switch drive circuit 602 and an energy conversion circuit 603, and the frequency conversion circuit 601 is electrically connected to the switch drive circuit 602, and the switch drive circuit 602 is electrically connected to the energy conversion circuit 603. . The variable frequency control converter 60 further includes a comparison circuit 604 electrically connected to the light-emitting diode modules L61 and L62 and the frequency conversion circuit 601. The comparison circuit 604 outputs a comparison signal 63 according to a voltage division signal 68 and a reference voltage V6R generated after the driving signal 61 is divided. In this embodiment, the voltage dividing signal 68 is a partial voltage of the driving signal 61 caused by the resistors R61 and R62 15 201028045, that is, the voltage of the voltage dividing signal 68 is equal to the voltage of the driving signal 61 multiplied by the resistor R62, and divided by the resistor ( R61 + R62). In addition, as shown in FIG. 8 , the variable frequency control converter 60 further includes an electromagnetic interference filter circuit 606 , a rectifier circuit 607 and a passive power factor correction circuit 605 , and the rectifier circuit 607 and the electromagnetic interference filter circuit 606 and the passive power The correction circuit 605 is electrically connected, and the passive power factor correction circuit 605 is electrically connected to the rectifier circuit 607 and the energy conversion circuit 603, and outputs a DC signal 67. The function of the passive power factor correction circuit 605 is to adjust the phase of the rectified signal outputted by the rectifying circuit 607 so that the voltage waveform of the illuminating device 6 and the phase of the current waveform are relatively uniform. The technical characteristics of the variable frequency control converter 60 of the sixth embodiment are different from those of the variable frequency control converter 50 of the fifth embodiment in that the variable frequency control converter 50 of the fifth embodiment includes an active power factor correction circuit 505. The variable frequency control converter 60 of the sixth embodiment includes a passive power factor φ correction circuit 605, the purpose of which is to improve the power factor and improve the circuit characteristics of the light emitting device. For the remaining technical features and actuation modes of the illuminating device 6, reference may be made to the fifth embodiment, and details are not described herein again. As described above, the input signal of the alternating current is input to the inverter type control converter 50 of the fifth embodiment or the variable frequency control converter 60 of the sixth embodiment, via the electromagnetic interference filter circuit 506 or 606 and the rectifier circuit 507 or 607. After the filter rectification, whether the active power factor correction circuit 505 or the passive power factor correction circuit 605 is used, the input of the switch drive circuit 502 or 602 is divided by a self-drive signal 51 or 61 to generate a voltage division signal. 58 or 16 201028045 68 for control and modulation, and by the operation of the frequency conversion circuit 501 or 601, the switch drive signal 55 or 65 outputted by the switch drive circuit 502 or 602 has the characteristics of frequency conversion, thereby controlling the energy conversion circuit 503 or The transistor T5 or T6 of 603 is turned on and off, and the voltage of the driving signal 51 or 61 outputted by the energy conversion circuit 503 or 603 is adjusted by turning on and off the transistor T5 or T6 to drive the LED modules. The voltages of L51 and L52 or l61 and l62 are kept at a certain value. In addition, the variable frequency control converter also increases the power factor of the illuminating device by using the power factor correction circuit to reduce the loss. When a certain group of LED modules is damaged or removed, the present invention can adjust the voltage of the driving signal 51 or 61 output by the energy conversion circuit 503 or 603 through the change of the voltage dividing signal 58 or 68, so as to drive the remaining lights. The voltage of the diode module is kept constant, so that the brightness of the light is kept stable without burning. Seventh Embodiment @ Please refer to Fig. 9, which is a schematic view of a light-emitting device 7 according to a seventh embodiment of the present invention. The light-emitting device 7 includes a plurality of light-emitting diode modules L71 to L7N and a variable-frequency control converter 70. Each