TW201027604A - Methods and apparatus for cleaning semiconductor wafers - Google Patents

Methods and apparatus for cleaning semiconductor wafers Download PDF

Info

Publication number
TW201027604A
TW201027604A TW98100896A TW98100896A TW201027604A TW 201027604 A TW201027604 A TW 201027604A TW 98100896 A TW98100896 A TW 98100896A TW 98100896 A TW98100896 A TW 98100896A TW 201027604 A TW201027604 A TW 201027604A
Authority
TW
Taiwan
Prior art keywords
megasonic
wave
ultrasonic
gap
semiconductor substrate
Prior art date
Application number
TW98100896A
Other languages
Chinese (zh)
Other versions
TWI483299B (en
Inventor
Jian Wang
V Nuch S
Liang-Zhi Xie
jun-ping Wu
zhao-wei Jia
Yun-Wen Huang
Zhi-Feng Gao
Hui Wang
Original Assignee
Acm Res Shanghai Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acm Res Shanghai Inc filed Critical Acm Res Shanghai Inc
Priority to TW098100896A priority Critical patent/TWI483299B/en
Publication of TW201027604A publication Critical patent/TW201027604A/en
Application granted granted Critical
Publication of TWI483299B publication Critical patent/TWI483299B/en

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5 λ/N for each rotation of the chuck, where λ is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5 λn during the cleaning process, where λ is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.

Description

201027604 六、發明說明: 【發明所屬之技術領域】 本發明是關於半導體矽片的清洗方法和裝置的。 切地說,是關於在清洗過程中,妙片旋轉的同時,確 變一個超聲波或兆聲波裝置與碎片表面的相對間距,使: 矽片表面的超聲波或兆聲波能量密度分 ^ 攸而有效 地去除矽片表面的顆粒而不會損傷表面元件結構。 【先前技術】 半導體器件是在半導體矽片上經過一系列不同的加 工步驟形成電晶體和互連線而《的1 了使電晶體終端能 和矽片連在一起,需要在矽片的介質材料上做出導電的 (例如金屬)槽、孔及其他類似的結構作爲器件的—部 分。槽和孔可以在電晶體之間、内部電路以及外 遞電信號和能量。 傳 $ 在形成互連元素時,半導體矽片可能需要掩膜、刻蝕 和沈積等工藝來形成半導體器件所需要的電子回路。特別 是多層掩膜和等離子體刻蝕工藝可以在半導體妙片的電 介質層形成凹陷區域的圖案,用於充當互連線的槽和通 孔。爲了去除刻钱或光刻膠灰化過程中在槽和通孔中産生 的顆粒和污染,必須進行一個濕法清洗步驟。特別地,隨 者器件製造節點不斷接近和小於65nm,槽和通孔的侧壁 • 損失是維護臨界尺寸的關鍵。爲了減少或消除側壁損失, 應用溫和的、稀釋的化學試劑,或有時只用去離子水非常 4 201027604 重要然而,稀釋的化學試劑或去離子水往往不能有效地 去除槽和通孔内的顆粒。所以爲了有效地去除顆粒,需要 用到機械褒置如超聲波或兆聲波裝置。超聲波或名聲波裝 表面提供機械力’能量密度和能量分佈是控制 、傷夕片表面而又能有效地去除顆粒的關 數。 ❹ :美國專利No. 4,326,553中提到可以運用死聲波能 嘴、··》合來清洗半導體矽片。流體被加壓, 量藉由兆聲感測器施加到流體上。特定形狀的 = 像帶狀的液體,在石”矣“法 I嘴噴射出 在矽片表面上以兆聲波頻率振動。 在美國專利Ν〇. 6 〇39,。59中提到一個 動一根細長的摆钻脸級Α 愿耨由振 中,流體喷射到石夕片正月^ *個例子 片上表面的位置: 將一根探針置於靠近石夕 於靠近石夕片表面… 中,將一根短的探針末端置 表面移動。 ^,切片旋轉過程中,探針在石夕片 目專利NQ . 6, Μ3 ,如Μ中提 得一根桿繞平行於功口太 W肫重源使 曲線樹枝狀,如螺旋面的軸振動。桿的表面被刻餘成 那螺旋形的凹槽。 爲整個矽片表面提供適量的、均勻的 洗工藝的關鍵 聲波能量是清 罢的關鍵。如果兆聲波 面上,得到較少死簦”县 勾地施加到矽片表 淨,顆粒和污染脓▲、卷 矽片邰刀將不會破清洗乾 超聲波能量的片表面’而得到過多 片口P刀表面的器件結構可能被損壞。 5 201027604 爲了问效且對結構低損傷地去除破片或襯底表面的 顆粒和污染,需要有—種好的方法來控㈣聲波切 面的能量密度分佈。 【發明内容】 本發明介紹的一箱古、土 a 士 .支Α 方去疋在清洗過程中,將兆聲 置朝向旋轉的矽片正面, 故裝 增大兆聲波裝置和矽片 硬頌 ^片之間的間距。矽片每旋轉一 距的增量是兆聲波半浊I ^ ν 間 。·…範圍之内,這裏長而間距的總增加量在 始的整數。 λ疋死聲波的波長,Ν是從丨開 本發明介紹的, 種方法是在清洗過程中, 裝置朝向旋轉的矽片^ 往甲將兆聲波 /月正面,並且隨著矽κ 續減小兆聲波裝置和 #精旋轉,連 片之間的間距。石夕片卷姑献 間距的縮小值是兆簦、± i 7片母紋轉一圈, 值在0. 5又Ν範圍之内,、★ 。卩分,而間距的總縮小 1開始的整數。 這裏是兆聲波的波長,Ν是從 本發明介紹的其 J力一種方法是在清峰、風& 1 裝置朝向旋轉的& 牧脣洗過程中,將兆聲波 巧背面,並且隨著々 續增大兆聲波裝置和夕片的不斷旋轉,連 發片之間的間跖。> 間距的增量是兆聲 夕片每旋轉一圈, "皮丰波長的一部分, 在〇· 5又Ν範圍之内,^ ^ 而間距的總增加量 開始的整數。 ^裏λ疋兆*聲波的波長,Ν是從j 6 201027604 本發明介紹的另一 種方法疋在清洗過程中, 裝置朝向旋轉的矽片甲將兆聲波 續減小兆聲波裝置和 心疋轉’連201027604 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method and apparatus for cleaning semiconductor wafers. To put it bluntly, it is about the relative spacing between the ultrasonic or megasonic device and the surface of the debris during the cleaning process, so that the ultrasonic or megasonic energy density on the surface of the cymbal is effectively The particles on the surface of the bract are removed without damaging the surface element structure. [Prior Art] A semiconductor device is formed on a semiconductor wafer by a series of different processing steps to form a transistor and an interconnect. "A dielectric element that allows the transistor terminal to be connected to the cymbal. Electrically conductive (e.g., metal) trenches, holes, and other similar structures are formed as part of the device. Slots and holes can be used to transfer electrical signals and energy between transistors, internal circuits, and externalities. In the formation of interconnect elements, semiconductor dies may require processes such as masking, etching, and deposition to form the electronic circuitry required for semiconductor devices. In particular, a multi-layer mask and plasma etch process can form a pattern of recessed regions in the dielectric layer of the semiconductor chip for serving as trenches and vias for interconnect lines. In order to remove particles and contamination generated in the grooves and through holes during engraving or photoresist ashing, a wet cleaning step must be performed. In particular, the device fabrication nodes are constantly approaching and less than 65 nm, and the sidewalls of the trenches and vias are the key to maintaining critical dimensions. In order to reduce or eliminate sidewall loss, apply mild, diluted chemical reagents, or sometimes only deionized water. 4 201027604 Important However, diluted chemical reagents or deionized water often do not effectively remove particles in the tank and through-holes. . Therefore, in order to effectively remove particles, mechanical devices such as ultrasonic or megasonic devices are required. Ultrasonic or facsimile wave surfaces provide mechanical force. 'Energy density and energy distribution are the numbers that control and damage the surface of the wafer while effectively removing particles. ❹: U.S. Patent No. 4,326,553 teaches the use of a dead acoustic wave nozzle to clean semiconductor cymbals. The fluid is pressurized and applied to the fluid by a megasonic sensor. The specific shape = like a strip of liquid, in the stone "矣" method I nozzle sprayed on the surface of the bracts to vibrate at a megasonic frequency. In the US patent Ν〇. 6 〇 39,. 59 mentioned a moving a slender pendulum face level Α 耨 振 振 , , , , , , , 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体In the surface of the eve, a short probe tip is placed on the surface. ^, during the slice rotation process, the probe in the Shi Xi film patent NQ. 6, Μ 3, such as Μ 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提 提The surface of the rod is engraved into a spiral groove. The key to the proper amount of uniform washing process for the entire bract surface is the key to clearing. If the megasonic surface, get less dead cockroaches, the county hook is applied to the enamel sheet net, the granules and the polluted pus ▲, the 矽 矽 邰 将 will not break the surface of the dry ultrasonic energy of the sheet 'and get too many pieces of mouth P The device structure on the surface of the knife may be damaged. 5 201027604 In order to solve the problem and remove the particles and contamination of the fragment or the surface of the substrate with low damage to the structure, a good method is needed to control the energy density distribution of the (4) sonic section. The present invention introduces a box of ancient and earthen aristocrats. In the cleaning process, the mega-acoustic sound is placed toward the front side of the rotating cymbal, so that the megasonic device and the cymbal hard cymbal are added. The spacing between the rotations of the cymbals is the megasonic semi-turbidity I ^ ν. Within the range, the total increase in the length and the distance is the initial integer. λ The wavelength of the dead sound wave, Ν It is introduced from the present invention by a method in which the device is turned toward the rotating cymbal ^ 将 将 / / , , , , , , , , , , , , , , , 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆The spacing between the pieces. Shi Xi The reduction value of the volume of the volume is 簦, ± i 7 pieces of the mother pattern turns one circle, the value is within the range of 0.5 Ν, ★, 卩, and the total width of the spacing is reduced by the integer starting at 1. Here is The wavelength of the megasonic wave, Ν is a method of its J force introduced from the present invention. In the process of cleaning the peaks, the wind & 1 device toward the rotation & lip wash, the megasonic wave is back, and as the 々 continues to increase The continuous rotation of the large megasonic device and the eve film, the gap between the hair pieces. The increment of the spacing is a lap of the mega-sound piece, "part of the wavelength of the skin, in the 〇·5 and Ν Within the range, ^ ^ and the total increase in the spacing begins with an integer. ^ λ 疋 * * The wavelength of the sound wave, Ν is from j 6 201027604 Another method introduced by the present invention 疋 During the cleaning process, the device is rotating toward the 矽The film will continue to reduce the megasonic wave and the heartbeat

