TW201028031A - A method and an electronic device for improving the optical uniformity of tiled OLED lighting sources - Google Patents

A method and an electronic device for improving the optical uniformity of tiled OLED lighting sources Download PDF

Info

Publication number
TW201028031A
TW201028031A TW098135292A TW98135292A TW201028031A TW 201028031 A TW201028031 A TW 201028031A TW 098135292 A TW098135292 A TW 098135292A TW 98135292 A TW98135292 A TW 98135292A TW 201028031 A TW201028031 A TW 201028031A
Authority
TW
Taiwan
Prior art keywords
oled
tiles
power
electronic device
optical properties
Prior art date
Application number
TW098135292A
Other languages
Chinese (zh)
Inventor
Dirk Hente
Joseph Hendrik Anna Maria Jacobs
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201028031A publication Critical patent/TW201028031A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/08Arrangements within a display terminal for setting, manually or automatically, display parameters of the display terminal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

A method for improving the uniformity of at least one optical property of a tiled OLED lighting source comprising at least two OLED tiles, the method comprising: applying electrical power to the OLED tiles with a power proving means, the power providing means comprising a control means adapted for controlling the electrical power to each of the OLED tiles, measuring at least one optical property of each of the OLED tiles as a function of their respective electrical power to determine at least one electro-optical property of each OLED tile, modifying the control means using the electro-optical properties for compensating the effect of the variation of the electro-optical properties on the uniformity of the optical properties of the OLED tiles.

