TW201027120A - Projection optical system, exposure apparatus, and device manufacturing method - Google Patents

Projection optical system, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
TW201027120A
TW201027120A TW098138761A TW98138761A TW201027120A TW 201027120 A TW201027120 A TW 201027120A TW 098138761 A TW098138761 A TW 098138761A TW 98138761 A TW98138761 A TW 98138761A TW 201027120 A TW201027120 A TW 201027120A
Authority
TW
Taiwan
Prior art keywords
optical system
point
imaging optical
imaging
deflecting member
Prior art date
Application number
TW098138761A
Other languages
Chinese (zh)
Inventor
Yasuhiro Ohmura
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW201027120A publication Critical patent/TW201027120A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An object is to provide a projection optical system, for example, capable of improving the throughput of scanning exposure in application to scanning exposure apparatus. A projection optical system (PL) for forming an image of a first surface (Ma) and an image of a second surface (Mb) on a third surface (W) comprises a first imaging optical system (G1), a second imaging optical system (G2), a third imaging optical system (G3), a fourth imaging optical system (G4), a fifth imaging optical system (G5), a sixth imaging optical system (G6), a seventh imaging optical system (G7), a first folding member (FM: R37) disposed between the third imaging optical system and the seventh imaging optical system, and a second folding member (FM: R67) disposed between the sixth imaging optical system and the seventh imaging optical system.

Description

201027120 六、發明說明: 【發明所屬之技術領域】 本發明的一實施例是關於一種投影光學系統、曝光裝 置及元件製造方法,更明確地說,是關於一種適合藉由光 微影術來製造半導體元件與液晶顯示器元件之類的元件的 曝光裝置的投影光學系統。 【先前技術】 在用於製造半導體元件及其它元件的光微影術製程 中,會使用#描曝光裝置經由投影光學系统來對感光性基 板(其塗佈著-光阻或類似物)1的光罩(主光罩)的圖 樣實施掃描曝普通的掃描曝光裝置配置成用以交替重 複進仃下面兩個操作:在其中一個照射區域⑽)中 進灯掃描曝光的操作;以及將該感光性基板步進移動至下 個照射區域的操作(舉例來說,請參見專利文獻^)。 【引證案列表】 專利文獻1 .重新頒授的美國專利案第37391號 【發明内容】 光微影術製程中所使用的感光 近來的研究皆朝向提高 性基板的尺寸。 201027120 時’光微影術製程的總處理量會因數量增加而下降。 本發明的一實施例提供一種投影光學系統,舉例來 說,其能夠改良應用至掃描曝光裝置的掃描曝光的總處理 量。本發明的一實施例提供一種曝光裝置,其能夠利用本 發明實施例的投影光學系統來改良掃描曝光的總處理量。 解決問顳的乎斑 本發明的第一項觀點提供一種投影光學系統,用以在 第三表面上形成第一表面的影像及第二表面的影像,其包 括: 第一成像光學系統,其設置在介於該第一表面與第一 共輛點之間的光學路徑之中,該第一共軛點與位於該第一 表面上的某一點產生光學共輛且光學軸在該點處和該第一 表面相交; 第二成像光學系統,其設置在介於該第一共軛點與第 二共軛點之間的光學路徑之中,該第二共軛點與位於該第 一表面上的該點產生光學共軛且光學轴在該點處和該第一 表面相交; 第三成像光學系統’其設置在介於該第二共軛點與第 三共軛點之間的光學路徑之中,該第三共軛點與位於該第 一表面上的該點產生光學共軛且光學轴在該點處和該第一 表面相交; 第四成像光學系統,其設置在介於該第二表面與第四 共軛點之間的光學路徑之中,該第四共軛點與位於該第二 表面上的某一點產生光學共輛且光學軸在該點處和該第二 201027120 表面相交; 第五成像光學系統,其設 五共軛點之間的光學路徑之中 二表面上的該點產生光學共輛 表面相交; 置在介於該第四共軛點與第 ,該第五共軛點與位於該第 且光學軸在該點處和該第二 第六成像光學系統,其設置在介於該第五共軛點與第 六共軛點之間的光學路徑之中,該第六共軛點與位於該第201027120 VI. Description of the Invention: [Technical Field] The present invention relates to a projection optical system, an exposure apparatus, and a component manufacturing method, and more particularly to a method suitable for manufacturing by photolithography A projection optical system of an exposure device of a semiconductor element and a component such as a liquid crystal display element. [Prior Art] In the photolithography process for manufacturing semiconductor elements and other components, a photosensitive substrate (which is coated with a photoresist or the like) is used via a projection optical system using a #-exposure device. The pattern of the reticle (main reticle) is subjected to scanning exposure. The conventional scanning exposure apparatus is configured to alternately repeat the following two operations: an operation of scanning the exposure light in one of the irradiation areas (10); and the sensitivity The operation of moving the substrate stepwise to the next irradiation region (for example, see Patent Document ^). [Citation List] Patent Document 1. Re-granted U.S. Patent No. 37391 [Summary of the Invention] Sensing used in the photolithography process Recently, research has been directed toward the size of an improved substrate. At 201027120, the total throughput of the lithography process will decrease as the number increases. An embodiment of the present invention provides a projection optical system which, for example, can improve the total throughput of scanning exposure applied to a scanning exposure apparatus. An embodiment of the present invention provides an exposure apparatus capable of improving the total processing amount of scanning exposure by using the projection optical system of the embodiment of the present invention. The first aspect of the present invention provides a projection optical system for forming an image of a first surface and an image of a second surface on a third surface, comprising: a first imaging optical system, the setting Among the optical paths between the first surface and the first common point, the first conjugate point is optically co-located with a point on the first surface and the optical axis is at the point and the a first surface intersecting; a second imaging optical system disposed in an optical path between the first conjugate point and the second conjugate point, the second conjugate point being located on the first surface The point produces an optical conjugation and the optical axis intersects the first surface at the point; the third imaging optical system 'is disposed between the optical path between the second conjugate point and the third conjugate point a third conjugate point optically conjugate with the point on the first surface and an optical axis intersecting the first surface at the point; a fourth imaging optical system disposed between the second surface Among the optical paths between the fourth conjugate point, a fourth conjugate point is optically co-located with a point on the second surface and the optical axis intersects the second 201027120 surface at the point; a fifth imaging optical system that sets the optical between the five conjugate points The point on the two surfaces of the path produces an optical common surface intersection; disposed between the fourth conjugate point and the fifth conjugate point and the second optical axis at the point and the second a sixth imaging optical system disposed in an optical path between the fifth conjugate point and the sixth conjugate point, the sixth conjugate point being located at the

二表面上的該點產生光學共軛且光學軸在該點處和該第二 表面相交; 第七成像光學系統,其設置在介於該第三表面與該第 二共輛點及該第六共軛點之間的光學路徑之中; 第一偏向部件,其設置在介於該第三成像光學系統之 中最靠近該第三表面的表面和該第七成像光學系統之中最 靠近該第一表面的表面之間的光學路徑之中,並且配置成 用以將來自該第三成像光學系統的光引導至該第七成像光 學系統;以及 第二偏向部件,其設置在介於該第六成像光學系統之 中最靠近該第三表面的表面和該第七成像光學系統之中最 靠近該第二表面的表面之間的光學路徑之中,並且配置成 用以將來自該第六成像光學系統的光引導至該第七成像光 學系統, 其中’該第七成像光學系統中具有放大率的每一個光 學器件皆是折射光學器件。 本發明的第二項觀點提供一種投影光學系統,用以在 7 201027120 第三表面上形成第一表面的影像及第二表面的影像,其使 用在曝光裝置之中用於將設立在該第一表面和該第二表面 中至少其中一者上的預設圖樣轉印至設立在該第三表面上 的感光性基板,該投影光學系統包括: 第一光學單元,其將來自該第一表面的光引導至路徑 結合元件; 第二光學單元,其將來自該第二表面的光引導至該路 徑結合元件;以及 第三光學單元,其以來自該第一光學單元已經前進通 過該路徑結合元件的光為基礎在該第三表面上形成該第— 表面的影像,且其以來自該第二光學單元已經前進通過該 路徑結合元件的光為基礎在該第三表面上形成該第二表面 的影像, 其中,該第一表面、該第二表面以及該第三表面水平 延伸在該投影光學系統下方的一空間之中,以及 其中,該第三表面是位於該第一表面與該第二表面的 下方。 本發明的第三項觀點提供一種曝光裝置,其包括第 其以來自設立在該 上的預設圖樣的光 第三表面上的感光 項觀點或第二項觀點的投影光學系統, 第一表面和該第二表面中至少其中一者 為基礎,將該預設圖樣投影在設立於該 性基板之上。 本發明的第四項觀點提供一種曝光裝置,其包括用以 在第三表面上%成第—纟面的影像及第二表自的影像的投 201027120 影光學系統’其是用於將設立在該第一表面和該第二表面 中至少其中一者上的預設圖樣轉印至設立在該第三表面上 的感光性基板,該曝光裝置包括: 第一照射單元,其是位於該第一表面的下方且其提供 第一照射光給該第一表面, • 第二照射單元,其是位於該第二表面的下方且其提供 第二照射光給該第二表面, 、 其中,該第一表面、該第二表面以及該第三表面水平 〇 延伸在該投影光學系統下方的一空間之中。 本發明的第五項觀點提供一種器件製造方法’其包括: 利用第三項或第四項觀點的曝光裝置來實行該感光性 基板上該預設圖樣的曝光; 顯影其上已被轉印該預設圖樣的該感光性基板,用以 形成一具有對應於該感光性基板之表面上該預設圖樣之形 狀的光罩層;以及 經由該光罩層來處理該感光性基板的表面。 本發明的效用 因為根據本發明第一項觀點的投影光學系統採用如上 面所述之四重成像類型的雙頭基礎配置,所以,其確保影 像側數值孔徑會有必要的位準並確保會有有效的影像區並 且,舉例來說,能夠在影像平面上的預設區域中平行地形 成彼此分隔的兩個物體平面上的圖樣的影像。 因為根據本發明第二項觀點的投影光學系統採用的配 置中,相較於其上會有個別光罩的第一表面和第二表面, 9 201027120 其上有-晶圓的第三表面和該投影光學系統的相隔距離較 遠,所以,固持該等光罩的光罩平台的移動空間能夠和固 持該晶圓的晶圓平台的移動空間分開。 結果,舉例來說’當第一項觀點或第二項觀點的投影 光學系統應用至掃描曝光裝置時,藉由單次ϋ 以叠置的方式在該感光性基板的其中一個照射區域中印刷, 兩個不同的圖樣。 ^ 另外,僅藉由在掃描方向中移動該感光性基板,便可 以於對齊排列在該掃描方向中的複數個照射區域中連續實❹ 施掃描曝光,而不需要對該感光性基板實施二維的步進移 動》換言之,當根據本發明第一項觀點或第二項觀點的投 影光學系統被應用至掃描曝光裝置時,掃描曝光的總處理 量會明顯的改良,且最終可以極高的總處理量來製造器件。 【實施方式】 根據本發明一實施例的投影光學系統包括:第一光學 單元,其具有第一成像光學系統、第二成像光學系統以及❹ 第三成像光學系統;第二光學單元,其具有第四成像光學 系統、第五成像光學系統以及第六成像光學系統;以及第 三光學單元’其具有第七成像光學系統,而且該投影光學 系統配置成用以在第三表面(影像平面)上形成第一表面 (第一物體平面)的影像以及第二表面(第二物體平面) 的影像。該第一成像光學系統設置在介於該第一表面與第 一共軛點之間的光學路徑之中,該第一共扼點與位於光學 10 201027120 軸上的某一點產生光學共軛;該第二成像光學系統設置在 介於該第一共軛點與第二共軛點之間的光學路徑之中,該 第二共軛點與位於該光學軸上的該點產生光學共軛;而該 第三成像光學系統設置在介於該第二共軛點與第三共軛點 之間的光學路徑之中,該第三共軛點會與位於該光學軸上 • 的該點產生光學共軛。 該第四成像光學系統設置在介於該第二表面與第四共 辆點之間的光學路徑之中’該第四共輛點與位於光學軸上 ® 的某一點產生光學共軛;該第五成像光學系統設置在介於 該第四共軛點與第五共軛點之間的光學路徑之中,該第五 共扼點與位於該光學轴上的該點產生光學共軛;而該第六 成像光學系統設置在介於該第五共軛點與第六共輛點之間 的光學路徑之中,該第六共軛點與位於該光學轴上的該點 產生光學共輛。該第七成像光學系統設置在介於該第三表 面與該第三共輛點及該第六共扼點之間的光學路徑之中。 Q 本發明該實施例的投影光學系統包括:第一偏向部 件,其將來自該第三成像光學系統的光引導至該第七成像 光學系統;以及第二偏向部件’其將來自該第六成像光學 系統的光引導至該第七成像光學系統,而且該第七成像光 學系統中具有放大率的每一個光學器件皆是折射光學器 件。換言之,該第七成像光學系統是折射式光學系統。該 第-偏向部件設置在介於該第三成像光學系統和該第七: 像光學系統之間的光學路徑之中;而兮楚_你丄 T,而該第二偏向部件設 置在介於該第六成像光學系統和該第 弟七成像光學系統之間 201027120 的光學路徑之中。 在依此配置所建構的本發明該實施例的投影光學系統 中’該第一成像光學系統以來自該第一表面的光為基礎在 該第一共軛點處或附近形成第一中間影像,該第二成像光 學系統以來自該第一中間影像的光為基礎在該第二共軛點 處或附近形成第二中間影像,該第三成像光學系統以來自 . 該第二中間影像的光為基礎在該第三共輛點處或附近形成 第三中間影像,以及該第七成像光學系統以來自該第三中 間影像的光為基礎在該第三表面上形成第一最終影像。❹ 另一方面,該第四成像光學系統以來自該第二表面的 光為基礎在該第四共軛點處或附近形成第四中間影像,該 第五成像光學系統以來自該第四中間影像的光為基礎在該 第五共軛點處或附近形成第五中間影像,該第六成像光學 系統以來自該第五中間影像的光為基礎在該第六共軛點處 或附近形成第六中間影像,以及該第七成像光學系統以來 自該第六中間影像的光為基礎在該第三表面上形成第二最 終影像。 ❿ 因為本發明該實施例的投影光學系統採用如上面所述 之四重成像類型的雙頭基礎配置,所以,其能夠確保影像 側數值孔徑會有必要的位準並確保會有有效的影像區並 且’舉例來說’能夠在該影像平面上的預設區域中平行地 形成彼此分隔的兩個物體平面上的圖樣的影像。結果,舉 例來說’當本發明該實施例的投影光學系統應用至掃描曝 光裝置時’其能夠在該投影光學系統的有效影像區之中平 12 201027120 行地形成彼此分隔的兩個光罩上的圖樣的影像並且能夠藉 由單次掃描操作以叠置的方式在感光性基板的其中一個照 射區域中印刷兩個不同的圖樣。 备該曝光裝置配置成用以於第一個照射區域中對第一 光罩的圖樣進行掃描曝光的操作、於在掃描移動方向位於 '該第一個照射區域旁邊的第二個照射區域中對第二光罩的 .圖樣進行掃描曝光的操作、於在掃描移動方向位於該第二 個照射區域旁邊的第三個照射區域中對該第一光罩的圖樣 © 進行掃描曝光的操作,重複進行所需的次數,僅藉由沿著 掃描方向來移動該感光性基板,便可以於對齊排列在該掃 描方向中的複數個照射區域中連續實施掃描曝光,而不需 要對該感光性基板實施二維的步進移動。換言之,當本發 明該實施例的投影光學系統被應用至掃描曝光裝置時,掃 描曝光的總處理量會明顯的改良。 舉例來說’當本發明該實施例的投影光學系統應用至 半導體曝光裝置時,其可配置成一具有縮小倍率的光學系 統。在本發明該實施例的投影光學系統中,該第一成像光 學系統和第三成像光學系統,以及該第四成像光學系統和 第六成像光學系統同樣可配置成和該第七成像光學系統相 同的折射式系統。於此情況中,因為折射光學器件可製成 具有穩定的表面精確性,所以’可以改良該等光學系統的 穩定性並且降低該等光學系統的製造成本。 在本發明該實施例的投影光學系統中,該第一光學單 元(其是從該第一表面至該第一偏向部件的光學系統)及 13 201027120 該第二光學單元(其是從該第二表面至該第二偏向部件的 光學系統)可能具有相同的配置。這可讓該投影光學系統 具有對稱於該第七成像光學系統之光學軸的配置,從而使 其變得可以改良該光學系統的穩定性、簡化該光學系統的 配置並且降低該光學系統的製造成本。 在本發明該實施例的投影光學系統中,當該第二成像 光學系統和該第五成像光學系統中的每一者採用具有凹形 反射面鏡的配置時,該投影光學系統除了可針對色像差 (chromatic aberration )妥適修正之外還可確保會有大影像 側數值孔徑。當該第二成像光學系統和該第五成像光學系 統中的每一者採用具有負透鏡的配置時,更明確地說,當 負透鏡設置在該凹形反射面鏡的附近時,便可達到對伯兹 法和(Petzval sum )進行良好補償的效果。 在本發明該實施例的投影光學系統中,第三偏向部件 可能設置在介於該第-表面和該第__偏向部件之間的光學 路徑之中;而第四偏向部件則設置在介於該第二表面和該 第二偏向部件之間的光學路徑之中。明確地說,該第三偏 向部件可能設置在介於嗜筮_ 金土 i # )丨於这第一成像先學系統和該第三成像 光學系統之間的光學路徑之巾,而該第四偏向部件則可能 設置在介於該第五成像光學系統和該第六成像光學系統之 間的光學路徑之中。於此愔中木 度/兄中虽該第二偏向部件設置 在靠近該第二共輛點處而當該第四偏向部件設置在靠近該 第五共扼點處時,會變得比赖 ^咕 雙件比較合易在該第二成像光學系統 和該第五成像光學系統中的每一 J母有之中以該凹形反射面鏡 201027120 為基準將一去程射束與一回程射束分離。 或者,該第三偏向部件可能設置在介於該第一成像光 學系統和該第二成像光學系統之間的光學路徑之中,而該 第四偏向部件則可能設置在介於該第四成像光學系統和該 第五成像光學系統之間的光學路徑之中。於此情況中,务 •.該第三偏向部件設置在靠近該第一共輛點處而當該第四: 向部件設置在靠近該第四共梃點處時,同樣會變得比較容 i在該第二成像光學系統和該第五成像光學系統中的每一 者之中以該凹形反射面鏡為基準將該去程射束與該回程射 束分離。結果,便不需要在第一有效場區和該第一表面上 的光學轴之間設立龐大空間且不需要在第二有效場區和該 第二表面上的光學軸之間設立龐大空間,從而可降低該第 三表面上的最大影像高度,並且進而會變得比較容易達到 縮小該光學系統之尺寸的目的。 在本發明該實施例的投影光學系統中,該第一偏向部 Q件可能設置在該第三共軛點的附近且該第二偏向部件可能 設置在該第六共軛點的附近。於此情況中,便可讓介於該 光學轴及形成在該第三表面上對應於該第一表面上之該第 一有效場區的第一有效影像區之間的空間變小並且讓介於 該光學軸及形成在該第三表面上對應於該第二表面上之該 第二有效場區的第二有效影像區之間的空間變小。結果, 該第三表面上的最大影像高度會降低,並且進而會變得比 較容易達到縮小該光學系統之尺寸的目的。 本發明該實施例的投影光學系統可能在該第一表面上 15 201027120 會有不包含該第一成像光學系統之光學轴的第一有效場區 以及在該第二表面上會有不包含該第四成像光學系統之光 學軸的第二有效場區,並且會滿足下面的條件表示式⑴ 與(2)。在條件表示式⑴與⑺中,l〇i是介於該第 七成像光學系統的光學轴和形成在該第三表面上對應於該 第-有效場區的第一有效影像區之間的距離# l〇2則是. 介於該第七成像光學系統的光學軸和形成在言亥第三表面上· 對應於該第二有效場區的第二有效影像區之間的距離。再 者,B是該第三表面上的最大影像高度。 _ 0.05<LOl/B<0.4 ( 1 ) 0.05<LO2/B<0.4 (2) 當比值小於條件表示式(1)與(2)的下限時,其會 在以該凹形反射面鏡為基準進行去程路徑與回程路徑之路 徑分離中導致過度限制出現在每一個共軛點處的像差的 量。當比值大於條件表示式(丨)與(2)的上限時,其便 會導致該投影光學系統之規模的增加並且會增加藉由單次 掃描操作於照射區域中對兩個光罩圖樣進行掃描曝光所需❹ 要的掃描距離,從而會導致總處理量下降。為更佳地達成 本發明該實施例的效用,可以將條件表示式(丨)與(2 ) 的下限設為0· 1 〇。為更佳地達成本發明該實施例的效用, 可以將條件表示式(丨)與(2)的上限設為〇 32。 當本發明該實施例的投影光學系統排列成讓每一個偏 向部件的反射表面的法線和該光學軸形成45。的話,那麼, 該等個別成像光學系統的光學軸便可能會彼此平行或垂直 16 201027120 而且其最後會有助於該等光學系 可能採用的配置中,在其 該第二偏向部件的射:第-偏向部件的反射表面和 的光學轴形成45。其中表面排列成和該第七成像光學系統 、中,該第三偏向部件的反射表面排列 成和該第-成像光學系統的光學軸形成€,且其中,咳第 :偏向部件的反射表面排列成和該第四成像光學系統的光 學軸形成45 °。 I本發明該實施例的投影光學系統中,該第一偏向部 件的反射表面和該第三偏向部件的反射表面可能排列成彼 此平仃且該第一偏向部件的反射表面和該第四偏向部件的 反射表面可能會被排列成彼此平行。於此配置中,入射排 列在該等共輊點附近的個_向部件之反射表面上的光線 的二射角會有差異,但會聚焦在其中一道光線上,以和該 第一偏向部件或該第四偏向部件的反射表面形成45。+ “的 入射角入射的光線會以45。的入射角入射至該第一偏向 部件或該第二偏向部件的反射表面;所以,該等兩次反射 中的入射角的平均值會變成接近於45。。 舉例來說,在以ArF準分子雷射光作為曝光用的光的 反射中’僅有有限的膜材料具有小額的吸收損失,而且還 报難增加膜層的數量。基於此項理由,反射表面的反射係 數和相位調變可能會有相依於光的入射角的差異(入射角 特徵)。不過’當該投影光學系統所採用的排列中該對反 射表面如上所述般彼此平行時,便可以將兩次反射中的入 射角平均化並且抑制該等反射表面的入射角特徵的影響 17 201027120 =第二::寺良好的成像效能。當介於該第三偏向部件和 A B邛件之間的光學系統的成像倍率及介於哕坌 偏向部件和該第_伯二A 丨於該第四 為争妓/向部件之間的光學系統的成像并率乂 為更接近於單位倍率(1:1成像)時,角度像倍“ 的作用。 會更佳地達成兩次反射中的人射角平均化 該第三偏向部件設置在該第:成像光學系 二=系統和該第六成像光學系統之間的情二 成像光學系統的成像倍率点3和該第六成像 統的成像倍㊃6可m u μ &像先學系 …了以滿足下面的條件表示式(3)與(4)。 昼心:ΐ假設在該第二共軛點與該第三共軛點之間的光 和哕H ”位於該第-表面上且光學軸於該處 共輛點與,:相交的點產生光學共輛,而且假設在該第五 ==與該第六共輛點之間的光學路徑中沒有任何點與位 〇 生::::面上且光學轴於該處和該第二表面相交的點產 生光學共輕。 °-5<|y5 3|<2.0 (3) °·5<| β 6|<2.0 (4) 或者,於該第三偏向部件設置在該第-成像光學系統 和該第二成像光學系統之間而該第四偏向^置在該第 四成像光學系統和該第五成像光學系統之間的配置的情況 中’由該第二成像光學系統與該第三成像光學系統所組成 的一合成光學系統的成像倍率心和由該第五成像光學系 18 201027120 統與該第六成像光學系統所組成的合成光學系統的成像倍 率点56可以滿足下面的條件表示式(5)與⑷。不過, 本文假設在該第三共概點與該第—共輛點之間的光學路徑 中除了該第二共輛點之外沒有任何點會與位於該第一表面 上且光學轴會於該處和該第一表面相交的點產生光學共 輕而且假在該第,、共輛點與該第四共輛點之間的光學 路徑中除了該第五共扼點之外沒有任何點會與位於該第二 表面上且光學軸會於該處和該第二表面相交的點產生光學 〇 共軛。 〇.5<|泠 23|<2·0 ( 5) 〇.5<|冷 56|<2.0 ( 6) 當不滿足條件表示式(3)至⑷時,便很難抑制該 等個別偏向部件的反射表面的入射角特徵的影響性,而且 成像效能變差將會在要形成於相同線寬中的垂直圖樣和水 平圖樣之間造成線寬差異或是在兩條隔離的等寬直線之間 ❹&成線寬差異。為更佳地達成本發明該實施例的效用,可 以將條件表示式⑺至(6)的下限設為〇8。為更佳地達 成本發明該實施例的效用,可以將條件表示式(3)至(6) 的上限設為1.6。 當本發明該實施例的投影光學系統排列成讓每一個偏 向。卩件的反射表面的法線和該光學軸形成45。的話,那麼, ^更能夠滿足下面的條件表示式⑺,其中,A3為從該第 表面上該第一有效場區發射至該第三偏向部件的反射表 面的光線的入射角,而A1則為發射至該第一偏向部件的反 201027120 射表面的相同光線的入射角。 以滿足下面的條件表示式(8 ) 上該第二有效場區發射至該第 線的入射角,而A2則為發射至 的相同光線的入射角。 再者,該投影光學系統還可 ,其中,A4為從該第二表面 四偏向部件的反射表面的光 該第二偏向部件的反射表面 70 < ( A1+A3 )<11〇。 (7) 70。< ( A2+A4) <11〇。 ( 8) 條件表示式(7)與⑷是用於直接定義為保持良好 的成像效能同時抑制該等個別偏向部件的反射表面的入射❹ 角特徵的影響性所需要的α和α,之間的差異的必要範圍的 條件表示式。為更佳地達成本發明該實施例的效用,可以 將條件表示式(7)與(8)的下限設為80。。為更佳地達成 本發明該實施例的效用,可以將條件表示式(7 )與(8 ) 的上限設為105。。 當入射在該等個別偏向部件的反射表面上的射束在本 發明該實施例的投影光學系統中為遠心時,可以抑制影像 平面上該等有效影像區中的成像效能變異。當介於該光學 ❹ 轴和入射在每一個偏向部件的反射表面上的主光線之間角 度大於5時’有效影像區中的成像效能便會有非常大的差 異°於此情況中,該等凹形反射面鏡可被設置在該第二成 像光學系統和該第五成像光學系統的光曈位置附近,且該 第一成像光學系統和該第五成像光學系統每一者皆可以一 正透鏡作為場透鏡’用以聚集遠心主光線。 明確地說,於該第三偏向部件設置在該第二成像光學 20 201027120 系統和該第二成像光學系統之間而該第四偏向部件設置在 該第五成像光學系統和該第六成像光學系統之間的配置的 清況中可以採用的配置為該第三成像光學系統與該第六成 像光學系統是在射入側和在射出侧為遠心的光學系統而 且該光學袖和從該第一表面上該第一有效場區中的每一點 入射至該第三成像光學系統的主光線之間的夾角以及該光 予軸和從該第一有效場區中的每一點射出該第三成像光學 系統的主光線之間的夾角兩者皆不會大於5。。同樣地,該 © 光學轴和從該第二表面上該第二有效場區中的每一點入射 至該第六成像光學系統的主光線之間的夾角以及該光學轴 和從該第二有效場區中的每一點射出該第六成像光學系統 的主光線之間的夾角兩者可能皆不會大於5»。 或者,於該第三偏向部件設置在該第一成像光學系統 和該第一成像光學系統之間而該第四偏向部件設置在該第 四成像光學系統和該第五成像光學系統之間的配置的情況 中可以採用的配置為該第二成像光學系統與該第五成像光 予系統是在射入側為遠心的光學系統且該第三成像光學系 統與該第六成像光學系統是在射出侧為遠心的光學系統。 再者’該光學軸和從該第一表面上該第一有效場區中的每 一點入射至該第二成像光學系統的主光線之間的夹角以及 該光學軸和從該第一有效場區中的每一點射出該第三成像 光學系統的主光線之間的夾角兩者可能皆不會大於5。。同 樣地,該光學轴和從該第二表面上該第二有效場區中的每 一點入射至該第五成像光學系統的主光線之間的夾角以及 21 201027120 該光學軸和從該第二有效場區中的每一點射出該第六成像 光學系統的主光線之間的夾角兩者可能皆不會大於5。。 當具有如上述之配置的本發明該實施例的投影光學系 統被應用至-曝光裝置時,⑨立在該第—表面上的第一光 罩、設立在該第二表面上的第二光罩以及設立在該第三表 面上的晶圓皆排列在該投影光學系統的相同侧。換言之, 在本發明該實施例的投影光學系統中,從該第一表面和該The point on the two surfaces is optically conjugated and the optical axis intersects the second surface at the point; a seventh imaging optical system disposed between the third surface and the second common point and the sixth Among the optical paths between the conjugate points; a first deflecting member disposed between the surface closest to the third surface among the third imaging optical systems and the closest to the seventh imaging optical system Between the optical paths between the surfaces of a surface, and configured to direct light from the third imaging optical system to the seventh imaging optical system; and a second deflecting member disposed between the sixth An optical path between a surface of the imaging optical system closest to the third surface and a surface of the seventh imaging optical system that is closest to the second surface, and configured to receive the sixth imaging optics Light of the system is directed to the seventh imaging optical system, wherein each of the optical devices having magnification in the seventh imaging optical system is a refractive optical device. A second aspect of the present invention provides a projection optical system for forming an image of a first surface and an image of a second surface on a third surface of 7 201027120, which is used in an exposure apparatus for setting up at the first A predetermined pattern on at least one of the surface and the second surface is transferred to a photosensitive substrate set up on the third surface, the projection optical system comprising: a first optical unit that will be from the first surface Light is directed to the path coupling element; a second optical unit that directs light from the second surface to the path coupling element; and a third optical unit that has been coupled through the path from the first optical unit Forming an image of the first surface on the third surface based on light, and forming an image of the second surface on the third surface based on light from the second optical unit having advanced through the path coupling element The first surface, the second surface, and the third surface extend horizontally in a space below the projection optical system, and wherein The third surface is located below the first surface and the second surface. A third aspect of the present invention provides an exposure apparatus including a projection optical system, a first surface and a second viewpoint from a third surface of light on a predetermined pattern set thereon At least one of the second surfaces is based on the projection of the predetermined pattern on the substrate. A fourth aspect of the present invention provides an exposure apparatus comprising: a projection optical system for the image of the first surface and the image of the second surface on the third surface, which is used for a predetermined pattern on at least one of the first surface and the second surface is transferred to a photosensitive substrate set on the third surface, the exposure device comprising: a first illumination unit located at the first a lower surface of the surface and providing a first illumination light to the first surface, a second illumination unit located below the second surface and providing a second illumination light to the second surface, wherein the first The surface, the second surface, and the third surface horizontally extend in a space below the projection optical system. A fifth aspect of the present invention provides a device manufacturing method comprising: performing an exposure of the predetermined pattern on the photosensitive substrate by using an exposure apparatus of the third or fourth aspect; developing the printed image thereon The photosensitive substrate of the predetermined pattern is used to form a photomask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; and the surface of the photosensitive substrate is processed through the photomask layer. EFFECT OF THE INVENTION Since the projection optical system according to the first aspect of the present invention employs a double-headed basic configuration of the quadruple imaging type as described above, it ensures that the image side numerical aperture has a necessary level and ensures that there will be An effective image area and, for example, an image of a pattern on two object planes separated from each other can be formed in parallel in a predetermined area on the image plane. Since the projection optical system according to the second aspect of the present invention employs a configuration in which the first surface and the second surface of the individual reticle are present, 9 201027120 has a third surface of the wafer and the The projection optical system is separated by a long distance, so that the moving space of the reticle stage holding the reticle can be separated from the moving space of the wafer platform holding the wafer. As a result, for example, when the projection optical system of the first aspect or the second aspect is applied to the scanning exposure apparatus, printing is performed in one of the irradiation areas of the photosensitive substrate by a single ϋ in a stacked manner, Two different patterns. In addition, by simply moving the photosensitive substrate in the scanning direction, scanning exposure can be continuously performed in a plurality of illumination regions aligned in the scanning direction without performing two-dimensional implementation on the photosensitive substrate. Stepping movement" In other words, when the projection optical system according to the first aspect or the second aspect of the present invention is applied to a scanning exposure apparatus, the total processing amount of the scanning exposure is remarkably improved, and finally, the extremely high total The amount of processing is used to fabricate the device. [Embodiment] A projection optical system according to an embodiment of the present invention includes: a first optical unit having a first imaging optical system, a second imaging optical system, and a third imaging optical system; and a second optical unit having a a fourth imaging optical system, a fifth imaging optical system, and a sixth imaging optical system; and a third optical unit having a seventh imaging optical system, and the projection optical system is configured to be formed on the third surface (image plane) An image of the first surface (first object plane) and an image of the second surface (second object plane). The first imaging optical system is disposed in an optical path between the first surface and the first conjugate point, the first conjugate point being optically conjugated to a point on the axis of the optical 10 201027120; a second imaging optical system disposed in an optical path between the first conjugate point and the second conjugate point, the second conjugate point being optically conjugated to the point on the optical axis; The third imaging optical system is disposed in an optical path between the second conjugate point and the third conjugate point, the third conjugate point being optically co-located with the point on the optical axis yoke. The fourth imaging optical system is disposed in an optical path between the second surface and the fourth common vehicle point. The fourth common vehicle point is optically conjugate with a point on the optical axis®; a fifth imaging optical system disposed in an optical path between the fourth conjugate point and a fifth conjugate point, the fifth conjugate point being optically conjugate with the point on the optical axis; A sixth imaging optical system is disposed in an optical path between the fifth conjugate point and the sixth common point, the sixth conjugate point being optically shared with the point on the optical axis. The seventh imaging optical system is disposed in an optical path between the third surface and the third common point and the sixth common point. Q The projection optical system of this embodiment of the invention includes: a first deflecting member that directs light from the third imaging optical system to the seventh imaging optical system; and a second deflecting member 'which will be from the sixth imaging The light of the optical system is guided to the seventh imaging optical system, and each of the optical devices having the magnification in the seventh imaging optical system is a refractive optical device. In other words, the seventh imaging optical system is a refractive optical system. The first deflecting member is disposed in an optical path between the third imaging optical system and the seventh: image optical system; and 兮 _ 丄 T, and the second deflecting member is disposed between The optical path between the sixth imaging optical system and the first seven imaging optical system between 201027120. In the projection optical system of the embodiment of the present invention constructed as such, the first imaging optical system forms a first intermediate image at or near the first conjugate point based on light from the first surface, The second imaging optical system forms a second intermediate image at or near the second conjugate point based on light from the first intermediate image, the third imaging optical system using light from the second intermediate image The base forms a third intermediate image at or near the third common vehicle point, and the seventh imaging optical system forms a first final image on the third surface based on light from the third intermediate image. ❹ On the other hand, the fourth imaging optical system forms a fourth intermediate image at or near the fourth conjugate point based on the light from the second surface, the fifth imaging optical system from the fourth intermediate image Forming a fifth intermediate image at or near the fifth conjugate point based on the light, the sixth imaging optical system forming a sixth at or near the sixth conjugate point based on light from the fifth intermediate image An intermediate image, and the seventh imaging optical system forms a second final image on the third surface based on light from the sixth intermediate image. ❿ Since the projection optical system of this embodiment of the present invention adopts the double-head basic configuration of the quadruple imaging type as described above, it can ensure that the image side numerical aperture has a necessary level and ensures an effective image area. And, for example, an image of a pattern on two object planes separated from each other can be formed in parallel in a predetermined area on the image plane. As a result, for example, when the projection optical system of the embodiment of the present invention is applied to a scanning exposure apparatus, it is capable of forming two masks spaced apart from each other in the effective image area of the projection optical system. The image of the pattern and the ability to print two different patterns in one of the illumination areas of the photosensitive substrate in a stacked manner by a single scanning operation. The exposure device is configured to perform an operation of scanning exposure of the pattern of the first mask in the first illumination area, and in a second illumination area adjacent to the first illumination area in the scanning movement direction The pattern of the second mask is subjected to a scanning exposure operation, and the scanning of the pattern © of the first mask is performed in the third irradiation region in the scanning movement direction beside the second irradiation region, and the operation is repeated. The number of times required can be continuously performed by scanning the photosensitive substrate in a plurality of irradiation regions aligned in the scanning direction only by moving the photosensitive substrate along the scanning direction, without performing two operations on the photosensitive substrate. The stepping movement of the dimension. In other words, when the projection optical system of the embodiment of the present invention is applied to the scanning exposure apparatus, the total processing amount of the scanning exposure is remarkably improved. For example, when the projection optical system of this embodiment of the present invention is applied to a semiconductor exposure apparatus, it can be configured as an optical system having a reduction ratio. In the projection optical system of this embodiment of the invention, the first imaging optical system and the third imaging optical system, and the fourth imaging optical system and the sixth imaging optical system are also configurable to be identical to the seventh imaging optical system Refractive system. In this case, since the refractive optics can be made to have stable surface accuracy, the stability of the optical systems can be improved and the manufacturing cost of the optical systems can be reduced. In the projection optical system of this embodiment of the invention, the first optical unit (which is an optical system from the first surface to the first deflecting member) and 13 201027120 the second optical unit (which is from the second The surface to the optical system of the second deflecting member may have the same configuration. This allows the projection optical system to have a configuration that is symmetrical to the optical axis of the seventh imaging optical system, thereby making it possible to improve the stability of the optical system, simplify the configuration of the optical system, and reduce the manufacturing cost of the optical system. . In the projection optical system of this embodiment of the invention, when each of the second imaging optical system and the fifth imaging optical system adopts a configuration having a concave reflecting mirror, the projection optical system is not only for color In addition to the correct correction of the chromatic aberration, it is ensured that there is a large image side numerical aperture. When each of the second imaging optical system and the fifth imaging optical system adopts a configuration having a negative lens, more specifically, when the negative lens is disposed in the vicinity of the concave reflecting mirror, Good compensation for the Petzval sum and (Petzval sum). In the projection optical system of this embodiment of the invention, the third deflecting member may be disposed in an optical path between the first surface and the __ deflecting member; and the fourth deflecting member is disposed between In the optical path between the second surface and the second deflecting member. Specifically, the third deflecting member may be disposed in an optical path between the first imaging system and the third imaging optical system, and the fourth The deflecting member may then be disposed in an optical path between the fifth imaging optical system and the sixth imaging optical system. In this case, the second deflecting member is disposed near the second common vehicle point, and when the fourth deflecting member is disposed near the fifth common point, it becomes more suitable. In the second imaging optical system and each of the fifth imaging optical systems, a go-go beam and a back beam are referenced by the concave reflecting mirror 201027120. Separation. Alternatively, the third deflecting member may be disposed in an optical path between the first imaging optical system and the second imaging optical system, and the fourth deflecting member may be disposed between the fourth imaging optics Among the optical paths between the system and the fifth imaging optical system. In this case, the third deflecting member is disposed near the first common vehicle point, and when the fourth: facing member is disposed near the fourth common point, the same becomes more suitable. The outgoing beam is separated from the return beam by a reference to the concave reflecting mirror in each of the second imaging optical system and the fifth imaging optical system. As a result, there is no need to establish a large space between the first effective field region and the optical axis on the first surface and there is no need to establish a large space between the second effective field region and the optical axis on the second surface, thereby The maximum image height on the third surface can be lowered, and in turn it becomes easier to achieve the purpose of reducing the size of the optical system. In the projection optical system of this embodiment of the invention, the first deflecting portion Q may be disposed in the vicinity of the third conjugate point and the second deflecting member may be disposed in the vicinity of the sixth conjugate point. In this case, the space between the optical axis and the first effective image area formed on the third surface corresponding to the first effective field region on the first surface can be made smaller and A space between the optical axis and a second effective image area formed on the third surface corresponding to the second effective field region on the second surface becomes smaller. As a result, the maximum image height on the third surface is lowered, and in turn, it becomes easier to achieve the purpose of reducing the size of the optical system. The projection optical system of this embodiment of the present invention may have a first effective field region on the first surface 15 201027120 that does not include the optical axis of the first imaging optical system and may not include the first surface field on the second surface The second effective field region of the optical axis of the four imaging optical system, and the following conditional expressions (1) and (2) are satisfied. In the conditional expressions (1) and (7), l〇i is a distance between an optical axis of the seventh imaging optical system and a first effective image region formed on the third surface corresponding to the first effective field region. #l〇2 is the distance between the optical axis of the seventh imaging optical system and the second effective image area formed on the third surface of the ninth corresponding to the second effective field. Further, B is the maximum image height on the third surface. _ 0.05 <LOl / B < 0.4 ( 1 ) 0.05 < LO2 / B < 0.4 (2) When the ratio is less than the lower limit of the conditional expressions (1) and (2), it will be in the concave reflecting mirror The path separation of the forward path and the back path for the reference results in an excessive limitation of the amount of aberration occurring at each conjugate point. When the ratio is greater than the upper limit of the conditional expressions (丨) and (2), it causes an increase in the scale of the projection optical system and increases scanning of the two mask patterns in the illumination area by a single scanning operation. The desired scanning distance for the exposure will result in a decrease in the total throughput. In order to better achieve the utility of the embodiment of the present invention, the lower limits of the conditional expressions (丨) and (2) can be set to 0·1 〇. In order to better achieve the utility of the embodiment of the present invention, the upper limit of the conditional expressions (丨) and (2) can be set to 〇32. The projection optical system of this embodiment of the present invention is arranged such that the normal to the reflective surface of each of the deflecting members and the optical axis form 45. Then, the optical axes of the individual imaging optical systems may be parallel or perpendicular to each other 16 201027120 and they may ultimately contribute to the configuration in which the optical systems may be employed, in which the second deflecting member is fired: The optical axis of the reflective surface of the deflecting member forms 45. Wherein the surface is arranged to be aligned with the reflective surface of the seventh imaging optical system, the third deflecting member, and the optical axis of the first imaging optical system, and wherein the reflective surface of the cleaved component is arranged And the optical axis of the fourth imaging optical system forms 45 °. In the projection optical system of this embodiment of the invention, the reflective surface of the first deflecting member and the reflective surface of the third deflecting member may be arranged to be flat with each other and the reflective surface of the first deflecting member and the fourth deflecting member The reflective surfaces may be arranged parallel to each other. In this configuration, the angle of incidence of the light incident on the reflective surface of the tangential member adjacent to the conjugate point will be different, but will be focused on one of the rays to be associated with the first deflecting member or The reflective surface of the fourth deflecting member forms 45. + "The incident light incident at the incident angle will be incident on the reflective surface of the first deflecting member or the second deflecting member at an incident angle of 45. Therefore, the average value of the incident angles in the two reflections becomes close to 45. For example, in the reflection of ArF excimer laser light as the light for exposure, 'only a limited amount of film material has a small absorption loss, and it is difficult to increase the number of layers. For this reason, The reflection coefficient and phase modulation of the reflective surface may have a difference (incident angle characteristic) depending on the incident angle of the light. However, when the pair of reflective surfaces in the arrangement employed in the projection optical system are parallel to each other as described above, It is possible to average the incident angles in the two reflections and suppress the influence of the incident angle characteristics of the reflective surfaces. 17 201027120 = second:: good imaging performance of the temple. When interposed between the third deflecting component and the AB component The imaging magnification of the inter-optical system and the imaging ratio between the 哕坌 biasing member and the optical system between the 为 伯 A 该 该 该 该 该 该 向 向 向 向 向 向 向 向 向 向 向 向 向Ratio: (1 image formation), as the angle of action of times "in. It is better to achieve the angle of incidence of the human angle in the two reflections. The third deflecting member is disposed at the imaging magnification point of the second imaging optical system between the first imaging system and the sixth imaging optical system. 3 and the imaging system of the sixth imaging system can be mu μ & like the first learning system to satisfy the following conditions to express equations (3) and (4).昼: ΐ It is assumed that the light and 哕H ′′ between the second conjugate point and the third conjugate point are on the first surface and the optical axis is at the same point, the intersection of the points produces optics A total of vehicles, and it is assumed that there is no point in the optical path between the fifth == and the sixth common point of the intersection of the bit:::: face and the optical axis intersects the second surface The dot is optically light. °-5<|y5 3|<2.0 (3) °·5<| β 6|<2.0 (4) Alternatively, the third deflecting member is disposed in the first imaging optical system 'Between the second imaging optical system and the fourth deflection disposed in the configuration between the fourth imaging optical system and the fifth imaging optical system' by the second imaging optical system and the third imaging The imaging magnification center of a synthetic optical system composed of the optical system and the imaging magnification point 56 of the synthetic optical system composed of the fifth imaging optical system 18 201027120 and the sixth imaging optical system can satisfy the following conditional expression ( 5) and (4). However, this paper assumes that the third common point and the first No point other than the second common point in the optical path between the two points will be optically light and false at the point on the first surface where the optical axis will intersect the first surface. No point other than the fifth common point in the optical path between the common point and the fourth common point will be on the second surface and the optical axis will intersect the second surface The point produces an optical 〇 conjugate. 〇.5<|泠23|<2·0 (5) 〇.5<|cold 56|<2.0 (6) when the conditional expressions (3) to (4) are not satisfied It is difficult to suppress the influence of the incident angle characteristics of the reflective surfaces of the individual deflecting members, and the deterioration of the imaging performance will cause a difference in line width between the vertical pattern and the horizontal pattern to be formed in the same line width or Between the two isolated equal-width lines, the line width difference is. In order to better achieve the utility of the embodiment of the present invention, the lower limit of the conditional expressions (7) to (6) can be set to 〇 8. More preferably. To achieve the utility of the embodiment of the present invention, the upper limit of the conditional expressions (3) to (6) can be set to 1. 6. When the projection optical system of this embodiment of the present invention is arranged such that the normal of the reflecting surface of the member and the optical axis form 45, then ^ can more satisfy the following conditional expression (7), Wherein A3 is the incident angle of light emitted from the first effective field region on the first surface to the reflective surface of the third deflecting member, and A1 is the same light emitted to the inverse 201027120 emitting surface of the first deflecting member. Incident angle. The following condition is expressed to represent the incident angle of the second effective field region to the first line on the equation (8), and A2 is the incident angle of the same light beam emitted. Furthermore, the projection optical system Further, wherein A4 is a light deflecting surface from the second surface of the second deflecting member, the reflective surface 70 < (A1+A3) <11〇. (7) 70. < ( A2+A4) <11〇. (8) Conditional expressions (7) and (4) are used between α and α, which are directly defined to maintain good imaging performance while suppressing the influence of incident angle characteristics of the reflecting surfaces of the individual deflecting members. A conditional expression of the necessary range of differences. In order to more effectively achieve the utility of the embodiment of the present invention, the lower limit of the conditional expressions (7) and (8) can be set to 80. . In order to better achieve the utility of the embodiment of the present invention, the upper limit of the conditional expressions (7) and (8) can be set to 105. . When the beams incident on the reflecting surfaces of the individual deflecting members are telecentric in the projection optical system of the embodiment of the present invention, the imaging performance variation in the effective image regions on the image plane can be suppressed. When the angle between the optical yoke and the chief ray incident on the reflective surface of each of the deflecting members is greater than 5, the imaging performance in the effective image area may vary greatly. In this case, such A concave reflecting mirror may be disposed near the pupil position of the second imaging optical system and the fifth imaging optical system, and each of the first imaging optical system and the fifth imaging optical system may have a positive lens As a field lens 'to gather the telecentric chief ray. Specifically, the third deflecting member is disposed between the second imaging optics 20 201027120 system and the second imaging optical system, and the fourth deflecting member is disposed between the fifth imaging optical system and the sixth imaging optical system A configuration that can be employed in the configuration between the third imaging optical system and the sixth imaging optical system is an optical system that is telecentric on the injection side and on the exit side, and the optical sleeve and the first surface An angle between a principal ray of the third imaging optical system incident at each of the first effective field regions and the optical pre-axis and the third imaging optics are emitted from each of the first effective field regions The angle between the chief rays of the system will not be greater than 5. . Similarly, an angle between the © optical axis and a principal ray incident from the second effective field region on the second surface to the chief ray of the sixth imaging optical system, and the optical axis and the second effective field The angle between the chief rays of the sixth imaging optical system at each point in the zone may not be greater than 5». Or a configuration in which the third deflecting member is disposed between the first imaging optical system and the first imaging optical system and the fourth deflecting member is disposed between the fourth imaging optical system and the fifth imaging optical system A configuration that may be employed in the case where the second imaging optical system and the fifth imaging optical system are optical systems that are telecentric on the injection side and the third imaging optical system and the sixth imaging optical system are on the emission side For telecentric optical systems. Further 'the optical axis and an angle between the principal ray of the second imaging optical system incident from each of the first effective field regions on the first surface and the optical axis and the first effective field The angle between the chief rays of the third imaging optical system that is emitted at each point in the zone may not be greater than five. . Similarly, the optical axis and an angle between the principal ray of the fifth imaging optical system incident from each of the second effective field regions on the second surface and 21 201027120 the optical axis and the second effective from the second The angle between the chief rays of the sixth imaging optical system that is emitted at each point in the field may not be greater than five. . When the projection optical system of the embodiment of the present invention having the configuration as described above is applied to the exposure apparatus, the first photomask standing on the first surface, and the second mask formed on the second surface And the wafers set on the third surface are arranged on the same side of the projection optical system. In other words, in the projection optical system of this embodiment of the invention, from the first surface and the

