TW201027413A - Switched-capacitor circuit of capacitive touch panel and detection method thereof - Google Patents
Switched-capacitor circuit of capacitive touch panel and detection method thereof Download PDFInfo
- Publication number
- TW201027413A TW201027413A TW98100727A TW98100727A TW201027413A TW 201027413 A TW201027413 A TW 201027413A TW 98100727 A TW98100727 A TW 98100727A TW 98100727 A TW98100727 A TW 98100727A TW 201027413 A TW201027413 A TW 201027413A
- Authority
- TW
- Taiwan
- Prior art keywords
- capacitor
- operational amplifier
- sensing line
- switching
- terminal
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
- Electronic Switches (AREA)
Abstract
Description
201027413 六、發明說明: 【發明所屬之技術領威】+ 本發明係有關一種電容式觸控板’特別是關於一種電容式 觸控板的切換電容電路及摘測方法。 【先前技術】 電容式觸控板是一種可供手指在平滑的面板上滑動以控 ❿ 制游標移動的輸入裝置’由於其具有體積小、成本低、消耗功 率低及使用壽命長等優點’因此被廣泛地應用在各類電子產品 上作為輸入裝置。現行的電容式觸控板之定位方式是採用掃描 X軸及Y轴或是直接偵測X軸與Y軸的位置,以在X轴及γ 轴的交叉處產生定位點。圖1顯示習知的電容式觸控板1〇, 其包括多條X軸感應線(trace)TXl〜TX8以及多條Y軸感應線 TY1〜TY6 ’當手指12觸碰電容式觸控板1〇時,若偵測到感 應線TX8及TY3上的電容值改變,便可判斷手指在感應線τχ8 及ΤΥ3的交又點上。然而,這樣的定位方式在多指應用上無 ® 法正確麟Λ手指位置。 圖2顯示有兩隻手指觸碰電容式觸控板1〇時的情況,當 手指20及22觸碰電容式觸控板1〇時,將偵測到感應線τχ2、 ΤΧ4 'ΤΥ2及ΤΥ4上的電容值改變,因此除了手指2〇及22 觸碰的位置(ΤΧ2,ΤΥ4)及(TX4JY2)之外,在位置(ΤΧ2,ΤΥ2)及 (TX4JY4)也將出現兩個鬼點24及26,這使得電容式觸控板 10無法正確的判斷出手指2〇及22的位置。 因此’ 一種應用在電容式觸控板可以達成多指定位的裝 201027413 置,乃為所冀。 【發明内容】 、克j月的目的’在於提出一種應用電容式觸控板中用以達 成多指定位的切換電容電路及細方法。 、根據本發明’―種電容式觸控板的切換電容電路及偵測方 Μ貞」在帛$應線及—第二感應線的交叉點上產生的旁 ❹ 侧電合的電谷值,據以判斷是否有物件觸碰該交又點。該切換 電容電路包括—第—切換電路連接該第-感應線,用以將該第 -感應線連接至-第—電壓端或—第二電壓端,—運算放大器 ' -第二輸人端及—輸出端,該運算放大器 的第一輪入端連接該第二電壓端,一第二切換電路連接該第二 感應線’肋職第二錢線連接至鱗二電壓端或該運算放 大器的第二輸人端,—切換電容具有—第—端及—第二端,該 切換電容的第-端連接該運算放A _第二輸人端一第三切 _ 換電路連接在該運算放大器的第二輸入端及輪出端之間,用以 將該運算放大器的輸出端連接至該運算放大器的第二輸入 端,以及-第四切換電路連接該切換電容的第二端,用以將該 切換電容’二端連接至該第二電魏或該運算放大器的輪 出端。 1 該偵測方法包括先分別將該第一感應線及該第二感應線 連接至-第-電壓端及—第二電财以在該旁侧電容上累積 電荷’接著將該第一感應線切換至該第二電壓端並將該第二感 應線切換至該運算放大器的第二輸入端,同時切換電容的第二 4 201027413 端切換至該運算放大器的輸出端,跟著該旁侧電容上的電荷轉 移至該切換電容以決定該運算放大器輸出端上的電壓,最後根 據該運算放大器輸出端上的電壓判斷是否有物件觸碰該交又 點。 【實施方式】 圖3顯示電容式觸控板上兩條感應線τχ及τγ,在感應 © 線ΤΧ及ΤΥ的交又點上產生旁侧電容30,其具有電容值Cxy, 當手指觸碰感應線TX及TY的交又點時,旁側電容30的電 容值將產生變化。圖4顯示本發明切換電容電路4〇的實施例, 其中感應器50為感應線TX及TY的等效電路,電容5002為 感應線TX的感應電容,其具有電容值(^,電容5004為感應 線TY的感應電容’其具有電容值Cy,在切換電容電路40中, 切換電路4002具有開關SW1連接在電壓端Vc及感應線TX 之間以及開關SW2連接在感應線τχ及電壓端Vcom之間, φ 開關SW1及SW2分別受控於時脈ρ!及p2,切換電路4004 具有開關SW3連接在感應線TY及電壓端Vcom之間以及開 關SW4連接在感應線TY及運算放大器4010的輸入端4012 之間,開關SW3及SW4分別受控於時脈pi及P2,運算放大 器4010除了輸入端4012外還具有一輸入端4014及輸出端 4016 ’運算放大器4010的輸入端4014連接電壓端Vcom,切 換電容CF具有第一端4018及第二端4020,其中切換電容CF 的第一端4018連接運算放大器4010的輸入端4012 ’切換電 路4006具有開關SW5連接在運算放大器4010的輸入端4012 201027413 及輸出端4016之間’開關sW5受控於時脈ρι,切換電路4〇〇8 具有開關SW6連接在切換電容CF的第二端4〇2〇及電壓端 Vcom之間以及開關SW7連接在切換電容CF的第 二端 4020 及運算放大器4010的輸出端4016之間,開關SW6及SW7分 別受控於時脈P1及P2。 圖5顯不手指觸碰感應器5〇時的情況,當手指觸碰感應 線τχ及TY的交又點時,感應^χ&τγ的感應電容5〇〇2 ❹ 及5004分別有電容增量Δ(:χ及ACy,同時旁侧電容30也有 電容增量ACxy。圖6顯示圖5中切換電容電路4〇在時脈ρι 打開(turn on)開關時的情況。圖7顯示圖5中切換電容電路4〇 在時脈P2打開開關時的情況。