Description

201028031 六、發明說明: 【發明所屬之技術領域】 本發明係關於有機發光二極體,特定言之係關於由多個 有機發光二極體(OLED)磚片建構之OLED發光源。 【先前技術】 有機發光二極體(OLED)裝置係由兩個電極及一有機發 光層組成。該有機層經配置於該等兩電極之間。一電極為 陽極及另一電極為陰極。該有機層經建構以使當該陽極具 有相對於該陰極足夠正之一電壓偏壓時,則自該陽極注入 電洞且自該陰極注入電子。該必要之電壓偏壓取決於該等 有機層所用之材料。該等電洞及電子在該有機層内再結合 以在包含該有機層之一分子中誘發一激發態。在經激發之 分子迴歸至其等基態之過程期間會放出光。該陽極通常係 由諸如一透明傳導氧化物(TCO)之一高功函數材料製得, 且該陰極通常係由諸如鋁或銀之一高反射材料製得。然 而,存在很多允許光透出該陰極、該陽極、或穿過該陰極 與該陽择兩者之不同電極設計。該有機層可由一單一有機 膜組成,或其可由多個有機膜之一堆疊組成。OLED裝置 係有用的,因為指示器及顯示器可由被圖案化之OLED裝 置陣列建構而成。 用於一般照明之大面積OLED發光源可由複數個較小 OLED磚片建構。該等OLED磚片可經配置成矩陣形式。此 稱為OLED鋪磚且可較一單一單石之大面積OLED發光源具 有若干優點,諸如:生產產率顯著增加、可藉由串聯連接 142896.doc 201028031 減少動力損耗、增加該發光裝置之容錯、及可簡易地自訂 該鋪磚式OLED燈之幾何外觀,此係因為可使用經成型為 諸如條狀、不同縱橫比之正方形等的〇LED磚片之故。 雖然OLED鋪碑具有明顯的若干優點,但一主要未解決 之問題係該等個別磚片之不同的電光學性質。由於製造公 差’故甚至源自相同生產批次之OLED磚片通常會有與電 流或電壓函數相關之亮度的變化。針對僅具有一 〇LED磚 片之發光源’一0LED裝置自身之亮度變化較不重要。針 對鋪磚式OLED發光源,人類觀察者可輕易注意到磚片間 光學性質之變化。例如當兩個OLED磚片緊密靠近時,人 眼可察覺亮度之微小變化。在一鋪碑式〇Led陣列中避免 該等亮度驟變之不重要的解決方法係僅使用具有類似性質 之磚片。然而,此方法費用高,此係因為其要求一耗時的 選擇過程之故。 美國專利申請案2〇〇5/〇i34525 A1描述一系統且教示一 φ 種用於控制及校準大型鋪磚式OLED發射顯示器之方法。 然而此並不適用OLED發光源。 【發明内容】 本發明&供一種方法、一電子裝置、一鋪磚式〇LED發 光源、及一 OLED套組。本發明之實施例在所附之申請專 利範圍内給定。 本發明之實施例藉由使用針對該〇LED發光源之驅動電 子以調整至該配置之每個單一 〇LED磚片之電力,由此使 該OLED發光源之至少一光學性質變化最小而解決上述問 142896.doc 201028031 題。本文所定義之OLED磚片光學性質為自一 OLED磚片發 出光之光度、輻射度、或光譜性質。當施加至一 OLED磚 片之動力發生變化時,光學性質將會改變。 本文所定義之一 OLED磚片為與其他OLED裝置一起置於 一圖案中之一 OLED裝置。可交互使用術語OLED裝置及 OLED磚片。 光度量之實例為光能、光通量、光強度、發光度、光照 度、光發射度、及發光效率。光度量係說明人眼對不同波 長之可見光的不同敏感度。使一或多光度量之變化最小係 有利的,此係因為該等發光源將可被感知為具有一均勻之 亮度。 輻射度性質之實例為輻射能、輻射通量、輻射強度、輻 射率、輻射照度、輻射發散度、輻射發射率、輻射成像 法、光譜輻射率、及光譜照度。當源自一發光源的能量之 量需要均勻時(諸如用於微影之一發光源),使輻射度性質 更均勻係有用的。 可使用一光譜儀測量OLED磚片發出的光之光譜性質。 對於發光源,重要之量為該發光源之感知色。OLED磚片 可經建構為當施加電流或電壓發生改變時,發出的光之顏 色會發生變化。亦可建構多層OLED磚片,其中該OLED磚 片之各層產生具有不同光譜發射之光。藉由控制至該等不 同層之電力,可控制該OLED磚片之顏色。應瞭解本文所 述之該等OLED磚片亦可指具有多層之OLED磚片。 本文所定義之電光學性質為介於施加至一 OLED磚片之 142896.doc 201028031 電力與所產生的光學性質之間之關係。電光學性質通常係 以與施加電壓及/或電流函數相關之一光學性質來表示。 一實例為該光發射度係該施加電流之一函數。電光學性冑 為各OLED蹲片之固有性質’且甚至在相同製造批次内, 不同碑片之間的電光學性質不同。本發明之實施例之控制 電子補償磚片間電光學性質之變化以增加所產生之光學性 質之均勻度。 可控制施加於一 OLED磚片之電壓或電流之振幅。此影 ❹ 響產生的光之量及有時影響光之光譜成分含量(顏色)。該 等OLED磚片亦可在高於視覺暫留之一迷率下反覆接通或 斷開。此改變該磚片亮度之感知。該等技術之任一者或兩 者可用於調節該等OLED磚片之光學性質。同時使用兩種 技術具有可控制超過一量之優點。一實例為獨立控制該 OLED磚片之發光度與顏色。關於多層〇led磚片,除了每 -單層m速率及/或獨立工作週期接通及斷開以 參外’可控制每—單層之電流或電隸幅或電壓。就此而 言,有多於-種用於達到所要求之發光度及顏色之解決方 在一實施例中 化步驟 本發明之一主要態樣為測定下者之自動 之亮度水準 以使與平均水準之亮 1 ·在一 OLED陣列中每一單一磚片 2·複數個磚片之平均亮度水準 3·調整每-單一磚片之驅動電流 度偏差最小 142896.doc 201028031 可重複此程序來測定該等OLED磚片之其它或多種光學 性質。 本發明之實施例提供一種方法,其用於改善一鋪磚式 OLED發光源之至少一光學性質之均勻度。鋪磚式OLED發 光源包括至少二OLED磚片。該方法包括若干步驟。在第 一步驟中,電力被施加於具有一動力供應構件之該等 OLED磚片上,該動力供應構件包括適於控制至每一 OLED 磚片之電力的一控制構件。本文所定義之控制至每一 OLED磚片之電力意指控制至每一 OLED磚片之電壓、電 流、或電壓及電流兩者。亦應瞭解控制至每一 OLED之電 力亦可為將電力以一特定頻率及工作週期脈動至該等 OLED。就多層OLED磚片而言,控制電力應理解為控制至 每一層之動力。在下一步驟中,測量各OLED磚片之至少 一光學性質以作為施加至該OLED磚片之電力之一函數。 此步驟用以確定各OLED磚片之至少一電光學性質。最 後,利用電光學性質修正該等控制構件以補償電光學性質 之變化對該等OLED磚片之電學性質的均勻度之影響。此 方法具有可使OLED發光源之一或多個光學性質更均勻之 優點。 甚至在單一製造期間内,可出現電光學性質之變化。當 OLED磚片處於緊密接近時,人眼極其容易察覺在該等如 亮度或顏色中之差異。藉由修正該等控制構件,可補償在 個別OLED磚片之電光學性質内之差異。補償方法取決於 所測得之一項光學性質或多項光學性質。若測得發光度或 142896.doc 201028031 亮度時’則發光度通常係與施加電流成比例。在此情況 下’僅需-對光學及電學测定方法。然而,若使用不同類 型之OLED裝置’例如由電流而定之顏色且亦由電流而定 之亮度之OLED裝置,則可需要測量取決於電力之該光學 性質的-更複雜之函數。必須補償多層〇led裝置之測量 方法亦可極其複雜。 可用各多種方法執行該控制構件。其可為—簡單類比電 路、或其可為更複雜之電腦或微處理器控制系統。 在另-實施例中’經測定之該等光學性質之—者為發光 度。由於發光度係可感知之亮度,故此有利。人眼對亮度 之改變極其敏感,尤其是當吾人將大磚片彼此靠近時。人 眼極其輕易感知發光度中之差異。該方法之優點為若該等 光學性質之一者為發光度時,則該方法可補償在不同 OLED碑片之間之發光度之差異且該燈將對人眼呈現更均 勻之外觀。 在另一實施例中,該等光學性質之一者為颜色。這對補 償顏色有利,此係因為就燈而言,人眼注意之特徵之一者 亦為顏色。若二個OLED磚片彼此靠近且其等具有不同的 光譜或顏色性質時,則此將極其輕易被注意到,補償在顏 色中之變化使一鋪磚式OLED發光源呈現一更均勻及令人 滿意之外觀。 在另一實施例中’藉由調節施加至每一 OLED磚片之電 流或電壓來控制至每一 0LED磚片之電力。二極體具有一 電流·電壓特性。慣常討論使用電流以控制一個二極體或 142896.doc 201028031 一 OLED類型裝置,但亦有控制電壓之等效方法。控制施 加至每一 OLED磚片之電流或電壓之一優點為此可與所測 得之光學性質作比較並可建構在該光學性質或該等性質之 間之一函數關係。此允許補償該等光學性質之變化。 在另一實施例中,藉由反覆切換接通或斷開該等OLED 磚片來控制至每一 OLED磚片之電力。該等OLED磚片之切 換較視覺暫留執行快。此為一優勢,此係因為當其等較視 覺暫留切換快時,則此可用於減少該OLED磚片可感知之 亮度之故。可藉由僅調節電流來調節亮度,但一些OLED 磚片亦具有取決於電流之顏色變化。藉由調節施加於該 OLED磚片之動力之工作週期,此允許可藉由控制電流而 可控制亮度然後再控制顏色。此方案亦有利,此係因為僅 需要一單一恆定之電流源之故。此較具有多個可調節之電 流或電壓源更經濟合算。 在另一態樣中,本發明提供一種用於供給一鋪磚式 OLED發光裝置動力之一電子裝置。該OLED發光裝置包括 至少二個OLED磚片。該電子裝置包括一適於將電力供應 至每一 OLED磚片之動力供應構件及一包括用於調節電力 之一控制構件之動力供應構件。此用於補償該等OLED磚 片之至少一電光學性質之變化之影響。此對於改善該 OLED發光裝置之至少一光學性質之均勻度係有用的。此 電子裝置具有其具有用於補償該等OLED磚片之電光學性 質之變化之一構件之優點。此係有利的,因為補償該 OLED裝置之該等電光學性質可使該OLED發光裝置所測得 142896.doc •10· 201028031 或感知之光學性質更均勻。 在另一實施例中,由該電子裝置補償之經補償之光學性 質係發光度及/或顏色。對發光度之補償為一優點,此係 因為其相當於吾等感知為亮度之故。當燈彼此靠近,亮度 差可被嚴重干擾或可由人輕易注意到。對此之補償使燈在 美學上更令人滿意。來自該燈的光之顏色或光譜組成亦如 此。人眼將輕易注意到構成該OLED發光裝置之個別〇LED 碑片之顏色的微小變化。 在另態樣中’該動力供應構件包括一適於以較視覺暫 留快之頻率反覆地切換接通或斷開該〇LED磚片之開關構 件。已闡述較視覺暫留快之切換接通及斷開該等〇LED磚 片之優點。該動力供應構件適於以一獨立頻率及/或獨立 工作週期將動力切換至每一 OLED磚片。此優點為可改變 所感知之亮度。當改變該工作週期時,可改變點亮該 OLED磚片之時間段。 籲 在另一實施例中,該電子裝置具有一動力供應構件,其 包括一組適於供給該等OLED磚片動力之動力轉換器。針 對每一OLED磚片有一動力轉換器,且該等動力轉換器適 於調節施加至各OLED磚片之電流或電壓。此係有利的, 因為此允許對該等OLED磚片的電光學性質之補償。先吁 已提及此之優點。 在另一實施例中,該電子裝置控制構件為—類比電子電 路。針對許多OLED裝置,光學性質電控制為亮度或發光 度。針對許多該等裝置,發光度僅與電流成比例。此意指 142896.doc 201028031 補償此電光學性質之變化之方法相對簡單。此可由一操作 者調節與在電源供應器上之一調節鈕—樣簡單之某物而完201028031 VI. Description of the Invention: [Technical Field] The present invention relates to an organic light-emitting diode, and more particularly to an OLED light-emitting source constructed from a plurality of organic light-emitting diode (OLED) tiles. [Prior Art] An organic light emitting diode (OLED) device is composed of two electrodes and an organic light emitting layer. The organic layer is disposed between the two electrodes. One electrode is the anode and the other electrode is the cathode. The organic layer is configured such that when the anode has a voltage that is sufficiently positive relative to the cathode, a hole is injected from the anode and electrons are injected from the cathode. The necessary voltage bias is dependent on the materials used for the organic layers. The holes and electrons recombine within the organic layer to induce an excited state in a molecule comprising one of the organic layers. Light is emitted during the process of returning the excited molecule to its ground state. The anode is typically made of a high work function material such as a transparent conductive oxide (TCO), and the cathode is typically made of a highly reflective material such as aluminum or silver. However, there are many different electrode designs that allow light to pass through the cathode, the anode, or both the cathode and the anode. The organic layer may be composed of a single organic film, or it may be composed of a stack of one of a plurality of organic films. OLED devices are useful because the indicators and displays can be constructed from an array of patterned OLED devices. A large area OLED illumination source for general illumination can be constructed from a plurality of smaller OLED tiles. The OLED tiles can be configured in a matrix form. This is called OLED tile and can have several advantages over a single monolithic large area OLED illumination source, such as: a significant increase in production yield, can reduce power loss by series connection 142896.doc 201028031, increase the fault tolerance of the illuminating device And the geometric appearance of the tiled OLED lamp can be easily customized, because the LED tiles which are formed into squares such as strips and different aspect ratios can be used. While OLED monuments have significant advantages, a major unresolved problem is the different electro-optical properties of the individual tiles. OLED tiles, even from the same production lot, typically have variations in brightness associated with current or voltage functions due to manufacturing tolerances. For a light source having only one LED tile, the brightness variation of the OLED device itself is less important. For tiled OLED sources, human observers can easily notice changes in the optical properties between tiles. For example, when two OLED tiles are in close proximity, the human eye can detect small changes in brightness. An unimportant solution to avoid such sudden changes in brightness in a monumental 〇Led array is to use only tiles having similar properties. However, this method is costly because it requires a time consuming selection process. U.S. Patent Application Serial No. 2/5/i34525 A1 describes a system and teaches a method for controlling and calibrating a large tiled OLED emission display. However, this does not apply to OLED illumination sources. SUMMARY OF THE INVENTION The present invention provides a method, an electronic device, a tiled LED light source, and an OLED kit. Embodiments of the invention are given within the scope of the appended claims. Embodiments of the present invention address the power of each single LED tile of the configuration by using drive electronics for the LED illumination source, thereby minimizing at least one optical property change of the OLED illumination source The above question 142896.doc 201028031 questions. The optical properties of OLED tiles as defined herein are the luminosity, irradiance, or spectral properties of light emitted from an OLED tile. When the power applied to an OLED tile changes, the optical properties will change. One of the OLED tiles defined herein is an OLED device that is placed in a pattern with other OLED devices. The terms OLED device and OLED tile can be used interchangeably. Examples of light metrics are light energy, luminous flux, light intensity, luminosity, illuminance, light emissivity, and luminous efficiency. The light metrics illustrate the different sensitivities of the human eye to visible light of different wavelengths. It is advantageous to minimize variations in one or more light metrics because the illuminating sources will be perceived as having a uniform brightness. Examples of radiosity properties are radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiation divergence, radiation emissivity, radiation imaging, spectral radiance, and spectral illuminance. It is useful to make the irradiance properties more uniform when the amount of energy originating from a source of illumination needs to be uniform (such as for one source of lithography). A spectrometer can be used to measure the spectral properties of the light emitted by the OLED tile. For the illuminating source, an important amount is the perceived color of the illuminating source. OLED tiles can be constructed to change the color of the emitted light when a current or voltage is applied. Multilayer OLED tiles can also be constructed in which the layers of the OLED tile produce light having different spectral emissions. The color of the OLED tile can be controlled by controlling the power to the different layers. It should be understood that the OLED tiles described herein may also refer to OLED tiles having multiple layers. The electro-optical properties defined herein are those between the electrical power applied to an OLED tile and the optical properties produced. Electrooptical properties are typically expressed as one of the optical properties associated with the applied voltage and/or current function. An example is that the light emissivity is a function of the applied current. Electro-optic 胄 is an inherent property of each OLED chip' and even within the same manufacturing lot, the electro-optical properties between different tablets are different. Controls of embodiments of the invention electronically compensate for changes in the electro-optical properties of the tiles to increase the uniformity of the resulting optical properties. The amplitude of the voltage or current applied to an OLED tile can be controlled. This affects the amount of light produced and sometimes affects the spectral content (color) of the light. The OLED tiles can also be turned on or off repeatedly at a higher rate than the visual persistence. This changes the perception of the brightness of the tile. Either or both of these techniques can be used to adjust the optical properties of the OLED tiles. Using both technologies at the same time has the advantage of being able to control more than one amount. An example is to independently control the luminosity and color of the OLED tile. With regard to multi-layer 〇led tiles, in addition to each-single layer m-rate and/or independent duty cycle on and off, the current or electro-grain or voltage can be controlled for each-single layer. In this regard, there are more than one solution for achieving the desired luminosity and color. In one embodiment, one of the main aspects of the present invention is to determine the automatic brightness level of the latter to achieve an average level. Brightness 1 · The average brightness level of each single brick 2 in a OLED array 2. The average brightness level of a plurality of bricks is adjusted. The minimum deviation of the driving current per singly brick is 142896.doc 201028031 This procedure can be repeated to determine these Other or multiple optical properties of the OLED tile. Embodiments of the present invention provide a method for improving the uniformity of at least one optical property of a tiled OLED illumination source. The tiled OLED light source comprises at least two OLED tiles. The method includes several steps. In a first step, power is applied to the OLED tiles having a power supply member that includes a control member adapted to control the power to each of the OLED tiles. Controlling the power to each OLED tile as defined herein means controlling the voltage, current, or voltage and current to each OLED tile. It should also be understood that controlling the power to each OLED can also pulse power to the OLEDs at a particular frequency and duty cycle. In the case of multilayer OLED tiles, controlling power is understood to control the power to each layer. In the next step, at least one optical property of each OLED tile is measured as a function of the power applied to the OLED tile. This step is used to determine at least one electrooptical property of each OLED tile. Finally, the control members are modified using electro-optical properties to compensate for the effects of changes in electro-optical properties on the uniformity of the electrical properties of the OLED tiles. This method has the advantage of making one or more optical properties of the OLED illumination source more uniform. Even in a single manufacturing period, changes in electro-optical properties can occur. When the OLED tiles are in close proximity, the human eye is extremely susceptible to discerning differences in such brightness or color. By modifying the control members, the difference in the electro-optical properties of the individual OLED tiles can be compensated for. The compensation method depends on one of the measured optical properties or multiple optical properties. If the luminosity is measured or 142896.doc 201028031 brightness, then the luminosity is usually proportional to the applied current. In this case, only the optical and electrical measurement methods are required. However, if different types of OLED devices are used, such as current-dependent color and current-dependent brightness OLED devices, it may be desirable to measure a more complex function depending on the optical properties of the power. The measurement methods that must be compensated for multi-layer 〇led devices can also be extremely complicated. The control member can be executed in a variety of ways. It can be a simple analog circuit, or it can be a more complex computer or microprocessor control system. In the other embodiments, the optical properties measured as 'luminosity' are luminosity. This is advantageous because the luminosity is a perceived brightness. The human eye is extremely sensitive to changes in brightness, especially when we bring large bricks closer to each other. It is extremely easy for the human eye to perceive the difference in luminosity. An advantage of this method is that if one of the optical properties is luminosity, the method compensates for differences in luminosity between different OLED monuments and the lamp will present a more uniform appearance to the human eye. In another embodiment, one of the optical properties is a color. This is advantageous for compensating colors, because in terms of lamps, one of the characteristics of the human eye is also color. If two OLED tiles are close to each other and they have different spectral or color properties, then this will be extremely noticeable, compensating for variations in color to make a tiled OLED illumination source appear more uniform and Satisfied appearance. In another embodiment, the power to each of the 0 LED tiles is controlled by adjusting the current or voltage applied to each of the OLED tiles. The diode has a current and voltage characteristic. It is customary to use current to control a diode or an OLED type device, but there is also an equivalent method of controlling the voltage. One of the advantages of controlling the current or voltage applied to each OLED tile is that it can be compared to the measured optical properties and can be constructed as a function of the optical properties or properties. This allows for compensation for variations in these optical properties. In another embodiment, the power to each OLED tile is controlled by repeatedly switching the OLED tiles on or off. The switching of these OLED tiles is faster than the visual persistence. This is an advantage because it can be used to reduce the perceived brightness of the OLED tile when it is faster than the visual persistence switch. Brightness can be adjusted by adjusting only the current, but some OLED tiles also have a color change depending on the current. By adjusting the duty cycle of the power applied to the OLED tile, this allows the brightness to be controlled and then the color controlled by controlling the current. This approach is also advantageous because only a single constant current source is required. This is more economical than having multiple adjustable current or voltage sources. In another aspect, the present invention provides an electronic device for supplying a tiled OLED lighting device. The OLED lighting device comprises at least two OLED tiles. The electronic device includes a power supply member adapted to supply power to each of the OLED tiles and a power supply member including a control member for regulating power. This is used to compensate for the effects of changes in at least one of the electro-optical properties of the OLED tiles. This is useful for improving the uniformity of at least one optical property of the OLED light-emitting device. This electronic device has the advantage that it has one of the components for compensating for changes in the electro-optical properties of the OLED tiles. This is advantageous because compensating for the electro-optical properties of the OLED device allows the OLED illuminator to measure the optical properties of the OLED illumination device more uniformly. In another embodiment, the compensated optical quality luminosity and/or color is compensated by the electronic device. Compensation for luminosity is an advantage because it is equivalent to our perception of brightness. When the lights are close to each other, the difference in brightness can be severely disturbed or can be easily noticed by a person. The compensation for this makes the lamp more aesthetically pleasing. The color or spectral composition of the light from the lamp is also the same. The human eye will easily notice small changes in the color of the individual 〇LED monuments that make up the OLED lighting device. In another aspect, the power supply member includes a switch member adapted to repeatedly switch the LED tile on or off at a frequency that is faster than visual persistence. The advantages of switching on and off the LED tiles faster than the visual persistence have been described. The power supply member is adapted to switch power to each OLED tile at an independent frequency and/or independent duty cycle. This has the advantage of changing the perceived brightness. When the duty cycle is changed, the period of time during which the OLED tile is illuminated can be changed. In another embodiment, the electronic device has a power supply member that includes a set of power converters adapted to supply power to the OLED tiles. There is a power converter for each OLED tile, and the power converters are adapted to regulate the current or voltage applied to each OLED tile. This is advantageous as it allows for compensation of the electrooptical properties of the OLED tiles. Xianyu has mentioned the advantages of this. In another embodiment, the electronic device control member is an analog electronic circuit. For many OLED devices, the optical properties are electrically controlled to brightness or luminosity. For many of these devices, the luminosity is only proportional to the current. This means 142896.doc 201028031 The method of compensating for this change in electro-optical properties is relatively simple. This can be adjusted by an operator with one of the adjustment buttons on the power supply.