Ba ^ 片之間的間距。矽片每旋轉一園 間距的縮小值是兆聲、、古 圈, 值在0.5λΝ範圍之n λ # ^❿間距的總縮小 知表λ是兆聲波的波長 1開始的整數。 從我Ν疋從 【實施方式】 圖1A到® 1B展* 了制兆聲波儀 的常見裝置清洗裝置包括W議,由旋轉傳^ 裝置1016控制旋轉的矽片夾1〇14,傳輸清洗液化 或去離子水1Q32的嘴嘴m2,及崎波裝置丨⑽。 波裝置顧由遷電式感測器刪及與其配 器函組成。感測器刪通電後作用如振動,而共振: 二8會將尚頻聲能量傳遞到液體中。由兆聲波能量產生 的^洗液的振較W 1Q1Q表面仙粒鬆動,進 由喷嘴m2提供的流動液體1032將其從梦片表面移除。 r如圖1c所示,爲了得到最少的反射能量,反射波、Γ1 (從水膜上表面射出)#相位必需與反射波R2 (從水臈 下表面射出)的相位相反’這樣水膜厚度應等於:、 Ω " lj 2,3 (1) 這裏,d是水膜的厚度或是兆聲波裝置1〇〇3與石夕片 1010之間的間距,η κ固整數,而λ是死聲波在水中 7 201027604 的波長。例如’當兆聲波的頻率是937. 5Κ Hz,λ = i 6 mm 時,d = 〇· 8 mm,!· 6 mm,2 4 龍等等。Ba ^ The spacing between the sheets. The reduction value of the pitch of each rotation of the cymbal is mega-according, the ancient circle, and the value is 0.5 λ 之 in the range of n λ # ^ ❿ total reduction. The table λ is an integer starting from the wavelength 1 of the megasonic wave. From [Implementation] Figure 1A to ® 1B show that the common device cleaning device for the megasonic instrument includes a discussion, and the rotating cymbal clamp 1〇14 is controlled by the rotary transmission device 1016 to transmit the cleaning liquefaction or The mouth of the deionized water 1Q32 is m2, and the wave device 丨(10). The wave device is composed of the migrating sensor and its companion. After the sensor is de-energized, it acts like a vibration, and the resonance: 2 8 will transmit the still-frequency sound energy into the liquid. The vibration of the washing liquid generated by the megasonic energy is loosened compared to the W 1Q1Q surface, and the flowing liquid 1032 supplied from the nozzle m2 removes it from the surface of the matte. r As shown in Fig. 1c, in order to obtain the minimum amount of reflected energy, the reflected wave, Γ1 (ejected from the upper surface of the water film)# phase must be opposite to the phase of the reflected wave R2 (ejected from the lower surface of the leeches). Equivalent to:, Ω " lj 2,3 (1) where d is the thickness of the water film or the distance between the megasonic device 1〇〇3 and the Shixi piece 1010, η κ solid integer, and λ is the dead sound wave The wavelength of 7 201027604 in water. For example, 'when the frequency of the megasonic wave is 937. 5Κ Hz, λ = i 6 mm, d = 〇· 8 mm,! · 6 mm, 2 4 dragons, etc.