參照圖6,時脈ρι打開開關 SW1、SW3、SW5及SW6 時脈I»2關閉(触〇句開關SW2、 SW4及SW7 ’因此感應線TX連接電麼端%,感應線τγ連 接電壓端Vcom,切換電容CF的第二端連接電壓端ν·,運 算放大器4010的輸出端4016連接其輸入端4〇12,由於感應 參 線TX的感應電容5〇〇2有電容增量ACx,故其電荷201027413 VI. Description of the Invention: [Technical Leadership of the Invention] + The present invention relates to a capacitive touch panel', particularly to a switched capacitor circuit and a method for picking up a capacitive touch panel. [Prior Art] A capacitive touch panel is an input device that allows a finger to slide on a smooth panel to control the movement of the cursor. Because of its small size, low cost, low power consumption, and long service life, it is therefore It is widely used as an input device in various electronic products. The current capacitive touch panel is positioned by scanning the X-axis and the Y-axis or directly detecting the X-axis and Y-axis positions to create an anchor point at the intersection of the X-axis and the γ-axis. 1 shows a conventional capacitive touch panel 1A including a plurality of X-axis sensing lines TX1 to TX8 and a plurality of Y-axis sensing lines TY1 to TY6' when the finger 12 touches the capacitive touch panel 1 When 〇, if the capacitance value on the sensing lines TX8 and TY3 is detected to change, it can be judged that the finger is at the intersection of the sensing lines τ χ 8 and ΤΥ 3 . However, such a positioning method does not have a correct method for finger position in multi-finger applications. Figure 2 shows the situation when two fingers touch the capacitive touch panel. When the fingers 20 and 22 touch the capacitive touch panel, the sensing lines τχ2, ΤΧ4 'ΤΥ2 and ΤΥ4 are detected. The capacitance value changes, so in addition to the positions of the fingers 2〇 and 22 (ΤΧ2, ΤΥ4) and (TX4JY2), two ghost points 24 and 26 will appear at the positions (ΤΧ2, ΤΥ2) and (TX4JY4). This makes it impossible for the capacitive touch panel 10 to correctly judge the positions of the fingers 2 and 22. Therefore, one application can be achieved in a multi-specified position of the capacitive touch panel. SUMMARY OF THE INVENTION The purpose of the present invention is to propose a switching capacitor circuit and a fine method for achieving a plurality of designated bits in a capacitive touch panel. According to the present invention, the "switching capacitor circuit of the capacitive touch panel and the detecting method" generates an electrical valley value of the side-by-side electrical connection at the intersection of the 应$cord line and the second sensing line. It is judged whether there is something touching the point and the point. The switched capacitor circuit includes a first switching circuit connected to the first sensing line for connecting the first sensing line to a -first voltage terminal or a second voltage terminal, an operational amplifier '-second input terminal and An output end, the first wheel end of the operational amplifier is connected to the second voltage end, and a second switching circuit is connected to the second sensing line, the second wire is connected to the scale voltage terminal or the operational amplifier The second input end, the switching capacitor has a first end and a second end, and the first end of the switching capacitor is connected to the operation A _ the second input end is a third cut _ the circuit is connected to the operational amplifier Between the second input end and the round output end, the output end of the operational amplifier is connected to the second input end of the operational amplifier, and the fourth switching circuit is connected to the second end of the switching capacitor for The switching capacitor 'two ends are connected to the second terminal or the output terminal of the operational amplifier. 