成。類比電路亦可用於補償諸如亦具有顏色控制之 的OLED裝置。 P 在另-實施例中’該電子裝置具有—控制構件,其包括 -邏輯電路。該等電子裝置進—步包括_查找表。該查找 表適於提供該㈣構件可狀數值以補償該料咖碑片 之電光學性質的變化。此可利用一微控制器執行或其亦可 利用-電腦執行。使用―查找表極其有利,此係因為可預 先測量個別QLED磚片的電光學性質,然後可用於建構一 用於補償該等電光學性質變化之查找表的緣故。㈣操作 該燈時,可使所研究之光學性質均勾。使用—查找表允許 有極其複雜的補償方案。若吾人欲同時補償一咖碑片 的亮度與顏色兩者’則該查找表可含有有關施加至該 OLED碑片之動力之所需電流、所需工作週期或兩者的資 訊0 在另-實施例中,該控制構件為—邏輯電路,且該電子 裝置進-步包括-訓練軟體模级。該訓練軟體模組提供該 控制構件可用之值以補償該等〇LED磚片之電光學性質的 變化。該訓練軟體模組可以一神經網路執行。可訓練之軟 體模組的其他可行實例係使用以下技術之—者建構的模 組:模糊邏輯、貝氏分析(Bayesian㈣灿)、主成分分 析、感知學習演算法、線性判別分析、迴歸分析、變里數 分析(ANOVA)、因數分析,及關聯式記憶體迴歸分析。'電 142896.doc 12 201028031 流與顏色 。一。巴次其他所研究之光學性質之間的關係可極其複 雜 可訓練之軟體模組將允許以有效的方式控制此等複 雜關係it匕亦為_優點,此係因為製造商可測量該等 OLED磚片之電光學性質,及使用此以訓練該軟體模組, 及在邏輯電路中簡單地安裝該軟體模組。該可訓練之軟體 模組可與可操作以調節至該等〇LED磚片之電力之一控制 系統連接。當操作該〇LED發光系統時,此可用於訓練該 莫、·且其亦可與該控制系統一起用於調節該等光學 性質。 在另實施例中,該電子裝置進一步係由用於選擇 OLED發光源之光學性質之至少一所期望之光學值之一選 擇構件組成。另外’該控制構件經調適用於最小化自所期 望之光學值之該等OLED磚片的變化。此係一優點,因為 此允許該發光源變暗、變亮,或改變該等光之顏色。通 常’增加一選擇構件可調節光之光學性質。 在另一態樣中,本發明提供一鋪磚式〇LED發光源,其 包括二或多個OLED磚片,而當該等二或多個〇LED磚片被 連接於6亥動力供應構件時包括上文所述之該電子裝置。此 配置有利,此係因為此本質上為一 〇1^〇燈,其由〇LED磚 片及可補償個別OLED磚片之電光學性質變化之電子設備 組成之故。 在另一態樣中’本發明提供一 〇LED發光套組,其包括 二或多個OLED碑片及上文所述之該電子裝置。此為一優 點’此係因為當將如上所述之該〇LED發光源轉交至顧客 142896.doc 201028031 時,可不建構該OLED發光源之故。例如極大之OLED磚片 可用於替代在一房間内之天花板磚片,然後可使用該等天 花板磚片用以發光β該等OLED磚片可首先經安裝於天花 板中,然後再將其等連接至該等電子設備。 【實施方式】 以下將僅舉例並參考附圖描述本發明之較佳實施例,其 中: 圖1顯示一種用於改善一鋪磚式OLED發光源之至少一光 學性質的均勻度之方法之一實施例。該方法係由將電力施 加至OLED磚片100、測量各OLED磚片102之至少一光學性 質然後最終修改控制構件104組成。該等OLED磚片之光學 性質經測量以作為施加於該等OLED碑片之電壓及/或電流 之一函數。此用於測定每一 OLED磚片之電光學性質。一 旦已測定該等OLED磚片之電光學性質,則其等可用於修 改該控制構件。雖然該等OLED磚片之電光學性質係該等 磚片之固有性質,但當通過一特定磚片之電流或電壓發生 變化時,該等磚片之光學性質會發生變化。例如當通過一 OLED碑片之電流增加時,亮度通常會增加。基於該等所 測量之電光學性質修改該控制構件可使該發光源之光學性 質變得更均勻。 圖2顯示一例示性鋪磚式OLED發光裝置200之一實施 例。該OLED發光裝置包括一框架202及經配置於一矩形圖 案内之OLED磚片 1.1、1_2、1.3、1.4、2.1、2.2、2.3、 2.4、3.1、3.2、3.3、3.4。一鋪磚式OLED發光源包括一鋪 142896.doc • 14· 201028031 碑式0LED發光裝置200及適於供給該等OLED碑片i i 1.2、1.3、1.4、21、2 2、2 3、2 4、3」、3 2 J、3.4 動力之驅使電子設備。該等OLED磚片經標記為Mi 2、 U、1_4、2.1、2.2、2·3、2 4、3」、3 2、3 3、及 3 4。小 數點則之數字顯示列及小數點後之數字顯示行。 用作在一用於表現OLED碑片1.1、1.2、1.3、n 2 |了 2·2 2.3 2.4、3·1、3.2、3.3、3.4之陣列之座標。可實際 上測量光學性質,然後將其置於一陣列之列及行中,並形 成矩陣形式。該料式〇LED發光裝置·亦顯示 204。 ?要 在一矩陣巾配置經測量之光學性f可計算修正 學性質之變化之因數。作為音存丨瓜—to make. Analog circuits can also be used to compensate for OLED devices such as color control. In another embodiment, the electronic device has a control member that includes a logic circuit. The electronic devices further include a _ lookup table. The look-up table is adapted to provide the (four) component shape values to compensate for variations in the electro-optical properties of the tablet. This can be performed using a microcontroller or it can also be performed using a computer. The use of a "look up table" is extremely advantageous because the electro-optical properties of individual QLED tiles can be pre-measured and then used to construct a look-up table for compensating for such changes in electro-optical properties. (4) When operating the lamp, the optical properties studied can be hooked. Use—The lookup table allows for extremely complex compensation schemes. If we want to compensate both the brightness and the color of a tablet, then the lookup table can contain information about the current required to apply the power to the OLED tablet, the required duty cycle, or both. In the example, the control component is a logic circuit, and the electronic device further includes a training software module level. The training software module provides values available for the control member to compensate for changes in the electro-optical properties of the LED tiles. The training software module can be executed by a neural network. Other possible examples of trainable software modules are those constructed using the following techniques: fuzzy logic, Bayesian analysis (Bayesian), principal component analysis, perceptual learning algorithms, linear discriminant analysis, regression analysis, transformation Mileage Analysis (ANOVA), Factor Analysis, and Correlation Memory Regression Analysis. 'Electric 142896.doc 12 201028031 Stream and color. One. The relationship between the optical properties studied by Bardot can be extremely complex. Trainable software modules will allow for the control of such complex relationships in an efficient manner. It is also because the manufacturer can measure the OLED bricks. The electro-optical properties of the sheet, and the use of this to train the software module, and simply install the software module in the logic circuit. The trainable software module can be coupled to a control system operative to adjust to the power of the LED tiles. This can be used to train the 〇LED illumination system when operating the 、LED, and it can also be used with the control system to adjust the optical properties. In another embodiment, the electronic device is further comprised of one of the selected optical values for selecting an optical property of the OLED illumination source. In addition, the control member is adapted to minimize variations in the OLED tiles from the desired optical values. This is an advantage because it allows the source to darken, brighten, or change the color of the light. It is common to add a selection member to adjust the optical properties of the light. In another aspect, the present invention provides a tiled 〇LED illumination source comprising two or more OLED tiles, and when the two or more 〇LED tiles are connected to a 6 hp power supply component The electronic device described above is included. This configuration is advantageous because it is essentially a ,1^ 〇 lamp that consists of 〇 LED tiles and electronic devices that compensate for the changes in the electro-optical properties of individual OLED tiles. In another aspect, the present invention provides an LED lighting kit comprising two or more OLED monuments and the electronic device described above. This is an advantage. This is because the OLED illumination source may not be constructed when the 〇LED illumination source as described above is handed over to the customer 142896.doc 201028031. For example, a very large OLED tile can be used to replace the ceiling tiles in a room, and then the ceiling tiles can be used to illuminate the OLED tiles. The OLED tiles can be first installed in the ceiling and then connected to the ceiling. These electronic devices. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described by way of example only and with reference to the accompanying drawings in which: FIG. 1 shows an implementation of a method for improving the uniformity of at least one optical property of a tiled OLED illumination source example. The method consists of applying power to the OLED tile 100, measuring at least one optical property of each OLED tile 102, and then modifying the control member 104. The optical properties of the OLED tiles are measured as a function of the voltage and/or current applied to the OLED tablets. This was used to determine the electrooptical properties of each OLED tile. Once the electro-optical properties of the OLED tiles have been determined, they can be used to modify the control member. While the electrooptical properties of such OLED tiles are inherent to the tiles, the optical properties of the tiles change as the current or voltage across a particular tile changes. For example, when the current through an OLED tablet increases, the brightness generally increases. Modification of the control member based on the measured electro-optical properties can result in a more uniform optical quality of the illumination source. 2 shows an embodiment of an exemplary tiled OLED lighting device 200. The OLED lighting device includes a frame 202 and OLED tiles 1.1, 1_2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 disposed in a rectangular pattern. A tiled OLED light source comprises a 142896.doc • 14· 201028031 monumental OLED light emitting device 200 and is adapted to supply the OLED tablets ii 1.2, 1.3, 1.4, 21, 2 2, 2 3, 2 4, 3", 3 2 J, 3.4 Power drive electronic equipment. The OLED tiles are labeled as Mi 2, U, 1_4, 2.1, 2.2, 2·3, 2 4, 3", 3 2, 3 3, and 3 4 . The decimal point then displays the number and the number after the decimal point. Used as a coordinate for representing an array of OLED monuments 1.1, 1.2, 1.3, n 2 | 2·2 2.3 2.4, 3. 1 , 3.2, 3.3, 3.4. The optical properties can be measured practically, placed in an array and in a row, and formed into a matrix. The device 〇LED illuminator also displays 204. ? To calculate the optical property f measured in a matrix towel, the factor of the change in the correction property can be calculated. As a sound melon -