,圖1D所示爲間距d與由圖U中所示感測器1〇〇2測 得1兆聲波能量密度之間的關係。在間距增大到〇. 4咖的 =程中,可得到從谷值20 w/cm2到峰值80 w/cm2的多個 能量密度值,並能在間距增大到〇8ηΐ]η(〇5λ )時得到〆 個完整的週期。精確穩定地控制間距是能切片 均勻的死聲波能量分佈的關鍵。 、 β然而,實際上很難精確地保持一個均勻的間距,特別 是當矽片處於旋轉模式時。如圖2所示,如果矽片夹“Η 是百分之百垂直於死聲波裝置2003表面,兆聲 f與矽片2010表面的間距會從矽片邊緣向矽片中心 。據目1D所示的資料,這將引起從石夕片邊緣尚 中心兆聲波能量分佈的不均勻。 能^圖3A和3B所示’引起間距變化的另—個原因可 時:片:梦片夾的旋轉轴不垂直於石夕片讓表面。旋轉 度之後二:動,圖3B所不爲從圖3A所示狀態旋轉18° 減小到圖3BV’夕片邊緣處的間距從圖3A所示的最大值 裝置時:最小值。這將導致當梦片經過死聲波 咏時,碎片表面的兆聲波能量密度分佈不均句 &不岣勻的能量分佈將導致矽片表 ^ 發片清洗不均句。 月表面的器件結構損傷及Fig. 1D shows the relationship between the pitch d and the energy density of 1 megasonic wave measured by the sensor 1 〇〇 2 shown in Fig. U. In the range where the pitch is increased to 〇. 4 coffee, a plurality of energy density values from a valley value of 20 w/cm 2 to a peak value of 80 w/cm 2 can be obtained, and the pitch can be increased to 〇8ηΐ]η (〇5λ). When you get a complete cycle. Accurate and stable control of the spacing is the key to the uniform distribution of dead sound energy distribution. , β However, it is actually difficult to accurately maintain a uniform spacing, especially when the cymbal is in the rotating mode. As shown in Fig. 2, if the cymbal clip "Η is 100% perpendicular to the surface of the dead acoustic wave device 2003, the distance between the megasound f and the cymbal 2010 surface will be from the edge of the cymbal to the center of the cymbal. According to the data shown in item 1D, This will cause uneven distribution of the megasonic energy distribution from the edge of the stone slab. It can be seen as shown in Figures 3A and 3B. Another reason for the change in spacing is: Time: The rotation axis of the dream clip is not perpendicular to the stone. The eve gives the surface. The rotation is after two: move, Figure 3B is not rotated from the state shown in Figure 3A by 18° to the distance at the edge of Figure 3BV's from the maximum device shown in Figure 3A: minimum This will cause the megasonic energy density distribution of the debris surface to be uneven when the film passes through the dead wave. The uneven energy distribution will cause the enamel sheet to clean the uneven sentence. Structural damage and

量分佈 了克服在矽片夾旋轉過程中由間距變化引 不均句,本發明揭示了一種如圖4所示的方法。在 8 201027604 清洗過程中’當石夕片夾4014旋轉時’藉由控制螺桿4〇〇5 @達4006 ’使兆聲波裝置4003和矽片4010之間的間 距增大或減小。控制單元權8用來以馬達“Μ的速度爲 基準控制馬達4_的速度。碎片4010或石夕片炎4014每 轉圈控制單元4088命令馬達4006控制兆聲波裝置 4003向上或向下移動的間距爲:The amount distribution overcomes the variation of the spacing during the rotation of the cymbal clip, and the present invention discloses a method as shown in FIG. The spacing between the megasonic device 4003 and the cymbal 4010 is increased or decreased by the control screw 4〇〇5 @达4006' during the cleaning process at 8 201027604. The control unit weight 8 is used to control the speed of the motor 4_ based on the speed of the motor "Μ. The fragment 4010 or the slick 4014 per revolution control unit 4088 commands the motor 4006 to control the stroboscopic device 4003 to move up or down by a distance of :

△ z = 0.5 λ /N Φ °裏又疋超聲波或兆聲波的波長,ν是從2到1 0 0 0 之間的整數。 一更進-步的細節如圖5所示,當矽片或矽片夾每旋轉 圈曰大間距時,在石夕片的相同位置死聲波能量密度從 Ρ1變到Ρ2。當間距增大到兆聲波的半波長時,能量密度 了從Ρ1到Ρ1丨的一個週期。週期的起點取決於兆聲 裝置與夕片特定位置的間距,然而當間距增大到兆聲波 的半波長時,I 、Δ z = 0.5 λ /N Φ ° The wavelength of the ultrasonic or megasonic wave, ν is an integer from 2 to 1 0 0 0. The details of a further step-by-step are shown in Fig. 5. When the cymbal or cymbal clip has a large pitch per revolution, the energy density of the dead acoustic wave changes from Ρ1 to Ρ2 at the same position of the Shixi tablet. When the pitch is increased to half the wavelength of the megasonic wave, the energy density is one cycle from Ρ1 to Ρ1丨. The starting point of the period depends on the spacing between the megasonic device and the specific position of the singular film, but when the spacing increases to half the wavelength of the megasonic wave, I,

