201025279 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示裝詈只 衣夏及其顯示模組。 【先前技術】 隨著數位時代的來臨,顯示驴 | ^ ^ α θ下裝置,例如液晶顯示裝置 之需求也不斷地成長,其已逐漸忐 ,^ 所成為一般人曰常生活不可 或缺的電子產品。201025279 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a display device and a display module thereof. [Prior Art] With the advent of the digital age, the demand for devices such as liquid crystal display devices with 驴| ^ ^ α θ is constantly growing, and it has gradually become a must, and it has become an indispensable electronic product for ordinary people. .
液晶顯示裝置主要包含—顯示模組以及一背光模 組’其顯不方式為藉由背光模組射出—光線至顯示模組, 再使顯示模組中之液晶分子依據不同驅動㈣而旋轉或 傾斜,因液晶分子之旋轉角度不同,所產生的亮度亦不 同,則可使不同晝素產生不同色階變化。 、然而,當使用者側視液晶顯示裝置時,由於視角上造 成的偏移,色偏(color shift)問題即會產生。換言之,使 用者側視液晶顯示裝置時所見的顏色,已偏離^顏色之 色衫。除此之外’隨著影像品f的不斷提高,使用者對於 液晶顯示裝置的解析度要求也不斷地提高。 因此,如何提供一種可補償色差及提高解析度之顯示 褒置及其顯示模組’已成為重要課題之—。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種可補償色 差及提南解析度之顯示裝置及其顯示模組。 201025279 為達上述目的,依據本發明之一種顯示模組包含一模 式切換迴路及一顯示面板。模式切換迴路係輸出一高解析 度模式訊號或一色差補償模式訊號,顯示面板接收高解析 度模式訊號或色差補償模式訊號,以輸出一顯不晝面。 為達上述目的,依據本發明之一種顯示裝置包含一背 光模組及一顯示模組。顯示模組鄰設於背光模組,其包含 一模式切換迴路及一顯示面板。模式切換迴路係輸出一高 解析度模式訊號或一色差補償模式訊號,顯示面板接收高 解析度模式訊號或色差補償模式訊號,以輸出一顯示晝 面。 承上所述,依據本發明之顯示裝置及其顯示模組係藉 由一模式切換迴路,來輸出一高解析度模式訊號或一色差 補償模式訊號至顯示面板,而顯示面板在接收高解析度模 式訊號或色差補償模式訊號後,則可輸出一顯示晝面,藉 此,本發明之顯示裝置及其顯示模組可因應使用者不同的 需求,而作高解析度模式或色差補償模式的切換。 【實施方式】 以下將參照相關圖式,說明依據本發明較佳實施例之 顯示裝置及其顯示模組,其中相同元件以相同符號表示。 請參照圖1所示,其為本發明較佳實施例之顯示裝置 1的示意圖。顯示裝置1例如可為液晶顯示裝置,其包含 一背光模組2及一顯示模組3。 背光模組2例如可為冷陰極燈管背光模組或發光二極 201025279 體背光模組,其並射i±j-光線L人射至顯示模組3。 顯示模組3鄰設於背錢組2,其包含—模式切換迴 路4及一顯示面板5。 因此,*模式切換迴路4接收到一控制訊號匚後,其 會輸出-高解析度模式訊號Hd或—色差補償模式訊號 L ’而顯示面板5接收高解析度模式訊號h廿或色差補償 模式訊號Lc後,則可輪出一顯示晝面D。 • *參照圖1及圖2A所示,以說明顯示模組3於色差 補償模式時的工作方式,其中圖2A為本實施例之顯示面 板5於色差補償模式時的等效電路示意圖。顯示面板5係 可具有複數晝素單元51,各晝素單元51具有一第一晝素 一第二晝素G及一第三晝素B。其中,第一晝素 第二晝素G及第三晝素B可分別表示為紅色晝素、綠色書 素及藍色晝素。需注意者,第一晝素、第二晝素及第三晝 素分別表示之色系係非限制性。 ® 而第旦素尺、第一晝素G及第三畫素B又分別可具 =複數第-子晝素Μ、複數第二子晝素⑴及複數第三子 晝素。