致作為一實例,給疋一鋪磚式〇LED 裝置200 ’其由3x4 〇LED磚片!」、! 2、i 3、、 3 2.4 3.1、3.2、3.3、3.4建構(如圖2中所示)並 假定對於個別確):;^ 、 片(,m)之一變化電流效率ebn,m。效率於 一矩陣封顯示’該矩陣大小為s=nxM,其中N=3’ M=4,S = 12 :To be an example, a tiled 〇 LED device 200' is made of 3x4 〇 LED tiles! ",! 2. i 3, 3 2.4 3.1, 3.2, 3.3, 3.4 construction (as shown in Figure 2) and assume that for each individual): ^^, slice (,m) change current efficiency ebn,m. The efficiency is shown in a matrix seal. The matrix size is s=nxM, where N=3’ M=4, S = 12 :

cd X cb ; f40 38 55 40 41 45 43 41 41 38 42 41 平均電流效率Cbav之通式為: 1 N u ΐίΜ'Σ 2 應 用於^實例切如下之—平均效率水準 v — 4? 1 —Cd X cb ; f40 38 55 40 41 45 43 41 41 38 42 41 Average current efficiency Cbav has the following formula: 1 N u ΐίΜ'Σ 2 should be used for ^ example cut as follows - average efficiency level v - 4? 1 -