、每一。P为都將得到一個完整週期的能 量密度。換句話說, 兄田兆聲波裝置向上移動兆聲波的半波 長時(頻率爲937 5 kHz砵邕η » 、 β .3 KHz時爲〇_ 8mm),即使是由於圖2 , 圖3A和圖3B中接5丨丨AAfflmiifr 固《中耠到的原因導致兆聲波裝置和矽片之間的 :距不均二’矽片的每一部分也將得到一個完整週期的能 罝密度k將保證矽片的每個點都得到同量的兆聲波能量 密度’包括同樣的φ +Λ At Θ 均tb量密度,同樣的最大能量密度和 同樣的最小能晉浓# 重密度。刼作過程如下所述: 在去離 工藝過程1 (兆聲波頻率:f = 937 5 kHz 子水中的波長λ =1>6 mm): 9 201027604 步驟1:以速度ω旋 1 500 rpm。 ω的範圍從l〇rpm到 步驟2·將死聲波裝 置,d的範^ 動到㈣片間距爲d的位 叼乾国從〇· 5到15mm。 步驟3 .打開噴嘴喷射 啓兆聲波裝置。 離子水或化學试劑’然後開 ❹ 步驟4:發片夾每旋轉-圈,將兆聲波裝置上移 〇.5λ/Ν (mm),這裏N是 掌哀罝上移 乂長N是從2到1 000的整數。 步驟5:繼續步驟*的操 n , w Λλα 的操作’直到兆聲波農置上移 °.5ηλ(随)的間距,這裏η是從",始的替數。 步驟6:石夕片夹每旋轉一圈,將死聲波裝置下移 〇·5λ/Ν (關),這裏Ν是從2到1〇〇〇的整數。 步驟7:繼續步驟6的操作,直到死聲波裝置下移 〇.5ηλ(賴)的間距,這裏η是從i開始的整數。 步驟8:重復步驟4到7,直到石夕片清洗完成。 步驟9 1 pa死聲殊裝置,停止喷射去離子水或化學 試劑,使矽片乾燥。 工藝過程2(死聲波頻率:f = 937·5 kHz,在去離 子水中的波長又=1.6 mm): 步驟1 .以速度ω旋轉矽片,ω的範圍從i 〇犷叩到 1500 rpm 步驟2 :將兆聲波裝置移動到離矽片間距爲d的位 置,d的範圍從0.5到1 5mm。 步驟3 :打開噴嘴喷射去離子水或化學試劑,然後開 10 201027604 啓兆聲波裝置β 步驟4:矽片夾每旋轉一圈,將兆聲波裝置上移 〇. 5又/Ν (職),這襄Ν是從2到1000的整數。 步驟5 :繼續步驟4的操作,直到死聲波裝置上移 (㈣)的間距,這裏η是從j開始的整數。 步驟6 ·目帛兆聲波裝£,停止喷射去離子水或化學 試劑,使矽片乾燥。Every. P will give a full cycle of energy density. In other words, when the brother Tianzhao sound wave device moves up the half-wavelength of the megasonic wave (the frequency is 937 5 kHz砵邕η, β_3 KHz is 〇_8mm), even because of Figure 2, Figure 3A and Figure 3B In the middle of the connection of 5 AAfflmiifr solids, the cause of the 导致 导致 导致 兆 兆 : : : : : : : : : : : : : : : : : 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆 兆Each point yields the same amount of megasonic energy density' including the same φ + Λ At 均 average tb density, the same maximum energy density and the same minimum energy concentration. The process is as follows: In the process 1 (megasonic frequency: f = 937 5 kHz sub-wavelength λ =1 > 6 mm): 9 201027604 Step 1: Spin 1 500 rpm at speed ω. The range of ω is from l〇rpm to step 2. The dead sound wave device is set, and the range of d is (4) the distance between the pieces of the film is d. The dry country is from 5 to 15 mm. Step 3. Turn on the nozzle jet to activate the acoustic wave device. Ionized water or chemical reagents' then open ❹ Step 4: Each rotation of the hair clips moves the megasonic device up to .5λ/Ν (mm), where N is the sorrow and the squat is moving up and the length N is from 2 An integer of up to 1 000. Step 5: Continue the operation of step *, w Λ λα ' until the megaphone is moved up by the distance of .5ηλ (with), where η is the substitution from ". Step 6: Each rotation of the Shixi film clip moves the dead acoustic wave device down 〇·5λ/Ν (off), where Ν is an integer from 2 to 1〇〇〇. Step 7: Continue the operation of step 6 until the dead acoustic wave device moves down the pitch of 5.5ηλ (lai), where η is an integer starting from i. Step 8: Repeat steps 4 through 7 until the cleaning of the Shi Xi tablets is completed. Step 9 1 Stop the spray device and stop spraying the deionized water or chemical reagent to dry the bracts. Process 2 (dead sound wave frequency: f = 937·5 kHz, wavelength in deionized water = 1.6 mm): Step 1. Rotate the cymbal at speed ω, ranging from i 1500 to 1500 rpm Step 2 : Move the megasonic device to a position where the distance between the cymbals is d, and d ranges from 0.5 to 15 mm. Step 3: Open the nozzle to spray deionized water or chemical reagent, then turn on 10 201027604. Start the oscillating wave device. Step 4: Move the megasonic device up every turn of the cymbal clip. 5 again / Ν (job), this襄Ν is an integer from 2 to 1000. Step 5: Continue the operation of step 4 until the dead acoustic wave device moves up ((4)), where η is an integer starting from j. Step 6 • Watch the megasonic wave and stop spraying the deionized water or chemical reagent to dry the bracts.