第二表面處射出的主光線的方向與人射在該第三表面上的 主光線的方向相反。 ❹ 虽我們考慮一種在固持光罩時會移動的光罩平台以万 在固持晶圓_會移動的晶圓平台的配置時,在本發明的驾 實施例中重要的是,該第—表面、該第二表面以及該第三 表面會水平延伸在該投影光學系統下方的一空間之中,』 重要的是’該第三表面是位於該第一表面與該第二表面纪 下方。舉例來說,此種配置可以防止藉由抵抗重力的頂对 吸力來固持光罩的光罩平台和其上有晶圓的晶圓平台之指 相互干擾#奐5之,作為用以移動該光罩平台所必要之空 間的移動空間可與作為用以移動該晶圓平台所必要之空二 的移動空間分離。尤其是,當該投影光學系統採用的配】 中-亥第-表面與該第二表面位於相同的平面而且採用的画 置中該第—表面、肖第二表面以及該第三表面水平延# 時可以進一步簡化該光學系統的配置。 月確地說,本發明該實施例的投影光學系統可能會沒 足下面的條件表示式(9)、(1〇)以及(n)。在條件与 22 201027120 示式(9)至Γ丨丨、+ 向部件之及私主’D1為介於該第三表面以及該第-偏 點 面與該第七成像光學系統之光學轴間的交 B 、軸向距離,而D2為介於該第三表面以及該第一 向部件之久成乐一偏 點之表面與該第七成像光學系統之光學轴間的交 二’軸向距離。再者,D3為介於該第一表面以及該第 -偏向部株+ E: Α ί + +之反射表面與該第一成像光學系統之光學軸間 、’’之間的輔向距離,而D4為介於哕篦-圭& 四偏向部件之…: 表面以及該第 ©的交點之門第四成像光學系統之光學轴間 件之及/的軸向距離。不過’在本說明書中,-偏向部 指的4表面與一對應成像光學系統之光學轴間的交點所 :疋^反射表面的虛擬延伸線與該光學軸之間的相交 •系ΰ ° D3^h (9) D4^D2 (10) D1=D2 (Π) ❹ ^我們考慮增加晶圓的尺寸(也就是’採用450mm的 i曰…那麼在未來的曝光裝置中,該晶圓平台的尺寸必 :。所以,本發明該實施例的投影光學系統可能會 及面的條件表示式(⑴及(13)。在條件表示式 =一)中,D13為該第三成像光學系統的光學軸之中介於 偏向部件的反射表面和該第七成像光學系統之光學 點以及該第三偏向部件的反射表面和該第一 學系統之光學軸的交點之間的距離。再者,如 象先學系統的光學轴之中介於該第二偏向部件的反射表面 23 201027120 和該第七成像光學系統之光學軸的交點以及該第四偏向部 件的反射表面和該第四成像光學系統之光學軸的交點之間 的距離。此外’s代表一晶圓(感光性基板)的劃界圓圈的 最大直徑。 2.2<D13/S<5.0 ( 12) 2.2<D24/S<5.0 ( 13 ) 當比值小於條件表示式(12 )與(13 )的下限時,介 於該光罩平台和該晶圓平台之間的空間會太小並且很難避 免該等平台之間相互干擾。當比值大於條件表示式(12) 0 與(13)的上限時’介於該光罩平台和該晶圓平台之間的 空間會太大並且會導致該裝置的規模提高。為更佳地達成 本發明該實施例的效用,可以將條件表示式(12 )與(13 ) 的下限設為2.4。為更佳地達成本發明該實施例的效用,可 以將條件表示式(12)與(13)的上限設為4.2。 在本發明該實施例的投影光學系統中,介於該投景多光 學系統和該影像平面之間的光學路徑可以填充液體。當採 用於該影像側上具有一液體浸沒區的液體浸沒類型配置 © 時’可以保證會有一很大的有效影像區,同時確保會有一 很大的有效影像側數值孔徑。 在本發明該實施例的投影光學系統中,當以一體成形 的方式來配置作為路徑組合元件的該第一偏向部件和該第 二偏向部件時,可以達到該光學系統之簡化與穩定的效 果。在本發明該實施例的投影光學系統中,由該第一偏向 部件之反射表面和該第二偏向部件之反射表面所構成的棱 24 201027120 線可能位於該第=赤禮伞興& μ , 弟一成像先學系統的光學軸、該第六成像光 學系統的光學輛、以及續·笛, λ °第七成像光學系統的光學軸之間 的交點上。更精確地說’由該第一偏向部件之平坦反射表 面的虛擬延伸線和該第二偏向部件之平坦反射表面的虛擬 延伸線所構成的棱線可能位於該第三成像光學系統的射出 側光學軸、該第六成像光學系統的射出側光學轴、以及該 第七成像光學系統的射人侧光學轴之間的交點上。於此情The direction of the chief ray emitted at the second surface is opposite to the direction of the chief ray of the person incident on the third surface.虽 Although we consider a configuration of a reticle stage that will move when the reticle is held to hold the wafer-moving wafer platform, it is important in the driving embodiment of the present invention that the first surface, The second surface and the third surface extend horizontally in a space below the projection optical system, and it is important that the third surface is located below the first surface and the second surface. For example, such a configuration can prevent the mutual interference between the reticle stage of the reticle and the wafer platform on which the reticle is held by the top-to-suction force against gravity, as the movement of the light The moving space of the space necessary for the hood platform can be separated from the moving space which is the space necessary for moving the wafer platform. In particular, when the projection optical system adopts a configuration in which the middle surface is located on the same plane as the second surface and the first surface, the second surface, and the third surface are horizontally extended. The configuration of the optical system can be further simplified. It is to be noted that the projection optical system of this embodiment of the present invention may not express the following conditions (9), (1), and (n). In the condition and 22 201027120, the formula (9) to Γ丨丨, the + component and the private owner 'D1 are between the third surface and the optical axis of the seventh-pointing surface and the seventh imaging optical system B is the axial distance, and D2 is the two axial distance between the surface of the third surface and the first component and the optical axis of the seventh imaging optical system. Furthermore, D3 is an auxiliary distance between the reflective surface of the first surface and the first-biased strain + E: Α ί + + and the optical axis of the first imaging optical system, and D4 is the axial distance between the optical axis components of the fourth imaging optical system of the surface of the 以及-Guy & four-biased part...: the surface and the intersection of the first. However, in this specification, the intersection between the 4 surface of the deflecting portion and the optical axis of a corresponding imaging optical system: the intersection between the virtual extension line of the reflective surface and the optical axis • System ΰ ° D3^ h (9) D4^D2 (10) D1=D2 (Π) ❹ ^We consider increasing the size of the wafer (that is, 'using 450mm i曰... then in future exposure devices, the size of the wafer platform must Therefore, the projection optical system of this embodiment of the present invention may have a conditional expression ((1) and (13). In the conditional expression = one), D13 is an intermediary of the optical axis of the third imaging optical system. a distance between the reflective surface of the deflecting member and the optical point of the seventh imaging optical system and the intersection of the reflective surface of the third deflecting member and the optical axis of the first learning system. Furthermore, as in the prior learning system Between the intersection of the reflective surface 23 201027120 of the second deflecting member and the optical axis of the seventh imaging optical system and the intersection of the reflective surface of the fourth deflecting member and the optical axis of the fourth imaging optical system Distance. This 's represents the maximum diameter of the demarcation circle of a wafer (photosensitive substrate). 2.2 <D13/S<5.0 (12) 2.2<D24/S<5.0 (13) When the ratio is smaller than the conditional expression (12) With the lower limit of (13), the space between the reticle stage and the wafer platform will be too small and it is difficult to avoid mutual interference between the platforms. When the ratio is greater than the conditional expression (12) 0 and ( The upper limit of 13) 'the space between the reticle stage and the wafer platform may be too large and may lead to an increase in the scale of the device. To better achieve the utility of the embodiment of the invention, the condition may be expressed The lower limit of the formulas (12) and (13) is set to 2.4. In order to more effectively achieve the utility of the embodiment of the present invention, the upper limit of the conditional expressions (12) and (13) can be set to 4.2. In the projection optical system of the example, the optical path between the projection multi-optical system and the image plane can be filled with liquid. When used in the liquid immersion type configuration © with a liquid immersion area on the image side, it can be guaranteed Will have a large effective image area while ensuring A large effective image side numerical aperture. In the projection optical system of this embodiment of the present invention, when the first deflecting member and the second deflecting member as the path combining member are disposed in an integrally formed manner, The simplification and stabilization effect of the optical system. In the projection optical system of the embodiment of the invention, the line of the rib 24 201027120 formed by the reflective surface of the first deflecting member and the reflecting surface of the second deflecting member may be located The intersection of the optical axis of the imaging system, the optical vehicle of the sixth imaging optical system, and the optical axis of the continuation flute, λ ° seventh imaging optical system . More precisely, the ridge line formed by the virtual extension line of the flat reflecting surface of the first deflecting member and the virtual extending line of the flat reflecting surface of the second deflecting member may be located on the exit side of the third imaging optical system. An intersection between the shaft, the exit side optical axis of the sixth imaging optical system, and the incident side optical axis of the seventh imaging optical system. Here