1 The detecting method includes first connecting the first sensing line and the second sensing line to a -first voltage terminal and a second power to accumulate a charge on the side capacitor. Then, the first sensing line Switching to the second voltage terminal and switching the second sensing line to the second input end of the operational amplifier, while switching the second 4 201027413 end of the switching capacitor to the output of the operational amplifier, followed by the side capacitor The charge is transferred to the switching capacitor to determine the voltage at the output of the operational amplifier, and finally, based on the voltage at the output of the operational amplifier, it is determined whether an object touches the intersection. [Embodiment] FIG. 3 shows two sensing lines τ χ and τ γ on a capacitive touch panel, and a side capacitor 30 is generated at the intersection of the sensing lines ΤΧ and ΤΥ, which has a capacitance value Cxy, when the finger touches the sensing When the intersection of the lines TX and TY is again, the capacitance value of the side capacitor 30 will change. 4 shows an embodiment of the switched capacitor circuit 4A of the present invention, wherein the inductor 50 is an equivalent circuit of the sensing lines TX and TY, and the capacitor 5002 is a sensing capacitor of the sensing line TX, which has a capacitance value (^, the capacitance 5004 is an induction The sensing capacitor of the line TY has a capacitance value Cy. In the switched capacitor circuit 40, the switching circuit 4002 has a switch SW1 connected between the voltage terminal Vc and the sensing line TX and a switch SW2 connected between the sensing line τχ and the voltage terminal Vcom. The φ switches SW1 and SW2 are respectively controlled by the clocks ρ! and p2, and the switching circuit 4004 has the switch SW3 connected between the sensing line TY and the voltage terminal Vcom and the switch SW4 connected to the sensing line TY and the input terminal 4012 of the operational amplifier 4010. The switches SW3 and SW4 are controlled by the clocks pi and P2, respectively. The operational amplifier 4010 has an input terminal 4014 and an output terminal 4016 in addition to the input terminal 4012. The input terminal 4014 of the operational amplifier 4010 is connected to the voltage terminal Vcom, and the switching capacitor is switched. The CF has a first end 4018 and a second end 4020, wherein the first end 4018 of the switching capacitor CF is connected to the input terminal 4012 of the operational amplifier 4010. The switching circuit 4006 has a switch SW5 connected to the operational amplifier 40. The input terminal 4012 between 201027413 and the output terminal 4016 is controlled by the clock ρι, and the switching circuit 4〇〇8 has a switch SW6 connected between the second terminal 4〇2〇 of the switching capacitor CF and the voltage terminal Vcom. And the switch SW7 is connected between the second end 4020 of the switching capacitor CF and the output terminal 4016 of the operational amplifier 4010, and the switches SW6 and SW7 are respectively controlled by the clocks P1 and P2. Figure 5 shows when the finger touches the sensor 5〇 In the case, when the finger touches the intersection of the sensing line τχ and TY, the sensing capacitances 5〇〇2 ❹ and 5004 of the