感測器的頻率可以設置在超聲波和死聲波範圍内,頻 率的大小取決於被清洗的顆粒的尺寸。顆粒尺寸越大用 到的頻率越小。超聲波的範圍在2GkHz @州他之間, 而兆聲波的範圍在200让“到1〇 MHz之間。爲了去除相 同基底或矽片表面不同尺寸的顆粒,也需要連續或同時交 替改變機械波的頻率。如果一個雙重的波頻率被使用,高 頻率fl應該是低頻率f2的整數倍,而感測器的移動^ 應該是0.5“ ’石夕片灸每旋轉一圈間距的增大或減小值 :爲。.5 λ"Ν,這裏λ2是頻率爲f2的低頻波對應的波 長是頻率爲fl的高頻波對應的波長,N爲從2到i咖 之間的整數,η爲從1開始的整數。 以下所述爲利用化學試劑去除顆粒和污染的—個例 子: 有機物去除:H2S〇4:H2〇2 = 4: j 顆粒減少:NH4〇H:H2〇2:H2〇 = 1:1:5 金屬污染去除:HCl:H2〇2:H2〇 = 1:1:6 氧化物去除:HF:H2〇 = 1:100 201027604 圖6所示爲按照本發明將兆聲波儀器運用到碎片清 洗裝置的另-個實例。這個裝置與圖4所示裝置相似,不 同之處在於矽片夾是藉由螺桿6005和馬達6〇06的控制而 垂直移動。控制單元6088藉由螺桿6〇〇5和馬達6〇〇6來 控制矽片A 6〇14上下移動’進而改變兆聲波裝請⑽和 石夕片6010之間的間距。The frequency of the sensor can be set within the range of ultrasonic and dead sound waves, the magnitude of which depends on the size of the particles being cleaned. The smaller the particle size, the smaller the frequency used. The range of ultrasound is between 2GkHz @州他, and the range of megasonic waves is between 200 and 1“MHz. In order to remove particles of different sizes on the same substrate or the surface of the cymbal, it is necessary to alternate mechanical waves continuously or simultaneously. Frequency. If a double wave frequency is used, the high frequency fl should be an integer multiple of the low frequency f2, and the movement of the sensor should be 0.5" 'the increase or decrease of the pitch of each rotation of the stone Value: Yes. .5 λ"Ν, where λ2 is the wavelength corresponding to the low frequency wave of frequency f2 and the wavelength corresponding to the high frequency wave of frequency f, N is an integer from 2 to i, and η is an integer starting from 1. The following is an example of the use of chemical reagents to remove particles and contamination: Organic removal: H2S〇4:H2〇2 = 4: j Particle reduction: NH4〇H:H2〇2:H2〇= 1:1:5 Metal Pollution removal: HCl: H2 〇 2: H2 〇 = 1:1: 6 Oxide removal: HF: H2 〇 = 1:100 201027604 Figure 6 shows the application of a megasonic instrument to a debris cleaning device in accordance with the present invention - An example. This device is similar to the device shown in Figure 4, except that the cymbal clip is moved vertically by the control of the screw 6005 and the motor 6 〇 06. The control unit 6088 controls the flap A 6〇14 to move up and down by the screw 6〇〇5 and the motor 6〇〇6 to change the spacing between the megasonic package (10) and the Shixi piece 6010.

圖7所示爲按照本發明將兆聲波儀器運用到矽片清 洗裝置的另—個實例。這個裝置與圖4所示裝置相似,不 同之處在於兆聲波裝置7003被放置在矽片7〇1〇背面,立 在螺才干7005和料70 〇6的控制下垂直移動。控 几88藉由螺桿7〇〇5和馬達?〇〇6來控制死聲波=置7〇〇丨 上下移動,進而改變兆聲波裝置7〇〇3和矽片7〇1〇背面之 間的間距。兆聲波穿過水膜7〇34和矽片7。i 〇傳遞到矽片 7010正面和水膜7〇32。噴嘴70Π提供去離子水或化學餘 劑來維持死聲波裝S 7003和石夕片m〇背面之間的水膜 這個裝置的優點在於,可以減小或消除可能由死聲 波引起的對矽片7〇1〇正面器件結構的損傷。 圖8所示爲按照本發明將死聲波儀器運 二裝:的另一個實例。這個裝置與圖4所示裝置相似不 :801,於妙片8°1°正面朝下’而一排嘴嘴8°18朝向石夕 片㈣正面1聲波穿過水琪和石夕片謝〇本身傳 遞到石夕片8〇1〇正面。 圖9所示爲按照本發明將兆聲波儀器運用料片清 洗裝置的另—個實例。這個裝置與圖4所示裝置相似,不 12 201027604 同之處在於壓電式感測器9004表面與矽片9〇1〇之間有個 夾角α。共振器9008與壓電式感測器9〇〇4相連,兆聲 波穿過共振器9008和去離子水膜或化學試劑膜傳遞到石夕 片上。工藝過程1,2和3可以應用到這裏。 圖10Α到圖10G所示蟲松昭士απ , 舄按照本發明兆聲波裝置的俯視 圖。圖4所示的兆聲波裝罟+ 置了以由不同形狀的兆聲波裝置 100 03替代,即圖ι〇Α所示的=角 一 J 一用形或餡餅形,圖10Β所Figure 7 is a diagram showing another example of applying a megasonic instrument to a cymbal cleaning device in accordance with the present invention. This device is similar to the device shown in Fig. 4, except that the megasonic device 7003 is placed on the back of the cymbal 7〇1, vertically under the control of the screw 7005 and the material 70 〇6. Control a few 88 by screw 7〇〇5 and motor? 〇〇6 to control the dead sound wave = set 7 〇〇丨 move up and down, and then change the spacing between the megasonic device 7 〇〇 3 and the back of the cymbal 7 〇 1 。. Megasonic waves pass through the water film 7〇34 and the bracts 7. i 〇 is transferred to the front of the 7010 and the water film 7〇32. The nozzle 70 Π provides deionized water or a chemical remnant to maintain the water film between the dead acoustic wave device S 7003 and the back surface of the stone plate. The advantage of this device is that the pair of blades 7 which may be caused by dead sound waves can be reduced or eliminated. 〇1〇 Damage to the front device structure. Figure 8 shows another example of the operation of a dead acoustic wave instrument in accordance with the present invention. This device is similar to the device shown in Figure 4: 801, in the Miao film 8 ° 1 ° face down 'and a row of mouth 8 ° 18 toward the stone eve (four) front 1 sound wave through the water Qi and Shi Xi tablets Xie Zhen It is passed to the front of the 8th 1st of Shi Xi tablets. Figure 9 is a diagram showing another example of applying a web cleaning apparatus to a megasonic apparatus in accordance with the present invention. This device is similar to the device shown in Fig. 4, and the same as that of 201027604, the angle between the surface of the piezoelectric sensor 9004 and the cymbal 9〇1〇 is an angle α. The resonator 9008 is connected to the piezoelectric sensor 9A4, and the megasonic wave is transmitted through the resonator 9008 and the deionized water film or chemical reagent film to the Shixi sheet. Processes 1, 2 and 3 can be applied here. Fig. 10A to Fig. 10G show the top view of the megasonic apparatus according to the present invention. The megasonic device shown in Fig. 4 is placed in place of a different shape of the megasonic device 100 03, i.e., the angle shown in Fig. 1 is a shape or a pie shape, Fig. 10

示的矩形’圖10C所示的八条拟,θ , 刃、角形,圖10D所示的橢圓形,The rectangular shape shown in Fig. 10C is eight pseudo-, θ, edge, angular, elliptical as shown in Fig. 10D,