of the LED modules may include a plurality of LEDs connected in series, or in parallel, or in series and in parallel, and the inverter control converter 70 is electrically connected to the LED module - L71 to L7N, respectively. Connected, and a driving signal 71 is generated to drive the LED modules L71 to L7N. The variable frequency control converter 70 includes a frequency conversion circuit 701, a switch drive circuit 702 and an energy conversion circuit 703, and the frequency conversion circuit 701 is electrically connected to the switch 17 201028045 drive circuit 702, and the switch drive circuit 702 is electrically connected to the energy conversion circuit 703. . The variable frequency circuit 701 outputs a variable frequency signal 73 according to the plurality of feedback signals 72 and the driving signal 71 of the light emitting diode module, and the switch driving circuit 702 outputs a switching driving signal 74 according to the frequency conversion signal 73, and the energy conversion circuit 703 The driving signal 71 is outputted according to the switch driving signal 74 and the constant current signal 77, so that the power for driving the LED modules L71 to L7N is substantially stabilized at a constant value. Eighth Embodiment ® Referring to Fig. 10, Fig. 10 is a schematic view showing a light-emitting device 8 according to an eighth embodiment of the present invention, which is a structure in which the light-emitting device 7 is applied. The illuminating device 8 includes a variable frequency control converter 80 and a plurality of LED modules L81 and L82, and the variable frequency control converter 80 is electrically connected to the LED modules L81 and L82 and outputs a driving signal. 81 is used to drive the LED modules L81 and L82. In this embodiment, two sets of LED modules Lsi and Lg2 are taken as an example, and the LED modules Lgi and L82 each comprise φ 2 sets of 3 series connected LEDs, a resistor and a second. The polar body, and the purpose of the resistor and the diode are respectively to obtain the feedback signal 82 and the current limiting effect. The variable frequency control converter 80 includes a frequency conversion circuit 801, a switching drive circuit 802 and an energy conversion circuit 803, and the frequency conversion circuit 801 is electrically connected to the switch drive circuit 802, and the switch drive circuit 802 and the energy conversion circuit 803 are electrically connected. connection. Referring to FIG. 10, the variable frequency control converter 80 further includes a comparison circuit 804 electrically connected to the LED modules L81 and L82, the energy conversion circuit 18 201028045, and the frequency conversion circuit 801. The comparison circuit 804 outputs a comparison signal 83 according to the voltage division signal 88 generated by the driving signal 81, the feedback signal 82 of the LED modules L81 and L82, and a reference voltage V8R. In this embodiment, the voltage dividing signal 88 is the voltage division caused by the driving signal 81 through the resistors R81 and 82. That is, the voltage of the voltage dividing signal 88 is equal to the voltage of the driving signal 81 multiplied by the resistor R82, and divided by the resistor ( R81 + R82). In the present embodiment, the comparison circuit 804 includes, for example, a comparator 809 and a multiplier 808 (or an adder). The voltage dividing signal 88 and the feedback signal о 82 are first input to the multiplier 808 for multiplication. Since the power is equal to the voltage multiplied by the current, the output is compared to the input of the comparator 809, and compared with the reference voltage V8R, the output power is compared. Signal 83. The variable frequency control converter 80 further includes an active power factor correction circuit 805, which is electrically connected to the comparison circuit 804 and the switch drive circuit 802, and generates a power factor correction signal 86 according to the comparison signal 83 and inputs the switch drive circuit 802. In addition, as shown in FIG. 10, the variable frequency control converter 80 further includes an electromagnetic interference filter circuit 806 and a rectifier circuit 807, and the rectifier circuit 807 is electrically connected to the electromagnetic interference filter circuit 806 and the energy conversion circuit 803, and The output DC signal 87 is output. The technical characteristics of the variable frequency control converter 80 of the eighth embodiment and the variable frequency control converter 20 of the second embodiment are mainly different in that