況中,該第-偏向部件和該第二偏向部件能夠合宜地分離 從該第三成像光學系統前進至該第七成像光學系統的光線 和從該第六成像光學系統前進至該第七成像光學系統的光 線。上面的說明不僅適用於第一項觀點的投影光學系統, 亦適用於第二項觀點的投影光學系統。 現在將以隨附圖式為基礎來說明本發明的一實施例。 圖1所示的是根據本發明實施例的曝光裝置的配置的概略 圖式。在圖1中,ζ軸是設立在_晶圓w(其是一感光性基 板)之曝光表面(轉印表面)的法線的方向中,X軸是在該 晶圓W的曝光表®中平行於目i之平面的方肖,γ轴是在 該晶圓W的曝光表面中垂直於圖i之平面的方向。參考圖 1,本實施例的曝光裝置有兩個照射系統ILa與ILb,它們 排列在X方向的空間之中。 因為平行排列的第一照射系統ILa和第二照射系統ILb 有相同的配置’所以’ T面的說明每—個照射系統的配置 與作動時會將重點放在該第一照射系統ILa上,而對應第二 照射系統的7G件符號及其組成器件的元件符號將放在括弧 25 201027120 中。該第一照射系統ILa (第二照射系統ILb )具有第一光 學系統2a ( 2b )、複眼透鏡(或微型複眼透鏡)3a ( 3b ) 以及第二光學系統4a(4b)。用於供應曝光用之光(照射 光)給該第一照射系統ILa (第二照射系統ILb )的光源la (lb)是ArF準分子雷射光源,其會供應波長為約193nm 的光。該第一照射系統ILa和該第二照射系統iLb亦可以使 用共同的光源。 從光源la(ib)處所射出的近乎平行的射束會行進通 過該第一光學系統2a ( 2b )以進入該複眼透鏡3a ( 3b ) 。 〇 舉例來說,該第一光學系統2a ( 2b )具有一有眾所熟知配 置的射束發送系統(圖中並未顯示)、偏振狀態改變區段 (圖中並未顯示)、…等。該射束發送系統的功能是將入射 射束引導至該偏振狀態改變區段同時將該入射射束轉變成 具有適當尺寸與形狀剖面的射束,而且具有主動修正入射 至該偏振狀態改變區段的射束的位置變化與角度變化的功 能0 該偏振狀態改變區段的功能是改變入射至複眼透鏡3a Q (3b )的照射光的偏振狀態。明確地說,該偏振狀態改變 區段會將從該射束發送系統處入射的線性偏振光轉變成具 有不同振動方向線性偏振光,或是將入射於其上的線性偏 振光轉變成非偏振光,或是直接射出該線性偏振光而不進 行轉變。接著,已經依照需求由該偏振狀態改變區段改變 其偏振狀態的射束便會入射至該複眼透鏡3a (3b)。 進入該複眼透鏡3a (3b)的射束被大量的微型透鏡器 26 201027120 件二維分割,而且多個小型發光體形成在該射東所入射的 該等微型透鏡器件的個別後方聚焦平面上。依此方式,由 大量小型發t體所組成的一表面發光體便t形成在該 複眼透鏡3a(3b)的後方聚焦平面上。來自該複眼透鏡“ (3b)的射束經由第二光學系統4a(4b)引導至第一光罩 Ma (第二光罩Mb)。 舉例來說’該第二光學系、统4a ( 4b )具有一擁有眾所 熟知配置的聚光器光學系統(圖中並未顯示)、光罩遮片 © MBa(MBb)、成像光學系統(圖中並未顯示)、..等。於 此情況中,來自該複眼透鏡3a(3b)的射束行進通過該聚 光器光學系統,用以照射如同疊置在其上的光罩遮片咖 (MBb)。根據形成該複眼透鏡3a (3b)的每一個微型透 鏡器件之形狀的矩形形狀照射場會形成在該作為場照射阻 攔的光罩遮片上。通過該光罩遮片MBa(MBb)之矩形孔 徑(透光部分)的射束行進通過該成像光學系統,用以照 射如同疊置在其上的第一光罩仏(第二光罩⑽)。 由該第一光罩Ma所透射的射束及由該第二光罩Mb* 透射的射束會行進通過雙頭投影光學系統pL,用以在該晶 圓(感光性基板)W之上分別形成該第一光罩蘭&的圖樣影 像和該第二光罩Mb的圖樣影像。第一光罩平台服和第 二光罩平台MSb會分別固持該第一光罩Ma和該第二光罩 Mb,俾使它們的一圖樣表面會沿著χγ平面(水平平面) 延伸。明確地說,該等光罩…和奶會藉由抵抗重力的頂 端吸力分別被個別的光罩平台MSa和MSb固持。該等光罩 27 201027120 平台MSa和MSb被連接至一光罩平台驅動系統msd。該光 罩平台驅動系統MSD在X方向、γ方向以及繞著z方向的 旋轉方向中驅動該等光罩平台MSa *MSb。 本發明並不限制以藉由頂端吸力來固持光罩的光罩平 台作為光罩平台MSa和MSb,亦可以使用從底部來固持光 罩的光罩平台。 晶圓W固持在晶圓平台ws之上,俾使其曝光表面會 沿著XY平面延伸。該晶圓平台界3連接至一晶圓平台驅動 系統WSD。該晶圓平台驅動系統WSD會在X方向、γ方❹ 向、Z方向以及繞著z方向的旋轉方向中驅動該晶圓平台 WS。該投影光學系統PL是一在χ方向中具有彼此分離的 兩個有效場以及一有效影像區的光學系統。稍後將說明該 投影光學系統PL的内部配置。 在本實施例中,該第一照射系統ILa會在第一光罩Ma 上構成一伸長在Y方向中的矩形照射區IRa,如圖2中左邊 所示。該第二照射系統ILb會在第一光罩Mb上構成一伸長 在Y方向中的矩形照射區IRb,如圖2中右邊所示。舉例來 ❹ 說,該第一照射區IRa和該第二照射區IRb分別被居中形成 在該第一照射系統ILa的光學轴AXa之上和該第二照射系 統ILb的光學轴AXb上。 換言之’在該第一光罩Ma的圖樣區PAa之中,一對應 於該第一照射區IRa的圖樣會在預設的照射條件下被該第 一照射系統ILa照射。在該第二光罩Mb (其會在X方向中 與第一光罩Ma分離)的圖樣區PAb之中,一對應於該第 28 201027120 二照射區IRb的圖樣會在預設的照射條件下被該第二照射 系統ILb照射。依此方式,如圖3中所示,被該第一照:區 IRa照射的該第-光罩Ma的圖樣影像形成在伸長於該投影 光學系統PL的有效影像區ER中之γ方向中的矩形第一區 (第一有效影像區)ERa之中;而被該第二照射區IRb照射 的該第二光罩Mb的圖樣影像則會形成在一第二區(第二有 效影像區)ERb之中,該第二區具有—同樣伸長在該γ方 向中的矩形輪廓而且位置平行於該有效影像區ERf的該第 ❹-區ERa。 在本實施例中,當該第一光罩Ma、該第二光罩Mb以 及該晶圓W沿著X方向相對於該投影光學系統pL被同步 移動時,該晶圓W上的照射區域便會受到掃描曝光的作 用,該第一光罩Ma的圖樣與該第二光罩河^^的圖樣會疊置 而構成複合圖樣》前面的疊置掃描曝光會在沿著該χγ平面 相對於該投影光學系統PL來二維步進移動該晶圓w時被 ❹重複實施,從而在該晶圓W上的每一個照射區域中連續形 成由該第一光罩Ma的圖樣與該第二光罩Mb的圖樣所組成 的複合圖樣。 圖4所示的是參考光學軸以及形成在本實施例的晶圓 之上的矩形靜態曝光區之間的位置關係。在本實施例中, 如圖4中所示,一具有預設尺寸的矩形形狀的第一靜態曝 光區(對應於該第一有效影像區)ERa會被設立在和參考光 學轴AX在+X方向中分隔偏移距離l〇i的位置處,而一具 有預設尺寸的矩形形狀的第二靜態曝光區(對應於該第二 29 201027120 有效影像區)ERb則會被設立在和參考光學轴Αχ在_又方 向中分隔偏移距離L02的位置處,它們皆位在居中於該參 考光學軸ΑΧ(和晶圓w上的光學軸Αχ7 一致)中且具有 半徑Β的一圓形形狀(影像圈)IF的某一區域中。該第一 靜態曝光區ERa和該第二靜態曝光區ERb會對稱於通過該 參考光學軸AX且平行於γ轴的軸線。In this case, the first-biasing member and the second deflecting member can conveniently separate the light traveling from the third imaging optical system to the seventh imaging optical system and proceed from the sixth imaging optical system to the seventh imaging optical The light of the system. The above description applies not only to the projection optical system of the first aspect but also to the projection optical system of the second aspect. An embodiment of the present invention will now be described on the basis of the accompanying drawings. Fig. 1 is a schematic view showing the configuration of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, the x-axis is set in the direction of the normal to the exposure surface (transfer surface) of the wafer w (which is a photosensitive substrate), and the X-axis is in the exposure table of the wafer W. Parallel to the plane of the plane of the object i, the gamma axis is the direction perpendicular to the plane of the plane i in the exposed surface of the wafer W. Referring to Fig. 1, the exposure apparatus of this embodiment has two illumination systems ILa and ILb which are arranged in a space in the X direction. Since the first illumination system ILa and the second illumination system ILb arranged in parallel have the same configuration, the description of the T-plane will focus on the first illumination system ILa when the configuration and actuation of each illumination system are performed. The 7G symbol corresponding to the second illumination system and the component symbols of its constituent devices will be placed in parentheses 25 201027120. The first illumination system ILa (second illumination system ILb) has a first optical system 2a (2b), a fly-eye lens (or micro fly's eye lens) 3a (3b), and a second optical system 4a (4b). The light source la (lb) for supplying light for exposure (irradiation light) to the first illumination system ILa (second illumination system ILb) is an ArF excimer laser light source which supplies light having a wavelength of about 193 nm. The first illumination system ILa and the second illumination system iLb can also use a common light source. A nearly parallel beam emerging from the source la(ib) will travel through the first optical system 2a (2b) to enter the fly-eye lens 3a (3b). For example, the first optical system 2a (2b) has a well-known configuration of a beam transmitting system (not shown), a polarization state changing section (not shown), and the like. The function of the beam transmitting system is to direct the incident beam to the polarization state changing section while converting the incident beam into a beam having an appropriate size and shape profile, and having an active correction incident to the polarization state changing section Function of Position Change and Angle Change of Beam 0 The function of the polarization state change section is to change the polarization state of the illumination light incident on the fly-eye lens 3a Q (3b). Specifically, the polarization state changing section converts linearly polarized light incident from the beam transmitting system into linearly polarized light having different vibration directions, or converts linearly polarized light incident thereon into unpolarized light. Or directly emit the linearly polarized light without making a transition. Then, a beam whose polarization state has been changed by the polarization state changing section as required is incident on the fly-eye lens 3a (3b). The beam entering the fly-eye lens 3a (3b) is two-dimensionally divided by a plurality of microlens 26 201027120 pieces, and a plurality of small illuminators are formed on individual rear focusing planes of the microlens devices incident on the emitter. In this manner, a surface illuminator composed of a large number of small hair t bodies is formed on the rear focusing plane of the fly-eye lens 3a (3b). The beam from the fly-eye lens "(3b) is guided to the first mask Ma (second mask Mb) via the second optical system 4a (4b). For example, the second optical system, system 4a (4b) It has a concentrator optical system (not shown) with a well-known configuration, a reticle matte © MBa (MBb), an imaging optical system (not shown), etc. In this case a beam from the fly-eye lens 3a (3b) travels through the concentrator optical system for illuminating a reticle matte (MBb) as stacked thereon. According to the formation of the fly-eye lens 3a (3b) A rectangular shaped illumination field of the shape of each of the microlens devices is formed on the mask mask as the field illumination block. The beam passing through the rectangular aperture (light transmitting portion) of the mask mask MBa (MBb) travels through the An imaging optical system for illuminating a first reticle (second reticle (10)) superimposed thereon. A beam transmitted by the first reticle Ma and transmitted by the second reticle Mb* The beam will travel through the double-head projection optical system pL for forming on the wafer (photosensitive substrate) W Forming the pattern image of the first mask blue & and the pattern image of the second mask Mb. The first mask platform and the second mask platform MSb respectively hold the first mask Ma and the second light The masks Mb, such that a pattern surface thereof extends along the χγ plane (horizontal plane). Specifically, the masks and milk are respectively held by the individual mask platforms MSa and MSb by the top suction against gravity. The reticle 27 201027120 platforms MSa and MSb are connected to a reticle stage drive system msd. The reticle stage drive system MSD drives the reticle in the X direction, the gamma direction and the direction of rotation about the z direction. Platform MSa * MSb. The present invention is not limited to the reticle stage for holding the reticle by the tip suction as the reticle stage MSa and MSb, and the reticle stage for holding the reticle from the bottom can also be used. Above the wafer platform ws, the exposed surface extends along the XY plane. The wafer platform boundary 3 is connected to a wafer platform drive system WSD. The wafer platform drive system WSD will be in the X direction, γ square Direction, Z direction, and rotation around the z direction The wafer platform WS is driven in. The projection optical system PL is an optical system having two effective fields and an effective image area separated from each other in the x-direction. The internal configuration of the projection optical system PL will be described later. In this embodiment, the first illumination system ILa forms a rectangular illumination area IRa elongated in the Y direction on the first mask Ma, as shown on the left side of FIG. 2. The second illumination system ILb will be in the first A mask Mb is formed on the rectangular illumination area IRb elongated in the Y direction, as shown on the right side of Fig. 2. For example, the first illumination area IRa and the second illumination area IRb are respectively centered on the Above the optical axis AXa of the first illumination system ILa and on the optical axis AXb of the second illumination system ILb. In other words, in the pattern area PAa of the first mask Ma, a pattern corresponding to the first irradiation area IRa is irradiated by the first illumination system ILa under predetermined illumination conditions. Among the pattern areas PAb of the second mask Mb (which will be separated from the first mask Ma in the X direction), a pattern corresponding to the second illumination zone IRb of the 28th 201027120 will be under preset illumination conditions. It is irradiated by the second irradiation system ILb. In this manner, as shown in FIG. 3, the pattern image of the first mask Ma irradiated by the first illumination region IRa is formed in the γ direction elongated in the effective image region ER of the projection optical system PL. a rectangular first region (first effective image region) ERa; and a pattern image of the second mask Mb illuminated by the second illumination region IRb is formed in a second region (second effective image region) ERb The second zone has a rectangular profile that is likewise elongated in the gamma direction and is positioned parallel to the first ❹-region ERa of the effective image zone ERf. In this embodiment, when the first mask Ma, the second mask Mb, and the wafer W are synchronously moved relative to the projection optical system pL along the X direction, the illumination area on the wafer W is Will be subjected to scanning exposure, the pattern of the first mask Ma and the pattern of the second mask will overlap to form a composite pattern. The overlay scanning exposure in front of the composite image will be relative to the When the projection optical system PL moves the wafer w in two dimensions, it is repeatedly performed, so that the pattern of the first mask Ma and the second mask are continuously formed in each of the irradiation regions on the wafer W. A composite pattern of Mb's drawings. Figure 4 shows the positional relationship between the reference optical axis and the rectangular static exposure regions formed on the wafer of the present embodiment. In this embodiment, as shown in FIG. 4, a first static exposure area (corresponding to the first effective image area) ERa having a rectangular shape of a predetermined size is set at the reference optical axis AX at +X. A direction separating the offset distance l〇i in the direction, and a second static exposure area having a rectangular shape of a preset size (corresponding to the second 29 201027120 effective image area) ERb is set up and the reference optical axis Αχwhere the offset distance L02 is separated in the _ direction, they are all in a circular shape centered on the reference optical axis 一致 (corresponding to the optical axis Αχ7 on the wafer w) and having a radius Β (image) Circle) in a certain area of the IF. The first static exposure area ERa and the second static exposure area ERb are symmetrical about an axis passing through the reference optical axis AX and parallel to the γ axis.

該等靜態曝光區ERa、ERb的X方向長度為山、山 (=LXa)而γ方向長度為LYa、LYb (=LYa)。所以如 圖2中所示,具有依照該第一靜態曝光區ERa的尺寸與形 狀的矩形第一照射區(其對應於該第一有效場區)iRa會被 形成在該第一光罩Ma上和該第一成像光學系統(其對應於 該矩形第一靜態曝光區ERa)的光學轴Αχι在+χ方向中分 隔對應於偏移距離L01的距離的位置處。同樣地,具有依 照該第二靜態曝光區ERb的尺寸與形狀的矩形第二照射區 (其對應於該第二有效場區)IRb會被形成在該第二光罩 Mb上和該第四成像光學系統(其對應於該矩形第二靜態曝 光區ERb )的光學轴AX4在-X方向中分隔對應於偏移距離 L02 ( =L01 )的距離的位置處。 圖5所示的是介於本實施例中的一邊界透鏡和一晶圓 之間的配置的概略圖式。參考圖5,本實施例的投影光學系 統PL會被配置成讓介於邊界透鏡Lb和晶圓W之間的光學 路徑被填充液體Lm。在本實施例中,液體是在半導體 製造設施及其它設施中可輕易大量取得的純水(去離子 水)。不過,亦可以使用含有下面的水作為液體Lm : H+、 30 201027120The lengths of the static exposure areas ERa and ERb in the X direction are mountains and mountains (=LXa) and the lengths in the γ direction are LYa and LYb (=LYa). Therefore, as shown in FIG. 2, a rectangular first illumination area (which corresponds to the first effective field area) iRa having a size and shape according to the first static exposure area ERa is formed on the first mask Ma. The optical axis of the first imaging optical system (which corresponds to the rectangular first static exposure area ERa) is spaced apart in the +χ direction by a distance corresponding to the distance of the offset distance L01. Similarly, a rectangular second illumination region (which corresponds to the second effective field region) IRb having a size and shape according to the second static exposure region ERb is formed on the second mask Mb and the fourth imaging The optical axis AX4 of the optical system (which corresponds to the rectangular second static exposure region ERb) is spaced at a position corresponding to the distance of the offset distance L02 (=L01) in the -X direction. Fig. 5 is a schematic view showing the arrangement between a boundary lens and a wafer in the present embodiment. Referring to Fig. 5, the projection optical system PL of the present embodiment is configured such that the optical path between the boundary lens Lb and the wafer W is filled with the liquid Lm. In the present embodiment, the liquid is pure water (deionized water) which can be easily obtained in large quantities in a semiconductor manufacturing facility and other facilities. However, it is also possible to use the following water as the liquid Lm : H+, 30 201027120

Cs+、κ+、cr、SO,、或是P〇42-、異丙醇、甘油、己烷、 庚燒、癸烧、或類似物。 在相對於該投影光學系統PL以移動該晶圓w時實施 掃描曝光的步進掃描方法的曝光裝置中,液體[瓜可能會從 該掃描曝光開始到結束持續填充該投影光學系統pL中介於 邊界透鏡Lb和晶圓W之間的光學路徑的内部,舉例來說, 藉由使用國際專利公開案w〇99/495〇4中所揭示的技術、曰 本專利申請特許公開案第10-3-3114號中所揭示的技術、或 ©類似技術。在國際專利公開案WO99/49504中所揭示的技術 中,文控在預設溫度處的液體會經由來自液體供應元件的 供應軟管與排放喷嘴被供應,以便填充介於邊界透鏡Lb和 晶圓W之間的光學路徑,而且該液體會被一液體收集元件 經由收集軟管與流入噴嘴從該晶圓W上收回。 在本實施例中,會使用供應/排出機制在介於邊界透鏡 Lb和晶圓W之間的光學路徑中迴流該液體。當作為浸 ❹沒液體的液體Lm依此方式以小流速迴流時,可藉防腐作用 防止該液體惡化、防止發霉、·等。亦可防止因吸收曝光用 的光的熱量而發生像差變異。 如上述般將該液體保持在該投影光學系統與該感光性 基板之間的光學路徑之中的其它可應用技術包含利用該液 體局部填充該光學路徑的技術,且此等技術包含:在日本 專利申請特許公開案第6-124873號中所揭示之在液體槽中 移動用於固持作為曝光物體之基板的平台的技術;以及在 曰本專利申請特許公開案第10-303114號中所揭示之用於 31 201027120 在平台上形成預設深度之液體槽並於其上固持基板的技 術。 ❹ 在本實施例的每一個範例中,該投影光學系統PL,如 下面的圖6、圖8以及圖1〇中所示,包括:第一成像光學 系統G1 ;第二成像光學系統G2 ;第三成像光學系統G3 ; 第四成像光學系統G4 ;第五成像光學系統G5 ;第六成像光 學系統G6 ;第七成像光學系統G7 ;反射面鏡FM,其具有 反射表面R37和反射表面R67 ;平面反射面鏡M23 (第三 偏向部件)’其具有反射表面R23 ;以及平面反射面鏡M56 (第四偏向部件),其具有反射表面R56。 該第一成像光學系統G1設置在介於該第一光罩Ma* 第一共軛點CP1之間的光學路徑之中,該第一共輛點與位 於該第一光罩Ma上的某一點產生光學共軛且光學軸(該第 一成像光學系統G1的射入侧光學軸人又1:)在該點處和該第 一光罩Ma相交。該第二成像光學系統設置在介於該第Cs+, κ+, cr, SO, or P〇42-, isopropanol, glycerol, hexane, heptane, smoldering, or the like. In an exposure apparatus of a step-and-scan method of performing scanning exposure with respect to the projection optical system PL to move the wafer w, the liquid [melon may continue to fill the boundary of the projection optical system pL from the start to the end of the scanning exposure The inside of the optical path between the lens Lb and the wafer W, for example, by using the technique disclosed in International Patent Publication No. 99/495, 4, Patent Application Laid-Open No. 10-3- The technique disclosed in 3114, or a similar technique. In the technique disclosed in the international patent publication WO99/49504, the liquid at the preset temperature is supplied via the supply hose and the discharge nozzle from the liquid supply member to fill the boundary lens Lb and the wafer. The optical path between the W and the liquid is retracted from the wafer W by a liquid collection element via the collection hose and the inflow nozzle. In the present embodiment, the liquid is recirculated in the optical path between the boundary lens Lb and the wafer W using a supply/discharge mechanism. When the liquid Lm as the immersion liquid is refluxed at a small flow rate in this manner, the liquid can be prevented from deteriorating, preventing mold, and the like by the antiseptic action. It is also possible to prevent aberration variation due to absorption of heat of light for exposure. Other applicable techniques for maintaining the liquid in the optical path between the projection optical system and the photosensitive substrate as described above include techniques for partially filling the optical path with the liquid, and such techniques include: A technique for moving a platform for holding a substrate as an exposed object in a liquid bath as disclosed in Japanese Laid-Open Patent Publication No. Hei No. 6-124873, and the disclosure of the Japanese Patent Application No. 10-303114 A technique for forming a liquid tank of a predetermined depth on a platform and holding a substrate thereon on 31 201027120.每 In each of the examples of the embodiment, the projection optical system PL, as shown in FIG. 6, FIG. 8 and FIG. 1 below, includes: a first imaging optical system G1; a second imaging optical system G2; Three imaging optical system G3; fourth imaging optical system G4; fifth imaging optical system G5; sixth imaging optical system G6; seventh imaging optical system G7; reflective mirror FM having reflective surface R37 and reflective surface R67; The reflecting mirror M23 (third deflecting member) has a reflecting surface R23; and a plane reflecting mirror M56 (fourth deflecting member) having a reflecting surface R56. The first imaging optical system G1 is disposed in an optical path between the first conjugate point CP1 of the first reticle Ma*, the first common spot and a certain point on the first reticle Ma An optical conjugate is produced and the optical axis (the incident side optical axis of the first imaging optical system G1 is again 1:) intersects the first reticle Ma at this point. The second imaging optical system is disposed between the first

一共輛點CP1和第二共輛點CP2之間的光學路裎之中,該 第二共軛點與位於該第一光罩Ma上的該點產生光學共軛 且光學轴在該點處和該第一光罩Ma相交。該第三成像光學 系統G3設置在介於該第二共軛點cp2和第三共軛點 之間的光學路徑之中,該第三共軛點與位於該第一光罩Ma 上的該點產生光學共軛且光學軸在該點處和該第一光罩Ma 相交。 二光罩Mb和 四共軛點與位 該第四成像光學系統G4設置在介於該第 第四共扼點CP4之間的光學路徑之中,該第 32 Λ 201027120 於該第二光罩Mb上的某一點產生光學共輛且光學轴(該第 四成像光學系統G4的射入側光學軸Αχ4 )在該點處和該第 一光罩Mb相交。該第五成像光學系統G5設置在介於該第 四共軛點CP4和第五共軛點CP5之間的光學路徑之中,該 第五共軛點與位於該第二光罩Mb上的該點產生光學共軛 且光學軸在該點處和該第二光罩Mb相交。該第六成像光學 系統G6設置在介於該第五共軛點cp5和第六共輛點cp6 之間的光學路徑之中’該第六共軛點與位於該第二光罩Mb © 上的該點產生光學共軛且光學軸在該點處和該第二光罩皿匕 相交。 該第七成像光學系統G7設置在介於該晶圓w和第三 共輛點CP3及第六共輛點CP6之間的光學路徑之中。該反 射面鏡FM是路徑結合元件,其是由下面所組成:設置在該 第二共輛點CP3附近且具有該平面反射表面R3 7的第一偏 向部件;以及設置在該第六共軛點CP6附近且具有該平面 反射表面R67的第二偏向部件。該平面反射表面M23設置 在該第二共軛點CP2附近且該平面反射表面M56設置在該 第五共軛點CP5附近。 β玄第一成像光學系統G1、第三成像光學系統〇3、第四 成像光學系統G4、第六成像光學系統G6以及第七成像光 學系統G7皆是折射式系統。該第二成像光學系統G2和第 五成像光學系統G5則是包含凹形反射面鏡的折反射式系統 (反射/折射光學系統)。由該第一成像光學系統G1至該 第二成像光學系統G3所组成的第一光學單元和由該第四成 33 201027120 像光學系統G4至該第六成像光學系統G6所組成的第二光 學單元具有相同的配置並且排列成對稱於該第七成像光學 系統G7的光學轴AX7。 在作為路徑結合元件的反射面鏡FM之中,由反射表面 R37和反射表面R67所構成的稜線(更精確地說,由反射 表面R3 7的虛擬延伸線和反射表面R67的虛擬延伸線所構 成的稜線)會位於該第三成像光學系統G3的射出側光學軸 AX3、該第六成像光學系統G6的射出側光學轴Αχ6以及該 第七成像光學系統G7的射入側光學轴ΑΧ7之間的交點 © 上。投影光學系統PL在物體側及影像側兩者之上皆為遠心。 在每一個範例的投影光學系統PL之中,來自該第一光 罩Ma沿著+Ζ方向行進的光會行進通過該第一成像光學系 統G1,用以形成第一中間影像。來自該第一中間影像的光 會行進通過該第二成像光學系統G2,用以在平面反射面鏡 M23的反射表面R23附近形成第二中間影像。來自該第二 中間影像的光或是形成該第二中間影像的光被反射表面 R23偏向在+X方向中並且接著會行進通過該第三成像光學 〇 系統G3,用以在反射面鏡fm的反射表面R3 7附近形成第 三中間影像。 同樣地,來自該第二光罩Mb沿著-Z方向行進的光會 行進通過該第四成像光學系統G4,用以形成第四中間影 像°來自該第四中間影像的光會行進通過該第五成像光學 系統G5’用以在平面反射面鏡M56的反射表面R56附近形 成第五中間影像。來自該第五中間影像的光或是形成該第 34 201027120 五中間影像的光被反射表面R56偏向在_又方向中用以在 反射面鏡FM的反射表面r67附近形成第六中間影像。 來自該第三中間影像的光或是形成該第三中間影像的 光會被反射面鏡FM的反射表面R37偏向在_z方向中並且 接著會行進通過該第七成像光學系統G7,用以在晶圓%之 上开;^成最終的第一小型影像。來自該第六中間影像的光戋 是形成該第六中間影像的光會被反射面鏡FM的反射表面 R67偏向在-Z方向中並且接著會行進通過該第七成像光學 © 系統G7,用以在晶圓W之上平行於該第一小型影像的位置 處形成最終的第二小型影像。 在本實施例的每一個範例之中,會以下面的公式(a) 來表示一非球狀表面,其中,y是垂直於光學轴的方向中的 高度;z是該光學軸之中從該非球狀表面頂端處的切線平面 至該非球狀表面在高度y處某個位置的距離;r是該頂端處 的曲率半徑;而Cn則是第n個非球狀是數。在下面的表(1 )、 (2)以及(3)之中’形成在該非球狀形狀之中的每—個 ® 透鏡表面在表面編號的右邊會有標記*。 z=( y2/r)/[l + {l-( l + /c ) . y2/r2} 1/2] + C4 · y4+C6 · y6+c8 . y8+C10y10+C12 . y12+C14 . y14+c16 . y16+C18 . y18+C20 . y2〇 (a) [第一範例] 圖6所示的是根據該實施例的第一範例的投影光學系 統的透鏡配置的圖式。參考圖6,在第一範例的投影光學系 35 201027120 統PL之中,該第一成像光學系統⑴是由從光的射入側依 序排列在延伸於z方向中的光學轴Αχι之中的十二個透鏡 L11至L112所構成。該第二成像光學系統是由一個正 透鏡L21、兩個負透鏡L22與L23以及一個凹形反射面鏡 CM2所構成’它們是從光的射入側依序被排列在和光學軸 AX1落在相同直線上的光學軸Αχ2之中。該第三成像光學 系統G3則是由從光的射入側依序被排列在延伸於χ方向中 的光學軸ΑΧ3之中的十個透鏡L31至L31〇所構成。 該第四成像光學系統G4 '第五成像光學系統G5以及❹ 第六成像光學系統G6分別具有和該第一成像光學系統 G1、第二成像光學系統G2以及第三成像光學系統⑺相同 的配置,所以,本文省略該等配置的說明。第七成像光學 系統G7是由從光的射入側依序排列在延伸於z方向中的光 學軸AX7之中的十五個透鏡L71至L715所構成。第七成 像光學系統G7之中排列在最靠近該晶圓處的平凸透鏡 L715會構成一邊界透鏡Lb。於該第一範例中有位於透鏡 L712内側的近軸光瞳位置,而且孔徑阻攔AS排列在此近 U 軸光瞳位置處。 於該第一範例中’對以ArF準分子雷射光(波長λ = 193.306nm)作為使用光(曝光用的光)來說,介於該邊 界透鏡Lb和該晶圓W之間的光學路徑會被純水(Lm)填 充,其折射率為1.435876 »所有的透光部件(透鏡)皆是 由矽土玻璃(Si〇2 )製成,對該使用光來說,其折射率為 1.5603261。 36 201027120 下面的表(l)提供根據該第一範例的投影光 的規格的數值。在表系紙 长表(1)的主要規格中,λ代表曝光用的 光的中心波長’冷為投影 议办彳口旱的大小,NA為影像側(晶圓 側)數值孔徑,Β Λ a m L似你 馬日日圓W之上影像圈IF的半徑(最大影 像间度)LXa與LXb為靜態曝光區ERa、ERb在χ方向 中的長度(長邊的長度),而LYa與LYb為靜態曝光區、 ERb在Y方向中的長纟(短邊的長度)。Among the optical paths between the total point CP1 and the second common point CP2, the second conjugate point is optically conjugate with the point on the first mask Ma and the optical axis is at the point The first mask Ma intersects. The third imaging optical system G3 is disposed in an optical path between the second conjugate point cp2 and the third conjugate point, the third conjugate point and the point on the first mask Ma An optical conjugation is produced and the optical axis intersects the first mask Ma at this point. The second reticle Mb and the fourth conjugate point and the fourth imaging optical system G4 are disposed in an optical path between the fourth conjugate point CP4, the 32nd Λ 201027120 is in the second reticle Mb A certain point on the upper side produces an optical total and the optical axis (the incident side optical axis Αχ4 of the fourth imaging optical system G4) intersects the first reticle Mb at this point. The fifth imaging optical system G5 is disposed in an optical path between the fourth conjugate point CP4 and the fifth conjugate point CP5, the fifth conjugate point and the second reticle Mb The point produces an optical conjugation and the optical axis intersects the second mask Mb at this point. The sixth imaging optical system G6 is disposed in an optical path between the fifth conjugate point cp5 and the sixth common point cp6 'the sixth conjugate point is located on the second reticle Mb © This point produces an optical conjugation and the optical axis intersects the second photomask 匕 at this point. The seventh imaging optical system G7 is disposed in an optical path between the wafer w and the third common spot CP3 and the sixth common spot CP6. The reflecting mirror FM is a path coupling member which is composed of: a first deflecting member disposed near the second common vehicle point CP3 and having the planar reflecting surface R37; and a sixth conjugate point disposed at the sixth conjugate point A second deflecting member adjacent to the CP6 and having the planar reflecting surface R67. The plane reflection surface M23 is disposed near the second conjugate point CP2 and the plane reflection surface M56 is disposed near the fifth conjugate point CP5. The β-first imaging optical system G1, the third imaging optical system 〇3, the fourth imaging optical system G4, the sixth imaging optical system G6, and the seventh imaging optical system G7 are all refractive systems. The second imaging optical system G2 and the fifth imaging optical system G5 are a catadioptric system (reflection/refraction optical system) including a concave reflecting mirror. a first optical unit composed of the first imaging optical system G1 to the second imaging optical system G3 and a second optical unit composed of the fourth forming 33 201027120 image optical system G4 to the sixth imaging optical system G6 The same configuration is arranged and arranged to be symmetrical to the optical axis AX7 of the seventh imaging optical system G7. Among the reflecting mirrors FM as path combining elements, a ridge line composed of the reflecting surface R37 and the reflecting surface R67 (more precisely, a virtual extension line of the reflecting surface R3 7 and a virtual extending line of the reflecting surface R67) The ridge line) is located between the exit side optical axis AX3 of the third imaging optical system G3, the exit side optical axis Αχ6 of the sixth imaging optical system G6, and the incident side optical axis ΑΧ7 of the seventh imaging optical system G7. Intersection ©. The projection optical system PL is telecentric on both the object side and the image side. Among each of the exemplary projection optical systems PL, light traveling from the first mask Ma in the +Ζ direction travels through the first imaging optical system G1 to form a first intermediate image. Light from the first intermediate image travels through the second imaging optical system G2 for forming a second intermediate image near the reflective surface R23 of the planar reflecting mirror M23. Light from the second intermediate image or light forming the second intermediate image is deflected by the reflective surface R23 in the +X direction and then travels through the third imaging optical aperture system G3 for use in the reflective mirror fm A third intermediate image is formed near the reflective surface R3 7 . Similarly, light traveling from the second mask Mb along the -Z direction will travel through the fourth imaging optical system G4 to form a fourth intermediate image. Light from the fourth intermediate image will travel through the first The fifth imaging optical system G5' is for forming a fifth intermediate image near the reflective surface R56 of the planar reflecting mirror M56. The light from the fifth intermediate image or the light forming the intermediate image of the 34th 201027120 is deflected toward the _reverse direction by the reflective surface R56 to form a sixth intermediate image near the reflective surface r67 of the reflecting mirror FM. The light from the third intermediate image or the light forming the third intermediate image is deflected by the reflective surface R37 of the reflecting mirror FM in the _z direction and then travels through the seventh imaging optical system G7 for Above the wafer %; ^ into the final first small image. The pupil from the sixth intermediate image is that the light forming the sixth intermediate image is deflected by the reflective surface R67 of the reflecting mirror FM in the -Z direction and then travels through the seventh imaging optical© system G7 for A final second small image is formed at a position parallel to the first small image above the wafer W. In each of the examples of the embodiment, an aspherical surface is represented by the following formula (a), wherein y is a height in a direction perpendicular to the optical axis; z is the optical axis from the non-spherical The tangential plane at the tip of the spherical surface to the distance of the non-spherical surface at a position at height y; r is the radius of curvature at the tip; and Cn is the nth non-spherical number. In the following Tables (1), (2), and (3), each of the lens surfaces formed in the non-spherical shape will have a mark * on the right side of the surface number. z=( y2/r)/[l + {l-( l + /c ) . y2/r2} 1/2] + C4 · y4+C6 · y6+c8 . y8+C10y10+C12 . y12+C14 . Y14+c16 . y16+C18 . y18+C20 . y2 〇 (a) [First Example] FIG. 6 is a diagram showing a lens configuration of a projection optical system according to a first example of the embodiment. Referring to FIG. 6, in the projection optical system 35 201027120 of the first example, the first imaging optical system (1) is sequentially arranged from the incident side of the light in the optical axis extending in the z direction. Twelve lenses L11 to L112 are formed. The second imaging optical system is composed of a positive lens L21, two negative lenses L22 and L23, and a concave reflecting mirror CM2. They are sequentially arranged from the incident side of the light and fall on the optical axis AX1. Among the optical axes Αχ2 on the same straight line. The third imaging optical system G3 is composed of ten lenses L31 to L31 which are sequentially arranged from the incident side of the light in the optical axis 3 extending in the meandering direction. The fourth imaging optical system G4 'the fifth imaging optical system G5 and the sixth imaging optical system G6 have the same configurations as the first imaging optical system G1, the second imaging optical system G2, and the third imaging optical system (7), respectively. Therefore, the description of the configurations is omitted herein. The seventh imaging optical system G7 is constituted by fifteen lenses L71 to L715 which are sequentially arranged from the incident side of the light in the optical axis AX7 extending in the z direction. The plano-convex lens L715, which is arranged closest to the wafer among the seventh imaging optical system G7, constitutes a boundary lens Lb. In this first example, there is a paraxial pupil position inside the lens L712, and the aperture blocking AS is arranged at this near U-axis stop position. In the first example, the optical path between the boundary lens Lb and the wafer W is used for the use of ArF excimer laser light (wavelength λ = 193.306 nm) as the light used for exposure (light for exposure). Filled with pure water (Lm), its refractive index is 1.435876. » All light-transmitting parts (lenses) are made of alumina glass (Si〇2), which has a refractive index of 1.5603261 for the light used. 36 201027120 Table (1) below provides numerical values of the specifications of the projection light according to the first example. In the main specification of the watch paper length gauge (1), λ represents the center wavelength of the light for exposure, and the NA is the image side (wafer side) numerical aperture, Β Λ am L is like the radius of the image circle IF above the horse's day circle W (maximum image interval) LXa and LXb are the length of the static exposure area ERa, ERb in the χ direction (length of the long side), and LYa and LYb are static exposure Zone, ERb long 纟 in the Y direction (length of the short side).