圖10Ε所示的半圓形,圖1〇F 所不的四分之一圓形,圖 10G所示的圓形。 進行了 改和變 儘管本專利已經對-些具體裝置,例子和應月 描述’但是本發明並不排除那些顯而易見的讀 化。 【圖式簡單說明】 圖1A 1D描述了 一個典型的發片清洗裝置; 圖2描述了 一個典型的矽片清洗工蓺; 圖3A-3B描述了另一個典 " 又的矽片清洗工藝 圖4描述了另—個典型 m c ^ 矽片凊洗裝置; 圖5描述了一種矽片清洗方法 圖6描述了另—個典型的矽 圖7描述了另-個典型 =裝置 圖8描述了另一個典型的砂:洗裝置 ^ q ^ ^ , 炒片清洗裝置 圖9描述了另一個典型 %片清洗裝置 13 201027604 圖1 0A-1 0G描述了超聲波或兆聲波感測器的各種形The semicircular shape shown in Fig. 10A, the quarter circle which is not shown in Fig. 1F, and the circle shown in Fig. 10G. Modifications and Changes Although the present patent has been described with respect to specific embodiments, examples and should be described, the present invention does not exclude those obvious readings. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A 1D depicts a typical hair piece cleaning device; Fig. 2 depicts a typical cymbal cleaning process; and Figs. 3A-3B depict another stencil cleaning process. 4 describes another typical mc ^ cymbal rinsing device; Figure 5 depicts a cymbal cleaning method Figure 6 depicts another typical 矽 Figure 7 depicts another typical = device Figure 8 depicts another Typical sand: washing device ^ q ^ ^ , fry cleaning device Figure 9 depicts another typical % sheet cleaning device 13 201027604 Figure 1 0A-1 0G describes various shapes of ultrasonic or megasonic sensors

狀。 【主要元件符號說明】 1002 :感測器 10 04 :感測器 1010 :矽片 1014 :矽片夾 1032 :去離子水(流動液體) 2010 :矽片 3 0 1 0 :矽片 4〇〇5 :螺桿 4010 :矽片 4016 :馬達 6003 :兆聲波裝置 6006 :馬達 6014 :矽片夾 7003 :兆聲波裝置 7006 :馬達 7011 :喷嘴 7034 ·•水膜 8010 :矽片 8032 :水膜 9008 :共振器 10003 :兆聲波裝置 1003 :兆聲波裝置 1008 :共振器 1 0 1 2 :喷嘴 1016 :旋轉傳動裝置 2003 :兆聲波裝置 2014 :矽片夾 4003 :兆聲波裝置 4006 :馬達 4014 :矽片夾 4088 :控制單元 6005 :螺桿 6010 :矽片 6088 :控制單元 7005 :螺桿 7010 :矽片 7032 :水膜 7088 ··控制單元 8018 :喷嘴 9004 :感測器 9010 :矽片 14shape. [Main component symbol description] 1002: Sensor 10 04 : Sensor 1010 : Sepal 1014 : Septum clamp 1032 : Deionized water (flowing liquid) 2010 : Septum 3 0 1 0 : Sepal 4〇〇5 : screw 4010 : cymbal 4016 : motor 6003 : megasonic device 6006 : motor 6014 : cymbal holder 7003 : megasonic device 7006 : motor 7011 : nozzle 7034 · water film 8010 : cymbal 8032 : water film 9008 : resonator 10003: megasonic device 1003: megasonic device 1008: resonator 1 0 1 2 : nozzle 1016: rotary transmission 2003: megasonic device 2014: cymbal clamp 4003: megasonic device 4006: motor 4014: cymbal clamp 4088: Control unit 6005: screw 6010: cymbal 6088: control unit 7005: screw 7010: cymbal 7032: water film 7088 · control unit 8018: nozzle 9004: sensor 9010: cymbal 14

Claims (1)