the feedback signal 22 of the second embodiment is based on each of the light emitting diode modules. L21 and L22 are derived, and the input of the comparator 809 of the eighth embodiment is the output of the multiplier 808, and the input of the multiplier 808 is 19, 201028045, the voltage dividing signal 88 from the driving signal 81, and each of the light emitting diodes. The feedback signal 82 of the modules L81 and L82. For the remaining technical features and operation modes of the illuminating device 8, reference may be made to the second embodiment and the fifth embodiment, and details are not described herein again. Ninth Embodiment Referring to Fig. 11, Fig. 11 is a schematic view showing a light-emitting device 9 according to a ninth embodiment of the present invention. The illuminating device 9 includes a variable frequency control converter 90 and a plurality of LED modules L91 and L92, and the variable frequency control converter 90 is electrically connected to the LED modules L91 and L92 and outputs a reference drive. The signal 91 drives the LED modules L91 and L92. In this embodiment, two sets of LED modules L91 and L92 are taken as an example, and the LED modules L91 & L92 each comprise two sets of three LEDs connected in series, one resistor and one pole. The purpose of the resistor and the diode is to obtain the feedback signal 92 and the current limiting effect, respectively. The variable frequency control converter 90 includes a frequency conversion circuit 901, a switch drive circuit 902 and an energy conversion circuit 903, and the frequency conversion circuit 901 is electrically connected to the open φ off drive circuit 902, and the switch drive circuit 902 and the energy conversion circuit 903 are electrically connected. connection. Referring to FIG. 11, the variable frequency control converter 80 further includes a comparison circuit 904 electrically connected to the LED modules L91 and L92, the energy conversion electric circuit 903 and the frequency conversion circuit 901. The comparison circuit 904 outputs a comparison signal 93 according to one of the voltage division signal 98 generated by the driving signal 91, the feedback signal 92 of the LED modules L91 and L92, and a reference voltage V9R. In this embodiment, the voltage dividing signal 98 is the voltage division caused by the driving signal 91 via the resistors R9i and R92, that is, the voltage of the voltage dividing signal 98 is equal to the voltage of the driving 20 201028045 signal 91 multiplied by the resistor R92, and divided by the resistor ( R91 + R92 ). In addition, as shown in FIG. 11 , the variable frequency control converter 90 further includes an electromagnetic interference filter circuit 906 , a rectifier circuit 907 , and a passive power factor correction circuit 905 , and the rectifier circuit 907 and the electromagnetic interference filter circuit 906 and the passive power The correction circuit 905 is electrically connected, and the passive power factor correction circuit 905 is electrically connected to the rectifier circuit 907 and the energy conversion circuit 903, and outputs a DC signal 97. The function of the passive power factor correction circuit 905 is to adjust the waveform of the signal output by the rectifier circuit 907 so that the voltage waveform in the light-emitting device 9 is more consistent with the phase of the current waveform, thereby improving the power factor. The technical characteristics of the variable frequency control converter 90 of the ninth embodiment and the variable frequency control converter 80 of the eighth embodiment are mainly different in that the variable frequency control converter 80 of the eighth embodiment includes an active power factor correction circuit 805. The variable frequency control converter 90 of the ninth embodiment includes a passive power factor correction circuit 905, the purpose of which is to improve the power factor and improve the circuit characteristics of the light-emitting device φ. For the remaining technical features and operation modes of the illuminating device 9, reference may be made to the eighth embodiment, and thus no further details are provided herein. As described above, the input signal of the alternating current is input to the variable frequency control converter 80 of the eighth embodiment or the variable frequency control converter 90 of the ninth embodiment via the electromagnetic interference filter circuit 806 or 906 and the rectifier circuit 807 or 907. After the filter rectification, whether the active power factor correction circuit 805 or the passive power