在表(1)的光學部件的規格中,表面編號代表從光的 射入側處算起某—表面的序號;r是每一個表面的曲率半徑 (於非球狀表面的情況中則為頂端處的曲率半徑:mm) ; d 為母個表面的軸向距離或表面分隔距離(mm );而η則 為中心波長的折射率。因為成像光學系統G1至G3及成像 光學系統G4至G6具有相同的配置,所以,表(1 )並未包 含和成像光學系統G4至G6有關的光學部件之規格的任何 說明’而僅在括弧中顯示出構成該等成像光學系統G4至 G6的光學部件的元件符號。表(1 )中相同的表示符號亦可 套用至下面的表(2)與(3)。 37 201027120 表(1 ) (主要規格) λ = 193.306nm β =1/4 ΝΑ=1.40 B = 15.3mm L01=L 02=3.8mm LX3=LXb = 26mni LYa=LYb=4mm (光學部件的規格) 表面編號 r d η 光學部件 (光罩表面) 143.0457 1* -2149.56686 37.1696 1.5603261 Lll ( L41) 2 -353.06239 90.4783 3 -242.13440 31.5726 1.5603261 L12 ( L42) 4 -189.60199 38.7034 5 349.23635 70.5353 1.5603261 L13 ( L43 ) 6 -625.88405 13.8602 7 186.71555 30.8278 1.5603261 L14 ( L44) 8 263.87455 53.2551 9 87.62478 28.7960 1.5603261 L15 ( L45 ) 10 88.73819 56.9253 11 -243.47842 9.0000 1.5603261 L16 ( L46)In the specification of the optical component of Table (1), the surface number represents the number of the surface from the incident side of the light; r is the radius of curvature of each surface (in the case of the non-spherical surface, the tip is The radius of curvature at: mm); d is the axial distance or surface separation distance (mm) of the parent surface; and η is the refractive index of the center wavelength. Since the imaging optical systems G1 to G3 and the imaging optical systems G4 to G6 have the same configuration, the table (1) does not contain any description of the specifications of the optical components related to the imaging optical systems G4 to G6, and only in parentheses. The component symbols constituting the optical components of the imaging optical systems G4 to G6 are shown. The same symbols in Table (1) can also be applied to Tables (2) and (3) below. 37 201027120 Table (1) (Main specification) λ = 193.306nm β = 1/4 ΝΑ = 1.40 B = 15.3mm L01=L 02=3.8mm LX3=LXb = 26mni LYa=LYb=4mm (Specification of optical parts) Surface No. rd η Optical component (mask surface) 143.0457 1* -2149.56686 37.1696 1.5603261 Lll ( L41) 2 -353.06239 90.4783 3 -242.13440 31.5726 1.5603261 L12 ( L42) 4 -189.60199 38.7034 5 349.23635 70.5353 1.5603261 L13 ( L43 ) 6 -625.88405 13.8602 7 186.71555 30.8278 1.5603261 L14 ( L44) 8 263.87455 53.2551 9 87.62478 28.7960 1.5603261 L15 ( L45 ) 10 88.73819 56.9253 11 -243.47842 9.0000 1.5603261 L16 ( L46 )

38 201027120 12 233.40002 18.0896 13 257.66874 42.3077 1.5603261 L17 ( L47) 14 -110.87886 4.7153 15 -103.85652 10.5712 1.5603261 L18 ( L48) 16 446.35518 32.5621 17* -291.92989 67.8050 1.5603261 L19 ( L49) 18 908.08203 1.0000 19 1185.15814 58.2193 1.5603261 L110 ( L410) 20 -166.95773 1.0000 21 726.06659 41.7689 1.5603261 Llll ( L411 ) 22 -267.26042 1.0000 23 125.76600 25.0172 1.5603261 L112 ( L412) 24* 125.78727 100.0000 25 〇〇 25.0000 虛擬表面 26 oo 44.5922 虚擬表面 27 143.24159 69.9979 1.5603261 L21 ( L51) 28 439.36418 124.4664 29 -118.61450 45.1287 1.5603261 L22 ( L52) 30 2386.01920 90.2866 31 -97.15320 18.0000 1.5603261 L23 ( L53) 32 -221.08990 30.5668 33 -177.50172 -30.5668 CM2 (CM5 ) 34 -221.08990 -18.0000 1.5603261 L23 ( L53) 35 -97.15320 -90.2866 39 201027120 36 2386.01920 -45.1287 1.5603261 L22 ( L52 ) 37 -118.61450 -124.4664 38 439.36418 -69.9979 1.5603261 L21 ( L51) 39 143.24159 -44.5922 40 〇〇 -25.0000 虛擬表面 41 oo -206.7836 R23 ( R56 ) 42 -507.99489 -37.3768 1.5603261 L31 ( L61 ) 43 5329.19532 -1.0000 44 -597.00952 -32.1771 1.5603261 L32 ( L62) 45 1912.09613 -1.0000 46 -547.26791 -46.0467 1.5603261 L33 ( L63) 47 -1355.78569 -216.9752 48 204.62751 -9.0389 1.5603261 L34 ( L64) 49 347.59776 -1 1.6879 50 -176.51690 -76.0000 1.5603261 L35 ( L65) 51* 910.10858 -74.9718 52 204.45425 -70.4619 1.5603261 L36 ( L66) 53 -226.72267 -4.9657 54 -258.53441 -69.1045 1.5603261 L37 ( L67) 55 206.04691 -1 1.323 1 56* 266.69085 -11.0620 1.5603261 L38 ( L68 ) 57 221.04482 -69.0824 58 187.97072 -75.9659 1.5603261 L39 ( L69) 59 177.05435 -165.2252 40 201027120 60 -1672.1 1676 -26.8619 1.5603261 L310( L610) 61 389.25812 -141.4648 62 〇〇 -133.5452 R37 ( R67) 63 154.04263 -76.0000 1.5603261 L71 64 202.32468 -1.0000 65 -288.24709 -71.1250 1.5603261 L72 66 866.33777 -1.0000 67 -212.16962 -76.0000 1.5603261 L73 68 -441.3 1305 -27.7610 69 377.72976 -14.4786 1.5603261 L74 70 -153.07755 -48.4848 71 388.10415 -9.0000 1.5603261 L75 72* -328.65439 -16.4728 73* -3157.16360 -31.4791 1.5603261 L76 74 1 168.79047 -1.0028 75 307.09987 -34.3832 1.5603261 L77 76* -3039.32892 -22.0967 77* 20000.00000 -34.9706 1.5603261 L78 78 719.88566 -1.0000 79 -1975.23270 -20.0000 1.5603261 L79 80* -2627.98276 -34.1067 81* -1484.97943 -44.1409 1.5603261 L710 82 437.80132 -1.0000 83 720.35508 -70.1444 1.5603261 L71 1 41 201027120 84 262.83672 -1.0000 85 -378.44582 -66.0777 1.5603261 L712 86 7570.00418 18.0000 87 〇〇 -19.0000 AS 88 -195.50431 -85.8176 1.5603261 L713 89* -438.12570 -1.0000 90 -141.38428 -50.2383 1.5603261 L714 91* -513.84557 -1.0000 92 -65.65717 -49.9000 1.5603261 L715 : Lb 93 〇〇 -3.0000 1.435876 Lm (晶圓表面)38 201027120 12 233.40002 18.0896 13 257.66874 42.3077 1.5603261 L17 ( L47) 14 -110.87886 4.7153 15 -103.85652 10.5712 1.5603261 L18 ( L48 ) 16 446.35518 32.5621 17* -291.92989 67.8050 1.5603261 L19 ( L49 ) 18 908.08203 1.0000 19 1185.15814 58.2193 1.5603261 L110 ( L410 ) 20 -166.95773 1.0000 21 726.06659 41.7689 1.5603261 Llll ( L411 ) 22 -267.26042 1.0000 23 125.76600 25.0172 1.5603261 L112 ( L412 ) 24* 125.78727 100.0000 25 〇〇 25.0000 Virtual surface 26 oo 44.5922 Virtual surface 27 143.24159 69.9979 1.5603261 L21 ( L51 ) 28 439.36418 124.4664 29 -118.61450 45.1287 1.5603261 L22 ( L52) 30 2386.01920 90.2866 31 -97.15320 18.0000 1.5603261 L23 ( L53 ) 32 -221.08990 30.5668 33 -177.50172 -30.5668 CM2 (CM5 ) 34 -221.08990 -18.0000 1.5603261 L23 ( L53 ) 35 -97.15320 -90.2866 39 201027120 36 2386.01920 -45.1287 1.5603261 L22 ( L52 ) 37 -118.61450 -124.4664 38 439.36418 -69.9979 1.5603261 L21 ( L51 ) 39 143.24159 -44.5922 40 〇〇-25.0000 Virtual Surface 41 oo -206.7836 R23 ( R56 ) 42 -507.99489 -37.3768 1.5603261 L31 ( L61 ) 43 5329.19532 -1.0000 44 -597.00952 -32.1771 1.5603261 L32 ( L62 ) 45 1912.09613 -1.0000 46 -547.26791 -46.0467 1.5603261 L33 ( L63 ) 47 -1355.78569 -216.9752 48 204.62751 -9.0389 1.5603261 L34 ( L64) 49 347.59776 -1 1.6879 50 -176.51690 -76.0000 1.5603261 L35 ( L65 ) 51* 910.10858 -74.9718 52 204.45425 -70.4619 1.5603261 L36 ( L66 ) 53 -226.72267 -4.9657 54 -258.53441 -69.1045 1.5603261 L37 ( L67) 55 206.04691 -1 1.323 1 56* 266.69085 -11.0620 1.5603261 L38 ( L68 ) 57 221.04482 -69.0824 58 187.97072 -75.9659 1.5603261 L39 ( L69 ) 59 177.05435 -165.2252 40 201027120 60 -1672.1 1676 -26.8619 1.5603261 L310 ( L610 61 389.25812 -141.4648 62 〇〇-133.5452 R37 ( R67) 63 154.04263 -76.0000 1.5603261 L71 64 202.32468 -1.0000 65 -288.24709 -71.1250 1.5603261 L72 66 866.33777 -1.0000 67 -212.16962 -76.0000 1.5603261 L73 68 -441.3 1305 -27.7610 69 377.72976 -14.47 86 1.5603261 L74 70 -153.07755 -48.4848 71 388.10415 -9.0000 1.5603261 L75 72* -328.65439 -16.4728 73* -3157.16360 -31.4791 1.5603261 L76 74 1 168.79047 -1.0028 75 307.09987 -34.3832 1.5603261 L77 76* -3039.32892 -22.0967 77* 20000.00000 -34.9706 1.5603261 L78 78 719.88566 -1.0000 79 -1975.23270 -20.0000 1.5603261 L79 80* -2627.98276 -34.1067 81* -1484.97943 -44.1409 1.5603261 L710 82 437.80132 -1.0000 83 720.35508 -70.1444 1.5603261 L71 1 41 201027120 84 262.83672 -1.0000 85 -378.44582 -66.0777 1.5603261 L712 86 7570.00418 18.0000 87 〇〇-19.0000 AS 88 -195.50431 -85.8176 1.5603261 L713 89* -438.12570 -1.0000 90 -141.38428 -50.2383 1.5603261 L714 91* -513.84557 -1.0000 92 -65.65717 -49.9000 1.5603261 L715 : Lb 93 〇〇-3.0000 1.435876 Lm (wafer surface)

42 20102712042 201027120

(非球狀資料) 第1表面:/c =0 C4 = -2.5623 1x10'8 Ce — -3.26656xl013 C8 = -4.46044x10'18 C 10 = = -4.40570xl0_22 Ci2=-1.99219xl〇·27 c 1 4 = = 3.07186xl0·31 C16=-2.10176x10·35 C 1 8 = =〇 c2〇=o 第17表面:/c =0 C4 = -1.34746x10·8 C6 = -3.27663xl0'12 C8 = 2.72885x10-16 c 1 0 = -1.38898x10-19 Ci2=6.74393xl〇·23 C 1 4: = -1.94285xl0'26 Ci6 = 3.35553xlO'30 C 1 8: = -3.17768xl〇·34 C2〇=1.27392x10'38 第24表面· /c =0 C4 = 2.1563 1x10-8 C6 = 1.03082xl〇·12 C8=4.52407x10'17 c 10 = = 1.29797xl〇·20 Ci2=-2.30704xl0'24 C14 =4.50350x10-28 Ci6 = -3.95702xl0'32 C20=4.91635x1〇·43 c 1 8 = 1.7801 8x10-36 43 201027120 第51表面:/c =0 C4 = -4.02649xl〇·8 c6= 6.71563xl0*13 C8 = 7.63744x1〇·18 c 1 0 = -1.21852xl〇·21 C12=5.22291x10*25 C14 = -5.66419xl〇·29 C16 = 1.48887x10'33 c 1 8 =〇 c2〇=o 第56表面:/c =0 C4 = 3.05352x10-8 C6 = 1.12471x10-12 C8 = 3.985 1 3x10'17 Cl〇 = :1.55839x10-21 Ci2=1.30946xl0'25 CU = -1.23576xl〇·29 C16 = 2.37280x10'33 C2〇 = 5.75870x10'42 C 1 8 = -1.56198xl0'37 第72表面:/c =0 C4=-4.02946x10'8 c6= = 3.02819xl〇·12 C8=2.26081x10·17 C10 = -4.63620xl0'21 C12 = -4.32269x10'25 Cj 4=9.42498x1〇·29 Ci6 = -7.12873x1〇·33 。20 = 〇 C, 8=1.93988x1〇·37 第73表面:/c =0 C4=-2.35665xl〇·8 c6= :5.84076xl(T13 C8 = -4.59258x10-18 Cio = -7.00541xl〇·21 C12=1.58454xl〇·24 C14 = -2.57008xl0'28(non-spherical data) First surface: /c =0 C4 = -2.5623 1x10'8 Ce — -3.26656xl013 C8 = -4.46044x10'18 C 10 = = -4.40570xl0_22 Ci2=-1.99219xl〇·27 c 1 4 == 3.07186xl0·31 C16=-2.10176x10·35 C 1 8 ==〇c2〇=o 17th surface: /c =0 C4 = -1.34746x10·8 C6 = -3.27663xl0'12 C8 = 2.72885x10 -16 c 1 0 = -1.38898x10-19 Ci2=6.74393xl〇·23 C 1 4: = -1.94285xl0'26 Ci6 = 3.35553xlO'30 C 1 8: = -3.17768xl〇·34 C2〇=1.27392x10 '38 24th surface · /c =0 C4 = 2.1563 1x10-8 C6 = 1.03082xl〇·12 C8=4.52407x10'17 c 10 = = 1.29797xl〇·20 Ci2=-2.30704xl0'24 C14 =4.50350x10- 28 Ci6 = -3.95702xl0'32 C20=4.91635x1〇·43 c 1 8 = 1.7801 8x10-36 43 201027120 51st surface: /c =0 C4 = -4.02649xl〇·8 c6= 6.71563xl0*13 C8 = 7.63744 X1〇·18 c 1 0 = -1.21852xl〇·21 C12=5.22291x10*25 C14 = -5.66419xl〇·29 C16 = 1.48887x10'33 c 1 8 =〇c2〇=o 56th surface: /c = 0 C4 = 3.05352x10-8 C6 = 1.12471x10-12 C8 = 3.985 1 3x10'17 Cl〇= :1.55839x10-21 Ci2=1.30946xl0'25 CU = -1.2357 6xl〇·29 C16 = 2.37280x10'33 C2〇= 5.75870x10'42 C 1 8 = -1.56198xl0'37 72nd surface: /c =0 C4=-4.02946x10'8 c6= = 3.02819xl〇·12 C8 =2.26081x10·17 C10 = -4.63620xl0'21 C12 = -4.32269x10'25 Cj 4=9.42498x1〇·29 Ci6 = -7.12873x1〇·33 . 20 = 〇C, 8=1.93988x1〇·37 73rd surface: /c =0 C4=-2.35665xl〇·8 c6= :5.84076xl (T13 C8 = -4.59258x10-18 Cio = -7.00541xl〇·21 C12=1.58454xl〇·24 C14 = -2.57008xl0'28

44 20102712044 201027120

C16=2.61943x10·32 c 1 8 = -1.58255X10'36 C2〇=3.91398x10'41 第76表面· /c =0 C4 = -4.57219xl〇·10 C6 = -4.37379xl0'13 C8 = -5.22320x10_17 c 1 0 =4.42637xl0'22 Ci2=1.328 14xl〇·25 C14 = -4.37632x10-30 C16 = -1.67489x10-35 c 1 8- :1·49135χ10-39 c2〇=o 第77表面· /c =0 C4 = 3.89354xl0-9 C6=- .75637xl〇·13 C8 = -6.60208xl〇·17 c 1 0: = -1.64576xl0'22 C12=1.38560x10'25 C 1 4: = -2.25476xlO'30 C16 = -7.93455x1〇·35 C 1 8 = 1.83564xl〇·39 。20 = 〇 第80表面:/c =0 C4=-l.l〇257xl〇·8 C6 = -2.49708x10'14 C8 = -2.18114x1〇·17 c 1 〇 = = -9.63217xl〇·23 Ci2=6.03363x10'26 Ci4 = - 2.27688xlO'30 C16=3.64117x1〇·35 c 1 8 =- 2.15444xl〇·40 。2〇 = 〇 45 201027120 第81表面:/c =0 C4=2.43343xl〇·8 C8 = -2.3041 lxlO'19 C12=1.〇7584x10*26 C16 = 9.71876x1〇·36 。20 = 〇 第89表面:/c =0 C4 = 3.76281x10'8 C8=l.92084x10-16 C12 = 2.81981x10_25 C16=2.66740x10-35 第91表面:/c =0 C4 = -8_65513xlO-9 C8 = -1.72066xl〇·16 C12 = -9.72308xl(T24 C16=-1.88783x10'32 C6=-1.74414x1〇·13 Ci〇=-1.14245x10'22 C14=-4.57737xl〇·31 Ci8 = -1.26377xl〇·40 C6 = -2.28156x10'12 C10=-9.89908xl〇·21 Ci4=-4.25238xlO'30 C i 8 = 〇 。20 = 〇 C6 = -4.3 1357xl〇·12 Ci〇 = 7.12083xl〇·20 C14=6_27371xl0-28 C 1 8 = 〇 C 2〇 —〇 (對應於條件表示式的數值) D 1 =D2 = 1 028.2mm D3=D4= 1 008.2mm β 3=yS 6=1.19 β 23= β 56=1.16C16=2.61943x10·32 c 1 8 = -1.58255X10'36 C2〇=3.91398x10'41 76th surface · /c =0 C4 = -4.57219xl〇·10 C6 = -4.37379xl0'13 C8 = -5.22320x10_17 c 1 0 =4.42637xl0'22 Ci2=1.328 14xl〇·25 C14 = -4.37632x10-30 C16 = -1.67489x10-35 c 1 8- :1·49135χ10-39 c2〇=o 77th surface · /c = 0 C4 = 3.89354xl0-9 C6=- .75637xl〇·13 C8 = -6.60208xl〇·17 c 1 0: = -1.64576xl0'22 C12=1.38560x10'25 C 1 4: = -2.25476xlO'30 C16 = -7.93455x1〇·35 C 1 8 = 1.83564xl〇·39 . 20 = 〇 80th surface: /c =0 C4=-ll〇257xl〇·8 C6 = -2.49708x10'14 C8 = -2.18114x1〇·17 c 1 〇= = -9.63217xl〇·23 Ci2=6.03363x10 '26 Ci4 = - 2.27688xlO'30 C16=3.64117x1〇·35 c 1 8 =- 2.15444xl〇·40 . 2〇 = 〇 45 201027120 81st surface: /c =0 C4=2.43343xl〇·8 C8 = -2.3041 lxlO'19 C12=1.〇7584x10*26 C16 = 9.71876x1〇·36 . 20 = 〇 89th surface: /c =0 C4 = 3.76281x10'8 C8=l.92084x10-16 C12 = 2.81981x10_25 C16=2.66740x10-35 91st surface: /c =0 C4 = -8_65513xlO-9 C8 = -1.72066xl〇·16 C12 = -9.72308xl(T24 C16=-1.88783x10'32 C6=-1.74414x1〇·13 Ci〇=-1.14245x10'22 C14=-4.57737xl〇·31 Ci8 = -1.26377xl〇 · 40 C6 = -2.28156x10'12 C10=-9.89908xl〇·21 Ci4=-4.25238xlO'30 C i 8 = 〇.20 = 〇C6 = -4.3 1357xl〇·12 Ci〇= 7.12083xl〇·20 C14 =6_27371xl0-28 C 1 8 = 〇C 2〇—〇 (corresponding to the value of the conditional expression) D 1 =D2 = 1 028.2mm D3=D4= 1 008.2mm β 3=yS 6=1.19 β 23= β 56 =1.16

46 201027120 D13=D24=1358.6mm S=450mm L01=L02=3.8mm B = 1 5.3 mm A1=A2 = 63.55° (假設最小值的光線) Α3=Α4 = 26·35 (假設最小值的光線) A1=A2 = 46.44。(假設最大值的光線) A3=A4=46.00° (假設最大值的光線) ❹(1 ) LOl/B = 0.248 (2) LO2/B=0.248 (7) ( A1+A3) =89.91 (假設最小值的光線) (8) (A2+A4) =89.91 (假設最小值的光線) (7 ) ( A1+A3 ) =92.44 (假設最大值的光線) (8 ) ( A2+A4 ) =92.44 (假設最大值的光線) (12) D13/S = 3.019 (13) D24/S = 3.019 Q ----- 圖7所示的是該第一範例中的橫向像差關係圖。在像 差關係圖中,Y代表影像高度。圖7中相同的的表示符號亦 可套用至下面的圖9與圖11。從圖7的像差關係圖中可以 明白’該第一範例的投影光學系統已針對波長為193.306nm 的準分子雷射光的像差作過妥適的修正,同時確保會有一 非常大的影像側數值孔徑(NA= 1 _40 )以及很大的靜態曝光 區ER ( 26mm X 15.6mm)(其包含靜態曝光區對ERa、ERb 47 201027120 (26mm x 4mm))。 [第二範例] 圖8所示的是根據該實施例的第二範例的投影光學系 統的透鏡配置的圖式。參考圖8,在第二範例的投影光學系 統PL之中’該第一成像光學系統G1是由從光的射入側依 序排列在延伸於Z方向中的光學軸Αχι之中的十二個透鏡 L11至L112所構成。該第二成像光學系統G2是由一個正46 201027120 D13=D24=1358.6mm S=450mm L01=L02=3.8mm B = 1 5.3 mm A1=A2 = 63.55° (assuming minimum light) Α3=Α4 = 26·35 (assuming minimum light) A1 =A2 = 46.44. (assuming maximum ray) A3=A4=46.00° (assuming maximum ray) ❹(1) LOl/B = 0.248 (2) LO2/B=0.248 (7) ( A1+A3) =89.91 (assuming minimum Value of light) (8) (A2+A4) =89.91 (assuming minimum ray) (7) (A1+A3) =92.44 (assuming maximum ray) (8) ( A2+A4 ) =92.44 (hypothesis Maximum light) (12) D13/S = 3.019 (13) D24/S = 3.019 Q ----- Figure 7 shows the lateral aberration relationship in the first example. In the aberration diagram, Y represents the image height. The same reference numerals in Fig. 7 can also be applied to Figs. 9 and 11 below. It can be understood from the aberration diagram of Fig. 7 that the projection optical system of the first example has been properly corrected for the aberration of the excimer laser light having a wavelength of 193.306 nm, and that a very large image side is ensured. The numerical aperture (NA = 1 _40) and the large static exposure area ER (26mm X 15.6mm) (which includes the static exposure area pair ERa, ERb 47 201027120 (26mm x 4mm)). [Second Example] Fig. 8 is a view showing a lens configuration of a projection optical system according to a second example of the embodiment. Referring to FIG. 8, in the projection optical system PL of the second example, the first imaging optical system G1 is sequentially arranged from the incident side of the light in twelve of the optical axes extending in the Z direction. The lenses L11 to L112 are formed. The second imaging optical system G2 is made up of a positive

透鏡L21、兩個負透鏡L22與L23以及一個凹形反射面鏡 CM2所構成,它們是從光的射入側依序排列在和光學軸 AX1落在相同直線上的光學軸AX2之中。該第三成像光學 系統G 3則是由從光的射入侧依序排列在延伸於X方向中的 光學轴AX3之中的十個透鏡L31至L310所構成。 該第四成像光學系統G4、第五成像光學系統G5以及 第六成像光學系統G6分別具有和該第一成像光學系統 G1、第二成像光學系統G 2以及第三成像光學系統G 3相同The lens L21, the two negative lenses L22 and L23, and a concave reflecting mirror CM2 are sequentially arranged from the incident side of the light in the optical axis AX2 which falls on the same straight line as the optical axis AX1. The third imaging optical system G 3 is composed of ten lenses L31 to L310 which are sequentially arranged from the incident side of the light in the optical axis AX3 extending in the X direction. The fourth imaging optical system G4, the fifth imaging optical system G5, and the sixth imaging optical system G6 have the same as the first imaging optical system G1, the second imaging optical system G2, and the third imaging optical system G3, respectively.