sensing ^χ&τγ have capacitance increments Δ(:χ and ACy, respectively, while the side capacitor 30 There is also a capacitor increment ACxy. Figure 6 shows the switching capacitor circuit 4 in Figure 5 when the clock ρι turns on the switch. Figure 7 shows the switching capacitor circuit 4 in Figure 5 when the clock P2 turns on the switch Referring to FIG. 6, the clock ρι opens the switches SW1, SW3, SW5, and SW6, and the clock I»2 is turned off (touching the switch SW2, SW4, and SW7', so the sensing line TX is connected to the power terminal %, and the sensing line τ γ is connected to the voltage. At the terminal Vcom, the second end of the switching capacitor CF is connected to the voltage terminal ν·, the operational amplifier 4010 The output terminal 4016 is connected to its input terminal 4〇12. Since the sensing capacitor 5〇〇2 of the sensing reference line TX has a capacitance increment ACx, its charge
Qcx=Vcx(Cx+ACx) 、弋 1 公式2 感應線TY的感應電容5004有電容增量,故其電荷 Qcy=Vcomx (Cy+ACy) 同樣的,旁侧電容30的電荷 201027413Qcx=Vcx(Cx+ACx), 弋 1 Equation 2 The sensing capacitor 5004 of the sensing line TY has a capacitance increment, so its charge Qcy=Vcomx (Cy+ACy) Similarly, the charge of the side capacitor 30 201027413
Qcxy=(Vc-Vc〇m)x(Cxy+ACxy) 公式 3 由於虛接地原理’運算放大器4010的輸入端4012上的電壓等 於輸入端4014上的電壓ycom,因此切換電容CF兩端4018 及4020上的電壓相等’故切換電容CF上的電荷為〇,此時運 算放大器的輪出端4016上的電壓Vo=Vcom。 φ 接著’參照圖7,時脈P1關閉開關SW1、SW3、SW5及 SW6而時脈P2打開開關SW2、SW4及SW7,因此感應線XX 連接電壓端Vcom ’感應線TY連接運算放大器4010的輪入端 4012,切換電容CF的第二端連接運算放大器4010的輪出端 4016 ’運算放大器4010的輸出端4016及輸入端4012之間則 被斷開’此時’感應線TX的感應電容5002的電荷Qcxy=(Vc-Vc〇m)x(Cxy+ACxy) Equation 3 Due to the virtual grounding principle, the voltage at the input terminal 4012 of the operational amplifier 4010 is equal to the voltage ycom at the input terminal 4014, so the switching capacitors CF are terminated at 4018 and 4020. The voltage on the voltage is equal 'so the charge on the switching capacitor CF is 〇, at which time the voltage Vo on the wheel-out terminal 4016 of the operational amplifier is V=Vcom. φ Then, referring to FIG. 7, the clock P1 turns off the switches SW1, SW3, SW5 and SW6 and the clock P2 turns on the switches SW2, SW4 and SW7, so that the sensing line XX is connected to the voltage terminal Vcom' the sensing line TY is connected to the wheel of the operational amplifier 4010. The terminal 4012, the second end of the switching capacitor CF is connected to the wheel terminal 4016 of the operational amplifier 4010. The output of the sensing capacitor 5002 of the sensing line TX is turned off between the output terminal 4016 and the input terminal 4012 of the operational amplifier 4010.
Qcx=Vcomx(Cx+ACx) 感應線TY的感應電容5004的電荷 公式4Qcx=Vcomx(Cx+ACx) The charge of the sense capacitor 5004 of the sense line TY
Qcy=Vcomx(Cy+ACy) 公式 5 而旁侧電容30上的電荷將全部轉移到切換電容CF ’故旁側電 容30上的電荷為〇,由公式3可得知切換電gCF上的電荷Qcy=Vcomx(Cy+ACy) Equation 5 and the charge on the side capacitor 30 is all transferred to the switching capacitor CF'. Therefore, the charge on the side capacitor 30 is 〇, and the charge on the switching power gCF can be known from Equation 3.
Qcf=(Vb-Vcom)xCF=(Vc-Vcom)x(Cxy+ACxy) 公式 6 7 201027413 根據公式6可進一步得到運算放大器4016輸出端上的電壓Qcf=(Vb-Vcom)xCF=(Vc-Vcom)x(Cxy+ACxy) Equation 6 7 201027413 According to Equation 6, the voltage at the output of the operational amplifier 4016 can be further obtained.