factor correction circuit 905 is used, the input of the switch drive circuit 802 or 902 uses a voltage division signal 88 or 98 generated by the self-drive signal 81 or 91 and emits light. The feedback signal 82 of the diodes L81 and L82 or the feedback signal 92 of the LEDs L91 and L92 21 201028045 are first subjected to multiplication and then controlled and modulated, so that the switch drive signal of the switch drive circuit 802 or 902 is output 85. Or 95 has the characteristics of frequency conversion, thereby controlling the conduction and cutoff of the transistor D or A of the energy conversion circuit 803 or 903, and turning on and off by the transistor or the A to adjust the energy conversion circuit to hide the 9 9G3 The driving signal Μ • or the power of 91 'saves the power of each of the LED modules L81 and L82 or l91 and l92 to be constant. Further, the eighth embodiment and the nuisance control converter of the ninth embodiment also increase the power factor of the light-emitting device to reduce the loss by using the power factor correction circuit. When a certain group of LED modules is damaged or removed, the present invention can adjust the energy conversion circuit 803 < 9G3 output driving signal 81 or by changing the signal 88 or 98 and the feedback signal 82 or 92. The power of 91 'saves the power of driving the remaining LED modules to a certain value, so that the 7C of the light is kept stable without burning. In summary, the illuminating device of the present invention has a variable frequency control converter including a frequency conversion circuit, a switch driving circuit and an energy conversion circuit. The variable frequency circuit can output an output-frequency signal according to a plurality of feedback signals and/or driving signals of the LED module, and the switch driving circuit outputs a switch driving signal according to the frequency conversion signal. The switch driving signal is adjusted according to the feedback signal and/or the driving signal, and the driving signal output by the energy conversion circuit according to the switching driving signal is also adjusted, so that the current, voltage or power input to each LED module is input. The substance is fixed. Therefore, if some of the light-emitting diode modules are damaged or removed, the present invention can adjust the output by feedback and frequency conversion due to changes in the feedback signal and/or the driving signal, so that the remaining light-emitting diodes 22 201028045 module emit brightness. Stay stable without burning. In addition, the energy conversion circuit and the active power factor correction circuit of the present invention are combined into a single-stage circuit, and the electromagnetic interference filter circuit, the rectifier circuit and the passive power factor correction circuit are combined into a single-stage circuit, compared with the conventional LED illumination device. The invention saves the circuit of the first level, so as to reduce the power loss, thereby improving the power use efficiency. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional LED light-emitting device; FIG. 2 is a schematic view of a light-emitting device according to a first embodiment of the present invention; FIG. 3 is a schematic view of a light-emitting device according to a second embodiment of the present invention; 4 is a schematic diagram of a frequency conversion circuit according to a preferred embodiment of the present invention; FIG. 5 is a schematic diagram of a light-emitting device according to a third embodiment of the present invention; FIG. 6 is a schematic diagram of a light-emitting device according to a fourth embodiment of the present invention; 7 is a schematic view of a light-emitting device according to a fifth embodiment of the present invention; FIG. 8 is a schematic view showing a light-emitting device according to a sixth embodiment of the present invention; FIG. 9 is a schematic view showing a light-emitting device according to a seventh embodiment of the present invention; 10 is a schematic view of a light-emitting device according to an eighth embodiment of the present invention; and FIG. 11 is a schematic view of a light-emitting device according to a ninth embodiment of the present invention. 