的配置,所以,本文省略該等配置的說明。第七成像光學 系統G7是由從光的射入側依序排列在延伸於z方向中的光 所構成。第七成 圓處的平凸透鏡 ’於該第二範例 ’而且孔徑阻欄 學軸AX7之中的十五個透鏡L71至L715 像光學系統G7之中被排列在最靠近該晶 L715會構成邊界透鏡Lb。如同第一範例中 中有位於透鏡L712内側的近轴光瞳位置 AS會排列在此近軸光瞳位置處。 對以ArF準分子 如同第一範例中,於該第二範例中 48 201027120 雷射光(波長又=193.30 6nm )作為使用光來說,介於該邊 界透鏡Lb和該晶圓W之間的光學路徑會被純水(Lm )填 充,其折射率為1.435876。所有的透光部件皆是由矽土玻 璃製成,對該使用光來說’其折射率為1,5603261。下面的 表(2)提供根據該第二範例的投影光學系統PL的規格的 數值。 表(2) ❹ ❹ (主要規格) λ = 1 93.306nm β =1/4 ΝΑ= 1.3 5 B = 15.3mm LO1 =L 02 = 2.8 mm LXa=LXb=26mm LYa=LYb = 5mm (光學部件的規格) 表面編號The configuration, so this article omits the description of these configurations. The seventh imaging optical system G7 is composed of light which is sequentially arranged in the z direction from the incident side of the light. The plano-convex lens at the seventh round circle 'in the second example' and the fifteen lenses L71 to L715 among the aperture blocking axis AX7 are arranged in the optical system G7 closest to the crystal L715 to form a boundary lens Lb. As in the first example, the paraxial pupil position AS located inside the lens L712 is arranged at this paraxial pupil position. For the ArF excimer as in the first example, in this second example 48 201027120 laser light (wavelength = 193.30 6 nm) as the light used, the optical path between the boundary lens Lb and the wafer W It will be filled with pure water (Lm) and has a refractive index of 1.435876. All of the light transmissive members are made of alumina glass, which has a refractive index of 1,560,261,1 for the light used. Table (2) below provides numerical values of the specifications of the projection optical system PL according to this second example. Table (2) ❹ ❹ (main specification) λ = 1 93.306nm β = 1/4 ΝΑ = 1.3 5 B = 15.3mm LO1 = L 02 = 2.8 mm LXa = LXb = 26mm LYa = LYb = 5mm (Specifications of optical parts Surface number

R d η 光學部件 (光罩表面) -586.07580 -230.61494 242.18447 -21 1.26515 68.06061 20.20434 1.5603261 LI 1 ( L41 ) 107.59457 74.47034 23.77336 1.5603261 L12 ( L42) 49 201027120 5 207.49610 61.57929 1.5603261 L13 ( L43) 6 -8412.54586 2.54546 7 299.13005 17.89026 1.5603261 L14 ( L44) 8 397.83466 2.90753 9 131.08330 36.41651 1.5603261 LI 5 ( L45) 10 203.23998 78.67572 11 -233.01106 9.16442 1.5603261 L16 ( L46) 12 173.12941 21.66873 13 -217.24440 25.03962 1.5603261 L17 ( L47) 14 -103.58397 10.27527 15 -156.73082 12.19868 1.5603261 L18 ( L48) 16 -451.14666 29.47704 17* -209.61 197 58.53488 1.5603261 L19 ( L49) 18 -657.02163 1.00000 19 -1084.50282 76.00000 1.5603261 LI 10( L410) 20 -151.07953 1.00000 21 414.09389 60.69805 1.5603261 Llll( L411) 22 -549.86813 1.00000 23 487.71 156 25.00000 1.5603261 LI 12( L412 ) 24* 947.46317 100.00000 25 〇〇 25.00000 虛擬表面 26 oo 1.00000 虛擬表面 27 160.46928 69.97494 1.5603261 L21 ( L51) 28 843.99607 137.58178 50 201027120 29 -111.60543 9.00000 1.5603261 L22 ( L52 ) 30 19124.96743 73.67050 31 -98.17593 18.00000 1.5603261 L23 ( L53) 32 -209.71239 26.10584 33 -154.71296 -26.10584 CM2 ( CM5 ) 34 -209.71239 -18.00000 1.5603261 L23 ( L53) 35 -98.17593 -73.67050 36 19124.96743 -9.00000 1.5603261 L22 ( L52) 37 -111.60543 -137.58178 38 843.99607 -69.97494 1.5603261 L21 ( L51) 39 160.46928 -1.00000 40 〇〇 -25.00000 虛擬表面 41 oo -189.39944 R23 ( R56) 42 -532.971 1 1 -40.22107 1.5603261 L31 ( L61) 43 622.49059 -1.00000 44 -421.23764 -24.40755 1.5603261 L32 ( L62) 45 -1272.87198 -1.00000 46 -229.48600 -19.17842 1.5603261 L33 ( L63) 47 -269.28627 -122.85175 48 -645.80191 -74.21251 1.5603261 L34 ( L64) 49 635.78890 -37.24572 50 -150.61476 -25.64829 1.5603261 L35 ( L65) 51 -443.47226 -24.30180 52 195.09674 -46.88195 1.5603261 L36 ( L66) 51 201027120 53 -162.86268 -13.63274 54 -370.5091 1 -32.47484 1.5603261 L37 ( L67) 55 25 1.33855 -103.13304 56* 575.89090 -54.22594 1.5603261 L38 ( L68) 57 193.02587 -89.82690 58 362.81083 -47.94952 1.5603261 L39 ( L69) 59 209.74590 -18.32614 60 1220.18658 -76.00000 1.5603261 L310( L610) 61 323.72836 -128.59060 62 〇〇 -66.50000 R37 ( R67) 63 144.32133 -52.63909 1.5603261 L71 64 171.85869 -1.00000 65 -284.71313 -41.71221 1.5603261 L72 66 624.37054 -1.00000 67 -165.85811 -56.22944 1.5603261 L73 68 -317.65007 -14.10507 69 -43303.28155 -9.00000 1.5603261 L74 70 -120.72404 -58.60639 71 126.46159 -9.00000 1.5603261 L75 72* -546.08105 -26.35345 73* 351.10634 -39.68597 1.5603261 L76 74 147.99829 -1.00000 75 -222.56532 -63.69401 1.5603261 L77 76* -3333.33333 -26.19524 52 201027120 77* 1483.54746 -64.78136 1.5603261 L78 78 204.53525 -1.00000 79 264.62152 -20.00000 1.5603261 L79 80* -3333.33333 -41.27541 81* 434.62199 -46.00882 1.5603261 L710 82 368.94779 -1.00000 83 -2097.98781 -70.30535 1.5603261 L711 84 514.62050 -14.00000 85 〇〇 13.00000 AS 86 -304.02823 -57.71913 1.5603261 L712 87 -103596.14860 -1.00000 88 -190.85747 -69.41405 1.5603261 L713 89* -984.28103 -1.00000 90 -108.98885 -50.25913 1.5603261 L714 91* -306.74470 -1.00000 92 -67.43913 -49.90000 1.5603261 L715 : Lb 93 〇〇 -3.00000 1.435876 Lm (晶圓表面) 53 201027120 (非球狀資料) 第17表面:/c =0 C4 = -9.56145xl〇·9 C6 = -1.57185x1〇·12 C8 = -9.99870x1〇·17 Ci〇=2.34259xl〇·21 C12 = -3.66502x1〇·24 C14=9.03279x10'28 Ci6 = -1.53772xl0'31 C20=-5.82675x1〇·40 C,8=1.39045x1〇·35 第24表面:/c =0 C4=1.41766xl〇·8 C6=4.92551x10'14 C8 = 2.52764x1(T18 C10 = -l.83214xl〇-22 C12=4.78600x10'26 C14=-6_45055xl0 —30 C16 = 5.33388x1〇·34 C20=4.91 635x10-43 Ci8 = -2.46004xl〇·38 第56表面:/c =0 C4 = 2.91460x10'8 C6=2.96485x1〇·14 C8 = 7.80884x1〇·18 C10 = -1.82018xl0·21 Ci2 = 3.97048xl〇·25 Ci4 = -4.39778xl0'29 C16 = 3.15627x10'33 C2〇=2.30521x1〇·42 Ci8 = -1.26256x1〇·37R d η Optical component (mask surface) -586.07580 -230.61494 242.18447 -21 1.26515 68.06061 20.20434 1.5603261 LI 1 ( L41 ) 107.59457 74.47034 23.77336 1.5603261 L12 ( L42) 49 201027120 5 207.49610 61.57929 1.5603261 L13 ( L43 ) 6 -8412.54586 2.54546 7 299.13005 17.89026 1.5603261 L14 ( L44) 8 397.83466 2.90753 9 131.08330 36.41651 1.5603261 LI 5 ( L45) 10 203.23998 78.67572 11 -233.01106 9.16442 1.5603261 L16 ( L46 ) 12 173.12941 21.66873 13 -217.24440 25.03962 1.5603261 L17 ( L47 ) 14 -103.58397 10.27527 15 -156.73082 12.19868 1.5603261 L18 ( L48) 16 -451.14666 29.47704 17* -209.61 197 58.53488 1.5603261 L19 ( L49) 18 -657.02163 1.00000 19 -1084.50282 76.00000 1.5603261 LI 10( L410) 20 -151.07953 1.00000 21 414.09389 60.69805 1.5603261 Llll( L411) 22 -549.86813 1.00000 23 487.71 156 25.00000 1.5603261 LI 12( L412 ) 24* 947.46317 100.00000 25 〇〇 25.00000 Virtual surface 26 oo 1.00000 Virtual surface 27 160.46928 69.97494 1.5603261 L21 ( L51) 28 84 3.99607 137.58178 50 201027120 29 -111.60543 9.00000 1.5603261 L22 ( L52 ) 30 19124.96743 73.67050 31 -98.17593 18.00000 1.5603261 L23 ( L53 ) 32 -209.71239 26.10584 33 -154.71296 -26.10584 CM2 ( CM5 ) 34 -209.71239 -18.00000 1.5603261 L23 ( L53 ) 35 - 98.17593 -73.67050 36 19124.96743 -9.00000 1.5603261 L22 ( L52) 37 -111.60543 -137.58178 38 843.99607 -69.97494 1.5603261 L21 ( L51 ) 39 160.46928 -1.00000 40 〇〇 -25.00000 Virtual surface 41 oo -189.39944 R23 ( R56 ) 42 -532.971 1 1 -40.22107 1.5603261 L31 ( L61 ) 43 622.49059 -1.00000 44 -421.23764 -24.40755 1.5603261 L32 ( L62 ) 45 -1272.87198 -1.00000 46 -229.48600 -19.17842 1.5603261 L33 ( L63 ) 47 -269.28627 -122.85175 48 -645.80191 -74.21251 1.5603261 L34 ( L64 49 635.78890 -37.24572 50 -150.61476 -25.64829 1.5603261 L35 ( L65) 51 -443.47226 -24.30180 52 195.09674 -46.88195 1.5603261 L36 ( L66 ) 51 201027120 53 -162.86268 -13.63274 54 -370.5091 1 -32.47484 1.5603261 L37 ( L67 ) 55 25 1.3385 5 -103.13304 56* 575.89090 -54.22594 1.5603261 L38 ( L68) 57 193.02587 -89.82690 58 362.81083 -47.94952 1.5603261 L39 ( L69 ) 59 209.74590 -18.32614 60 1220.18658 -76.00000 1.5603261 L310 ( L610 ) 61 323.72836 -128.59060 62 〇〇-66.50000 R37 ( R67) 63 144.32133 -52.63909 1.5603261 L71 64 171.85869 -1.00000 65 -284.71313 -41.71221 1.5603261 L72 66 624.37054 -1.00000 67 -165.85811 -56.22944 1.5603261 L73 68 -317.65007 -14.10507 69 -43303.28155 -9.00000 1.5603261 L74 70 -120.72404 -58.60639 71 126.46159 - 9.00000 1.5603261 L75 72* -546.08105 -26.35345 73* 351.10634 -39.68597 1.5603261 L76 74 147.99829 -1.00000 75 -222.56532 -63.69401 1.5603261 L77 76* -3333.33333 -26.19524 52 201027120 77* 1483.54746 -64.78136 1.5603261 L78 78 204.53525 -1.00000 79 264.62152 -20.00000 1.5603261 L79 80* -3333.33333 -41.27541 81* 434.62199 -46.00882 1.5603261 L710 82 368.94779 -1.00000 83 -2097.98781 -70.30535 1.5603261 L711 84 514.62050 -14.00000 85 〇〇13.00000 AS 86 -304.02823 -57.71913 1.5603261 L712 87 -103596.14860 -1.00000 88 -190.85747 -69.41405 1.5603261 L713 89* -984.28103 -1.00000 90 -108.98885 -50.25913 1.5603261 L714 91* -306.74470 -1.00000 92 -67.43913 -49.90000 1.5603261 L715 : Lb 93 〇〇-3.00000 1.435876 Lm (wafer surface) 53 201027120 (non-spherical data) 17th surface: /c =0 C4 = -9.56145xl〇·9 C6 = -1.57185x1〇·12 C8 = -9.99870x1 〇·17 Ci〇=2.34259xl〇·21 C12 = -3.66502x1〇·24 C14=9.03279x10'28 Ci6 = -1.53772xl0'31 C20=-5.82675x1〇·40 C,8=1.39045x1〇·35 24 surface: /c =0 C4=1.41766xl〇·8 C6=4.92551x10'14 C8 = 2.52764x1(T18 C10 = -l.83214xl〇-22 C12=4.78600x10'26 C14=-6_45055xl0 —30 C16 = 5.33388 X1〇·34 C20=4.91 635x10-43 Ci8 = -2.46004xl〇·38 56th surface: /c =0 C4 = 2.91460x10'8 C6=2.96485x1〇·14 C8 = 7.80884x1〇·18 C10 = -1.82018 Xl0·21 Ci2 = 3.97048xl〇·25 Ci4 = -4.39778xl0'29 C16 = 3.15627x10'33 C2〇=2.30521x1〇·42 Ci8 = -1.26256x1〇·37

54 20102712054 201027120

第72表面:/c =0 C4 = -4.44233xl〇·8 C6=1.32427x1〇·12 C8 = -7.36896x1〇·17 Ci〇 = -1.13507xl〇·20 C12 = 6.61590x10'25 Ci4=1.12866xl〇·29 C16=1.92627x10'33 。20 = 〇 Ci8 = -1.3523 1x1〇·37 第73表面:/c =0 C4 = 2.98792xl〇·9 C6 = -1.22687x1〇·12 C8 = -1.10963x10_16 Ci〇=-2.74018xl〇·21 Ci2=-9.02362xl〇·25 Ci4=1.72989xl〇·28 Ci6 = -2.08935x1〇·32 C20=-3.561 65x1〇·41 C18=1.43649x1〇·36 第76表面:/c =0 C4=4.35491x10'9 C6 = -6.25 188x10'13 C8 = -5.73946x10'17 C10=1.01130xl〇·21 C12=1.32853x10'25 Ci4=-5.51909xl0'30 C16 = -1.25342x1〇·35 。20 = 〇 Ci8 = 2.66388xl〇·39 第77表面:/c =0 C4=1.24076xl〇·8 C6=4.27672x10 —13 55 201027120 C8 = -4.36725x10'17 Ci〇 = 7.46514xl〇·22 C12=1.62422x10'25 C14 = -3.46915xl〇·30 C16 = -2.18464x10'34 。20 = 〇 C18 = 6.58361x10'39 第80表面:/c =0 C4=-2.10612x10'8 C6 = -3.29044x10-13 C8 = -3.22807x10'17 C10=-1.19075xl0'22 C12 = 6.27225x10'26 C14=-1.94725xl〇·30 C16=l.01737x10-34 。20 = 〇 C18 = -2.40677x10·39 第81表面:/c =0 C4=1.34892xl〇·8 C6 = -4.453 18x1〇·13 C8 = -3.86230x10-18 Ci〇=-1.37972x10'22 C12 = 2.51819x1〇·27 Ci4=-3.41940xl0*31 C16 = 5.073 1 8x10'36 c2〇=o Ci8 = -3.10844x1〇·40 第89表面:/c =0 C4=2.55387x10'8 C6 = -2.57930x10'12 C8 = 1.88405x1〇·16 Ci〇=-9.46669xl〇·21 C12=2.98973x10'25 Ci4=-5.39794xlO*30 Ci6=4.24360xl〇·35 C 1 8 = 0 C2〇 = 〇72nd surface: /c =0 C4 = -4.44233xl〇·8 C6=1.32427x1〇·12 C8 = -7.36896x1〇·17 Ci〇= -1.13507xl〇·20 C12 = 6.61590x10'25 Ci4=1.12866xl 〇·29 C16=1.92627x10'33. 20 = 〇Ci8 = -1.3523 1x1〇·37 73rd surface: /c =0 C4 = 2.98792xl〇·9 C6 = -1.22687x1〇·12 C8 = -1.10963x10_16 Ci〇=-2.74018xl〇·21 Ci2= -9.02362xl〇·25 Ci4=1.72989xl〇·28 Ci6 = -2.08935x1〇·32 C20=-3.561 65x1〇·41 C18=1.43649x1〇·36 76th surface: /c =0 C4=4.35491x10'9 C6 = -6.25 188x10'13 C8 = -5.73946x10'17 C10=1.01130xl〇·21 C12=1.32853x10'25 Ci4=-5.51909xl0'30 C16 = -1.25342x1〇·35 . 20 = 〇Ci8 = 2.66388xl〇·39 77th surface: /c =0 C4=1.24076xl〇·8 C6=4.27672x10 —13 55 201027120 C8 = -4.36725x10'17 Ci〇= 7.46514xl〇·22 C12= 1.62422x10'25 C14 = -3.46915xl〇·30 C16 = -2.18464x10'34 . 20 = 〇C18 = 6.58361x10'39 80th surface: /c =0 C4=-2.10612x10'8 C6 = -3.29044x10-13 C8 = -3.22807x10'17 C10=-1.19075xl0'22 C12 = 6.27225x10' 26 C14=-1.94725xl〇·30 C16=l.01737x10-34. 20 = 〇C18 = -2.40677x10·39 81st surface: /c =0 C4=1.34892xl〇·8 C6 = -4.453 18x1〇·13 C8 = -3.86230x10-18 Ci〇=-1.37972x10'22 C12 = 2.51819x1〇·27 Ci4=-3.41940xl0*31 C16 = 5.073 1 8x10'36 c2〇=o Ci8 = -3.10844x1〇·40 89th surface: /c =0 C4=2.55387x10'8 C6 = -2.57930x10 '12 C8 = 1.88405x1〇·16 Ci〇=-9.46669xl〇·21 C12=2.98973x10'25 Ci4=-5.39794xlO*30 Ci6=4.24360xl〇·35 C 1 8 = 0 C2〇= 〇

56 201027120 C6 = -l.72922x10-12 C10=6.76083xlO'20 C14=6.80986x10·28 Cig = 0 C2〇 = 〇 第91表面:/c =〇 C4=-6.1 1181xl〇·1 C8=-3.43795x10*16 Ci2 = -9.56074xl〇·24 Ci6 = -2.90856x1〇·32 (對應於條件表示式的數值)56 201027120 C6 = -l.72922x10-12 C10=6.76083xlO'20 C14=6.80986x10·28 Cig = 0 C2〇= 〇91st surface: /c =〇C4=-6.1 1181xl〇·1 C8=-3.43795x10 *16 Ci2 = -9.56074xl〇·24 Ci6 = -2.90856x1〇·32 (corresponding to the value of the conditional expression)

Dl=D2 = 945.4mm D3=D4=925.2mm β 2,= β 6=1.21 /5 23=万 56=1.29 D13=D24=1 1 70.5 mm S=450mm L〇l=L02 = 2.8mm B= 15.3mm A1=A2=62.92。(假設最小值的光線) Α3=Α4=26·95 ° (假設最小值的光線) Α1=Α2 = 30.2Γ (假設最大值的光線) Α3=Α4=63·79° (假設最大值的光線) (1 ) LOl/B=0.183 (2) LO2/B = 0.183 (7) ( A1+A3) =89.87 (假設最小值的光線) 57 1 ( A2+A4) =89.87 (假設最小值的光線) 201027120 (7 ) ( A1+A3 ) =94.00 (假設最大值的光線) (8 ) ( A2+A4 ) =94.00 (假設最大值的光線) (12) D13/S = 2.601 (13) D24/S=2.601 圖9所示的是該第二範例中的橫向像差關係圖。從圖9 的像差關係圖中可以明白,該第二範例的投影光學系統已 針對波長為193.306nm的準分子雷射光的像差作過妥適的 修正’同時確保會有一非常大的影像側數值孔徑(Na=i .35 ) ❹ 以及很大的靜態曝光區ER ( 26mm X 1 5.6mm )(其包含靜 癌曝光區對 ERa、ERb ( 26mm X 5mm ))。 [第三範例] 圖10所示的是根據該實施例的第三範例的投影光學系 統的透鏡配置的圖式。參考圖丨〇,在第三範例的投影光學 系統PL之中,該第一成像光學系統G1是由從光的射入側 依序被排列在延伸於Z方向中的光學軸AX1之中的十二個 〇 透鏡L11至L112所構成。該第二成像光學系統是由兩 個負透鏡L21與L22以及一個凹形反射面鏡CM2所構成, 它們是從光的射入側依序被排列在和光學轴AX1落在相同 直線上的光學軸AX2之中。該第三成像光學系統G3則是 由從光的射入側依序被排列在延伸於X方向中的光學耗 AX3之中的十個透鏡L31至L310所構成。 該第四成像光學系統G4、第五成像光學系統G5以及 58 201027120 第六成像光學系統G6分別具有和該第一成像光學系統 G1、第二成像光學系統G2以及第三成像光學系統〇相同 的配置,所以,本文省略該等配置的說明。第七成像光學 系統G7是由從光的射入侧依序被排列在延伸於z方向中的 光學轴AX7之中的十五個透鏡L71至L715所構成。第七 成像光學系統G7之中排列在最靠近該晶圓處的平凸透鏡 L715會構成一邊界透鏡Lb。如同第一範例和第二範例中, 於該第三範例中有位於透鏡L712内側的近軸光瞳位置,而 且孔徑阻欄AS排列在此近軸光曈位置處。 如同第一範例和第二範例中,於該第三範例中,對以 ArF準分子雷射光(波長又=193 3〇6nm)作為使用光來說, 介於該邊界透鏡Lb和該晶圓w之間的光學路徑會被純水 (Lm)填充,其折射率為1 435876。所有的透光部件皆是 由矽土玻璃製成,對該使用光來說,其折射率為1 56〇3261。 下面的表(3)提供根據該第三範例的投影光學系統pL的 _ 規格的數值。 ❹ 59 201027120Dl=D2 = 945.4mm D3=D4=925.2mm β 2,= β 6=1.21 /5 23=10,000 56=1.29 D13=D24=1 1 70.5 mm S=450mm L〇l=L02 = 2.8mm B= 15.3 Mm A1=A2=62.92. (assuming the minimum ray) Α3=Α4=26·95 ° (assuming the minimum ray) Α1=Α2 = 30.2Γ (assuming the maximum ray) Α3=Α4=63·79° (assuming the maximum ray) (1) LOl/B=0.183 (2) LO2/B = 0.183 (7) (A1+A3) =89.87 (assuming minimum light) 57 1 (A2+A4) =89.87 (assuming minimum light) 201027120 (7) ( A1+A3 ) =94.00 (assuming maximum light) (8 ) ( A2+A4 ) =94.00 (assuming maximum light) (12) D13/S = 2.601 (13) D24/S=2.601 Figure 9 is a diagram showing the lateral aberration relationship in the second example. It can be understood from the aberration diagram of Fig. 9 that the projection optical system of the second example has been properly corrected for the aberration of the excimer laser light having a wavelength of 193.306 nm, while ensuring that there is a very large image side. The numerical aperture (Na = i .35 ) ❹ and the large static exposure area ER (26mm X 1 5.6mm) (which includes the static cancer exposure area for ERa, ERb (26mm X 5mm)). [Third Example] Fig. 10 is a view showing a lens configuration of a projection optical system according to a third example of the embodiment. Referring to the drawing, in the projection optical system PL of the third example, the first imaging optical system G1 is sequentially arranged from the incident side of the light in the optical axis AX1 extending in the Z direction. Two 〇 lenses L11 to L112 are formed. The second imaging optical system is composed of two negative lenses L21 and L22 and a concave reflecting mirror CM2 which are sequentially arranged from the incident side of the light on the same straight line as the optical axis AX1. Among the axes AX2. The third imaging optical system G3 is composed of ten lenses L31 to L310 which are sequentially arranged from the incident side of the light in the optical power consumption AX3 extending in the X direction. The fourth imaging optical system G4, the fifth imaging optical system G5, and the 58201027120 sixth imaging optical system G6 have the same configuration as the first imaging optical system G1, the second imaging optical system G2, and the third imaging optical system, respectively. Therefore, the description of these configurations is omitted herein. The seventh imaging optical system G7 is constituted by fifteen lenses L71 to L715 which are sequentially arranged from the incident side of the light in the optical axis AX7 extending in the z direction. The plano-convex lens L715, which is arranged closest to the wafer among the seventh imaging optical system G7, constitutes a boundary lens Lb. As in the first and second examples, in the third example, there is a paraxial pupil position inside the lens L712, and the aperture barrier AS is arranged at this paraxial pupil position. As in the first example and the second example, in the third example, the ArF excimer laser light (wavelength = 193 3 〇 6 nm) is used as the light for use, between the boundary lens Lb and the wafer w The optical path between them is filled with pure water (Lm) and has a refractive index of 1,435,876. All of the light transmissive members are made of alumina glass, which has a refractive index of 1 56〇3261 for the light used. Table (3) below provides numerical values of the _ specification of the projection optical system pL according to the third example. ❹ 59 201027120