« t-U cbavr = 42 1 — A J42896.doc 15. 201028031 假定所期望之發光強度LI=400 cd,平均效率為42a cd/A ’ 所期望之驅動電流為 iav=400 cd/(42.1 Cd/A)=9 5 △。則所得之每磚片之發光強度為匕川^^二“—仏^: '380 361 523 380、« tU cbavr = 42 1 — A J42896.doc 15. 201028031 Assuming the desired luminous intensity LI=400 cd, the average efficiency is 42a cd/A ' The expected driving current is iav=400 cd/(42.1 Cd/A) =9 5 △. Then, the luminous intensity of each brick obtained is 匕川^^二“—仏^: '380 361 523 380,

Utile = 3卯 428 409 390 〇i 、390 361 _399 390> 為使亮度變化最小,將每一電流In>m依該磚片效率調 整:Utile = 3卯 428 409 390 〇i , 390 361 _399 390> To minimize the change in brightness, each current In>m is adjusted according to the efficiency of the tile:

In,m=Iav*cbav/cbn 以致驅動電流之矩陣變為 r10 10.5 7.3 10 ^In, m=Iav*cbav/cbn so that the matrix of the drive current becomes r10 10.5 7.3 10 ^

ί = 9.8 8.9 9.3 9.8 A ^9.8 10.5 9.5 9.8^ / Οί = 9.8 8.9 9.3 9.8 A ^9.8 10.5 9.5 9.8^ / Ο

則所產生之局部OLED磚片1.1、1.2、1.3、1.4 2.2、2.3、2.4、3.1、3.2、3.3、3.4 亮度當然不變: B〇ptn,m=cdn,m* In,m, /獅 400 400 400、The brightness of the resulting partial OLED tiles 1.1, 1.2, 1.3, 1.4 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 is of course unchanged: B〇ptn, m=cdn, m* In, m, / lion 400 400 400,

Bojrt = 400 400 400 400 «ί ^400 400 400 400 J 結果產生一均質之OLED發光源。 該技術的實現要求測量OLED碑 13、1.4 ^ 丄.i 、 1.2 ^ JL · t ' 2.1 、2.2、2.3、2.4、3.1 、3.2、3.3 、3 4夕 ^ 古 乂4之效率及控制 OLED磚片 1.1、1.2、1.3、1.4、2.1、2.2、:? 1 n .‘厶3、2.4、3.1、 I·2、3·3、3.4之平均電流。在該發光裝置之操作期間,或 是於製造商場地處在該發光裝置之組裝期間可反覆地測量 該碑片效率,例如經由光(通量)感測器。若僅測量一次該 142896.doc -16- 201028031 磚片效率,則將所測量之磚片效率儲存於一查找表(LUT) 中或疋或不斷監測該測量之磚片效率以使其可用於修改 • 平均驅動電流。圖3總結以上所解釋之程序。 圖3顯示—種用於調整至OLED磚片之電流以改善至少一 光學性質之均勻度之方法。該方法係由使用針對各磚片所 儲存或測量之電流效率測量3〇〇而組成。使用針對所期望 發光強度之一參考值3〇2,然後使用該等兩值以計算3〇4驅 參 動該電流之一參考值。然後儲存306用來驅動該電流之該 等參考值且將該驅動電流Irfn 308之該等值置於記憶體 中使用初始值Irfn 316以操作燈。此用於啟動調變器 3 14 ’然後藉由控制器調整3丨2至各燈之電流,且在操作燈 的同時可從記憶體310讀取自記憶體3〇8之數值並用於調整 用來控制通過該等OLED磚片之電流的調變率312或工作週 期。 為實現圖3所示之方法,需要一電流調變器,其將個別 ❹ 磚片電流調節至所計算之參考值。 圖4顯示一實例。 圖4顯示具有任意數目oled碑片408、410、412之一輔 磚式OLED發光源之一實施例。該〇LED發光源係由用於供 給一動力轉換器402動力之一電源400組成。然後該動力轉 換器402將動力傳送至該鋪磚式〇LED裝置4〇6及該控制器 404兩者。該鋪磚式0LED裝置係由n個不同〇led磚片 408、410、412組成。圖中顯示〇Led磚片1 408、OLED磚 片2 410及最後一個OLED碑片數字N 412。該圖表示任意 142896.doc -17- 201028031 數目之OLED磚片408、410、412之一電路。該等OLED磚 片 408、410、412係以用於連接場效電晶體(FET) 426、 428、430開關之電線串聯連接。 該控制器404包括連接至該調變器控制41 8之一參考值 414及一查找表(LUT)416。該調變器控制經連接至該動力 轉換器402。該參考值414係指定給該調變器控制418之一 值,其用於設定該鋪磚式OLED裝置406所期望之光學性 質。該LUT 416含有由該調變器控制41 8使用之值,其用來 適當地控制傳送至各OLED碑片408、410、412之動力。該 © 調變器控制41 8經連接至N個不同開關控制單元420、422、 424。該等開關控制單元420、422、424係用於控制FET 426 ' 428、430 °有一開關控制單元420、422、424及對應 於各 OLED碑片 408、410、412 之一 FET 426、428、430。 該 FET 426、428、430與其之 OLED磚片 408、410、412並 聯連接。FET 1 426與OLED碑片1 408並聯連接。FET 2 428與OLED碑片410並聯連接,及諸如此類。最後一個Bojrt = 400 400 400 400 «ί ^400 400 400 400 J The result is a homogeneous OLED illumination source. The implementation of this technology requires measuring the efficiency of OLED monument 13, 1.4 ^ 丄.i, 1.2 ^ JL · t ' 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3 4 ^ ^ 古乂4 and controlling OLED tiles 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, :? 1 n . 'The average current of 厶3, 2.4, 3.1, I·2, 3·3, 3.4. The tablet efficiency can be measured repeatedly during operation of the illumination device, or during manufacture of the illumination device, such as via a light (flux) sensor. If the 142896.doc -16- 201028031 tile efficiency is measured only once, the measured tile efficiency is stored in a look-up table (LUT) or the tile efficiency of the measurement is continuously monitored to make it available for modification. • Average drive current. Figure 3 summarizes the procedure explained above. Figure 3 shows a method for adjusting the current to an OLED tile to improve the uniformity of at least one optical property. The method consists of measuring 3 Torr using current efficiencies stored or measured for each tile. A reference value of 3 〇 2 is used for one of the desired illuminances, and then the two values are used to calculate a reference value for the 〇4 drive to participate in the current. The reference values for driving the current are then stored 306 and the values of the drive current Irfn 308 are placed in the memory using the initial value Irfn 316 to operate the lamp. This is used to activate the modulator 3 14 ' and then adjust the current of the lamp 3 to 2 by the controller, and the value of the memory 3 〇 8 can be read from the memory 310 while the lamp is being operated and used for adjustment. To control the modulation rate 312 or duty cycle of the current through the OLED tiles. To implement the method illustrated in Figure 3, a current modulator is required that adjusts the individual 砖 tile current to the calculated reference value. Figure 4 shows an example. Figure 4 shows an embodiment of a secondary brick OLED illumination source having any number of OLED traces 408, 410, 412. The xenon LED illumination source is comprised of a power supply 400 for supplying power to a power converter 402. The power converter 402 then transmits power to both the tiled LED device 4〇6 and the controller 404. The tiled OLED device is comprised of n different 〇led tiles 408, 410, 412. The figure shows a 〇Led tile 1 408, an OLED tile 2 410 and a last OLED tablet number N 412. The figure shows an electrical circuit of any number of OLED tiles 408, 410, 412 of 142896.doc -17-201028031. The OLED tiles 408, 410, 412 are connected in series with wires for connecting field effect transistor (FET) 426, 428, 430 switches. The controller 404 includes a reference value 414 coupled to the modulator control 41 8 and a look up table (LUT) 416. The modulator control is coupled to the power converter 402. The reference value 414 is assigned to one of the modulator controls 418 for setting the desired optical properties of the tiled OLED device 406. The LUT 416 contains the values used by the modulator control 418 to properly control the power delivered to each OLED tablet 408, 410, 412. The © modulator control 41 8 is coupled to N different switch control units 420, 422, 424. The switch control units 420, 422, 424 are used to control the FETs 426' 428, 430 ° to have a switch control unit 420, 422, 424 and one of the OLEDs 426, 410, 412 FETs 426, 428, 430 . The FETs 426, 428, 430 are connected in parallel with their OLED tiles 408, 410, 412. FET 1 426 is connected in parallel with OLED block 1 408. FET 2 428 is connected in parallel with OLED tablet 410, and the like. the last one