23 201028045 [Explanation of main component symbols] I, 2, 3, 4, 5, 6, 7, 8, 9: Illumination devices 10, 20, 30, 40, 50, 60, 70, 80, 90: Variable frequency control conversion 101, 201, 301, 401, 501, 601, 701, 801, 901: frequency conversion circuits 102, 202, 302, 402, 502, 602, 702, 802, 902: switch drive circuits 103, 203, 303, 403 , 503, 603, 703, 803, 903: energy conversion circuits II, 21, 31, 41, 51, 61, 71, 81, 91: drive signals 12, 22, 32, 72, 82, 92: feedback signal 13, 24, 34, 43, 54, 64, 73, 84, 94 ··Frequency signals 14, 25, 35, 44, 55, 65, 74, 85, 95: switch drive signals 17, 27, 37, 47, 57, 67, 77, 87, 97: DC signals φ 204, 304, 504, 604, 804, 904: comparison circuits 205, 505, 805: active power factor correction circuits 206, 306, 506, 606, 806, 906, C1: Electromagnetic interference filter circuits 207, 307, 507, 607, 807, 907: rectifier circuits 23, 33, 53, 63, 83, 93: comparison signals 26, 56, 86: power factor correction signals 305, 605, 905: passive power Correction circuit 58, 68, 88 98: voltage division signal 808, 908: multiplier 24 201028045 809, 909: comparator C2: power factor correction circuit C3: conversion circuit, 1, In, Icon: current L01 ~ Lon, Ln ~ L1N, L21 ~ L22, L31 to L32, L4i to L4n, L51 to L52, L61 to L> 62, L71 to L7N, Lgi to Lg2, L91 to L92, LED module R5I, R52, ruler 61, Κ·62, R81, ruler 82, R9I, R92: resistance - τ2, τ3, τ5, τ6, τ8, τ9: transistor

Vl、V2、V2R、V3R、V5R、V6R、VgR、V9R:基準查壓 vD :工作電壓 Vs :交流電源Vl, V2, V2R, V3R, V5R, V6R, VgR, V9R: reference check voltage vD: working voltage Vs: AC power supply

2525

Claims (1)

201028045 七、申凊專利範圍: 1、 一種發光裝置,包含: 複數發光二極體模組;以及 一變頻式控制轉換器,與該等發光二極體模組電性連 • 接,並產生一驅動訊號以驅動該等發光二極體模組, • 5亥變頻式控制轉換器包含一變頻電路、一開關驅動電 路及一能量轉換電路,該變頻電路與該開關驅動電路 ❹ 電性連接,該開關驅動電路與該能量轉換電路電性連 接,且該變頻電路係依據該等發光二極體模組之複數 回饋訊號以輸出一變頻訊號,該開關驅動電路係依據 该變頻訊號輸出一開關驅動訊號,而該能量轉換電路 係依據§玄開關驅動訊號及一直流訊號輸出該驅動訊 號使各該發光二極體模組之電流實質為定值。 2、 如申請專利範圍第丨項所述之發光裝置,其中各該等 發光二極體模組包含串聯及/或並聯之複數發光二極 • 體。 3、 如申請專利範圍第丨項所述之發光裝置,其中該變頻 式控制轉換器更包含一比較電路,且該比較電路與該 , 等發光二極體模組及該變頻電路電性連接,並依據該 等回饋訊號及一基準電壓輸出一比較訊號。 4、 如申請專利範圍第3項所述之發光裝置,其中該比較 訊號的電壓與該變頻訊號的頻率呈一對應變化關係。 5、 如申請專利範圍第3項所述之發光裝置,其中該變頻 式控制轉換器更包含一主動功因校正電路與該比較電 26 201028045 路及該開關驅動電路電性連接,並依據該比較訊號以 產生一功因校正訊號輸入該開關驅動電路。 6、如申請專利範圍第1項所述之發光裝置,其中該能量 轉換電路係為返遲式轉換器電路。 . 7、如申請專利範圍第1項所述之發光裝置,其中該能量 轉換電路係將該直流訊號降壓輸出。 8、 如申請專利範圍第1項所述之發光裝置,其中該變頻 式控制轉換器更包含一電磁干擾濾波電路及一整流電 ® 路,且該整流電路與該電磁干擾濾波電路及該能量轉 換電路電性連接,並輸出該直流訊號。 9、 如申請專利範圍第8項所述之發光裝置,其中該整流 電路係為全波整流電路。 10、 如申請專利範圍第1項所述之發光裝置,其中該變頻 式控制轉換器更包含一被動功因修正電路,該被動功 因校正電路與該能量轉換電路電性連接,並輸出該直 ❿ 流訊號。 11、 一種發光裝置,包含: 複數發光二極體模組;以及 一變頻式控制轉換器,與該等發光二極體模組電性連 " 接,並產生一驅動訊號以驅動該等發光二極體模 組,該變頻式控制轉換器包含一變頻電路、一開關 驅動電路及一能量轉換電路,該變頻電路與該開關 驅動電路電性連接,該開關驅動電路與該能量轉換 電路電性連接,且該變頻電路係依據該驅動訊號以 27 201028045 輸出一變頻訊號,該開關驅動電路係依據該變頻訊 號輸出一開關驅動訊號,而該能量轉換電路係依據 該開關驅動訊號及一直流訊號輸出該驅動訊號使各 該發光二極體模組之電壓實質為定值。 • 12、如申請專利範圍第11項所述之發光裝置,其中各該 -等發光二極體模組包含串聯及/或並聯之複數發光二 極體。 • 13、如申請專利範圍第11項所述之發光裝置,其中該變 頻式控制轉換器更包含一比較電路,且該比較電路與 該變頻電路及該能量轉換電路電性連接,並依據該驅 動訊號及一基準電壓輸出一比較訊號。 14、 如申請專利範圍第13項所述之發光裝置,其中該比 較訊號的電壓與該變頻訊號的頻率呈一對應變化關 係。 15、 如申請專利範圍第13項所述之發光裝置,其中該變 ® 頻式控制轉換器更包含一主動功因校正電路與該比 較·電路及該開關驅動電路電性連接,並依據該比較訊 號以產生一功因校正訊號輸入該開關驅動電路。 16、 如申請專利範圍第U項所述之發光裝置,其中該能 量轉換電路係為返遲式轉換器電路。 17、 如申請專利範圍第U項所述之發光裝置,其中該能 置轉換電路係將該直流訊號降壓輸出。 18、 如申請專利範圍第U項所述之發光裝置,其中該變 頻式控制轉換器更包含一電磁干擾濾波電路及一整 28 201028045 流電路,且該整流電路與該電磁干擾濾波電路及該能 量轉換電路電性連接,並輸出該直流訊號。 19、 如申請專利範圍第18項所述之發光裝置,其中該整 流電路係為全波整流電路。 20、 如申請專利範圍第11項所述之發光裝置,其中該變 頻式控制轉換器更包含一被動功因修正電路,該被動 功因校正電路與該能量轉換電路電性連接,並輸出該 直流訊號。 21、 一種發光裝置,包含: 複數發光二極體模組;以及 一變頻式控制轉換器,與該等發光二極體模組電性連 接,並產生一驅動訊號以驅動該等發光二極體模 組,該變頻式控制轉換器包含一變頻電路、一開關 驅動電路及一能量轉換電路,該變頻電路與該開關 驅動電路電性連接,該開關驅動電路與該能量轉換 電路電性連接,且該變頻電路係依據該等發光二極 體模組之複數回饋訊號及該驅動訊號以輸出一變頻 訊號,該開關驅動電路係依據該變頻訊號輸出一開 關驅動訊號,而該能量轉換電路係依據該開關驅動 訊號及一直流訊號輸出該驅動訊號使各該發光二極 體模組之功率實質為定值。 22、 如申請專利範圍第21項所述之發光裝置,其中各該 等發光二極體模組包含串聯及/或並聯之複數發光二 極體。 29 201028045 23、 如申請專利範圍第21項所述之發光裝置,其中該變 頻式控制轉換器更包含一比較電路,該比較電路與該 等發光二極體模組、該能量轉換電路及該變頻電路電 性連接,並依據該驅動訊號、該等回饋訊號及一基準 電壓輸出一比較訊號。 24、 如申請專利範圍第23項所述之發光裝置,其中該比 較訊號的電壓與該變頻訊號的頻率呈一對應變化關 係。 25、 如申請專利範圍第23項所述之發光裝置,其中該變 頻式控制轉換器更包含一主動功因校正電路與該比 較電路及該開關驅動電路電性連接,並依據該比較訊 號以產生一功因校正訊號輸入該開關驅動電路。 26、 如申請專利範圍第21項所述之發光裝置,其中該能 量轉換電路為係返遲式轉換器電路。 27、 如申請專利範圍第21項所述之發光裝置,其中該能 量轉換電路係將該直流訊號降壓輸出。 28、 如申請專利範圍第21項所述之發光裝置,其中該變 頻式控制轉換器更包含一電磁干擾濾波電路及一整 流電路元,且該整流電路與該電磁干擾濾波電路及該 能量轉換電路電性連接,並輸出該直流訊號。 29、 如申請專利範圍第28項所述之發光裝置,其中該整 流電路係為全波整流電路。 30、 如申請專利範圍第21項所述之發光裝置,其中該變 頻式控制轉換器更包含一被動功因修正電路,該被動 201028045 功因校正電路與該能量轉換電路電性連接,並輸出該 直流訊號。201028045 VII. The scope of the patent application: 1. A light-emitting device comprising: a plurality of light-emitting diode modules; and a variable-frequency control converter electrically connected to the light-emitting diode modules and generating a Driving the signal to drive the LED modules, and the 5H conversion control converter comprises a frequency conversion circuit, a switch driving circuit and an energy conversion circuit, and the frequency conversion circuit is electrically connected to the switch driving circuit, The switch drive circuit is electrically connected to the energy conversion circuit, and the variable frequency circuit outputs a variable frequency signal according to the plurality of feedback signals of the light emitting diode modules, and the switch driving circuit outputs a switch driving signal according to the variable frequency signal. And the energy conversion circuit outputs the driving signal according to the SYS switch driving signal and the DC signal to make the current of each of the LED modules substantially constant. 