201027604 七、申請專利範園: 1、—種利用超聲波或兆聲波裝 方法,包含: 褒置-洗半導體襯底的 利用一個矽片夾夾住半導體襯底; 將—套超聲波或兆聲波裝置置於接 位置; 近半導體襯底的 利用至少一個喷嘴將化學液體喷射到矽 ❹*體襯底與超聲波或兆聲波裝置之間的間隙中。 在清洗過程中,矽片夾每旋轉一圈, 襯底和超聲波或兆聲波裝置之間的間i ?變+導體 其中,藉由 的方向移動 其中,藉由 向移動來改 z、如申請專利範圍第丨項所述的方法 將超聲波或兆聲波裝置以垂直於半導體襯底 來改變間隙的大小。201027604 VII. Application for Patent Park: 1. A method of using ultrasonic or megasonic wave loading, comprising: arranging and holding a semiconductor substrate by using a cymbal clip to clamp the semiconductor substrate; placing a set of ultrasonic or megasonic devices In the vicinity of the semiconductor substrate, at least one nozzle is used to inject the chemical liquid into the gap between the 矽❹* body substrate and the ultrasonic or megasonic device. During the cleaning process, each time the cymbal clip rotates, the gap between the substrate and the ultrasonic or megasonic device is changed + the conductor therein, by which the direction is moved, by changing the movement, for example, applying for a patent The method described in the scope of the invention changes the size of the gap by an ultrasonic or megasonic device perpendicular to the semiconductor substrate. 3、如申請專利範圍第丨項所述的方法 將矽片夾以垂直於超聲波或兆聲波裝置的方 變間隙的大小。 4、 如中請專利範圍^項所述的方法,# 波“聲波裝置置於朝向並靠近半導體襯底正面的位置。 5、 如申請專利範圍第丨項所述的方法,其 波或兆聲波裝置置於朝向並靠近半導體 ,、,超 罪迎千导體觀底背面的位置。 15 201027604 6、 如申請專利範圍第5項 .. 喟所述的方法,其中,化學 液體藉由置於半導體矽片正面附 , 迎的第一個喷嘴喷射到 . 半導體襯底正面,同時,化學涪驊要# 、 ^ ^ 收體置於半導體矽片背面附 近的第二個喷嘴噴射到半導體襯底背面。 7、 如申請專利範圍第i項 + ^ 項所述的方法,其中,矽片 夾每旋轉一圈,間隙增大〇.5λ Λ /Ν ’ 乂裏λ是超聲波或 瘳兆聲波的波長’ Ν是一個從2到1〇〇〇的整數。 8、 如申請專利範圍第1項所述的方法,其中,石夕片 =旋轉-圈’間隙減小。.5Λ/Ν,這襄λ是超聲波或 死聲波的波長,Ν是-個從2flM_的整f 9、 如申請專利範圍第1項所述的方法,其中,在清 洗過程中,間隙大小在〇 5又n銘阁Λ媒& 牧υ·ΰλη範圍内變化,這裏;I是超 θ聲波或死聲波的波長,η是從W始的整數。 阶、如申請專利範圍第i項所述的方法,其 儀器的聲波頻率是雙頰率。 11、如中請專利範圍第Η項所述的方法,其中 頻率包括一個高頻fl和一個 ^ _ „1 ·. 、· ^ 1固低頻f2,並且f l=Mf2,這寞 M是從2開始的整數。 16 201027604 • 12、如申請專利範圍第11項所述的方法,其中,碎 •片夾每旋轉-’間隙減小0.5λ"Ν,這裏λ是頻率爲 ' fl的高頻波的波長’ 一個從2到1 000的整數。 13、如申請專利範圍第11項所述的方法,其中,在 清洗過程中’間隙大小在0· 5 λ π範圍内變化,這裏入2 是頻率爲f2的低頻波的波長’ η是從1開始的整數。 # 14、斥|J用超_波或死聲波裝置清洗半導體襯底的裝 置,包含: 一個夾著半導體襯底的矽片失; 一套置於半導體襯底附近的超聲波或兆聲波裝置; 至少有一個喷嘴將化學液體喷射到矽片襯底及半導 體襯底與超聲波或兆聲波裝置之間的間隙中·, 在清洗過程中,矽片夾每旋轉一圈,一個控制單元改 • 變半導體襯底和超聲波或兆聲波裝置之間的間距。 15、 如申請專利範圍第14項所述的裝置,其中,藉 由將超聲波或线波裝置以自直於I導體m底的方向移 動來改變間隙的大小。 16、 如申凊專利範圍第14項所述的裝置,其中,藉 由將矽片夾以垂直於超聲波或兆聲波裝置的方向移動來 ’· 改變間隙的大小。 17 201027604 17、 如申請專利範圍第14項所述的裝置,其中,超 , 聲波或兆聲波裝置置於朝向並靠近半導體襯底正面的位 - 置。 18、 如申請專利範圍第14項所述的裝置,其中,超 聲波或兆聲波裝置置於朝向並靠近半導體襯底背面的位 置。 19、 如申請專利範圍第18項所述的裝置,其中,化 學液體置於半導體石夕片正面附近的第一個噴嘴噴射到半 導體襯底正面,同時,化學液體藉由置於半導體矽片背面 附近的第二個喷嘴噴射到半導體襯底背面。 20、 如申請專利範圍第14項所述的裝置,其中,矽 片夾每旋轉一圈,間隙增大〇· 5 λ /N,這裏λ是超聲波 ❹ 或兆聲波的波長,Ν是一個從2到1 000的整數。 21、 如申請專利範圍第1 4項所述的裝置,其中,矽 片夾每旋轉一圈’間隙減小0. 5 λ /Ν,這裏λ是超聲波 或死聲波的波長’ Ν是一個從2到1000的整數。 22、 如申請專利範圍第14項所述的裝置,其中,在 • 清洗過程中’控制單元使得間隙大小在〇. 5 λ η範圍内變 化’這裏λ是超聲波或兆聲波的波長,^是從1開始的 201027604 整數。 • 23、如巾請專利範圍第14項所述的裝置,其中,超 聲波或兆聲波儀器産生雙波長。 24、 如申請專利範圍第23項所述的裴置,其中,雙 頻率包括一個高頻fl和一個低頻f2,並且fi=Mf2,這裏 Μ是從2開始的整數。 ❹ 25、 如申請專利範圍第24項所述的裝置,其中,矽 片夾每旋轉一圈,間隙增大〇.5λι/Ν’這裏^是頻率爲 Π的高頻波的波長,N是一個從2到1〇〇〇的整數。 26、 如申請專利範圍第24項所述的裝置,其中,矽 片夾每旋轉一圈,間隙減小〇. 5 λ l/N,這裏λ ι是頻率爲 • fl的高頻波的波長,Ν是一個從2到1〇〇〇的整數。 27、 如申請專利範圍第24項所述的裝置,其中,在 清洗過程辛’控制單元使得間隙大小在〇 · 5 λ ζη範圍内變 化,這裏λ 2是頻率爲的低頻波的波長,^是從1開始 的整數。 193. The method of claim 2, wherein the cymbal is clamped to a size perpendicular to the gap of the ultrasonic or megasonic device. 4. The method of claim 2, wherein the "wave" acoustic wave device is placed in a position facing and facing the front side of the semiconductor substrate. 5. The method of claim 1, wherein the wave or megasonic wave The device is placed in a position facing and close to the semiconductor, and the position of the super-sinner is in the back of the substrate. 15 201027604 6. The method of claim 5, wherein the chemical liquid is placed in the semiconductor The first nozzle of the cymbal is attached to the front surface of the semiconductor substrate, and at the same time, the second nozzle, which is placed near the back surface of the semiconductor cymbal, is sprayed onto the back surface of the semiconductor substrate. 7. For the method described in the scope of the patent application, item i + ^, wherein the gap increases by 〇.5λ Λ /Ν ' 每 是 is the wavelength of the ultrasonic or 瘳 声 sound wave 每 every time the cymbal clip rotates one turn Ν Is an integer from 2 to 1 。 8. The method of claim 1, wherein the Shi Xi tablet = rotation - circle 'gap reduction. 5 Λ / Ν, this 襄 λ is ultrasonic Or the wavelength of the dead sound wave, Ν is - The method of claim 2, wherein the gap size varies within the range of 〇5 and n 铭阁Λ物& 牧υ·ΰλη during the cleaning process, here; I is the wavelength of the super θ sound wave or the dead sound wave, and η is an integer from W. The method according to the method of item i of the patent application, the acoustic frequency of the instrument is the cheek rate. The method of the above item, wherein the frequency comprises a high frequency fl and a ^ _ „1 ··· ^ 1 solid low frequency f2, and fl=Mf2, where 寞M is an integer starting from 2. 16 201027604 • 12. The method of claim 11, wherein the fragmentary clip is reduced by 0.5 λ per rotation-' gap, where λ is the wavelength of the high frequency wave of frequency 'fl' from 2 An integer of up to 1 000. 13. The method of claim 11, wherein the gap size varies within a range of 0·5 λ π during the cleaning process, where 2 is the wavelength of the low-frequency wave having a frequency of f2 η is from 1 The starting integer. #14, 斥|J is a device for cleaning a semiconductor substrate by using a super-wave or dead acoustic wave device, comprising: a chip missing from a semiconductor substrate; a set of ultrasonic or megasonic devices placed near the semiconductor substrate; There is a nozzle for injecting a chemical liquid into the gap between the cymbal substrate and the semiconductor substrate and the ultrasonic or megasonic device. During the cleaning process, one rotation of the cymbal holder rotates, and a control unit changes the semiconductor lining. The spacing between the bottom and the ultrasonic or megasonic device. 15. The apparatus of claim 14, wherein the size of the gap is changed by moving the ultrasonic or line wave device in a direction straight from the bottom of the I conductor. The device of claim 14, wherein the size of the gap is changed by moving the cymbal clip in a direction perpendicular to the ultrasonic or megasonic device. 17. The device of claim 14, wherein the super, sonic or megasonic device is placed in a position facing and facing the front side of the semiconductor substrate. 18. The device of claim 14, wherein the ultrasonic or megasonic device is placed in a position facing the back of the semiconductor substrate. 19. The device of claim 18, wherein the first nozzle of the chemical liquid placed near the front side of the semiconductor stone is sprayed onto the front surface of the semiconductor substrate, and the chemical liquid is placed on the back of the semiconductor wafer. A nearby second nozzle is ejected onto the back side of the semiconductor substrate. 20. The device of claim 14, wherein the gap increases by 〇·5 λ /N for each rotation of the cymbal clip, where λ is the wavelength of the ultrasonic 兆 or megasonic wave, and Ν is a from 2 An integer of up to 1 000. 21. The device of claim 14, wherein the crepe clip is rotated by a circle and the gap is reduced by 0.5 λ / Ν, where λ is the wavelength of the ultrasonic or dead sound wave ' Ν is a from 2 An integer to 1000. 22. The device of claim 14, wherein the control unit causes the gap size to vary within a range of 〇. 5 λ η during the cleaning process. Here λ is the wavelength of the ultrasonic or megasonic wave, ^ is from 1 starts with the 201027604 integer. • A device as claimed in claim 14, wherein the ultrasonic or megasonic instrument produces dual wavelengths. 24. The device of claim 23, wherein the dual frequency comprises a high frequency fl and a low frequency f2, and fi = Mf2, where Μ is an integer starting from 2. ❹ 25. The device according to claim 24, wherein each time the cymbal clip is rotated, the gap is increased by 5.5λι/Ν' where ^ is the wavelength of the high frequency wave whose frequency is ,, and N is a value from 2 An integer of 1〇〇〇. 26. The device of claim 24, wherein the gap is reduced by 5 λ l/N for each rotation of the cymbal clip, where λ ι is the wavelength of the high frequency wave of the frequency • fl, An integer from 2 to 1〇〇〇. 27. The device of claim 24, wherein the control unit in the cleaning process causes the gap size to vary within a range of 〇·5 λ ζη, where λ 2 is the wavelength of the low frequency wave of the frequency, ^ is An integer starting at 1. 19
TW098100896A 2009-01-09 2009-01-09 Methods and apparatus for cleaning semiconductor wafers TWI483299B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098100896A TWI483299B (en) 2009-01-09 2009-01-09 Methods and apparatus for cleaning semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098100896A TWI483299B (en) 2009-01-09 2009-01-09 Methods and apparatus for cleaning semiconductor wafers