Q FET N 430與OLED磚片數字N 412並聯連接。每一 FET 426、428、43 0及OLED碑片408、410、412配對係彼此串 聯連接。當啟動該等FET中一者時,則電流通過該FET 426、428、430 而不通過該 OLED 碑片 408、410、412。因 此該等FET 426、428、430可用於切換接通及斷開該等 OLED磚片408、410、412。該調變器控制藉由迅速切換接 通及斷開該等OLED磚片408、410、412可控制視亮度。在 此實施例中所述之電路及控制配置具有使用單一電源之優 142896.doc •18· 201028031 點,然後該等開關僅用於調整該等〇LED磚片4〇8、4丨〇、 412在某一時間是否接通或斷開。亮度係由以較視覺暫留 快之一速率調整OLED磚片408、410、412之工作週期。 該系統係由將一恆定平均電流傳送至一舖磚式〇led裝 置406之一電源400組成,該舖磚式〇LED裝置4〇6中所有的 磚片係串聯連接。並聯配置各OLED碑片408、410、412旁 路元件(FET開關)426、428、430以致閉合該等旁路元件 426、428、430時,可改變相應磚片之平均電流。通過各 OLED磚片408、410、412之電流與工作週期dn成比例,其 中dn=l 00%相當於達到一最大電流,亦即該旁路元件 426、428、430保持開啟,而dn=〇〇/。相當於一旁路元件 426、428、430保持關閉,以致無電流流過一任意〇LED磚 片408、410、標有n之412。在一給定切換週期Tn期間,藉 由改變各OLED碑片408、410、412 η之工作週期dn,可改 變流過各OLED碑片408、410、412之平均電流。有效電流 Φ 為1avn=Iav*dn/10〇,其中lav為由電源傳送之驅動電流。 該驅動電流自身係由一參考值4丨4而定,其係由設計内建 或係可調整的,舉例而言經由一控制或發光網路介面。 圖5顯示本發明之一不同的實施例。在此實施例中,該 4 OLED磚片510、512、514係由獨立動力轉換器502、 5 04、506控制。本文定義一動力轉換器5〇2、504、506為 一控制器’其經調適於調節施加至一 〇LED磚片51〇、 512、5 14的電流或電壓’循環切換接通及斷開施加至該 OLED磚片510、512、514的電力,或兩者。有供應動力轉 142896.doc -19- 201028031 換器502、504、506至任意數目N個不同動力轉化器502、 5 04、506之一主電源500。在此圖中僅顯示動力轉化器1 502、動力轉化器2 504及最後一個動力轉化器數字N 5 06。有一鋪磚式OLED裝置5 08,其包括一任意數目N個不 同01^0磚片501、512、514。動力轉換器1 502與01^0磚 片1 510連接,動力轉換器2 504與OLED磚片2 512連接及 最後一個動力轉換器,動力轉換器N 506與OLED磚片數字 N 5 14連接。有一用於控制每一動力轉換器502、504、506 的主控制器516。該主控制器516使用一參考值518及一查 找表520以計算應傳送至各OLED磚片510、512、514的適 宜動力。該主控制器516由一通訊線路522連接至每一動力 轉換器502、504、506。該通訊線路522允許該主控制器 5 16控制施加至各OLED磚片510、512、514的電力。該通 訊線路522可為類比或數位的。 圖6顯示該OLED發光源結構之一般化之一實施例,其調 整電流以控制OLED碑片610、612、614之亮度。此實施例 係由提供一恆定電流之一電源600組成。此與一電源匯流 排602連接。該電源匯流排602與N個不同電流調變器604、 606、608、電流調變器1 604、電流調變器2 606及電流調 變器N 608連接。該電源匯流排602經連接,使得各電流調 變器604、606、608接受相同電流。此可藉由在一串聯電 路中連接該等電流調變器604、606、608而執行。有對應 於每一電流調變器604、606、608之一 OLED磚片510、 512、514。電流調變器1 604連接至OLED磚片1 610,電流 142896.doc -20- 201028031 調變器2 6G6連接至〇LED碑片2 612,電流調變器⑽連接 至0刷磚片N 614。為控制工作週期,存在N個不同參考 值616。該等參考值616在N個不同之通訊線路618上與每— 電流調變nm外,該等通訊線路618可以類比線路 或以數位信號執行。針對—數位信號,可在N個不同通訊 線路618之上通訊或可在一或多個通訊線路618上多路 輸0The Q FET N 430 is connected in parallel with the OLED tile digital N 412. Each of the FETs 426, 428, 430 and the OLED tablet 408, 410, 412 are connected in series with each other. When one of the FETs is activated, current is passed through the FETs 426, 428, 430 without passing through the OLED monuments 408, 410, 412. Thus, the FETs 426, 428, 430 can be used to switch the OLED tiles 408, 410, 412 on and off. The modulator control controls the brightness of the OLED tiles 408, 410, 412 by rapidly switching between switching on and off. The circuit and control configuration described in this embodiment has the advantage of using a single power supply 142896.doc • 18· 201028031 points, and then the switches are only used to adjust the LED tiles 4〇8, 4丨〇, 412 Whether it is turned on or off at a certain time. The brightness is adjusted by the duty cycle of OLED tiles 408, 410, 412 at a rate that is faster than visual persistence. The system consists of a power supply 400 that delivers a constant average current to a tiled 〇led device 406 in which all of the tiles are connected in series. When the OLED monuments 408, 410, 412 bypass elements 426, 428, 430 are arranged in parallel such that the bypass elements 426, 428, 430 are closed, the average current of the respective tiles can be varied. The current through each of the OLED tiles 408, 410, 412 is proportional to the duty cycle dn, where dn = 100% corresponds to reaching a maximum current, ie the bypass elements 426, 428, 430 remain open, and dn = 〇 〇/. Equivalent to a bypass element 426, 428, 430 remains off so that no current flows through an arbitrary LED tile 408, 410, labeled 412. During a given switching period Tn, the average current flowing through each OLED tablet 408, 410, 412 can be changed by changing the duty cycle dn of each OLED tablet 408, 410, 412 η. The effective current Φ is 1avn=Iav*dn/10〇, where lav is the drive current delivered by the power supply. The drive current itself is determined by a reference value of 4丨4, which is either built-in or adjustable, for example via a control or illumination network interface. Figure 5 shows a different embodiment of the invention. In this embodiment, the 4 OLED tiles 510, 512, 514 are controlled by independent power converters 502, 504, 506. A power converter 5 〇 2, 504, 506 is defined herein as a controller that is tuned to adjust the current or voltage applied to a single LED tile 51 〇 , 512 , 5 14 'cycle switching on and off application Power to the OLED tiles 510, 512, 514, or both. There is a supply of power to 142896.doc -19- 201028031 converters 502, 504, 506 to any number N of different power converters 502, 504, 506 one of the main power supplies 500. Only power converter 1 502, power converter 2 504 and last power converter number N 5 06 are shown in this figure. There is a tiled OLED device 508 comprising an arbitrary number N of different 01^0 tiles 501, 512, 514. The power converter 1 502 is connected to the 01^0 tile 1 510, the power converter 2 504 is connected to the OLED tile 2 512 and the last power converter, the power converter N 506 is connected to the OLED tile number N 5 14. There is a main controller 516 for controlling each of the power converters 502, 504, 506. The main controller 516 uses a reference value 518 and a lookup table 520 to calculate the appropriate power to be delivered to each of the OLED tiles 510, 512, 514. The main controller 516 is coupled to each of the power converters 502, 504, 506 by a communication line 522. The communication line 522 allows the main controller 516 to control the power applied to each of the OLED tiles 510, 512, 514. The communication line 522 can be analog or digital. Figure 6 shows an embodiment of the generalization of the OLED illumination source structure that adjusts the current to control the brightness of the OLED monuments 610, 612, 614. This embodiment consists of a power supply 600 that provides a constant current. This is connected to a power bus 602. The power bus 602 is coupled to N different current modulators 604, 606, 608, current modulator 1 604, current modulator 2 606, and current modulator N 608. The power bus 602 is connected such that each current modulator 604, 606, 608 accepts the same current. This can be performed by connecting the current modulators 604, 606, 608 in a series circuit. There are OLED tiles 510, 512, 514 corresponding to one of each current modulator 604, 606, 608. Current modulator 1 604 is connected to OLED tile 1 610, current 142896.doc -20- 201028031 modulator 2 6G6 is connected to 〇LED tablet 2 612, and current modulator (10) is connected to 0 tile N 614. To control the duty cycle, there are N different reference values 616. The reference values 616 are modulated on the N different communication lines 618 with a per-current modulation, and the communication lines 618 can be analogous to the lines or digital signals. For a digital signal, communication may be over N different communication lines 618 or may be multiplexed on one or more communication lines 618.