表(3 ) (主要規格) λ =1 93.306nm β =1/4 ΝΑ=1.35 Β = 1 5.3mm LO1 =L 02 = 2.8 mm LXa=LXb = 26mm LYa=LYb = 5mm (光學部件的規格) 表面編號 R d η 光學部件 (光罩表面) 68.305417 1 -418.69974 20.258719 1.5603261 L11 ( L41) 2 -202.12761 109.082946 3 468.86576 43.995889 1.5603261 L12 ( L42) 4 -348.58396 1.000000 5 209.82001 35.388927 1.5603261 L13 ( L43 ) 6 1232.64488 1.000000 7 162.91710 10.738403 1.5603261 L14 ( L44) 8 150.00000 62.420165 9 93.89563 32.197906 1.5603261 L15 ( L45 ) 10 1 17.46797 22.824902 11 -228.68609 17.713937 1.5603261 L16 ( L46 ) 60 201027120 12 -3841.07700 17.473213 13 -114.86308 22.598485 1.5603261 L17 ( L47) 14 -90.85055 16.126395 15 -125.56482 9.540206 1.5603261 L18 ( L48) 16 -1287.20683 87.952880 17* -238.52458 60.748800 1.5603261 L19 ( L49) 18 -167.54100 1.000000 19 -726.14197 52.845620 1.5603261 L110 ( L410) 20 -202.08828 1.000000 21 263.85496 44.829956 1.5603261 Llll ( L411 ) 22 -9136.04306 1.000000 23 234.92083 29.180498 1.5603261 L112 ( L412) 24* 614.69993 100.005766 25 〇〇 182.541720 虛擬表面 26 -107.69408 9.018062 1.5603261 L21 ( L51) 27 -634.77519 56.779561 28 -1 13.16823 18.000000 1.5603261 L22 ( L52) 29 -227.30779 -18.000000 30 -163.37480 -33.135378 CM2 ( CM5 ) 31 -227.30779 -18.000000 1.5603261 L22 ( L52) 32 -1 13.16823 -56.779561 33 -634.77519 -9.018062 1.5603261 L21 ( L51) 34 -107.69408 -182.541720 35 oo -189.399444 R23 ( R56) 61 201027120 36 1564.92668 -50.368928 1.5603261 L31 ( L61) 37 268.3481 1 -1.000000 38 7918.52031 -28.473308 1.5603261 L32 ( L62) 39 654.73510 -1.000000 40 -1839.56946 -75.716228 1.5603261 L33 ( L63) 41 5979.23492 -99.700277 42 -258.08494 -64.572369 1.5603261 L34 ( L64) 43 -3134.42911 -140.416272 44 -152.03879 -28.036965 1.5603261 L35 ( L65) 45 -352.24679 -17.463095 46 631.39933 -48.280275 1.5603261 L36 ( L66) 47 -141.34789 -76.056277 48 -336.86614 -75.966104 1.5603261 L37 ( L67) 49 -3105.40731 -64.957316 50* 708.21028 -69.672733 1.5603261 L38 ( L68) 51 186.79128 -14.290084 52 233.61816 -75.970951 1.5603261 L39 ( L69) 53 190.41690 -5.441923 54 -8387.96593 -42.1 16370 1.5603261 L310 ( L610) 55 347.61300 -133.910143 56 oo -66.500000 R37 ( R67) 57 148.38791 -75.986723 1.5603261 L71 58 183.99840 -1.000000 59 -266.62689 -36.724312 1.5603261 L72 62 201027120 60 554.52607 -1.000000 61 -151.23538 -33.481 157 1.5603261 L73 62 -451.26020 -12.591952 63 1318.56526 -9.000000 1.5603261 L74 64 -1 12.50842 -55.191096 65 127.08160 -9.1 10781 1.5603261 L75 66* -434.93767 -26.663812 67* 280.93202 -32.403526 1.5603261 L76 68 166.63855 -1.000000 69 -262.40251 -60.427027 1.5603261 L77 70* 1626.04270 -14.269217 71* 1261.43173 -65.194630 1.5603261 L78 72 195.66529 -1.000000 73 225.84163 -20.000000 1.5603261 L79 74* 1501.95254 -25.281741 75* 824.45668 -46.653403 1.5603261 L710 76 297.96105 -1.000000 77 634.46297 -58.228920 1.5603261 L71 1 78 325.07548 -15.000000 79 〇〇 14.000000 AS 80 -290.52967 -59.05091 1 1.5603261 L712 81 -8775.90458 -1.000000 82 -175.41392 -72.464453 1.5603261 L713 83* -688.48238 -1.000000 63 201027120 84 -113.94730 -48.105370 1.5603261 L714 85* -339.77086 -1.000000 86 -68.10513 -49.900000 1.5603261 L715 : Lb 87 oo -3.000000 1.435876 Lm (晶圓表面) 64 201027120 (非球狀資料) 第17表面:/c =0 C4=-3.27118xl0'9 C6=-1.48666x1013 C8 = -6.96468xl〇·18 Ci〇=-6.09245xl〇·22 CI2=1.21506x1〇·25 C14 = -1.32987x10_29 Ci6 = 7.1 832 1xl〇·34 C2〇 = 5.10230x10'44 C18 = -1.76026x1〇·38 ❿第24表面:/c =0 C4=1.29724x10'8 C6- “3.03557x10-14 C8 = 4.76645x10 —18 c10 = -7.92360x10-22 C12=1.35265x10'25 C14=-1.41637xl〇·29 C16 = 9.07550x10'34 C! 8 = -3.23556xl〇·38 C20=4.91635x10-43 第50表面:/c =0 C4=4.92318xl〇·8 :8.09076xl0'13 C8 = 2.08842x10·17 c 1 0 = -6.06320xl〇·22 C12=3.73303x10'25 C 14. = _4.5497〇xl〇-29 C16=4.13592x10-33 C i 8: = -2.00047xl0'37 C20=4.59787xl〇·42 65 201027120 第66表面:/c =0 C4 = -2.77775x10'9 c6 = 3.20301xl0'12 C8 = -3.76509x10'17 c, 〇=-8.37032xl〇·23 C12=-3.59102x10-24 C14=5.40058xl〇·28 C16 = -4.31608xl〇·32 。20 = 〇 Ci 8=1.05721x10-36 第67表面:/c =0 C4 = 3.14482x10'8 C6= = 7.71867xl0-13 Cs = 6.40888xl〇·17 C,0 = 1.32070xl〇·20 C12 = -4.36601x10-24 Cl 4=1.02285x10'27 Ci6 = -1.64993xl〇·31 C2〇 = -6.16760x10'40 Cl 8=1.47404x1〇·35 第70表面:/c =0 C4=1.79654x10_8 C6= = -2.36256x10-13 C8 = -6.3 1736x10'17 Cl〇 = =2.83381xl0'22 C12=1.37109x1〇·25 C 14 = -1.95959xlO_30 Ci6 = -2.30213x1〇·34 。2〇 = 〇 c 18 = = 7.4961 lxlO'39 第71表面:/c =0 C4 = 2.06006xl〇·8 C6=1.05320x10'12Table (3) (Main specifications) λ =1 93.306nm β = 1/4 ΝΑ = 1.35 Β = 1 5.3mm LO1 = L 02 = 2.8 mm LXa = LXb = 26mm LYa = LYb = 5mm (Specification of optical parts) Surface No. R d η Optical component (mask surface) 68.305417 1 -418.69974 20.258719 1.5603261 L11 ( L41) 2 -202.12761 109.082946 3 468.86576 43.995889 1.5603261 L12 ( L42) 4 -348.58396 1.000000 5 209.82001 35.388927 1.5603261 L13 ( L43 ) 6 1232.64488 1.000000 7 162.91710 10.738403 1.5603261 L14 ( L44) 8 150.00000 62.420165 9 93.89563 32.197906 1.5603261 L15 ( L45 ) 10 1 17.46797 22.824902 11 -228.68609 17.713937 1.5603261 L16 ( L46 ) 60 201027120 12 -3841.07700 17.473213 13 -114.86308 22.598485 1.5603261 L17 ( L47 ) 14 -90.85055 16.126395 15 -125.56482 9.540206 1.5603261 L18 ( L48) 16 -1287.20683 87.952880 17* -238.52458 60.748800 1.5603261 L19 ( L49) 18 -167.54100 1.000000 19 -726.14197 52.845620 1.5603261 L110 ( L410 ) 20 -202.08828 1.000000 21 263.85496 44.829956 1.5603261 Llll ( L411 ) 22 -9136 .04306 1.000000 23 234.92083 29.180498 1.5603261 L112 ( L412) 24* 614.69993 100.005766 25 〇〇182.541720 Virtual surface 26 -107.69408 9.018062 1.5603261 L21 ( L51) 27 -634.77519 56.779561 28 -1 13.16823 18.000000 1.5603261 L22 ( L52) 29 -227.30779 -18.000000 30 -163.37480 -33.135378 CM2 ( CM5 ) 31 -227.30779 -18.000000 1.5603261 L22 ( L52) 32 -1 13.16823 -56.779561 33 -634.77519 -9.018062 1.5603261 L21 ( L51 ) 34 -107.69408 -182.541720 35 oo -189.399444 R23 ( R56 ) 61 201027120 36 1564.92668 -50.368928 1.5603261 L31 ( L61 ) 37 268.3481 1 -1.000000 38 7918.52031 -28.473308 1.5603261 L32 ( L62 ) 39 654.73510 -1.000000 40 -1839.56946 -75.716228 1.5603261 L33 ( L63 ) 41 5979.23492 -99.700277 42 -258.08494 -64.572369 1.5603261 L34 ( L64 ) 43 -3134.42911 -140.416272 44 -152.03879 -28.036965 1.5603261 L35 ( L65) 45 -352.24679 -17.463095 46 631.39933 -48.280275 1.5603261 L36 ( L66 ) 47 -141.34789 -76.056277 48 -336.86614 -75.966104 1.5603261 L37 ( L67) 49 -3105.40731 -64.957316 50* 708.21028 -69.672733 1.5603261 L38 ( L68) 51 186.79128 -14.290084 52 233.61816 -75.970951 1.5603261 L39 ( L69 ) 53 190.41690 -5.441923 54 -8387.96593 -42.1 16370 1.5603261 L310 ( L610 ) 55 347.61300 -133.910143 56 Oo -66.500000 R37 ( R67) 57 148.38791 -75.986723 1.5603261 L71 58 183.99840 -1.000000 59 -266.62689 -36.724312 1.5603261 L72 62 201027120 60 554.52607 -1.000000 61 -151.23538 -33.481 157 1.5603261 L73 62 -451.26020 -12.591952 63 1318.56526 -9.000000 1.5603261 L74 64 -1 12.50842 -55.191096 65 127.08160 -9.1 10781 1.5603261 L75 66* -434.93767 -26.663812 67* 280.93202 -32.403526 1.5603261 L76 68 166.63855 -1.000000 69 -262.40251 -60.427027 1.5603261 L77 70* 1626.04270 -14.269217 71* 1261.43173 -65.194630 1.5603261 L78 72 195.66529 -1.000000 73 225.84163 -20.000000 1.5603261 L79 74* 1501.95254 -25.281741 75* 824.45668 -46.653403 1.5603261 L710 76 297.96105 -1.000000 77 634.46297 -58.228920 1 .5603261 L71 1 78 325.07548 -15.000000 79 〇〇14.000000 AS 80 -290.52967 -59.05091 1 1.5603261 L712 81 -8775.90458 -1.000000 82 -175.41392 -72.464453 1.5603261 L713 83* -688.48238 -1.000000 63 201027120 84 -113.94730 -48.105370 1.5603261 L714 85* -339.77086 -1.000000 86 -68.10513 -49.900000 1.5603261 L715 : Lb 87 oo -3.000000 1.435876 Lm (wafer surface) 64 201027120 (non-spherical data) 17th surface: /c =0 C4=-3.27118xl0'9 C6=- 1.48666x1013 C8 = -6.96468xl〇·18 Ci〇=-6.09245xl〇·22 CI2=1.21506x1〇·25 C14 = -1.32987x10_29 Ci6 = 7.1 832 1xl〇·34 C2〇= 5.10230x10'44 C18 = -1.76026 X1〇·38 ❿24th surface: /c =0 C4=1.29724x10'8 C6- “3.03557x10-14 C8 = 4.76645x10 —18 c10 = -7.92360x10-22 C12=1.35265x10'25 C14=-1.41637xl 〇·29 C16 = 9.07550x10'34 C! 8 = -3.23556xl〇·38 C20=4.91635x10-43 50th surface: /c =0 C4=4.92318xl〇·8 :8.09076xl0'13 C8 = 2.08842x10· 17 c 1 0 = -6.06320xl〇·22 C12=3.73303x10'25 C 14. = _4.5497〇xl〇-29 C16 =4.13592x10-33 C i 8: = -2.00047xl0'37 C20=4.59787xl〇·42 65 201027120 66th surface: /c =0 C4 = -2.77775x10'9 c6 = 3.20301xl0'12 C8 = -3.76509x10 '17 c, 〇=-8.37032xl〇·23 C12=-3.59102x10-24 C14=5.40058xl〇·28 C16 = -4.31608xl〇·32. 20 = 〇Ci 8=1.05721x10-36 67th surface: /c =0 C4 = 3.14482x10'8 C6= = 7.71867xl0-13 Cs = 6.40888xl〇·17 C,0 = 1.32070xl〇·20 C12 = - 4.36601x10-24 Cl 4=1.02285x10'27 Ci6 = -1.64993xl〇·31 C2〇= -6.16760x10'40 Cl 8=1.47404x1〇·35 70th surface: /c =0 C4=1.79654x10_8 C6= = -2.36256x10-13 C8 = -6.3 1736x10'17 Cl〇= =2.83381xl0'22 C12=1.37109x1〇·25 C 14 = -1.95959xlO_30 Ci6 = -2.30213x1〇·34 . 2〇 = 〇 c 18 = = 7.4961 lxlO'39 71st surface: /c =0 C4 = 2.06006xl〇·8 C6=1.05320x10'12

66 20102712066 201027120

C8 = -5.87237x10'17 C10=7.52885xlO·22 C12=2.17202x10'25 C14 = -7.3 1267xl〇·30 C16 = -1.62507x10'34 。20 = 〇 Ci8 = 8.09985xl0'39 第74表面:/c =0 C4=-2.50949x10'8 C6=-1.87366x10·13 C8 = -2.37045x10'17 C10=1.36425xlO·22 C12 = 6.09018x10'26 C14=-6.84000x1〇·31 C16=-4.45663x10 —35 。20 = 〇 C18 = 8.01917x10-40 第75表面:/c =0 C4=2.00988xl〇·8 C6 = -5.00357x10'13 C8 = -6.69661x10'18 C10=-9.58868x10-24 C12 = 8.55 155x1〇·27 C14=-4.29504xl〇·31 Ci6 = 4.74566xl〇·36 c20=o C18 = 5.01717x1〇·41 第83表面:/c =0 C4=2.53940xl〇·8 C6 = -2.51880x10'12 C8 = 1.81244x1〇·16 C10 = -9.24162xlO-21 C12=2.97860x10'25 C14=-5.47930xl〇·30 C16=4.35598x10 —35 C1 8 = 0 〇20 = 0 1 67 201027120 第85表面:/c =0 C4 = -6.70652x 1 0'8 c6= 5_15611xl0·13 C8 = -4.36833xl〇·16 C 10 = = 6.73884xl〇-20 C12 = -8.1 1 358xl〇·24 C,4 = 5.16537xl0·28 Ci6 = -1.93567x10'32 c 18 = =0 C2〇=〇 (對應於條件表示式的數值) Dl=D2 = 889.2mm D3 = D4 = 869.2mm β 3=β 6=1.38 β 23= β 56=1.44 D13=D24=1302.8mm S=450mm L01=L02 = 2.8mm Β = 1 5.3mm Α1=Α2 = 64.31〇 (假設最小值的光線) Α3=Α4=25·89° (假設最小值的光線) Α1=Α2 = 30.41° (假設最大值的光線) Α3=Α4 = 69.50° (假設最大值的光線) (1 ) LOl/B = 0.183 (2) LO2/B=0.183 (7) (A1+A3) =90.21 (假設最小值的光線) (8) ( A2 + A4) =90.21 (假設最小值的光線) 68 201027120 (7) (A1+A3) =99.91 (假設最大值的光線) (8) ( A2+A4) =99_91 (假設最大值的光線) (12) D13/S = 2.895 (13 ) D24/S=2.895 圖11所示的是該第三範例中的橫向像差關係圖。從圖 11的像差關係圖中可以明白,該第三範例的投影光學系統 已針對波長為193.306nm的準分子雷射光的像差作過妥適 ® 的修正’同時確保會有一非常大的影像側數值孔徑 (ΝΑ=1·35 )以及很大的靜態曝光區er ( 26mm X 15.6mm) (其包含靜態曝光區對ERa、ERb ( 26mm x 5mm)),如 同第二範例。 ❹ 如上面所述,該實施例的投影光學系統PL配置成將具 有大折射率的純水(Lm)插設在介於該邊界透鏡Lb與該晶 圓W之間的光學路徑之中,從而使其能夠保證會有一非常 大的有效影像區同時確保會有很大的有效影像侧數值孔 徑。在每-個範例中,明確地說,該投影光學系統會確保 中心波長為193.306nm的ArF準分子雷射光有很大的影像 侧數值孔徑丨”或丨.40並且保證會有該對矩形的靜態曝光 區哪、ERb ;舉例來說,其能夠在26mm χ 33丽的矩形 曝光區之中對電路圖樣實施高解析度的雙重曝光。 在每一個上面的範例中,作為第三偏向部件的平面反 射面鏡助是設置在該第二成像光學系統 像光學系統G3之間,而作為第四 ^成 两间σ丨件的平面反射面鏡 69 201027120 ' M56 tc π置I該第五成像光學系統&和該第六成像光學系 統G6之間。不過,其並不僅限於此亦可以採用修正範例, 其中’作為第二偏向部件的平面反射面鏡M12會被設置在 該第-成像光學系統G1和該第二成像光學系統G2之間, 且其中’作為第四偏向部件的平面反射面鏡m45會被設置 在該第四成像光學系統G4和該第五成像光學系統之 間,其對應於每一個範例。 於此情況中’平面反射面鏡M12 ( M45 )的反射表面 R12 ( R45 )可排列在每一個範例中第二十五個表面的一虛 ❹ 擬表面的位置處。圖12所示的是一修正範例,其中,平面 反射面鏡M12是設置在該第一成像光學系統gi和該第二 成像光學系統G2之間,且其中,平面反射面鏡M45是設 置在該第四成像光學系統G4和該第五成像光學系統G5之 間’其對應於第三範例。 在每一個上面的範例中,反射表面R37及反射表面R67 是形成在該反射面鏡FM(其是單一光學部件)之中,但是, 其並不僅限於此,亦可以分開提供一具有該反射表面R37 〇 的第一偏向部件以及一具有該反射表面R67的第二偏向部 件。 在每一個上面的範例中,由反射面鏡FM的反射表面 R3 7和反射表面R6 7所構成的稜線是位於該第三成像光學 系統G3的射出側光學軸AX3、該第六成像光學系統〇6的 射出側光學軸AX6以及該第七成像光學系統G7的射入側 光學軸AX7之間的交點上。不過,其並不僅限於此,由反 70 201027120 射表面R37和反射表面R67所構成的棱線以及成像光學系 統G3、G6、G7的光學軸AX3 ' AX6、AX7之間的位置關 係可以有各種形式。 ❹ ❹ 之 進移動 在前面的實施例中,當該第一光罩Ma、該第二光罩 Mb以及該晶圓w沿著X方向相對於該投影光學系統pl被 同步移動時,該晶圓W上的照射區域便會受到掃描曝光的 作用,該第一光罩Ma的圖樣與該第二光罩Mb的圖樣會疊 置而構成複合圖樣。不過,其並不僅限於此,曝光裝置亦 可配置成如圖13中所示,明確地說,其配置成用以重複執 行必要次數(η次)的下面操作:在該晶圓w上的第一照 射區域Shi之中對光罩Ma的圖樣進行掃描曝光操作;在第 二照射區域Sh2之中對光罩Mb的圖樣進行掃描曝光操作, 該第二照射區域Sh2在掃描移動方向(舉例來說,+χ方向) 中疋位於該第一照射區域Shl的旁邊;在第三照射區域sh3 之中對光罩Ma的圖樣進行掃描曝光操作,該第三照射區域 Sh3在掃描移動方向中是位於該第二照射區域处2的旁邊; 因而僅藉由沿著掃描方向(χ方向)來移動該晶圓…便能 夠在對齊排列於該掃描方向之令的η個照射區域如至心 中連續實施掃描曝光,而不必對該晶圓W實施二維的步 〆於此曝光序列中,照射系統⑽的光罩遮片職的孔 :在第-照射區域Shl之中光罩仏的圖樣的掃描曝光期間 會閉合,而光罩_平A + _ σ MSb在下一個第二照射區域处2中 掃描曝光的起始位置處則會 1处刻會待命準備。接著,照射系統iLa 71 201027120 的光罩遮片MBa的孔徑在第二照射區域sh2之中光罩Mb 的圖樣的掃描曝光期間會閉合’而光罩平台MSa則會從該 第—照射區域Shi中該掃描曝光的結束位置處返回下一個 第三照射區域Sh3中該掃描曝光的起始位置。而後,照射 系統ILb的光罩遮片MBb的孔徑在第三照射區域sh3之中 光罩Ma的圖樣的掃描曝光期間會閉合,而光罩平台Msb 則會從該第二照射區域Sh2中該掃描曝光的結束位置處返 回下一個第四照射區域sh4中該掃描曝光的起始位置。 在前面的實施例中,該感光性基板之上的其中一個照❿ 射區域會受到掃描曝光的作用,該第一圖樣與該第二圖樣 會叠置而構成複合圖樣。不過,其並不僅限於此,亦可以 在該感光性基板之上的第一照射區域之中對該第一圖樣實 施掃描曝光或全拍攝曝光以及在該感光性基板之上的第二 照射區域之中對該第二圖樣實施掃描曝光或全拍攝曝光。 在前面的實施例中,矩形形狀的第一照射區IRa和第二 照射區IRb是分別居中形成在該第一照射系統ILa的光學軸 AXa及該第二照射系統ILb的光學轴AXb之上。不過,其 ❹ 並不僅限於此,該等照射區IRa、IRb的輪廓、該等照射區 IRa、IRb相對於的光學軸AXa、AXb的位置關係、…等亦 可以有各種形式。 舉例來說,該等照射光學系統可能是使用下面專利公 開申請案中所揭示之技術的照射光學系統:美國專利公開 申請案第2007/0258077號、美國專利公開申請案第 2008/0246932號、美國專利公開申請案第2009/0086186 72 201027120 號、美國專利公開申請案第2009/0040490號以及美國專利 么開申睛案第2009/0135396號。亦可以應用美國專利公開 申請案第2006/0170901號及美國專利公開申請案第 2007/0146676號中所揭示之所謂的偏振照射方法。 前面的實施例是使用ArF準分子雷射光源’不過,其 並不僅限於此,舉例來說,亦可以使用其它合宜的光源, 例如KrF準分子雷射光源或是&雷射光源。前面的實施例 是將本發明的實施例應用至安置在曝光裝置中的液體浸沒 ° 式投影光學系統,不過,其並不僅限於此,亦可以將本發 明的實施例應用至任何其它一般的液體浸沒式投影光學系 統。前面的實施例是將本發明的實施例應用至安置在曝光 裝置中的液體浸沒式投影光學系統,不過,其並不僅限於 此,亦可以將本發明的實施例應用至不會在影像側上形成 任何液體浸沒區的乾式投影光學系統。 在前面所述的實施例中,每一個光罩皆可被一變動圖 樣構成元件取代,δ亥變動圖樣構成元件會以預設的電子資 ^ 料為基礎構成一預設的圖樣。當圖樣表面垂直排列時,使 用此變動圖樣構成元件能夠最小化對同步化精確性的影 響。舉例來說,本文可應用的變動圖樣構成元件可能是空 間光調變器’其包含會以預設的電子資料為基礎被驅動的 複數個反射器件。舉例來說,具有該空間光調變器的曝光 裝置已揭示在曰本專利申請特許公開案第2004-304135 號、國際專利公開案W02006/080285以及與其對應的美國 專利公開申請案第2007/0296936號。除了上面所述之不發 73 201027120 光類型的反射式空間光調變器之外,亦可以應用透射式空 間光調變器或自發光類型影像顯示器元件。應該注意$ 是,該變動圖樣構成元件亦可應用至圖樣表面為水平排列 的情況。 前面實施例的曝光裝置是藉由組裝各種子系統而製 成,該等子系統含有它們在本申請案之申請專利範圍的範 疇中所提出的個別組件,以便保持預設的機械精確性、電 氣精確性以及光學精確性。為確保達成該些各種精確性, 在進行組裝前後會實行下面的㈣··為達成I種光學系统❹ 之光學精確性所作的調整;為達成各種機械系統之機械精 確陡所作的調整,為達成各種電氣系統之電氣精確性所作 的調整。從各種子系統至該曝光裝置的組裝步驟包含該等 各種子系統之間的機械性連接、電氣電路的線路連接氣 動式電路之間的管路連接、…等。理所當然的是,在從各該 等種子系統至該曝光裝置的組裝步驟之前,會有該等個別 子系統的組裝步驟。在從該等各種子系統至該曝光裝置的 組裝步驟完成之後,必須實行整體調整,以便確保整個曝❹ 光裝置的各種精確性。曝光裝置的製造會希望在溫度、潔 淨度…等受到控制的無塵室(clean room )中來實施。 上面所述之實施例的曝光裝置可以藉由該等照射元件 來實施一照射光罩(主光罩)製程(照射步驟)並且藉由 該投影光學系統來曝光該感光性基板而於該等光罩之上形 成轉印圖樣(曝光步驟),用以製造微型元件(舉例來說, 半導體元件、成像元件、液晶顯示器元件、薄膜磁頭、…等)。 74 201027120 下面將說明藉由上面實施例的曝光裝置在晶圓或類似物 (如感光性基板)之上形成預設的電路圖樣以便將半導艘 元件製造成微型元件的方法的範例,參考圖14的流程圖。 圖14中的第一步驟S40是將金屬膜沉積在其中一批晶 圓中的每一個晶圓之上。下一道步驟S42是將光阻塗敷在 該批晶圓中每一個晶圓上的金屬膜之上。後續步驟S44是 使用上面實施例的曝光裝置,經由該曝光裝置的投影光學 系統將光罩上的圖樣的影像依序轉印至該批晶圓中的每一 © 個晶圓之上的個別照射區域。後續步驟S46是對該批晶圓 中的每一個晶圓上的光阻實施顯影,而下一道步驟S48是 利用該批晶圓中的每一個晶圓上的光阻圖樣作為光罩來實 施蝕刻,並且從而在每一個晶圓上的該等個別照射區域之 中形成對應於該等光罩上該等圖樣的電路圖樣。 而後,便會經由多道步驟來製造半導體元件之類的元 件,該等步驟包含在上層中形成電路圖樣。上面所述的半 體7L件製造方法可以讓我們以高總處理量來製造具有極 精細電路圖樣的半導體元件。步驟S40至S48雖然是排列 成用以實施在該晶圓上沉積金屬、塗敷該光阻至該金屬膜 之上、曝光、顯影以及蝕刻等個別步驟,不過,理所當然 的是’可以下面的方式來修正該製程:在該些步驟之前, 於該晶圓之上形成發的氧化物膜,接著,於該氧化石夕膜之 上塗敷光阻,而後則實行曝光、顯影以及敍刻等步驟。 上面實施例的曝光裝置亦可藉由在平板(玻璃基板) 之上形成預設的圖樣(電路圖樣、電極圖樣、.等)而將液 75 201027120 晶顯示器元件製造成微型元件。 Γ田將參考圖15的流程圖 來說明此情況中的方法的範例。在 U圃 ^ 圃15中,圓樣構成步驟 S50疋要執仃所謂的光微影術步 卿稽由上面實施例的曝光 裝置將光罩的圖樣轉印在感光性基 &双、室佈著光阻玻璃 基板或類似物)之上。此光微影術步驟會導致形成預設圖 樣,其包含該感光性基板之上的大量電極和其它圖樣。而 後’便會經由包含顯影步驟、則步驟、光阻移除步驟、 等在内的每一道步驟來處理該經過曝光的基板從而會在 ❹ 該基板之上形成該預制圖#,接著便會進行下一道彩色 濾光片構成步驟S52。 / 該下一道彩色遽光片構成步驟S52是要形成一彩色滤 光片,其巾,由對應於R (紅色)、G (綠色)以及b (藍 色)三點所組成的大量滤光片集會被陣列排列在一矩陣圖 樣之中’或其中’由R、G以及B三種條紋所組成的濾光片 集會被陣列排列在水平的掃描線方向之中。在彩色濾光片 構成步驟S52之後,便會執行胞體組裝步驟S54。胞體組裝 步驟S54疋要利用具有在圖樣構成步驟S5〇之中所取得之❹ 預設圖樣的基板、在彩色濾光片構成步驟S52之中所取得 的彩色濾光片以及其它,來組裝一液晶面板(液晶胞體)。 在胞體組裝步驟S54之中,舉例來說,其會藉由將— 液晶灌注在具有在圖樣構成步驟S5〇之中所取得之預設圖 樣的基板以及在彩色濾光片構成步驟S52之中所取得的彩 色濾光片之間來製造該液晶面板(液晶胞體)。接續的模 組組裝步驟S56是要黏著該經過組裝的液晶面板(液晶胞 76 201027120 體)的各種組件,例如電氣電路及用於顯示操作的背光, 以便完成該液晶顯示器元件。上面所述的液晶顯示器元件 的製造方法可以讓我們以高總處理量來製造具有極精細電 路圖樣的液晶顯示器元件。 應該注意的是’上面所解釋的實施例的說明是為更容 易理解本發明,並不是要限制本發明。所以,實施例中所 揭示的每一個器件皆希望涵蓋屬於本發明之技術範疇的所 有設計變化與等效例。上面實施例中的每一個組成器件和 ® 其它器件皆可以任何組合或其它方式來套用。 【圖式簡單說明】 圖1所示的是根據本發明一實施例的曝光裝置的配置 的概略圖式。 圖2所示的分別是形成在第一光罩和第二光罩上的矩 形照射區。 圖3所示的是經由投影光學系統所形成的該第一光罩 〇 的圖樣影像和該第二光罩的圖樣影像的圖式。 圖4所示的是形成在晶圓之上的矩形靜態曝光區以及 該實施例中的參考光學轴之間的位置關係。 圖5所示的是介於該實施例中的邊界透鏡和晶圓之間 的配置的概略圖式。 圖6所示的是根據該實施例的第一範例的投影光學系 統的透鏡配置的圖式。 圖7所示的是該第一範例的投影光學系統中的橫向像 77 201027120 差的關係囷。 圖8所示的是根據該實施例的第二範例的投影光學系 統的透鏡配置的圖式。 圖9所示的是該第二範例的投影光學系統中的橫向像 差的關係圖。 圖10所示的是根據該實施例的第三範例的投影光學系 統的透鏡配置的圖式。C8 = -5.87237x10'17 C10=7.52885xlO·22 C12=2.17202x10'25 C14 = -7.3 1267xl〇·30 C16 = -1.62507x10'34 . 20 = 〇Ci8 = 8.09985xl0'39 74th surface: /c =0 C4=-2.50949x10'8 C6=-1.87366x10·13 C8 = -2.37045x10'17 C10=1.36425xlO·22 C12 = 6.09018x10'26 C14=-6.84000x1〇·31 C16=-4.45663x10 —35 . 20 = 〇C18 = 8.01917x10-40 75th surface: /c =0 C4=2.00988xl〇·8 C6 = -5.00357x10'13 C8 = -6.69661x10'18 C10=-9.58868x10-24 C12 = 8.55 155x1〇 ·27 C14=-4.29504xl〇·31 Ci6 = 4.74566xl〇·36 c20=o C18 = 5.01717x1〇·41 83rd surface: /c =0 C4=2.53940xl〇·8 C6 = -2.51880x10'12 C8 = 1.81244x1〇·16 C10 = -9.24162xlO-21 C12=2.97860x10'25 C14=-5.47930xl〇·30 C16=4.35598x10 —35 C1 8 = 0 〇20 = 0 1 67 201027120 85th surface: /c =0 C4 = -6.70652x 1 0'8 c6= 5_15611xl0·13 C8 = -4.36833xl〇·16 C 10 == 6.73884xl〇-20 C12 = -8.1 1 358xl〇·24 C,4 = 5.16537xl0·28 Ci6 = -1.93567x10'32 c 18 = =0 C2〇=〇 (corresponding to the value of the conditional expression) Dl=D2 = 889.2mm D3 = D4 = 869.2mm β 3=β 6=1.38 β 23= β 56= 1.44 D13=D24=1302.8mm S=450mm L01=L02 = 2.8mm Β = 1 5.3mm Α1=Α2 = 64.31〇 (assuming minimum light) Α3=Α4=25·89° (assuming minimum light) Α1 =Α2 = 30.41° (assuming maximum light) Α3=Α4 = 69.50° (assuming maximum light) (1) LOl/B = 0.183 ( 2) LO2/B=0.183 (7) (A1+A3) =90.21 (assuming minimum light) (8) (A2 + A4) =90.21 (assuming minimum light) 68 201027120 (7) (A1+A3 ) =99.91 (assuming maximum ray) (8) ( A2+A4) =99_91 (assuming maximum ray) (12) D13/S = 2.895 (13) D24/S=2.895 Figure 11 shows the The lateral aberration relationship diagram in the third example. It can be understood from the aberration diagram of FIG. 11 that the projection optical system of the third example has been corrected for the aberration of the excimer laser light having a wavelength of 193.306 nm while ensuring a very large image. The side numerical aperture (ΝΑ=1·35) and the large static exposure area er (26mm X 15.6mm) (which includes the static exposure area pair ERa, ERb (26mm x 5mm)), as in the second example.投影 As described above, the projection optical system PL of this embodiment is configured to insert pure water (Lm) having a large refractive index in an optical path between the boundary lens Lb and the wafer W, thereby It is guaranteed to have a very large effective image area while ensuring a large effective image side numerical aperture. In each of the examples, specifically, the projection optical system ensures that the ArF excimer laser light having a center wavelength of 193.306 nm has a large image side numerical aperture 丨" or 丨.40 and is guaranteed to have the pair of rectangles. Static exposure area, ERb; for example, it can perform high-resolution double exposure of the circuit pattern in a rectangular exposure area of 26 mm 。 33 丽. In each of the above examples, the plane as the third deflection part The reflecting mirror is disposed between the second imaging optical system image optical system G3, and serves as a fourth reflecting mirror of the σ element. 69 201027120 ' M56 tc π I. The fifth imaging optical system And between the sixth imaging optical system G6. However, it is not limited thereto, and a modified example may be employed, in which a plane reflecting mirror M12 as a second deflecting member is disposed in the first-imaging optical system G1. And the second imaging optical system G2, and wherein a plane reflecting mirror m45 as a fourth deflecting member is disposed between the fourth imaging optical system G4 and the fifth imaging optical system, Corresponding to each of the examples. In this case, the reflective surface R12 (R45) of the plane reflecting mirror M12 (M45) can be arranged at the position of a virtual surface of the twenty-fifth surface in each of the examples. 12 is a modified example in which a plane reflecting mirror M12 is disposed between the first imaging optical system gi and the second imaging optical system G2, and wherein the plane reflecting mirror M45 is disposed at the first Between the four imaging optical system G4 and the fifth imaging optical system G5 'which corresponds to the third example. In each of the above examples, the reflective surface R37 and the reflective surface R67 are formed on the reflective mirror FM (which is a single Among the optical components, however, it is not limited thereto, and a first deflecting member having the reflecting surface R37 以及 and a second deflecting member having the reflecting surface R67 may be separately provided. In each of the above examples The ridge line formed by the reflecting surface R3 7 and the reflecting surface R6 7 of the reflecting mirror FM is the emitting side optical axis AX3 of the third imaging optical system G3, and the output of the sixth imaging optical system 〇6 An intersection between the optical axis AX6 and the incident-side optical axis AX7 of the seventh imaging optical system G7. However, it is not limited thereto, and the ridge line formed by the reverse surface 70, the surface of the surface R37 and the reflective surface R67 and the imaging The positional relationship between the optical axes AX3' AX6, AX7 of the optical systems G3, G6, G7 can take various forms. ❹ ❹ Inward movement In the foregoing embodiment, when the first mask Ma, the second mask When the Mb and the wafer w are synchronously moved relative to the projection optical system pl along the X direction, the illumination area on the wafer W is subjected to scanning exposure, and the pattern of the first mask Ma and the second The pattern of the mask Mb is superposed to form a composite pattern. However, it is not limited thereto, and the exposure apparatus may be configured as shown in FIG. 13, specifically, it is configured to repeatedly perform the necessary operations (n times) of the following operations: on the wafer w Scanning exposure operation is performed on the pattern of the mask Ma in an irradiation area Shi; scanning and exposing operation is performed on the pattern of the mask Mb in the second irradiation area Sh2, and the second irradiation area Sh2 is in the scanning moving direction (for example, , the +χ direction) is located beside the first illumination area S11; in the third illumination area sh3, the pattern of the mask Ma is scanned and exposed, and the third illumination area Sh3 is located in the scanning movement direction. The second irradiation area is located at the side 2; thus, by simply moving the wafer along the scanning direction (χ direction), it is possible to continuously perform scanning exposure in the n irradiation areas aligned to the scanning direction, such as the center of the heart. Without having to perform a two-dimensional step on the wafer W in this exposure sequence, the reticle of the illumination system (10) covers the hole of the mask: during the scanning exposure of the pattern of the mask 之中 in the first-irradiation area Shl close While mask _ A + _ σ MSb level of the lower one of the second irradiation region 2 in the scanning exposure start position at a moment will be on standby ready. Next, the aperture of the reticle mask MBa of the illumination system iLa 71 201027120 is closed during the scanning exposure of the pattern of the reticle Mb in the second illumination area sh2, and the reticle stage MSa is from the first illumination area Shi The end position of the scanning exposure is returned to the starting position of the scanning exposure in the next third irradiation area Sh3. Then, the aperture of the reticle mask MBb of the illumination system ILb is closed during the scanning exposure of the pattern of the reticle Ma in the third illumination area sh3, and the reticle stage Msb is scanned from the second illumination area Sh2. The end position of the exposure returns to the start position of the scanning exposure in the next fourth irradiation area sh4. In the foregoing embodiment, one of the illuminating regions on the photosensitive substrate is subjected to scanning exposure, and the first pattern and the second pattern are superposed to form a composite pattern. However, it is not limited thereto, and the first pattern may be subjected to scanning exposure or full-shot exposure and a second irradiation area on the photosensitive substrate in the first irradiation region on the photosensitive substrate. The second pattern is subjected to scanning exposure or full shooting exposure. In the foregoing embodiment, the rectangular first illumination area IRa and the second illumination area IRb are respectively formed centrally on the optical axis AXa of the first illumination system ILa and the optical axis AXb of the second illumination system ILb. However, the ❹ is not limited thereto, and the contours of the irradiation regions IRa and IRb, the positional relationship of the irradiation regions IRa and IRb with respect to the optical axes AXa and AXb, and the like may be various. For example, the illuminating optical system may be an illuminating optical system using the technique disclosed in the following patent publications: U.S. Patent Application Publication No. 2007/0258077, U.S. Patent Application Publication No. 2008/0246932, Patent Publication No. 2009/0086186 72 to 201027120, U.S. Patent Application Serial No. 2009/0040490, and U.S. Patent Application No. 2009/0135396. The so-called polarization irradiation method disclosed in U.S. Patent Application Publication No. 2006/0170901 and U.S. Patent Application Publication No. 2007/0146676 can also be applied. The foregoing embodiment uses an ArF excimer laser source. However, it is not limited thereto. For example, other suitable light sources such as a KrF excimer laser source or a & laser source may be used. The foregoing embodiment is an application of the embodiment of the present invention to a liquid immersion type projection optical system disposed in an exposure apparatus, but it is not limited thereto, and the embodiment of the present invention may be applied to any other general liquid. Immersion projection optical system. The foregoing embodiment applies the embodiment of the present invention to a liquid immersion type projection optical system disposed in an exposure apparatus, but it is not limited thereto, and the embodiment of the present invention can be applied to the image side. A dry projection optical system that forms any liquid immersion zone. In the above-described embodiment, each of the masks can be replaced by a variable pattern component, and the alpha-wave pattern component constitutes a predetermined pattern based on the preset electronic material. When the surface of the pattern is arranged vertically, using this variation pattern to form components minimizes the impact on synchronization accuracy. For example, the variation pattern constituting component to which this document may be applied may be a spatial light modulator' which contains a plurality of reflective devices that are driven based on a predetermined electronic material. For example, an exposure apparatus having the spatial light modulator is disclosed in Japanese Patent Application Laid-Open No. 2004-304135, International Patent Publication No. WO2006/080285, and the corresponding US Patent Application Publication No. 2007/0296936 number. In addition to the reflective spatial light modulators of the type described above, the transmissive spatial light modulator or the self-illuminating type image display component can also be used. It should be noted that $ is that the variation pattern constituent element can also be applied to the case where the surface of the pattern is horizontally arranged. The exposure apparatus of the previous embodiment is made by assembling various subsystems containing their individual components as set forth in the scope of the patent application of the present application in order to maintain preset mechanical precision, electrical Accuracy and optical accuracy. In order to ensure that these various accuracies are achieved, the following (4) adjustments to achieve the optical accuracy of the I optical system are performed before and after assembly; adjustments are made to achieve the mechanical precision of various mechanical systems. Adjustments made to the electrical accuracy of various electrical systems. The assembly steps from the various subsystems to the exposure apparatus include mechanical connections between the various subsystems, line connections between the electrical circuits, pneumatic connections between the pneumatic circuits, and the like. It is a matter of course that there will be assembly steps for the individual subsystems prior to the assembly steps from each of the seed systems to the exposure apparatus. After the assembly steps from the various subsystems to the exposure apparatus are completed, an overall adjustment must be made to ensure various accuracy of the entire exposure apparatus. The manufacture of the exposure apparatus is desired to be carried out in a clean room controlled by temperature, cleanliness, etc. The exposure apparatus of the embodiment described above can implement an illumination mask (main mask) process (illumination step) by the illumination elements and expose the photosensitive substrate by the projection optical system. A transfer pattern (exposure step) is formed over the cover for manufacturing micro-elements (for example, semiconductor elements, imaging elements, liquid crystal display elements, thin film magnetic heads, etc.). 74 201027120 An example of a method of forming a predetermined circuit pattern on a wafer or the like (such as a photosensitive substrate) to fabricate a semi-conducting vessel element into a micro component by the exposure apparatus of the above embodiment will be described. Flow chart of 14. The first step S40 in Fig. 14 is to deposit a metal film on each of a plurality of wafers. The next step S42 is to apply a photoresist over the metal film on each of the wafers. Subsequent step S44 is to use the exposure apparatus of the above embodiment to sequentially transfer the image of the pattern on the mask to the individual illumination on each of the wafers in the batch via the projection optical system of the exposure apparatus. region. Subsequent step S46 is to perform development on the photoresist on each of the wafers, and the next step S48 is to perform etching using the photoresist pattern on each of the wafers as a mask. And thereby forming a circuit pattern corresponding to the patterns on the reticle among the individual illumination regions on each of the wafers. Then, components such as semiconductor elements are fabricated through a plurality of steps including forming a circuit pattern in the upper layer. The above-described half-body 7L manufacturing method allows us to manufacture semiconductor elements having extremely fine circuit patterns with a high total throughput. Steps S40 to S48 are arranged to perform individual steps of depositing metal on the wafer, applying the photoresist to the metal film, exposing, developing, and etching, but it is of course the following To modify the process: before the steps, an oxide film is formed on the wafer, and then a photoresist is applied on the oxidized film, and then exposure, development, and sculpt are performed. The exposure apparatus of the above embodiment can also manufacture the liquid 75 201027120 crystal display element into a micro component by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a flat plate (glass substrate). Putian will explain an example of the method in this case with reference to the flowchart of Fig. 15. In U圃^ 圃15, the circle is formed in step S50. The so-called photolithography step is performed. The exposure device of the above embodiment transfers the pattern of the mask to the photosensitive base & Above a photoresist glass substrate or the like). This photolithography step results in the formation of a predetermined pattern containing a large number of electrodes and other patterns on the photosensitive substrate. Then, the exposed substrate is processed through each step including a development step, a step, a photoresist removal step, and the like so that the pre-pattern # is formed on the substrate, and then proceeds. The next color filter constitutes step S52. / The next color enamel sheet forming step S52 is to form a color filter having a plurality of filters consisting of three points corresponding to R (red), G (green), and b (blue) The assembly is arranged in a matrix pattern by a array or 'in which the filter set consisting of three stripes of R, G and B is arranged in the horizontal scan line direction by the array. After the color filter constituting step S52, the cell body assembling step S54 is performed. The cell assembly step S54 is to assemble a substrate using a substrate having a predetermined pattern obtained in the pattern forming step S5, a color filter obtained in the color filter forming step S52, and the like. Liquid crystal panel (liquid crystal cell body). In the cell assembly step S54, for example, it is poured into the substrate having the predetermined pattern obtained in the pattern forming step S5, and in the color filter forming step S52. The liquid crystal panel (liquid crystal cell body) was produced between the obtained color filters. The subsequent module assembly step S56 is to adhere various components of the assembled liquid crystal panel (the liquid crystal cell 76 201027120 body), such as an electric circuit and a backlight for display operation, to complete the liquid crystal display element. The manufacturing method of the liquid crystal display element described above allows us to manufacture a liquid crystal display element having a very fine circuit pattern with a high total throughput. It should be noted that the description of the embodiments explained above is to more easily understand the present invention and is not intended to limit the invention. Therefore, each of the devices disclosed in the embodiments is intended to cover all design variations and equivalents falling within the technical scope of the invention. Each of the constituent devices and other devices in the above embodiments can be applied in any combination or other manner. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the configuration of an exposure apparatus according to an embodiment of the present invention. Shown in Fig. 2 are rectangular irradiation regions formed on the first reticle and the second reticle, respectively. Fig. 3 is a view showing a pattern image of the first mask 经由 and a pattern image of the second mask formed by the projection optical system. Figure 4 shows the positional relationship between a rectangular static exposure region formed over a wafer and a reference optical axis in this embodiment. Fig. 5 is a schematic view showing the arrangement between the boundary lens and the wafer in the embodiment. Fig. 6 is a view showing a lens configuration of a projection optical system according to a first example of the embodiment. Fig. 7 is a diagram showing the difference in the lateral image 77 201027120 in the projection optical system of the first example. Fig. 8 is a view showing a lens configuration of a projection optical system according to a second example of the embodiment. Fig. 9 is a view showing the relationship of lateral aberrations in the projection optical system of the second example. Fig. 10 is a view showing a lens configuration of a projection optical system according to a third example of the embodiment.