2. The illuminating device of claim 2, wherein each of the illuminating diode modules comprises a plurality of illuminating diodes connected in series and/or in parallel. 3. The illuminating device of claim 2, wherein the variable frequency control converter further comprises a comparison circuit, and the comparison circuit is electrically connected to the illuminating diode module and the frequency conversion circuit, And outputting a comparison signal according to the feedback signals and a reference voltage. 4. The illuminating device of claim 3, wherein the voltage of the comparison signal has a corresponding relationship with the frequency of the frequency conversion signal. 5. The illuminating device of claim 3, wherein the variable frequency control converter further comprises an active power factor correcting circuit electrically connected to the comparing circuit 26201028045 and the switch driving circuit, and according to the comparison The signal is generated to generate a power factor correction signal input to the switch drive circuit. 6. The illuminating device of claim 1, wherein the energy conversion circuit is a return-to-late converter circuit. 7. The illuminating device of claim 1, wherein the energy conversion circuit is configured to step down the DC signal. 8. The illuminating device of claim 1, wherein the variable frequency control converter further comprises an electromagnetic interference filtering circuit and a rectifying electric circuit, and the rectifying circuit and the electromagnetic interference filtering circuit and the energy conversion The circuit is electrically connected and outputs the DC signal. 9. The illuminating device of claim 8, wherein the rectifying circuit is a full wave rectifying circuit. 10. The illuminating device of claim 1, wherein the variable frequency control converter further comprises a passive power factor correcting circuit, the passive power factor correcting circuit is electrically connected to the energy converting circuit, and outputs the straight ❿ Stream signal. 11. A lighting device comprising: a plurality of light emitting diode modules; and a variable frequency control converter electrically coupled to the light emitting diode modules and generating a driving signal to drive the light emitting The inverter module includes a frequency conversion circuit, a switch drive circuit and an energy conversion circuit. The frequency conversion circuit is electrically connected to the switch drive circuit, and the switch drive circuit and the energy conversion circuit are electrically connected. Connected, and the frequency conversion circuit outputs a frequency conversion signal according to the driving signal at 27 201028045, the switch driving circuit outputs a switching driving signal according to the frequency conversion signal, and the energy conversion circuit is based on the switch driving signal and the direct current signal output. The driving signal makes the voltage of each of the LED modules substantially constant. 12. The illuminating device of claim 11, wherein each of the illuminating diode modules comprises a plurality of illuminating diodes connected in series and/or in parallel. The illuminating device of claim 11, wherein the variable frequency control converter further comprises a comparison circuit, and the comparison circuit is electrically connected to the frequency conversion circuit and the energy conversion circuit, and according to the driving The signal and a reference voltage output a comparison signal. 14. The illuminating device of claim 13, wherein the voltage of the comparison signal has a corresponding relationship with the frequency of the frequency conversion signal. 15. The illuminating device of claim 13, wherein the variable frequency control converter further comprises an active power factor correction circuit electrically connected to the comparison circuit and the switch driving circuit, and according to the comparison The signal is generated to generate a power factor correction signal input to the switch drive circuit. 16. The illuminating device of claim U, wherein the energy conversion circuit is a return-to-late converter circuit. 