圖5顯示一允許個別地控制該等磚片電流的動力供應結 構。此處應用一主從概念,其中當主控制器516計算及傳 輸該參考值518至從動力轉換器502、5〇4、5〇6時,該等從 動力轉換器502、504、506會產生個別的碑片電流。圖4及 圖5之動力供應結構可概括如圖6中所示,其包括: • 一電源400、402、500、600 • 一 組電流調變器 426、428、430、502、504、506、 604 ' 606 ' 608 • 一組電流參考值414、518、616 根據一組依照圖3之方法計算的參考值3 〇2、414、5 1 8、 616,該等電流調變器 426、428、430、502、504、506、 604、606、608調整傳送至該等個別〇LED磚片4〇8、 410、412、510、512、514、610、612、614的電流。該等 參考值302、414、518、616可儲存於記憶體3〇8中作為一 LUT 416、520、在硬體中被執行,及/或不斷地計算而 得。該等參考值可藉由使用一可微調之電阻而實行於硬體 中〇 142896.doc -21 - 201028031 【圖式簡單說明】 圖1呈現於申請專利範圍1中之方法之流程圖, 圖2顯示一鋪磚式OLED發光裝置之一實施例之圖, 圖3—種藉由調節至該等OLED磚片之電流而改善發光強 度之均勻度的方法之一實施例之流程圖, 圖4調節至各OLED磚片之電流之一鋪磚式OLED發光源 之一實施例之概要圖, 圖5控制至各OLED磚片之電力的振幅之一鋪磚式OLED 發光源之一實施例之概要圖, 圖6調節至各OLED磚片之電流之一鋪磚式OLED發光源 之一實施例之理想化概要圖。 【主要元件符號說明】 1.1 在列1及行1中之OLED磚片 1.2 在列1及行2中之OLED磚片 1.3 在列1及行3中之OLED磚片 1.4 在列1及行4中之OLED磚片 2.1 在列2及行1中之OLED磚片 2.2 在列2及行2中之OLED磚片 2.3 在列2及行3中之OLED磚片 2.4 在列2及行4中之OLED磚片 3.1 在列3及行1中之OLED磚片 3.2 在列3及行2中之OLED磚片 3.3 在列3及行3中之OLED磚片 3.4 在列3及行4中之OLED磚片 142896.doc -22- 施加動力至OLED磚片 測定各OLED磚片之至少一光學性質 修改控制構件 鋪磚式OLED發光裝置 框架 電連接 各OLED磚片之電流效率 發光強度之參考值 計算參考值 驅動電流之儲存參考值 存於記憶體中之參考值 讀取記憶體 調整至OLED磚片之電流 啟動調變器 設定驅動電流之參考值 電源 動力轉換器 控制器 鋪磚式OLED發光裝置 OLED磚片1 OLED磚片2Figure 5 shows a power supply structure that allows for individual control of the tile currents. A master-slave concept is applied herein, wherein when the master controller 516 calculates and transmits the reference value 518 to the slave power converters 502, 5〇4, 5〇6, the slave power converters 502, 504, 506 generate Individual monumental currents. The power supply architecture of Figures 4 and 5 can be summarized as shown in Figure 6, which includes: • a power supply 400, 402, 500, 600 • a set of current modulators 426, 428, 430, 502, 504, 506, 604 ' 606 ' 608 • a set of current reference values 414, 518, 616 according to a set of reference values 3 414 2, 414, 5 1 8 , 616 calculated according to the method of FIG. 3, the current modulators 426, 428, 430, 502, 504, 506, 604, 606, 608 adjust the current delivered to the individual 〇 LED tiles 4 〇 8, 410, 412, 510, 512, 514, 610, 612, 614. The reference values 302, 414, 518, 616 can be stored in the memory 3〇8 as a LUT 416, 520, executed in hardware, and/or continuously calculated. The reference values can be implemented in the hardware by using a fine-tunable resistor. 142896.doc -21 - 201028031 [Simplified Schematic] FIG. 1 is a flowchart of the method in Patent Application No. 1, FIG. FIG. 3 is a flow chart showing an embodiment of a method for improving the uniformity of luminous intensity by adjusting the current to the OLED tiles, FIG. A schematic diagram of one embodiment of a tiled OLED illumination source to the current of each OLED tile, FIG. 5 is a schematic diagram of an embodiment of a tiled OLED light source that controls the amplitude of power to each OLED tile Figure 6 is an idealized overview of one embodiment of a tiled OLED illumination source that is tuned to the current of each OLED tile. [Main component symbol description] 1.1 OLED tile in column 1 and row 1 OLED tile in column 1 and row 2 OLED tile 1.4 in column 1 and row 3 in column 1 and row 4 OLED Tiles 2.1 OLED Tiles in Columns 2 and 1 OLED Tiles in Columns 2 and 2 2.3 OLED Tiles in Columns 2 and 3 2.4 OLEDs in Columns 2 and 4 Tile 3.1 OLED tile in column 3 and row 1 OLED tile in column 3 and row 2 OLED tile in column 3 and row 3 3.4 OLED tile in column 3 and row 4 142896.doc -22- Applying power to the OLED tile to determine at least one optical property of each OLED tile. Modifying the control member. The OLED illuminator frame is electrically connected to each OLED tile. The reference value of the current efficiency illuminance is calculated. The storage reference value of the current is stored in the reference value in the memory. The memory is adjusted to the current of the OLED tile. The starter is set to the reference value of the drive current. The power converter controller is paved OLED light-emitting device OLED tile 1 OLED tile 2

OLED磚片N 參考值 查找表(LUT) -23- 調變器控制 開關控制單元1 開關控制單元2 開關控制單元N FET 1 FET 2 FET N 電源 動力轉換器1 動力轉換器2OLED Tile N Reference Value Lookup Table (LUT) -23- Modulator Control Switch Control Unit 1 Switch Control Unit 2 Switch Control Unit N FET 1 FET 2 FET N Power Supply Power Converter 1 Power Converter 2

動力轉換器N 鋪磚式OLED發光裝置 OLED磚片1 OLED磚片2Power Converter N Tiled OLED Light Emitting OLED Brick 1 OLED Brick 2

OLED磚片N 主控制器 參考值 查找表(LUT) 通訊線路 電源OLED tile N main controller Reference value Lookup table (LUT) Communication line Power

電源匯流排 電流調變器1 電流調變器2 電流調變器N -24- 201028031 610 612 614 616 618Power Bus Current Modulator 1 Current Modulator 2 Current Modulator N -24- 201028031 610 612 614 616 618

OLED磚片1 OLED磚片2 OLED碑片N 參考值 通訊線路 142896.doc -25-OLED tile 1 OLED tile 2 OLED tablet N reference value Communication line 142896.doc -25-

Claims (1)

201028031 七、申請專利範圍: 1. 一種用於改善一鋪磚式OLED發光源之至少一光學性質 之均勻度的方法,該發光源包括至少二個OLED磚片 (1.1 、 1.2 、 1.3 、 1.4 、 2.1 、 2.2 、 2.3 、 2.4 、 3.1 、 3.2 、 3·3、3.4、408、410、412、510、512、514、610、 612、614),該方法包括: 將電力(100)施加至具有一動力供應構件(4〇〇、402、 500、502、504、506、000、602)之該等 OLED磚片,該 動力供應構件包括一經調適用於控制至每一 OLED碑片 之電力的控制構件(404、414、416、418、516、518、 520、522、616、618), 測量與每一 OLED磚片之個別電力函數相關之每一 OLED磚片之至少一光學性質(1〇2)以測定各〇led磚片之 至少—電光學性質, 利用電光學性質來修正該控制構件(1〇4)以補償電光學 性質的變化對該等0LED磚片之光學性質之均勻度的影 響。 月求項1之方法’其中該等光學性質中之一者為發光 度。 3·或2之方法’其中該等光學性f中之—者為颜 OLED磚片之電力係藉由 流或電塵來控制。 OLED磚片之電力係藉由 4·如請求項1之方法’其中至每— 調整施加至每-OLED碑片的電 5.如清求項1之方法,《中至每- 142896.doc 201028031 反覆切換接通及斷開該等OLED碑片來控制(3 1 2),其中 該等OLED碑片的切換比視覺暫留快。 6. —種用於供給一舖碑式〇LED發光裝置(2〇〇、4〇6、508、 010、612、614)電力之電子裝置’該發光裝置包括至少 二個 〇LED磚片(1.1、1.2、1.3、1.4、2.1、2.2、2.3、 2_4、3.1、3·2、3·3、3.4、408、410、412、510、512、 514 610、612、614),該電子裝置包括一經調適用於將 電力供應至每一 OLED磚片之動力供應構件(4〇〇、4〇2、 500、502 ' 504 ' 506、600、602),該動力供應構件包括 一控制構件(404、414、416、418、516、518、52〇、 522、616、618),其適於調整該電力供應構件以補償該 等OLED碑片之至少一電光學性質之變化的影響,進而 改善該OLED發光裝置之至少一光學性質的均勻度。 7. 如請求項6之電子裝置,其中該等光學性質為發光度及/ 或顏色。 8.如請求項6或7之電子裝置,其中該動力供應構件包括一 經調適用於以比視覺暫留快之頻率反覆切換接通及斷開 各 OLED磚片的開關構件(42〇、422、424、426、428、 430、502、5〇4、506、6〇4、606、608),其中該動力供 應構件經適用於以一獨立頻率及/或一獨立工作週期切換 至各OLED的動力。 9.如請求項6或7之電子裝置,其中該動力供應構件包括一 組經調適用於供給該等〇LED磚片動力的動力轉換器 (5〇2、504、506),其中各〇LED磚片具有—動力轉換 142896.doc 201028031 益,其中該組動力轉換器經調適以調整施加至各〇led 磚片的電流或電壓。 10·如請求項6或7之電子裝置,其巾該控制裝置為一類比電 子電路。 • 11.如請求項6或7之電子裝置,其中該控制構件為一邏輯電 .路,該電子裝置進一步包括一查找表(416、52〇),其經 調適用於提供該控制構件之可用值以補償該#〇哪碑 片之電光學性質的變化。 籲12.如請求項6或7之電子裝置,其中該控制構件為一邏輯電 路,違電子裝置進一纟包括一訓練軟體模组,用於提供 該控制構件之可用值以補償該等〇LED磚片之電光學性 質的變化。 13. 如請求項6或7之電子裝置,進一步包括一選擇構件,其 可操作用於選擇該OLED發光源之該等光學性質之至少201028031 VII. Patent application scope: 1. A method for improving the uniformity of at least one optical property of a tiled OLED illumination source, the illumination source comprising at least two OLED tiles (1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3·3, 3.4, 408, 410, 412, 510, 512, 514, 610, 612, 614), the method comprising: applying power (100) to having one The OLED tiles of the power supply components (4〇〇, 402, 500, 502, 504, 506, 000, 602), the power supply component including a control component adapted to control power to each OLED tablet (404, 414, 416, 418, 516, 518, 520, 522, 616, 618) measuring at least one optical property (1〇2) of each OLED tile associated with an individual power function of each OLED tile To determine at least the electro-optical properties of each of the LED tiles, the control member (1〇4) is modified by electro-optical properties to compensate for the effect of changes in the optical properties on the uniformity of the optical properties of the 0 LED tiles. The method of claim 1 wherein one of the optical properties is luminosity. The method of 3 or 2, in which the optical power of the OLED tile is controlled by flow or electric dust. The power of the OLED tile is determined by the method of claim 1 'where to - each adjustment to the electricity applied to each - OLED tablet 5. For example, the method of clearing item 1, "China to every - 142896.doc 201028031 The OLED tablets are switched on and off to control (3 1 2), wherein the switching of the OLED tablets is faster than the visual persistence. 6. An electronic device for supplying power to a monumental 〇LED illuminating device (2〇〇, 4〇6, 508, 010, 612, 614) 'The illuminating device comprises at least two 〇 LED tiles (1.1 , 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2_4, 3.1, 3·2, 3·3, 3.4, 408, 410, 412, 510, 512, 514 610, 612, 614), the electronic device includes a A power supply member (4〇〇, 4〇2, 500, 502 '504' 506, 600, 602) adapted to supply power to each OLED tile, the power supply member including a control member (404, 414) , 416, 418, 516, 518, 52 〇, 522, 616, 618) adapted to adjust the power supply member to compensate for the influence of changes in at least one electro-optical property of the OLED tablets, thereby improving the OLED illumination The uniformity of at least one optical property of the device. 7. The electronic device of claim 6, wherein the optical properties are luminosity and/or color. 8. The electronic device of claim 6 or 7, wherein the power supply member comprises a switch member adapted to switch on and off each of the OLED tiles at a frequency faster than the visual persistence (42〇, 422, 424, 426, 428, 430, 502, 5〇4, 506, 6〇4, 606, 608), wherein the power supply member is adapted to switch to each OLED at an independent frequency and/or an independent duty cycle . 9. The electronic device of claim 6 or 7, wherein the power supply member comprises a set of power converters (5, 2, 504, 506) adapted to supply power to the LED tiles, wherein each of the LEDs The tile has a power conversion 142896.doc 201028031, wherein the set of power converters is adapted to adjust the current or voltage applied to each of the 〇led tiles. 10. The electronic device of claim 6 or 7, wherein the control device is an analog electronic circuit. 11. The electronic device of claim 6 or 7, wherein the control component is a logical electrical circuit, the electronic device further comprising a lookup table (416, 52A) adapted to provide the control component for use The value is used to compensate for the change in the electro-optical properties of the #〇碑. The electronic device of claim 6 or 7, wherein the control component is a logic circuit, and the electronic device further comprises a training software module for providing a usable value of the control component to compensate the LED bricks The change in the electro-optical properties of the sheet. 13. The electronic device of claim 6 or 7, further comprising a selection member operable to select at least the optical properties of the OLED illumination source 一所需光學值’其令該控制構件經調適以最小化該等 OLED碑片距所需光學值的變化。 14. 種鋪磚式OLED發光源,其包括至少二個〇led碑片及 如請求項6至13中任-項之電子裝置,其中該等〇咖碑 片係連接至該動力供應構件。 15. 種0LED發光套纪,其包括至少二個OLED碑片及如請 求項6至13中任一項之電子裂置,其中該等〇LE〇碑片經 調適以被連接至該動力供應構件。 142896.docA desired optical value 'which allows the control member to be adapted to minimize variations in the OLED monument from the desired optical value. 14. A tiled OLED illumination source comprising at least two 碑led monuments and an electronic device according to any one of claims 6 to 13, wherein the slabs are connected to the power supply member. 15. An OLED lighting package comprising at least two OLED tablets and an electronic splicing according to any one of claims 6 to 13, wherein the 〇LE 〇 monument is adapted to be connected to the power supply member . 142896.doc
TW098135292A 2008-10-20 2009-10-19 A method and an electronic device for improving the optical uniformity of tiled OLED lighting sources TW201028031A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08167003 2008-10-20