Publications (2)

Publication Number Publication Date
TW201027604A true TW201027604A (en) 2010-07-16
TWI483299B TWI483299B (en) 2015-05-01

Family

ID=44853267

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098100896A TWI483299B (en) 2009-01-09 2009-01-09 Methods and apparatus for cleaning semiconductor wafers

Country Status (1)

Country Link
TW (1) TWI483299B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US432553A (en) * 1890-07-22 Finishing house interiors
US6039059A (en) * 1996-09-30 2000-03-21 Verteq, Inc. Wafer cleaning system
ATE354175T1 (en) * 2001-06-12 2007-03-15 Akrion Technologies Inc MEGASONIC CLEANING AND DRYING DEVICE
US6843257B2 (en) * 2002-04-25 2005-01-18 Samsung Electronics Co., Ltd. Wafer cleaning system
KR100526192B1 (en) * 2003-05-28 2005-11-03 삼성전자주식회사 Apparatus and Method For Cleaning Wafer
TWI371063B (en) * 2007-06-15 2012-08-21 Acm Res Shanghai Inc Methods and apparatus for cleaning semiconductor wafers

Also Published As

Publication number Publication date
TWI483299B (en) 2015-05-01

Similar Documents

Publication Publication Date Title
US10020208B2 (en) Methods and apparatus for cleaning semiconductor wafers
US9633833B2 (en) Methods and apparatus for cleaning semiconductor wafers
CN101879511B (en) Method and device for cleaning semiconductor silicon wafer
TW594883B (en) In-situ local heating using megasonic transducer resonator
CN102197462A (en) Acoustic assisted single wafer wet clean for semiconductor wafer process
KR20100046135A (en) Methods and apparatus for cleaning semiconductor wafers
CN101927242B (en) Method and device for cleaning semiconductor silicon wafer
TWI473669B (en) Improved ultrasonic treatment method and apparatus
JP2008288541A (en) Single wafer processing cleaning apparatus
CN101884986A (en) Semiconductor apparatus cleaning device and method
TW201027604A (en) Methods and apparatus for cleaning semiconductor wafers
CN107210193A (en) Method and apparatus for cleaning and drying ic substrate
JP2004146594A (en) Substrate processing system and processing method
JP4007742B2 (en) Ultrasonic cleaning method
TWI501297B (en) Methods and apparatus for cleaning semiconductor wafers
JP2005045156A (en) Lift-off method
JP2004146439A (en) Substrate cleaning method and device thereof
JP2007266194A (en) Cleaning method of semiconductor substrate, and cleaning apparatus of semiconductor substrate using it
TWI835822B (en) Methods and apparatus for cleaning substrates
KR101206392B1 (en) Ultrasonic transmitters and ultrasonic cleaning apparatus having the same
KR20090041805A (en) Apparatus for ultrasonic cleaning of substrate
JP7217280B2 (en) SUBSTRATE CLEANING METHOD AND CLEANING APPARATUS
TW202105504A (en) Textured silicon semiconductor processing chamber components
TWI611507B (en) Method and apparatus for outcroping on the back side of a through hole
CN102513304A (en) Cleaning method for semiconductor silicon wafer