17. The illuminating device of claim U, wherein the responsive switching circuit is configured to step down the DC signal. 18. The illuminating device of claim U, wherein the variable frequency control converter further comprises an electromagnetic interference filtering circuit and an entire 28 201028045 flow circuit, and the rectifying circuit and the electromagnetic interference filtering circuit and the energy The conversion circuit is electrically connected and outputs the DC signal. 19. The illuminating device of claim 18, wherein the rectifying circuit is a full wave rectifying circuit. The illuminating device of claim 11, wherein the variable frequency control converter further comprises a passive power factor correcting circuit electrically connected to the energy converting circuit and outputting the direct current Signal. An illuminating device comprising: a plurality of illuminating diode modules; and a variable frequency control converter electrically connected to the illuminating diode modules and generating a driving signal to drive the illuminating diodes The variable frequency control circuit includes a frequency conversion circuit, a switch drive circuit and an energy conversion circuit, the frequency conversion circuit is electrically connected to the switch drive circuit, and the switch drive circuit is electrically connected to the energy conversion circuit, and The variable frequency circuit outputs a variable frequency signal according to the plurality of feedback signals of the light emitting diode module and the driving signal, and the switch driving circuit outputs a switching driving signal according to the variable frequency signal, and the energy conversion circuit is based on the The driving signals of the switch driving signal and the DC signal output the driving signals so that the power of each of the LED modules is substantially constant. The illuminating device of claim 21, wherein each of the illuminating diode modules comprises a plurality of illuminating diodes connected in series and/or in parallel. The illuminating device of claim 21, wherein the variable frequency control converter further comprises a comparison circuit, the comparison circuit and the illuminating diode module, the energy conversion circuit and the frequency conversion The circuit is electrically connected, and outputs a comparison signal according to the driving signal, the feedback signal and a reference voltage. The illuminating device of claim 23, wherein the voltage of the comparison signal has a corresponding relationship with the frequency of the frequency conversion signal. The illuminating device of claim 23, wherein the variable frequency control converter further comprises an active power factor correcting circuit electrically connected to the comparing circuit and the switch driving circuit, and generating according to the comparison signal A power is input to the switch drive circuit due to the correction signal. The illuminating device of claim 21, wherein the energy conversion circuit is a return-to-late converter circuit. 27. The illuminating device of claim 21, wherein the energy conversion circuit is configured to step down the DC signal. The illuminating device of claim 21, wherein the variable frequency control converter further comprises an electromagnetic interference filtering circuit and a rectifying circuit element, and the rectifying circuit and the electromagnetic interference filtering circuit and the energy conversion circuit Electrically connected and output the DC signal. The illuminating device of claim 28, wherein the rectifying circuit is a full-wave rectifying circuit. The illuminating device of claim 21, wherein the variable frequency control converter further comprises a passive power factor correcting circuit, wherein the passive 201028045 power factor correcting circuit is electrically connected to the energy converting circuit, and outputs the DC signal. 3131
TW98100789A 2009-01-09 2009-01-09 Light emitting apparatus TW201028045A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW98100789A TW201028045A (en) 2009-01-09 2009-01-09 Light emitting apparatus
JP2009160391A JP5220699B2 (en) 2009-01-09 2009-07-07 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98100789A TW201028045A (en) 2009-01-09 2009-01-09 Light emitting apparatus

Publications (1)

Publication Number Publication Date
TW201028045A true TW201028045A (en) 2010-07-16

Family

ID=42578262

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98100789A TW201028045A (en) 2009-01-09 2009-01-09 Light emitting apparatus

Country Status (2)

Country Link