Publications (1)

Publication Number Publication Date
TW201028031A true TW201028031A (en) 2010-07-16

Family

ID=41565938

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098135292A TW201028031A (en) 2008-10-20 2009-10-19 A method and an electronic device for improving the optical uniformity of tiled OLED lighting sources

Country Status (2)

Country Link
TW (1) TW201028031A (en)
WO (1) WO2010046811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068049A (en) * 2017-06-07 2017-08-18 京东方科技集团股份有限公司 Image display drive apparatus, display device and electric compensation method
TWI695366B (en) * 2019-03-29 2020-06-01 大陸商北京集創北方科技股份有限公司 Self-luminous element display panel module with neural network-like computing function, driving chip and electronic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2737773A1 (en) 2011-07-26 2014-06-04 Koninklijke Philips N.V. Current determination apparatus
JP5870294B2 (en) * 2011-11-30 2016-02-24 パナソニックIpマネジメント株式会社 Organic EL element lighting device and lighting apparatus using the same
DE102013201915A1 (en) * 2012-10-31 2014-05-15 Tridonic Jennersdorf Gmbh Method and arrangement for controlling LEDs
DE102014112176B4 (en) 2014-08-26 2022-10-06 Pictiva Displays International Limited Method for operating an optoelectronic assembly and optoelectronic assembly
DE102014112175B4 (en) 2014-08-26 2018-01-25 Osram Oled Gmbh Method for detecting a short circuit in an optoelectronic module and optoelectronic module with short circuit detection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052182A1 (en) * 1997-05-14 1998-11-19 Unisplay S.A. Display system with brightness correction
US6414661B1 (en) * 2000-02-22 2002-07-02 Sarnoff Corporation Method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time
US7049757B2 (en) * 2002-08-05 2006-05-23 General Electric Company Series connected OLED structure and fabrication method
US6693296B1 (en) * 2002-08-07 2004-02-17 Eastman Kodak Company OLED apparatus including a series of OLED devices
US7274346B2 (en) * 2004-06-01 2007-09-25 Eastman Kodak Company Uniformity and brightness measurement in OLED displays
US7348738B2 (en) * 2004-09-02 2008-03-25 General Electric Company OLED area illumination source
US8514210B2 (en) * 2005-11-18 2013-08-20 Cree, Inc. Systems and methods for calibrating solid state lighting panels using combined light output measurements
WO2008050262A1 (en) * 2006-10-23 2008-05-02 Koninklijke Philips Electronics N.V. Backlight system
BRPI0718153A2 (en) * 2006-10-27 2013-11-05 Koninkl Philips Electronics Nv Controlled Color Light Source and Method for Controlling Color Generation in a Light Source
JP2008158454A (en) * 2006-12-26 2008-07-10 Sony Corp Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068049A (en) * 2017-06-07 2017-08-18 京东方科技集团股份有限公司 Image display drive apparatus, display device and electric compensation method
US11227541B2 (en) 2017-06-07 2022-01-18 Boe Technology Group Co., Ltd. Image display drive device, display device and electrical compensation method
TWI695366B (en) * 2019-03-29 2020-06-01 大陸商北京集創北方科技股份有限公司 Self-luminous element display panel module with neural network-like computing function, driving chip and electronic device

Also Published As

Publication number Publication date
WO2010046811A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
TW201028031A (en) A method and an electronic device for improving the optical uniformity of tiled OLED lighting sources
KR101164245B1 (en) Light emitting element drive device and display system
JP4723650B2 (en) Light source emitting mixed color light and method for controlling chromaticity coordinates of such light source
US8988005B2 (en) Illumination control through selective activation and de-activation of lighting elements
EP3228159B1 (en) Current splitter for led lighting system
TWI313849B (en) Backlight driving device, backlight driving method, and liquid crystal display device
JP5857138B2 (en) LED lighting unit with color and dimming control
US8847516B2 (en) Lighting devices including current shunting responsive to LED nodes and related methods
CA2576304C (en) Method and apparatus for scaling the average current supply to light-emitting elements
CN106304474B (en) The tone variations of dimmable device with stable color temperature light sources
JP5820380B2 (en) Semiconductor lighting device with configurable shunt
US20110025230A1 (en) Driver device for leds
BRPI0718524A2 (en) METHOD OF DETERMINING ACTIVATION VALUES TO ACTIVATE A LIGHTING DEVICE, ACTIVATEOR TO DETERMINE ACTIVATION VALUES, LIGHTING DEVICE AND DISPLAY UNIT.
US20090267523A1 (en) Driver circuit for light sheet module with direct connection to power source
EP2791973B1 (en) Lighting devices including current shunting responsive to led nodes and related methods
JP6588432B2 (en) Method and apparatus for controlling illumination of a multi-light source lighting unit
JP5256623B2 (en) Lighting device
JP2006004839A (en) Led illumination device
JP4908145B2 (en) Liquid crystal display
US20130278156A1 (en) Light-emitting diode lighting apparatus, illuminating apparatus and illuminating method
JP5200036B2 (en) Actuating device and method for operating gas discharge lamp and semiconductor light source in combination
JP6168941B2 (en) LED lighting device
JP2013073837A (en) Illumination device
JP2013051140A (en) Dimming system
KR20130043808A (en) Lighting apparatus