Vo=[(Cxy+ACxy)/CF]x(Vc-Vcom)+Vcom 公式 7 在切換電容電路40中’感應線TX及TY的感應電容5002及 5004之電容值變化並不會對切換電容電路輸出端v〇造成影 Φ 響。 圖8顯示沒有手指觸碰感應器50時情況,其中感應線TX 及TY的感應電容5002及5004分別有電容增量acx及ACy, 但由於手指沒有觸碰至感應線TX及TY的交叉點,因此旁侧 電容30沒有電容增量。圖9顯示圖8中切換電容電路40在時 脈P1打開開關時的情況。圖1〇顯示圖8中切換電容電路4〇 在時脈P2打開開關時的情況。參照圖9,時脈pi打開開關 SW卜SW3、SW5及SW6而時脈P2關閉(turn ofi)開關SW2、 ©SW4及SW7,因此感應線TX連接電壓端Vc,感應線TY連 接電壓端Vcom ’切換電容CF的第二端連接電壓端vcom,運 算放大器4010的輸出端4016連接其輸入端4012,由於感應 線XX的感應電容5002有電容增量ACx,故其電荷如公式1 所示’感應線ΤΎ的感應電容5004有電容增量ACy,故其電 荷如公式2所示,旁侧電容30的電荷Vo=[(Cxy+ACxy)/CF]x(Vc-Vcom)+Vcom Equation 7 In the switched capacitor circuit 40, the change in the capacitance values of the sensing capacitors 5002 and 5004 of the sensing lines TX and TY does not affect the switched capacitor circuit. The output v〇 causes a shadow Φ. FIG. 8 shows a case where no finger touches the sensor 50, wherein the sensing capacitors 5002 and 5004 of the sensing lines TX and TY have capacitance increments acx and ACy, respectively, but since the finger does not touch the intersection of the sensing line TX and TY, Therefore, the side capacitor 30 has no capacitance increment. Fig. 9 shows the case where the switching capacitor circuit 40 of Fig. 8 is turned on when the clock P1 is turned on. Fig. 1 is a view showing the case where the switching capacitor circuit 4 in Fig. 8 is turned on when the clock P2 is turned on. Referring to FIG. 9, the clock pi turns on the switches SW, SW3, SW5, and SW6, and the clock P2 turns off the switches SW2, ©SW4, and SW7. Therefore, the sensing line TX is connected to the voltage terminal Vc, and the sensing line TY is connected to the voltage terminal Vcom'. The second end of the switching capacitor CF is connected to the voltage terminal vcom, and the output terminal 4016 of the operational amplifier 4010 is connected to the input terminal 4012. Since the sensing capacitor 5002 of the sensing line XX has a capacitance increment ACx, the charge is as shown in the formula 1 The sensing capacitor 5004 of the 有 has a capacitance increment ACy, so its charge is as shown in Equation 2, and the charge of the side capacitor 30
Qcxy=(Vc-Vcom)xCxy 公式 8 201027413 由於虚接地原理’運算放大器4010的輸入端4012上的電壓等 於輸入端4014上的電壓Vcom,因此切換電容CF兩端4018 及4020上的電壓相等,故切換電容CF上的電荷為0,此時運 算放大器的輸出端4016上的電壓v〇=Vcom。 接著’參照圖10,時脈Pi關閉開關SWh SW3、SW5 及SW6而時脈P2打開開關SW2、SW4及SW7,因此感應線 TX連接電壓端Vcom ’感應線τγ連接運算放大器4010的輸 入端4012,切換電容CF的第二端連接運算放大器4010的輸 出端4016,運算放大器4〇1〇的輸出端4016及輸入端4012之 間則被斷開,此時,感應線TX的感應電容5002的電荷如公 式4所示’感應線TY的感應電容5〇〇4的電荷如公式5所示, 而旁侧電容30上的電荷將全部轉移到切換電容CF,故旁侧電 谷30上的電荷為〇 ’由公式§可得知切換電容上的電荷Qcxy=(Vc-Vcom)xCxy Equation 8 201027413 Due to the virtual grounding principle, the voltage on the input terminal 4012 of the operational amplifier 4010 is equal to the voltage Vcom on the input terminal 4014, so the voltages across the terminals 4018 and 4020 of the switching capacitor CF are equal, The charge on the switching capacitor CF is zero, at which time the voltage on the output terminal 4016 of the operational amplifier is V 〇 = Vcom. Then, referring to FIG. 10, the clock Pi turns off the switches SWh SW3, SW5 and SW6 and the clock P2 turns on the switches SW2, SW4 and SW7. Therefore, the sensing line TX is connected to the voltage terminal Vcom' the sensing line τγ is connected to the input terminal 4012 of the operational amplifier 4010. The second end of the switching capacitor CF is connected to the output terminal 4016 of the operational amplifier 4010, and the output terminal 4016 of the operational amplifier 4〇1〇 and the input terminal 4012 are disconnected. At this time, the charge of the sensing capacitor 5002 of the sensing line TX is as In Equation 4, the charge of the sense capacitor 5〇〇4 of the sense line TY is as shown in Equation 5, and the charge on the side capacitor 30 is all transferred to the switching capacitor CF, so the charge on the side valley 30 is 〇. 'The § can be used to know the charge on the switching capacitor
Qcf=(V〇-Yc〇m) xCF=(Vc-Vcom)xCxy 公式9 Φ 根據公式9可進-步求得運算放大器4010的輸出端娜上的 電壓Qcf=(V〇-Yc〇m) xCF=(Vc-Vcom)xCxy Equation 9 Φ According to Equation 9, the voltage on the output terminal of the operational amplifier 4010 can be further determined.