圖11所示的是該第三範例的投影光學系統中的橫向像 差的關係圖。 圖12所示的是根據第三範例之修正範例的投影光學系 統的透鏡配置的圖式。 圖13所示的是用以解釋在對齊排列在掃描方向中的複 數個照射區域中連續實行掃描曝光之曝光序列的圖式。 圖14所示的是用以製造半導體元件的方法的流程圖。 圖1 5所示的是用以製造液晶顯示器元件的方法的流程 圖。Fig. 11 is a view showing the relationship of lateral aberrations in the projection optical system of the third example. Fig. 12 is a view showing a lens configuration of a projection optical system according to a modified example of the third example. Fig. 13 is a view for explaining an exposure sequence in which scanning exposure is continuously performed in a plurality of irradiation regions aligned in the scanning direction. Figure 14 is a flow chart of a method for fabricating a semiconductor device. Figure 15 is a flow chart showing a method for fabricating a liquid crystal display element.

光源 第一光學系統 複眼透鏡 第二光學系統 投影光學系統 圖樣區 【主要元件符號說明】 la, lb 2a,2b 3a,3b 4a, 4b PL Paa 78 201027120Light source First optical system Compound eye lens Second optical system Projection optical system Pattern area [Main component symbol description] la, lb 2a, 2b 3a, 3b 4a, 4b PL Paa 78 201027120

Pab 圖樣 區 ΑΧ 參考 光學 軸 AX1 第一 成像 光 學 系 統 的 光 學 軸 AX2 第二 成像 光 學 系 統 的 光 學 轴 AX3 第三 成像 光 學 系 統 的 光 學 軸 AX4 第四 成像 光 學 系 統 的 光 學 轴 AX5 第五 成像 光 學 系 統 的 光 學 轴 AX6 第六 成像 光 學 系 統 的 光 學 轴 AX7 第七 成像 光 學 系 統 的 光 學 軸 Axa 第一 照射 系 統 的 光 學 軸 Axb 第二 照射 系 統 的 光 學 軸 AS 孔徑 阻攔 MSa, MSb 光罩 平台 MSD 光罩 平台 驅 動 系 統 Mba 光罩 遮片 MBb 光罩遮片 Ma, Mb 光罩 Era 第一 有效 影 像 區 Erb 第二 有效 影 像 ER 有效 影像 W 晶圓 WS 晶圓 平台 WSD 晶圓 平台 驅 動 系 統 Ira 照射 區 79 201027120Pab pattern area ΑΧ Reference optical axis AX1 Optical axis AX2 of the first imaging optical system Optical axis AX3 of the second imaging optical system Optical axis AX4 of the third imaging optical system Optical axis AX5 of the fourth imaging optical system Fifth imaging optical system Optical axis AX6 Optical axis AX7 of the sixth imaging optical system Optical axis Axa of the seventh imaging optical system Optical axis Axb of the first illumination system Optical axis of the second illumination system AS Aperture blocking MSa, MSb Mask platform MSD Mask platform drive System Mba Mask Mask MBb Mask Mask Ma, Mb Mask Era First Effective Image Area Erb Second Effective Image ER Effective Image W Wafer WS Wafer Platform WSD Wafer Platform Drive System Ira Irradiation Area 79 201027120

Irb 照射區 Ila, ILb 照射系統 IF 影像圈 LOl 偏移距離 L02 偏移距離 Lxa 第一靜態曝光區的 X方向長度 LXb 第二靜態曝光區的 X方向長度 Lya 第一靜態曝光區的 Y方向長度 Lyb 第二靜態曝光區的 Y方向長度 Lm 液體 Lb 邊界透鏡 B 影像圈的半徑 G1 至 G7 成像光學系統 LI 1 透鏡 L12 透鏡 L13 透鏡 L14 透鏡 L15 透鏡 L16 透鏡 L17 透鏡 L18 透鏡 L19 透鏡 L21 透鏡 L22 透鏡Irb irradiation area Ila, ILb illumination system IF image circle LO1 offset distance L02 offset distance Lxa X-direction length LXb of first static exposure area X-direction length Lya of second static exposure area Y-direction length Lyb of first static exposure area Y-direction length Lm of the second static exposure zone Liquid Lb Boundary lens B Image circle radius G1 to G7 Imaging optical system LI 1 Lens L12 Lens L14 Lens L15 Lens L16 Lens L18 Lens L18 Lens L22 Lens L22 Lens

80 20102712080 201027120

L23 L31 L32 L33 L34 L35 L36 L37 L38 L39 L41 L42 L43 L44 L45 L46 L47 L48 L49 L51 L52 L53 L61 L62 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 81 201027120 L63 透鏡 L64 透鏡 L65 透鏡 L66 透鏡 L67 透鏡 L68 透鏡 L69 透鏡 L71 透鏡 L72 透鏡 L73 透鏡 L74 透鏡 L75 透鏡 L76 透鏡 L77 透鏡 L78 透鏡 L79 透鏡 LI 10 透鏡 Llll 透鏡 L112 透鏡 L310 透鏡 L410 透鏡 L411 透鏡 L412 透鏡 L610 透鏡L23 L31 L32 L33 L34 L35 L36 L37 L38 L39 L41 L42 L43 L44 L45 L46 L47 L48 L48 L49 L51 L52 L53 L61 L62 L61 L61 L61 L61 L61 L61 L62 L62 L62 L62 L62 L62 L62 L62 L62 L63 lens L64 lens L65 lens L66 lens L67 lens L68 lens L69 lens L71 lens L72 lens L73 lens L74 lens L75 lens L76 lens L77 lens L78 lens L79 lens LI 10 lens Llll lens L112 lens L310 lens L410 lens L411 lens L412 lens L610 lens

82 20102712082 201027120

L710 透鏡 L71 1 透鏡 L712 透鏡 L713 透鏡 L714 透鏡 L715 透鏡 CPI 第一共軛點 CP2 第二共輛點 CP3 第三共軛點 CP4 第四共輛點 CP5 第五共軛點 CP6 第六共軛點 CM2 凹形反射面鏡 FM 反射面鏡 R37 反射表面 R67 反射表面 M12 反射面鏡 R12 反射表面 M23 反射面鏡 R23 反射表面 M45 反射面鏡 R45 反射表面 M56 反射面鏡 R56 反射表面 83 201027120L710 lens L71 1 lens L712 lens L713 lens L714 lens L715 lens CPI first conjugate point CP2 second common point CP3 third conjugate point CP4 fourth total vehicle point CP5 fifth conjugate point CP6 sixth conjugate point CM2 Concave mirror FM mirror R37 Reflecting surface R67 Reflecting surface M12 Reflecting mirror R12 Reflecting surface M23 Reflecting mirror R23 Reflecting surface M45 Reflecting mirror R45 Reflecting surface M56 Reflecting mirror R56 Reflecting surface 83 201027120

Shl 至 Shn S40 至 S48 S50 至 S56 照射區域 方法步驟 方法步驟Shl to Shn S40 to S48 S50 to S56 illumination area Method steps Method steps

8484

Claims (1)