JP (1) JP5220699B2 (en)
TW (1) TW201028045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420970B (en) * 2010-07-16 2013-12-21 Delta Electronics Inc Lighting devices
US8634781B2 (en) 2010-12-29 2014-01-21 Puu-Jiuh Co., Ltd. Remote-control method and emitter cooperated with personal communication device
TWI471057B (en) * 2012-12-07 2015-01-21 Princeton Technology Corp A lighting system and controlling method thereof
TWI548304B (en) * 2015-01-05 2016-09-01 國立成功大學 Led driver and driving method thereof
TWI734578B (en) * 2020-08-07 2021-07-21 全漢企業股份有限公司 Illumination power circuit with diming function and associated control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644169B2 (en) * 2010-04-23 2014-12-24 東芝ライテック株式会社 LED drive circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226079A (en) * 1986-10-07 1988-09-20 Seiko Epson Corp Led array drive circuit
JP4461576B2 (en) * 2000-06-19 2010-05-12 東芝ライテック株式会社 LED light source device
JP3942387B2 (en) * 2001-02-13 2007-07-11 株式会社小糸製作所 Discharge lamp lighting circuit
JP4873847B2 (en) * 2004-10-08 2012-02-08 新電元工業株式会社 LED lighting drive circuit
JP4100400B2 (en) * 2005-01-31 2008-06-11 松下電工株式会社 LED driving device, lighting device and lighting fixture including the same
US7511437B2 (en) * 2006-02-10 2009-03-31 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for high power factor controlled power delivery using a single switching stage per load
FR2898226B1 (en) * 2006-03-06 2009-03-06 Excem Soc Par Actions Simplifi ELECTROLUMINESCENT TRANSMISSION DEVICE FOR OPTICAL TRANSMISSION IN FREE SPACE
US7649325B2 (en) * 2006-04-03 2010-01-19 Allegro Microsystems, Inc. Methods and apparatus for switching regulator control
JP2008108565A (en) * 2006-10-25 2008-05-08 Matsushita Electric Works Ltd Light emitting diode lighting circuit and luminaire using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420970B (en) * 2010-07-16 2013-12-21 Delta Electronics Inc Lighting devices
US8634781B2 (en) 2010-12-29 2014-01-21 Puu-Jiuh Co., Ltd. Remote-control method and emitter cooperated with personal communication device
TWI471057B (en) * 2012-12-07 2015-01-21 Princeton Technology Corp A lighting system and controlling method thereof
TWI548304B (en) * 2015-01-05 2016-09-01 國立成功大學 Led driver and driving method thereof
TWI734578B (en) * 2020-08-07 2021-07-21 全漢企業股份有限公司 Illumination power circuit with diming function and associated control method thereof

Also Published As

Publication number Publication date
JP5220699B2 (en) 2013-06-26
JP2010161332A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
Qu et al. Resonance-assisted buck converter for offline driving of power LED replacement lamps
JP5760176B2 (en) Solid-state light source lighting device and lighting apparatus and lighting system using the same
JP5110197B2 (en) LED driving device and LED lighting device
US20130099686A1 (en) Light emitting diode (led) dimming system
JP2015503193A (en) Drive circuit and associated method for a solid state lighting device including a high voltage LED component
JP2007080771A (en) Low voltage power supply circuit for lighting, lighting device, and method of outputting power of low voltage power supply for lighting
TW200915911A (en) Driver device for LEDs
JP2011065922A (en) Led lighting device and illumination device
JP2007189004A (en) Dc power supply, power supply for light emitting diode, and illuminator
US10542597B2 (en) Lighting control circuit and method for multiple LEDs
TW201315105A (en) Bias voltage generation using a load in series with a switch
TW201028045A (en) Light emitting apparatus
TWM366854U (en) Dimmer and lighting apparatus
Tan General $ n $-Level Driving Approach for Improving Electrical-to-Optical Energy-Conversion Efficiency of Fast-Response Saturable Lighting Devices
TW201212723A (en) Direct current light emitting device control circuit with dimming function and method thereof
US20140285104A1 (en) Method and Apparatus for Regulating the Brightness of Light-Emitting Diodes
Chung et al. Low-cost drive circuit for AC-direct LED lamps
Wang et al. Dimmable and cost-effective DC driving technique for flicker mitigation in LED lighting
US8093821B2 (en) Driving method for improving luminous efficacy of a light emitting diode
JP5562081B2 (en) LED dimming method and dimming device
JP6534060B2 (en) Lighting device and lighting apparatus
TWI533748B (en) Light-emitting diode circuit system with power factor correction and optimization
US20100188006A1 (en) Dimming alternating current light emitting diodes
TW201438518A (en) LED dimming control device
TW201208464A (en) Direct-driving light-emitting diode (LED) driver