Vo=(Cxy/CF)x(Vc-Vcom)+Vcom 公式10 由公式7及公式10可知’當有手指觸碰感應器5〇時,旁側電 容3〇將產生變化,進而使運算放大器侧的輪出端4〇16上 的電壓改變,又感應線τχ及τγ的感應電容5〇〇2及5〇〇4之 201027413 電容值變化並不會對切換電容電路輸出端ν〇造成影響, 在多指應用上可以正確定位出手指的位置。 【圖式簡單說明】 圖1顯示習知的電容式觸控板; 圖2顯示有兩隻手指觸碰圖1中電容式觸控板的情況; 圖3顯示電容式觸控板上兩條感應線τχ及τγ ; _ 圖4顯示本發明切換電容電路的實施例; 圖5顯示手指觸碰圖4中感應器時的情況; 圖6顯示圖5中切換電容電路在時脈ρ〗打開開關時的情況; 圖7顯示圖5中切換電容電路在時脈P2打開開關時的情況; 圖8顯示沒有手指觸碰圖4中感應器時情況; 圖9顯示圖8中切換電容電路在時脈朽打開開關時的情況; 以及 , 圖10顯示圖8中切換電容電路在時脈P2打開開關時的情況。 ® 【主要元件符號說明】 10 電容式觸控板 12 手指 20 手指 22 手指 24 鬼點 26 鬼點 30 旁側電容 201027413 40 切換電容電路 4002 切換電路 4004 切換電路 4006 切換電路 4008 切換電路 4010 運算放大器 4012 運算放大器3010的輸入端 4014 運算放大器3010的輸入端 4016 運算放大器3010的輸出端 4018 切換電容CF的第一端 4020 切換電容CF的第二端 50 感應器 5002 感應線TX的感應電容 5004 感應線TY的感應電容Vo=(Cxy/CF)x(Vc-Vcom)+Vcom Equation 10 From Equation 7 and Equation 10, when the finger touches the sensor 5〇, the side capacitor 3〇 will change, and the op amp side will be changed. The voltage on the output terminal 4〇16 changes, and the sense capacitances of the sense lines τχ and τγ are 5〇〇2 and 5〇〇4. The change of the capacitance value does not affect the output terminal ν〇 of the switched capacitor circuit. The multi-finger application can correctly position the finger. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional capacitive touch panel; FIG. 2 shows a case where two fingers touch the capacitive touch panel of FIG. 1; FIG. 3 shows two sensings of the capacitive touch panel. Lines τ χ and τ γ ; _ Figure 4 shows an embodiment of the switched capacitor circuit of the present invention; Figure 5 shows the situation when the finger touches the inductor of Figure 4; Figure 6 shows the switched capacitor circuit of Figure 5 when the clock ρ opens the switch Figure 7 shows the switching capacitor circuit of Figure 5 when the clock P2 opens the switch; Figure 8 shows the situation when no finger touches the sensor in Figure 4; Figure 9 shows the switching capacitor circuit of Figure 8 at the time of the pulse The case when the switch is turned on; and, FIG. 10 shows the case where the switching capacitor circuit of FIG. 8 is turned on when the clock P2 is turned on. ® [Main component symbol description] 10 Capacitive touch panel 12 Finger 20 Finger 22 Finger 24 Ghost point 26 Ghost point 30 Side capacitor 201027413 40 Switching capacitor circuit 4002 Switching circuit 4004 Switching circuit 4006 Switching circuit 4008 Switching circuit 4010 Operational amplifier 4012 The input terminal 4014 of the operational amplifier 3010 The input terminal 4016 of the operational amplifier 3010 The output terminal 4018 of the operational amplifier 3010 The first end 4020 of the switching capacitor CF 40 The second end of the switching capacitor CF 50 The sensor 5002 The sensing line of the sensing line TX 5004 The sensing line TY Inductive capacitance
Claims (1)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98100727A TW201027413A (en) | 2009-01-09 | 2009-01-09 | Switched-capacitor circuit of capacitive touch panel and detection method thereof |
JP2009273642A JP2010160789A (en) | 2009-01-09 | 2009-12-01 | Detection circuit and detection method of capacitance touch panel |
US12/652,260 US8593429B2 (en) | 2009-01-09 | 2010-01-05 | Sensing circuit and method for a capacitive touch panel |