201027120 七、申請專利範圍: 1.一種投影光學系統,用以在第三表面上形成第一表面 的影像及第二表面的影像,其包括: 第一成像光學系統,其會設置在介於該第一表面與第 一共軛點之間的光學路徑之中,該第一共軛點會與位於該 第一表面上的某一點產生光學共軛且光學轴會在該點處和 該第一表面相交; 第二成像光學系統,其會設置在介於該第一共軛點與 © 第二共軛點之間的光學路徑之中,該第二共輛點會與位於 該第一表面上的該點產生光學共軛且光學軸會在該點處和 該第一表面相交; 第二成像光學系統’其會設置在介於該第二共輛點與 第二共軛點之間的光學路徑之中,該第三共軛點會與位於 該第一表面上的該點產生光學共軛且光學轴會在該點處和 該第一表面相交; 第四成像光學系統’其會設置在介於該第二表面與第 © 四共輥點之間的光學路徑之中,該第四共輕點會與位於該 第一表面上的某一點產生光學共輛且光學轴會在該點處和 該第二表面相交; 第五成像光學系統’其會設置在介於該第四共輥點與 第五共軛點之間的光學路徑之中,該第五共軛點會與位於 該第一表面上的該點產生光學共輕且光學轴會在該點處和 該第二表面相交; 第六成像光學系統,其會設置在介於該第五共軛點與 85 201027120 第六共軛點之間的光學路徑之中,該第六共輛點會與位於 該第二表面上的該點產生光學共軛且光學軸會在該點處和 該第二表面相交; 第七成像光學系統,其會設置在介於該第三表面與該 第二共軛點及該第六共軛點之間的光學路徑之中; 第一偏向部件,其會設置在介於該第三成像光學系統 之中最靠近該第三表面的表面和該第七成像光學系統之中 最靠近該第一表面的表面之間的光學路徑之中,並且會配 置成用以將來自該第三成像光學系統的光引導至該第七成 Θ 像光學系統;以及 第一偏向部件’其會設置在介於該第六成像光學系統 之中最靠近該第三表面的表面和該第七成像光學系統之中 最靠近該第二表面的表面之間的光學路徑之中並且會配 置成用以將來自該第六成像光學系統的光引導至該第七成 像光學系統, 其中’該第七成像光學系統中具有放大率的每一個光 學器件皆是折射光學器件。 ❹ 2·如申請專利範圍第1項之投影光學系統,其中,該第 —成像光學系統與該第五成像光學系統各包含凹形反射面 鏡。 3.如申請專利範圍第1或2項之投影光學系統,其中, 該第一成像光學系統與該第五成像光學系統各包含負透 鏡。 4·如申睛專利範圍第1至3項中任一項之投影光學系 86 201027120 統,其中,該第一偏向部件是設置在該第三共軛點附近, 且其中,S玄第二偏向部件是設置在該第六共軛點附近。 5.如申請專利範圍第丨至4項中任一項之投影光學系 統’其具有縮小倍率© 統’其中,該第一成像光學系統、該第三成像光學系統、 該第四成像光學系統以及該第六成像光學系統中具有放大 率的每一個光學器件皆是一折射光學器件。 7. 如申請專利範圍帛i至6項中任一項之投影光學系 統,其進-步包括:-第三偏向部件,其設置在介於該第 -表面和該第一偏向部件之間的光學路徑之中;以及一第 四偏向部件,冑置在介於該第二表面和該第二偏向部件之 間的光學路徑之中, ❹ 6.如申請專利範圍第i至5項中任一項之投影 其中’該第-偏向部件的反射表面與該第三偏向部件 的反射表面排列成彼此平行,且其中,該第:偏向部件的 反射表面與該第四偏向部件的反射表面排列成彼此平行。 8. 如申睛專利範圍第7項之投影光學系統, 统之=靠偏向部件設置在介於該第二成像光學系 中最靠近今第μ 一表面的表面和該第三成像光學系統之 中最靠近該第一表面的表面之間的光學路徑之中,以及 J二該第四偏向部件設置在介於該第五成像光學系 統之中最靠近該第三表面学系 中最靠近該第二表面…丄第、成像光學系統之 的表面之間的光學路徑之中。 9.如申睛專利範圍第8項之投影光學系統其中該第 87 201027120 二偏向部件是設置在該第二共輛點附近,且其中,該第四 偏向部件是設置在該第五共軛點附近。 10. 如申請專利範圍第8或9項之投影光學系統, 其中’在該第二共扼點與該第三共軛點之間的光學路 徑中沒有任何點會與位於該光學軸之上的點產生光學共 輕’而且在該第五共軛點與該第六共軛點之間的光學路徑 中沒有任何點會與位於該光學轴之上的點產生光學共軛, 且 其中’該第三成像光學系統的成像倍率冷3和該第六成 ❹ 像光學系統的成像倍率石6會滿足下面的條件: 〇·5&lt;| β 3|&lt;2.0 ; 〇.5&lt;| 沒 6丨&lt;2.0。 11. 如申請專利範圍第8至1〇項中任一項之投影光學系 統, 其中’該第三成像光學系統與該第六成像光學系統是 在射入側及在射出側為遠心的光學系統, 其中,從該第一表面上的第一有效場區中的每一點入 射至該第二成像光學系統的主光線和該光學軸之間的夾角 以及從該第一有效場區中的每一點射出該第三成像光學系 統的主光線和該光學軸之間的夾角兩者皆不會大於5。, 其中,從該第二表面上的第二有效場區中的每一點入 射至該第八成像光學系統的主光線和冑光學轴之間的夾角 以及從該第一有效場區中的每—點射出該第六成像光學系 統的主光線和該光學軸之間的失角兩者皆不會大於5。,以 88 201027120 及 八中,该第二成像光學系統與該第五成像光學系統各 包含正透鏡。 12. 如申請專利範圍第7項之投影光學系統,其中, 其中該第二偏向部件設置在介於該第一成像光學系 統之中取罪近該第三表面的表面和該第二成像光學系統之 中最靠近該第一表面的表面之間的光學路徑之中,以及 其中,該第四偏向部件設置在介於該第四成像光學系 ©統之中最靠近該第三表面的表面和該第五成像光學系統之 中最罪近該第二表面的表面之間的光學路徑之中。 13. 如申請專利範圍第12項之投影光學系統,其中,該 第二偏向部件是設置在該第一共軛點附近,且其中,該第 四偏向部件是設置在該第四共扼點附近。 14. 如申請專利範圍第12或13項之投影光學系統,其 中,在該第二共輛點與該第一共輛點之間的光學路徑中除 Ο 了該第二共軛點之外沒有任何點與位於該光學軸之上的點 產生光學共軛,而且在該第六共軛點與該第四共軛點之間 的光學路徑中除了該第五共軛點之外沒有任何點與位於該 光學轴之上的點產生光學共軛,以及 其中,由該第二成像光學系統與該第三成像光學系統 所組成的複合光學系統的成像倍率方23以及由該第五成像 光學系統與該第六成像光學系統所組成的複合光學系統的 成像倍率/356會滿足下面的條件: 0.5&lt;| β 23|&lt;2.0 89 201027120 0·5&lt;| 召 56|&lt;2.0。 15. 如申請專利範圍第12至14項中任一項之投影光學 系統, 其中,該第二成像光學系統與該第五成像光學系統是 在射入側為遠心的光學系統且該第三成像光學系統與該第 六成像光學系統是在射出側為遠心的光學系統, 其中,從該第一表面上該第一有效場區中的每一點入 射至該第二成像光學系統的主光線和該光學軸之間的夹角 以及從該第一有效場區中的每一點射出該第三成像光學系❹ 統的主光線和該光學軸之間的夹角兩者皆不會大於5。, 其中,從該第二表面上該第二有效場區中的每一點入 射至該第五成像光學系統的主光線和該光學軸之間的夾角 以及從該第二有效場區中的每一點射出該第六成像光學系 統的主光線和該光學軸之間的夾角兩者皆不會大於V,以 及 其中,該第二成像光學系統與該第五成像光學系統各 包含正透鏡。 q 16. 如申請專利範圍第7至15項中任一項之投影光學系 統’其會滿足下面的條件: D3^D1 ; D4^D2 ; D1=D2 , 其中,D1為介於該第三表面以及該第一偏向部件之反 射表面與該第七成像光學系統之光學軸間的交點之間的轴 90 201027120 向距離, 其中’ D2為介於該第三表面以及該第二偏向部件之反 射表面與該第七成像光學系統之光學轴間的交點之間的抽 向距離, 其中’D3為介於該第一表面以及該第三偏向部件之反 射表面與該第一成像光學系統之光學軸間的交點之間的轴 向距離,以及 其中,D4為介於該第二表面以及該第四偏向部件之反 射表面與該第四成像光學系統之光學軸間的交點之間的軸 向距離。 17. 如申請專利範圍第丨至16項中任一項之投影光學系 統,其中,從該第一表面及該第二表面射出的主光線的方 向和入射在該第三表面上的主光線的方向相反。 18. 如申請專利範圍第1至17項中任一項之投影光學系 統’其中’從該第一表面至該第一偏向部件所組成的光學 ©系統以及從該第二表面至該第二偏向部件所組成的光學系 統具有相同的配置。 19·如申請專利範圍第7至丨8項中任一項之投影光學系 統’其是一種用在將設立在該第一表面與該第二表面中至 少其中一者之上的預設圖樣轉印至設立在該第三表面之上 的感光性基板的曝光裝置之中的投影光學系統, 該投影光學系統會滿足下面的條件: 2.2&lt;D13/S&lt;5.0 ; 2.2&lt;D24/S&lt;5.0 » 91 201027120 其令,D13為該第三成像.風 笙^ ^ 予系統的光學軸之中介於該 第一偏向部件的反射表面和 Τ 的交點以及”第七成像光學系統之光學軸 =及該第二偏向部件的反射表面和該第一成像光學 系統之光學轴的交點之間的距離,_ 統的光學軸之令介於該第 八成像光學系 神间邛件的反射表面知坊坌 成像光學系統之光學軸的交點 ^ * ^ ^ ‘·及該第四偏向部件的反射 表和該第四成像光學系統之光學轴的交點之間的距離, 以及S代表該感光性基板的劃界圓圈的最大直和。 ,範圍第1至19項中任-項之投影光學系 、充,其在該第一表面上具有一 不匕含該第一成像光學系統 之光學轴的第-有效場區’且在該第二表面上具有一不包 含該第四成像光學系統之光學軸的第二有效場區, 該投影光學系統會滿足下面的條件: 0.05&lt;L01/B&lt;0.4 ; 0.05&lt;L02/B&lt;0.4, 其中,L〇1是介於該第七成像光學系統的光學轴和形 成在該第三表面上對應於該第—有效場區的第一有效影像〇 區之間的距離,而LG2則是介於該“成像光㈣統的光 學軸和形成在該第i表面上對應於該第二有效場區的第二 有效影像區之間的距離,以及,B是該第三表面上的最大影 像高度。 21.如申請專利範圍第項中任—項之投影光學系 統,其中,該第一偏向部件與該第二偏向部件會以一體成 形的方式來配置,且其中,由該第一偏向部件之反射表面 92 r 201027120 和該第二偏向部件之反射表面所構成的稜線是位於該第三 成像光學系統的光學軸、該第六成像光學系統的光學軸以 及該第七成像光學系統的光學軸之間的交點上。 22.如_請專利範圍第7至21項中任一項之投影光學系 統,其中,該第一偏向部件的反射表面和該第二偏向部件 的反射表面排列成和該第七成像光學系統的光學軸形成45 ,其中,該第三偏向部件的反射表面排列成和該第一成像 光學系統的光學軸形成45。,且其中,該第四偏向部件的反 〇 射表面排列成和該第四成像光學系統的光學轴形成45。, 該投影光學系統會滿足下面的條件: 70 °&lt; ( A1+A3 ) &lt;110° ; 7〇。&lt; ( A2+A4) &lt;11〇。, 其中’A3為從該第一表面上的第一有效場區所射出的 光線入射至該第二偏向部件的反射表面的入射角,A1為相 同光線入射至該第一偏向部件的反射表面的入射角,Λ4為 _ 從該第二表面上的第二有效場區所射出的光線入射至該第 四偏向部件的反射表面的入射角,而Λ2則為相同光線入射 至該第二偏向部件的反射表面的入射角。 23.如申請專利範圍第1至22項中任一項之投影光學系 統’其使用在該投影光學系統與該第三表面之間的光學路 徑填充著液體的狀態之中。 24·如申請專利範圍第1至23項中任一項之投影光學系 統’其中’該第一表面與該第二表面是位於相同的平面上。 25.如申請專利範圍第1至24項中任一項之投影光學系 93 201027120 統,其中,該第一表面、該第二表面以及該第三表面為水 平延伸’且其中’該第三表面是位於該第一表面與該第二 表面的下方。 26. —種投影光學系統’用以在第三表面上形成第一表 面的影像及第二表面的影像,其使用在曝光裝置之中用於 將設立在該第一表面和該第二表面中至少其中一者上的預 設圖樣轉印至設立在該第三表面上的感光性基板,該投影 光學系統包括: 第一光學單元,其將來自該第一表面的光引導至路徑 ❹ 結合元件; 第二光學單元,其將來自該第二表面的光引導至該路 徑結合元件;以及 第三光學單元,其以來自該第一光學單元已經前進通 過該路徑結合元件的光為基礎在該第三表面上形成該第— 表面的影像,且其以來自該第二光學單元已經前進通過該 路k結合元件的光為基礎在該第三表面上形成該第二表而 的影像, Q 其中’該第一表面、該第二表面以及該第三表面水平 延伸在該投影光學系統下方的空間之中,以及 其中,該第三表面是位於該第一表面與該第二表面的 下方。 27. 如申請專利範圍第26項之投影光學系統, 其中’該第一光學單元包括:第—成像光學系統,其 設置在介於該第一表面與第一共軛點之間的光學路徑之 94 201027120201027120 VII. Patent application scope: 1. A projection optical system for forming an image of a first surface and an image of a second surface on a third surface, comprising: a first imaging optical system, which is disposed between Among the optical paths between the first surface and the first conjugate point, the first conjugate point will be optically conjugate with a point on the first surface and the optical axis will be at the point and the first a surface intersecting; a second imaging optical system disposed in an optical path between the first conjugate point and the second conjugate point, the second common point being located on the first surface This point produces an optical conjugate and the optical axis will intersect the first surface at that point; the second imaging optical system 'which will be placed between the second common point and the second conjugate point Among the paths, the third conjugate point will be optically conjugate with the point on the first surface and the optical axis will intersect the first surface at the point; the fourth imaging optical system 'will be placed at Between the second surface and the fourth Among the optical paths, the fourth total light point will be optically shared with a point on the first surface and the optical axis will intersect the second surface at the point; the fifth imaging optical system Provided in an optical path between the fourth common roll point and the fifth conjugate point, the fifth conjugate point will be optically light and the optical axis will be at the point on the first surface Intersecting the second surface at the point; a sixth imaging optical system that is disposed in an optical path between the fifth conjugate point and a sixth conjugate point of 85 201027120, the sixth common vehicle a point will be optically conjugate with the point on the second surface and the optical axis will intersect the second surface at the point; a seventh imaging optical system that is disposed between the third surface and the first a second deflecting member and an optical path between the sixth conjugate point; a first deflecting member disposed between a surface of the third imaging optical system closest to the third surface and the seventh The surface of the imaging optical system closest to the first surface And in the optical path, and configured to direct light from the third imaging optical system to the seventh imaging optical system; and a first deflecting member 'which is disposed between the sixth imaging optics An optical path between a surface of the system closest to the third surface and a surface of the seventh imaging optical system closest to the second surface and configured to receive the sixth imaging optical system Light is guided to the seventh imaging optical system, wherein each of the optical devices having the magnification in the seventh imaging optical system is a refractive optical device. The projection optical system of claim 1, wherein the first imaging optical system and the fifth imaging optical system each comprise a concave reflecting mirror. 3. The projection optical system of claim 1 or 2, wherein the first imaging optical system and the fifth imaging optical system each comprise a negative lens. The projection optical system 86 201027120 of any one of claims 1 to 3, wherein the first deflecting member is disposed near the third conjugate point, and wherein the S-second bias is The component is disposed adjacent to the sixth conjugate point. 5. The projection optical system of any one of claims 1-4, which has a reduction magnification system, wherein the first imaging optical system, the third imaging optical system, the fourth imaging optical system, and Each of the optical devices having the magnification in the sixth imaging optical system is a refractive optical device. 7. The projection optical system of any one of claims 1-6, further comprising: - a third deflecting member disposed between the first surface and the first deflecting member And a fourth deflecting member disposed between the optical path between the second surface and the second deflecting member, ❹ 6. as in any of claims 1-5 to 5 Projection wherein the reflective surface of the first-biasing member and the reflective surface of the third deflecting member are arranged in parallel with each other, and wherein the reflective surface of the first deflecting member and the reflective surface of the fourth deflecting member are arranged to each other parallel. 8. The projection optical system of claim 7, wherein the biasing member is disposed between the surface of the second imaging optical system closest to the first surface and the third imaging optical system. Among the optical paths between the surfaces closest to the first surface, and the second deflecting member disposed between the fifth imaging optical system and closest to the second in the third surface optical system The surface...the optical path between the surface of the imaging optical system. 9. The projection optical system of claim 8, wherein the 87th 201027120 two deflecting member is disposed adjacent to the second common vehicle point, and wherein the fourth deflecting member is disposed at the fifth conjugate point nearby. 10. The projection optical system of claim 8 or 9, wherein 'no point in the optical path between the second conjugate point and the third conjugate point is located above the optical axis a point produces an optical total light' and no point in the optical path between the fifth conjugate point and the sixth conjugate point is optically conjugate with a point above the optical axis, and wherein the The imaging magnification cold 3 of the three imaging optical system and the imaging magnification stone 6 of the sixth imaging optical system satisfy the following conditions: 〇·5&lt;| β 3|&lt;2.0 ; 〇.5&lt;| no 6丨&lt;;2.0. 11. The projection optical system according to any one of claims 8 to 1, wherein the third imaging optical system and the sixth imaging optical system are optical systems that are telecentric on the injection side and on the emission side And an angle between a chief ray of the second imaging optical system and the optical axis from each of the first effective field regions on the first surface and from each point in the first effective field region The angle between the chief ray that exits the third imaging optical system and the optical axis is not greater than five. , wherein an angle between a chief ray of the eighth imaging optical system and a pupil optical axis is incident from each of the second effective field regions on the second surface and each of the first effective field regions The point of incidence between the chief ray of the sixth imaging optical system and the optical axis is not greater than 5. In the case of 88 201027120 and the eighth, the second imaging optical system and the fifth imaging optical system each include a positive lens. 12. The projection optical system of claim 7, wherein the second deflecting member is disposed between the first imaging optical system and the surface of the third surface and the second imaging optical system Among the optical paths between the surfaces closest to the first surface, and wherein the fourth deflecting member is disposed between the surface of the fourth imaging optical system closest to the third surface and the Among the fifth imaging optical systems, the most sin is in the optical path between the surfaces of the second surface. 13. The projection optical system of claim 12, wherein the second deflecting member is disposed adjacent to the first conjugate point, and wherein the fourth deflecting member is disposed adjacent to the fourth conjugate point . 14. The projection optical system of claim 12, wherein the optical path between the second common point and the first common point is excluded from the second conjugate point Any point is optically conjugate with a point above the optical axis, and there is no point in the optical path between the sixth conjugate point and the fourth conjugate point except the fifth conjugate point a point located above the optical axis produces an optical conjugation, and wherein an imaging magnification side 23 of the composite optical system composed of the second imaging optical system and the third imaging optical system and by the fifth imaging optical system The imaging magnification / 356 of the composite optical system composed of the sixth imaging optical system satisfies the following conditions: 0.5 &lt;| β 23| &lt; 2.0 89 201027120 0·5 &lt;| Call 56|&lt;2.0. The projection optical system according to any one of claims 12 to 14, wherein the second imaging optical system and the fifth imaging optical system are optical systems that are telecentric on the incident side and the third imaging The optical system and the sixth imaging optical system are optical systems that are telecentric on the exit side, wherein each of the first effective field regions on the first surface is incident on a chief ray of the second imaging optical system and the The angle between the optical axes and the angle between the chief ray of the third imaging optical system and the optical axis from each point in the first effective field region are not greater than five. Wherein, from each of the second effective field regions on the second surface, an angle between a chief ray of the fifth imaging optical system and the optical axis and each point in the second effective field region The angle between the chief ray that exits the sixth imaging optical system and the optical axis is not greater than V, and wherein the second imaging optical system and the fifth imaging optical system each include a positive lens. q. The projection optical system of any one of claims 7 to 15 which satisfies the following conditions: D3^D1; D4^D2; D1=D2, wherein D1 is between the third surface And a distance between the reflection surface of the first deflecting member and the intersection of the optical axes of the seventh imaging optical system, a distance of 2010 201020120, where 'D2 is the reflective surface between the third surface and the second deflecting member a drawing distance between an intersection with an optical axis of the seventh imaging optical system, wherein 'D3 is between the first surface and the reflective surface of the third deflecting member and the optical axis of the first imaging optical system The axial distance between the intersections, and wherein D4 is the axial distance between the second surface and the intersection between the reflective surface of the fourth deflecting member and the optical axis of the fourth imaging optics. The projection optical system according to any one of the preceding claims, wherein the direction of the chief ray emitted from the first surface and the second surface and the chief ray incident on the third surface The opposite direction. 18. The projection optical system of any one of claims 1 to 17, wherein the optical© system consisting of the first surface to the first deflecting member and the second surface to the second bias The optical system consisting of the components has the same configuration. The projection optical system of any one of claims 7 to 8 which is used to convert a preset pattern to be set on at least one of the first surface and the second surface A projection optical system printed in an exposure apparatus of a photosensitive substrate set on the third surface, the projection optical system satisfies the following conditions: 2.2 &lt; D13/S &lt;5.0; 2.2 &lt; D24/S &lt; 5.0 » 91 201027120 The order of D13 is the third imaging. The optical axis of the system is between the intersection of the reflective surface of the first deflecting member and Τ and the optical axis of the seventh imaging optical system = and a distance between a reflecting surface of the second deflecting member and an intersection of the optical axes of the first imaging optical system, the optical axis of the system is between the reflective surface of the eighth imaging optical system The intersection of the optical axis of the imaging optical system ^ * ^ ^ '· and the distance between the reflection table of the fourth deflecting member and the optical axis of the fourth imaging optical system, and S represents the demarcation of the photosensitive substrate The most circles The projection optical system of any one of items 1 to 19, which has a first effective field region on the first surface that does not contain the optical axis of the first imaging optical system and Having a second effective field region on the second surface that does not include the optical axis of the fourth imaging optical system, the projection optical system satisfies the following condition: 0.05 &lt; L01 / B &lt;0.4; 0.05 &lt; L02 / B&lt;0.4, wherein L〇1 is a distance between an optical axis of the seventh imaging optical system and a first effective image region corresponding to the first effective image region formed on the third surface, and LG2 is the distance between the optical axis of the "imaging light (four) system and the second effective image area formed on the ith surface corresponding to the second effective field region, and B is on the third surface The maximum image height. The projection optical system of any of the preceding claims, wherein the first deflecting member and the second deflecting member are configured in an integrally formed manner, and wherein the reflecting by the first deflecting member The ridge line formed by the surface 92 r 201027120 and the reflective surface of the second deflecting member is located between the optical axis of the third imaging optical system, the optical axis of the sixth imaging optical system, and the optical axis of the seventh imaging optical system On the intersection. The projection optical system of any one of clauses 7 to 21, wherein the reflective surface of the first deflecting member and the reflective surface of the second deflecting member are arranged in alignment with the seventh imaging optical system The optical shaft forms 45, wherein the reflective surface of the third deflecting member is arranged to form 45 with the optical axis of the first imaging optical system. And wherein the anti-reflecting surface of the fourth deflecting member is arranged to form 45 with the optical axis of the fourth imaging optical system. The projection optical system satisfies the following conditions: 70 ° &lt; ( A1 + A3 ) &lt; 110 ° ; 7 〇. &lt; ( A2+A4) &lt;11〇. Wherein 'A3 is the incident angle of the light emitted from the first effective field region on the first surface incident on the reflective surface of the second deflecting member, and A1 is the same light incident on the reflecting surface of the first deflecting member The incident angle, Λ4 is _ the incident angle from the light emitted from the second effective field region on the second surface to the reflective surface of the fourth deflecting member, and Λ2 is the same light incident on the second deflecting member The angle of incidence of the reflective surface. The projection optical system of any one of claims 1 to 22, which is used in a state in which an optical path between the projection optical system and the third surface is filled with a liquid. The projection optical system of any one of claims 1 to 23 wherein the first surface and the second surface are located on the same plane. The projection optical system 93 201027120 of any one of claims 1 to 24, wherein the first surface, the second surface, and the third surface are horizontally extended and wherein the third surface It is located below the first surface and the second surface. 26. A projection optics system for forming an image of a first surface and an image of a second surface on a third surface for use in an exposure apparatus for establishing in the first surface and the second surface Transferring a preset pattern on at least one of them to a photosensitive substrate set up on the third surface, the projection optical system comprising: a first optical unit that directs light from the first surface to a path ❹ bonding element a second optical unit that directs light from the second surface to the path coupling element; and a third optical unit that is based on light from the first optical unit that has advanced through the path coupling element An image of the first surface is formed on the three surfaces, and an image of the second surface is formed on the third surface based on light from the second optical unit that has advanced through the k-binding element, Q The first surface, the second surface, and the third surface extend horizontally in a space below the projection optical system, and wherein the third surface is located at the first The lower surface and the second surface. 27. The projection optical system of claim 26, wherein the first optical unit comprises: a first imaging optical system disposed in an optical path between the first surface and the first conjugate point 94 201027120 中,該第一共軛點與位於該第一表面上的某一點產生光學 共軛且光學軸在該點處和該第一表面相交;第二成像光風 系統’其&amp;置在介於該第一共軛點與第二共軛點之間的光 路徑 共軛 一表面 上的該點產 生光學共軛且光學轴在該點處和該第一表面相交;以及第 三成像光學系統,其設置在介於該第二共軛點與第三共軛 點之間的光學路徑之中,該第三共軛點與位於該第一表面 上的該點產生光學共軛且光學軸在該點處和該第一表面相 交, 其中,該第二光學單元包括:第四成像光學系統,其 設置在介於該第二表面與第四共輛點之間的光學路徑之 中,該第四共軛點與位於該第二表面上的某一點產生光學 共軛且光學軸在該點處和該第二表面相交;第五成像光學 系統,其設置在介於該第四共軛點與第五共軛點之間的光 學路徑之中’胃第五共扼點與位於該第二表面上的該點產 生光學共軛且光學軸在該點處和該第二表面相交;以及第 六成像光學系統,其設置在介於該第五共輛點與第六共輛 點之間的光學路徑之中,該第六共軛點與位於該第二表面 上的該點產生光學共軛且光學轴在該點處和該第二表面相 交, 中該第二光學早元包括第七成像光學系統,其設 置在介於該第三表面與該第三共軛點及該第六共軛點之間 的光學路徑之中,以及 v、中該路彳里結合元件包括:第一偏向部件,其設置 95 201027120 在介於該第三成像光學系統之中最靠近該第三表面的表面 和該第七成像光學系統之中最靠近該第一表面的表面之間 的光學路徑之中,並且配置成用以將來自該第三成像光學 系統的光引導至該第七成像光學系統;以及第二偏向部 件,其設置在介於該第六成像光學系統之中最靠近該第1 表面的表面和該第七成像光學系統之中最靠近該第:表: 的表面之間的光學路徑之中,並且配置成用以將來7該第 六成像光學系統的光引導至該第七成像光學系統。 〇 28.—種曝光裝置,其包括如申請專利範圍第丨至項 中任一項之投影光學系統’其以來自設立在該第一表面和 該第二表面中至少其中一者上的預設圖樣的光為基礎,將 該預設圖樣投影在設立於該第三表面上的感光性基板之 上0 29.-種曝光裝置,其包括用以在第三表面上形成第一 表面的影像及第二表面的影像的投影光學系統,其用於將 設立在該第一表面和該第二表面中至少其中一者上的預設 圖樣轉印至設立在該第三表面上的感光性基板,該曝光裝 〇 置包括: 第一照射單7L,其是位於該第一表面的下方且其提供 第一照射光給該第一表面, 第二照射單凡,其是位於該第二表面的下方且其提供 第二照射光給該第二表面, 其中,該第一表面、該第+表面以及該第三表面水平 延伸在該投影光學系統下方的空間之中。 96 ,201027120 30·如申請專利範圍第29項之曝光震置,其中,該第三 表面是位於該第一表面與該第二表面的下方。 31. 如前面申請專利範圍第28至3〇項中任一項之曝光 裝置其相對於該投影光學系統來移動該預設圖樣和該感 光性基板,用以將該預設圖樣投影在該感光性基板之上以 便對其進行曝光。 32. —種元件製造方法,其包括: 利用前面申請專利範圍第28至31項中任一項之曝光 ® 裝置來實行該感光性基板上該預設圖樣的曝光; 顯影其上已被轉印該預設圖樣的該感光性基板,用以 形成一具有對應於該感光性基板之表面上該預設圖樣之形 狀的光罩層;以及 經由該光罩層來處理該感光性基板的表面。 八、圖式: ® (如次頁) 97The first conjugate point is optically conjugate with a point on the first surface and the optical axis intersects the first surface at the point; the second imaging gust system 'its &amp; is placed between The point between the first conjugate point and the second conjugate point conjugates a surface that is optically conjugated and the optical axis intersects the first surface at the point; and a third imaging optical system Provided in an optical path between the second conjugate point and the third conjugate point, the third conjugate point is optically conjugate with the point on the first surface and the optical axis is at the point Intersecting with the first surface, wherein the second optical unit comprises: a fourth imaging optical system disposed in an optical path between the second surface and the fourth common point, the fourth total The yoke point is optically conjugate with a point on the second surface and the optical axis intersects the second surface at the point; a fifth imaging optical system disposed between the fourth conjugate point and the fifth The fifth path of the stomach between the conjugate points An optical conjugate with the point on the second surface and an optical axis intersecting the second surface at the point; and a sixth imaging optical system disposed between the fifth common point and the sixth Among the optical paths between the points, the sixth conjugate point is optically conjugate with the point on the second surface and the optical axis intersects the second surface at the point, the second optical early The element includes a seventh imaging optical system disposed in an optical path between the third surface and the third conjugate point and the sixth conjugate point, and v, wherein the coupling element includes a first deflecting member that sets 95 201027120 between the surface of the third imaging optical system that is closest to the third surface and the surface of the seventh imaging optical system that is closest to the first surface And being configured to direct light from the third imaging optical system to the seventh imaging optical system; and a second deflecting member disposed closest to the sixth imaging optical system First surface And an optical path between the surface and a surface of the seventh imaging optical system closest to the surface of the table: and configured to guide light of the sixth imaging optical system to the seventh imaging optical system . </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; Based on the light of the pattern, the predetermined pattern is projected on the photosensitive substrate disposed on the third surface, and the exposure device includes an image for forming a first surface on the third surface and a projection optical system for imaging an image of the second surface, wherein the predetermined pattern set on at least one of the first surface and the second surface is transferred to a photosensitive substrate set on the third surface, The exposure device includes: a first illumination sheet 7L located below the first surface and providing first illumination light to the first surface, the second illumination unit being located below the second surface And providing a second illumination light to the second surface, wherein the first surface, the ++ surface, and the third surface extend horizontally in a space below the projection optical system. 96, 201027120 30. The exposure of claim 29, wherein the third surface is located below the first surface and the second surface. An exposure apparatus according to any one of the preceding claims, wherein the predetermined pattern and the photosensitive substrate are moved relative to the projection optical system to project the preset pattern on the photosensitive Above the substrate to expose it. 32. A method of manufacturing a component, comprising: performing exposure of the predetermined pattern on the photosensitive substrate by using an exposure apparatus of any one of the preceding claims 28 to 31; developing has been transferred The photosensitive substrate of the predetermined pattern is used to form a photomask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; and the surface of the photosensitive substrate is processed through the photomask layer. Eight, schema: ® (such as the next page) 97
TW098138761A 2008-11-17 2009-11-16 Projection optical system, exposure apparatus, and device manufacturing method TW201027120A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19330408P 2008-11-17 2008-11-17
US12/562,043 US20100123883A1 (en) 2008-11-17 2009-09-17 Projection optical system, exposure apparatus, and device manufacturing method

Publications (1)

Publication Number Publication Date
TW201027120A true TW201027120A (en) 2010-07-16

Family

ID=41403965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098138761A TW201027120A (en) 2008-11-17 2009-11-16 Projection optical system, exposure apparatus, and device manufacturing method

Country Status (4)

Country Link
US (1) US20100123883A1 (en)
JP (1) JP5403253B2 (en)
TW (1) TW201027120A (en)
WO (1) WO2010055739A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884921B2 (en) * 2006-04-12 2011-02-08 Nikon Corporation Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method
EP2459182B1 (en) 2009-07-30 2017-09-06 University of Zürich Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event
KR102632173B1 (en) * 2021-12-02 2024-02-02 코리아스펙트랄프로덕츠(주) Optical system for plasma diagnosis

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635684B2 (en) * 1994-08-23 2005-04-06 株式会社ニコン Catadioptric reduction projection optical system, catadioptric optical system, and projection exposure method and apparatus
US5710619A (en) * 1995-10-31 1998-01-20 Anvik Corporation Large-area, scan-and-repeat, projection patterning system with unitary stage and magnification control capability
US6611316B2 (en) * 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US20050185269A1 (en) * 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
TWI437618B (en) * 2004-02-06 2014-05-11 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
US7301707B2 (en) * 2004-09-03 2007-11-27 Carl Zeiss Smt Ag Projection optical system and method
US7697198B2 (en) * 2004-10-15 2010-04-13 Carl Zeiss Smt Ag Catadioptric projection objective
JP2006147809A (en) * 2004-11-18 2006-06-08 Canon Inc Aligner, projection optical system thereof, and method of manufacturing device
TW200923418A (en) * 2005-01-21 2009-06-01 Nikon Corp Exposure device, exposure method, fabricating method of device, exposure system, information collecting device, and measuring device
JP4858439B2 (en) * 2005-01-25 2012-01-18 株式会社ニコン Exposure apparatus, exposure method, and microdevice manufacturing method
US7782442B2 (en) * 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
JP2007201457A (en) * 2005-12-28 2007-08-09 Nikon Corp Exposure apparatus, exposure method, and device production method
KR20080088579A (en) * 2005-12-28 2008-10-02 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device production method
WO2007091463A1 (en) * 2006-02-07 2007-08-16 Nikon Corporation Catadioptric imaging system, exposure device, and device manufacturing method
EP1986222A4 (en) * 2006-02-16 2010-09-01 Nikon Corp Exposure apparatus, exposing method, and device manufacturing method
US7714982B2 (en) * 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007094414A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007100087A1 (en) * 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
US8982322B2 (en) * 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US20070242254A1 (en) * 2006-03-17 2007-10-18 Nikon Corporation Exposure apparatus and device manufacturing method
US20080013062A1 (en) * 2006-03-23 2008-01-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2009677A4 (en) * 2006-04-14 2010-10-13 Nikon Corp Exposure device, device-manufacturing method, and exposing method
WO2007119514A1 (en) * 2006-04-17 2007-10-25 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
EP2023379A4 (en) * 2006-05-31 2009-07-08 Nikon Corp Exposure apparatus and exposure method
JP5105316B2 (en) * 2006-07-07 2012-12-26 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20090033165A (en) * 2006-07-12 2009-04-01 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus and device manufacturing method
KR20090048541A (en) * 2006-07-12 2009-05-14 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8665418B2 (en) * 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
US8355113B2 (en) * 2007-12-17 2013-01-15 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8305559B2 (en) * 2008-06-10 2012-11-06 Nikon Corporation Exposure apparatus that utilizes multiple masks

Also Published As

Publication number Publication date
JP2010123941A (en) 2010-06-03
US20100123883A1 (en) 2010-05-20
JP5403253B2 (en) 2014-01-29
WO2010055739A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
TWI443471B (en) Projection optical system, exposure apparatus, and device manufacturing method
TWI296070B (en)
TWI475328B (en) Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
TWI242691B (en) Projection optical system and method for photolithography and exposure apparatus and method using same
US8102508B2 (en) Projection optical system, exposure apparatus, and exposure method
WO2001059502A1 (en) Reflection/refraction optical system
CN1797214A (en) Lithographic apparatus and device manufacturing method
TW200809383A (en) Alterable slit device, lighting device, exposure device, exposure method and device manufacturing method
JP2006237291A (en) Exposure device
TWI237307B (en) Optical projection system, light exposing apparatus and light exposing method
TW201126200A (en) Catadioptric system, aberration measuring apparatus, method of adjusting optical system, exposure apparatus, and device manufacturing method
JP2004022708A (en) Imaging optical system, illumination optical system, aligner and method for exposure
TW201027120A (en) Projection optical system, exposure apparatus, and device manufacturing method
JP4706171B2 (en) Catadioptric projection optical system, exposure apparatus and exposure method
WO2007114024A1 (en) Projection optical system, aligner, and method for fabricating device
JP2003068604A (en) Illumination optical equipment and aligner using the illumination optical equipment
JP2005115127A (en) Catadioptric projection optical system, exposure device and exposing method
Völkel et al. Microlens lithography and smart masks
JP2007132981A (en) Objective optical system, aberration measuring instrument and exposure device
WO2005001544A1 (en) Optical unit, image-forming optical system, method for adjusting aberration of image-forming optical system, projection optical system, method for producing projection optical system, exposure apparatus, and exposure method
JP2009041956A (en) Pupil transmittance distribution measuring apparatus and method, projection exposure apparatus, and device manufacturing method
WO2024038533A1 (en) Light source unit, illumination unit, exposure device, and exposure method
JP2004219501A (en) Projection optical system, exposure device and exposure method
TW200804996A (en) Exposure apparatus and method, and device manufacturing method
JP2011119596A (en) Illumination optical system, aligner, and method of manufacturing device