US13/801,702 US8736578B2 (en) | 2009-01-09 | 2013-03-13 | Sensing circuit and method for a capacitive touch panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98100727A TW201027413A (en) | 2009-01-09 | 2009-01-09 | Switched-capacitor circuit of capacitive touch panel and detection method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201027413A true TW201027413A (en) | 2010-07-16 |
TWI380207B TWI380207B (en) | 2012-12-21 |
Family
ID=44853195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98100727A TW201027413A (en) | 2009-01-09 | 2009-01-09 | Switched-capacitor circuit of capacitive touch panel and detection method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201027413A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI400456B (en) * | 2010-07-28 | 2013-07-01 | Elan Microelectronics Corp | Used in capacitive touch buttons and proximity sensing sensing circuits and methods |
-
2009
- 2009-01-09 TW TW98100727A patent/TW201027413A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI400456B (en) * | 2010-07-28 | 2013-07-01 | Elan Microelectronics Corp | Used in capacitive touch buttons and proximity sensing sensing circuits and methods |
Also Published As
Publication number | Publication date |
---|---|
TWI380207B (en) | 2012-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102267365B1 (en) | Multi-step incremental switching scheme | |
US8619057B2 (en) | Signal processing circuit for electrostatic capacitor type touch sensor | |
CN203149513U (en) | Touch screen panel | |
KR101410414B1 (en) | Touch screen panel having function of sensing motion | |
TWI475450B (en) | Picture input type image display system | |
US8736578B2 (en) | Sensing circuit and method for a capacitive touch panel | |
JP5086420B2 (en) | Touch panel detection circuit | |
WO2015002203A1 (en) | Touch panel system | |
JP2010182290A (en) | Signal processing device of touch panel | |
US9146643B2 (en) | Touch sensing apparatus and method thereof | |
EP2546728B1 (en) | Touch sensing circuit and touch point detecting method thereof | |
CN107092369B (en) | Wired stylus, touch electronic device, touch electronic system and touch processing method | |
US20140035653A1 (en) | Capacitance sensing device and touchscreen | |
CN101907962B (en) | Sensing method and circuit for capacitive touchpad | |
US9103858B2 (en) | Capacitance sensing apparatus and touch screen apparatus | |
JP2010282471A (en) | Signal processing circuit for electrostatic capacity type touch panel | |
JP2011170616A (en) | Capacitance type touch sensor | |
US7683892B2 (en) | Touch sensing apparatus using varying signal delay input to a flip-flop | |
EP3770738B1 (en) | Capacitance detection circuit, capacitance detection method, touch chip and electronic device | |
TWI479400B (en) | Sensing circuit relating to capacitive touch panel and mehod thereof using the same | |
TWI441066B (en) | Capacitive touch apparatus | |
TW201027413A (en) | Switched-capacitor circuit of capacitive touch panel and detection method thereof | |
US20120056842A1 (en) | Sensing Apparatus for Touch Panel and Sensing Method Thereof | |
WO2023053488A1 (en) | Electrostatic capacitance sensor | |
US20210303097A1 (en) | Capacitance detection circuit and input device |