於本實施例中,以第一晝素R、第二晝素G及 第三晝素B分別具有二個第一子晝素R1、二個第二子晝 素1及一個第二子畫素B1作說明,然其非限制性。 藉此’當顯示面板5接收到色差補償模式訊號Lc時, *-晝素R、第二晝素G及第三畫素B分別會具有一暗區 Da及一亮區Br。換言之,第一晝素R之該等第一子晝素 R1其中之一為灰階值較低之暗區Da,而另一子晝素rj 201025279 則為灰階值較高之亮區Br。同樣地,第二晝素Q之該U 二子晝素G1’及第三晝素B之該等第三子晝素m亦會分 為-暗區Da及-亮區Br。其中,就灰階值而言,盆係虚 顯示面板5内之液晶分子(圖未顯示)之旋轉角財關了 即當液晶分子受到不同的驅動電壓驅動時,液晶分子係旋 轉至不同的角度’由於液晶分子旋轉的角度不同,因而產 生的亮度亦不同,故可依據各種不同亮度而分成不同的灰 階值,例如灰階值越大則亮度越亮。 因此,藉由平均暗區Da與亮區Br之灰階值總和所得 之值,其輸出之顯示晝面〇為一色差補償顯示晝面。藉此, 可用,補償側視時的色偏’以讓色差補償顯示晝面所顯示 之色衫,於側視時更接近正視時所看到的色彩。 明參照圖1及圖2B所示,以說明顯示模植3於 ,度模^時的卫作方式,其中圖2B為本實施例之顯示面 反5於问解析度模式時的等效電路示意圖。 ❿ 仰當顯示面板5接收高解析度模式訊號1^時,該等書 :::Γ及該等子畫素幻、⑴、B1則可共同形成複: 子旦素早元511,各子晝素單元511具有一第—子金 R1、一第二子畫素G1及一第三子晝素B1。 旦、 ^因此,當顯示面板5接收到高解析度模式訊號Hd時, =數量較晝素單元51多的子晝素單元511所輸出之顯 不旦面D,即為一高解析度顯示畫面。藉此,即可 為 不面板5之顯示畫面D的影像品質。 间’、'、 另外,睛麥照圖3A及圖3B所示,其中圖3八為本實 201025279 轭例之顯不面板5a另一變化態樣,於色差補償模式時的等 效電路示意圖,圖3B為顯示面板5a於高解析度模式時的 等效電路示意圖。 一於顯示面板化中,各第一畫素R、第二晝素G及第 二畫素B係具有更多㈣第—子畫素R卜第二子晝素⑴及 第一子畫素B1。於本實施例中,以第一晝素R、第二晝素 G及第二晝素B分別具有四個第一子晝素尺丨、四個第二 • 子晝素G1及四個第三子畫素B1作說明,然其非限制性。 、因此,請參照圖3A所示,當顯示面板5a接收到色差 3償模式訊號時,第一晝素r、第二畫素〇及第三晝素B =別可具有灰階值皆不同的複數暗區及亮區(圖中未表 不)。同樣地,藉由平均該等暗區與該等亮區之灰階值總 和所得之值,其可輪出色差補償顯示晝面。藉此,各晝素 可利用較多的子畫素作灰階值的調控,顯示面板5a可更有 效地補j員側視時的色偏,以使其於側視時顯示之色彩更為 φ 接近正視時所看到的色彩。 另外,請參照圖3B所示,當顯示面板5a接收高解析 ,模式訊號時,該等晝素單元51a可共同形成複數子畫素 早兀511a,各子晝素單元5Ua僅具有一第一子晝素尺卜 ,了子晝素G1及一第三子晝素B1。而藉由更多的子晝 素單元511a則可更大幅提南顯示面板5&之顯示晝面的影 像品質。 一值得一提的是,各晝素單元之第一晝素、第二畫素及 第一畫素的圖案與排列方式係非限制性,依不同的設計與 201025279 要求,可有不同的圖案與排列方式。 综上所述’依據本發明顯 由-模式切換迴路,丄:裝;及其顯示模組係藉 補償模解析賴式職或—色差 式哪m, 板在接收高解析度模 或色差補償模式訊號後,則可輸出—顯示晝面,藉 •炎發明之顯示裝置及其顯示模組可因應使用者不同的 而求、’而作高解析度模式或色差補健式的切換。 以上所述僅為舉例性,而非為限制性者。任何未脫 ^明之精神與㈣,而對其進行之等效修改或變更 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1為本發明較佳實施例之顯示裝置的示意圖; ▲圖2A為本實施例之顯示面板於色差補償模式時的等 效電路示意圖; 圖2B為本實施例之顯示面板於高解析度模式時的 效電路示意圖;以及 圖3A為本實施例之顯示面板另—變化態樣,於色差 補償模式時的等效電路示意圖,® 3B為顯示面板於高解 析度模式時的等效電路示意圖。 【主要元件符號說明】 1 :顯示裝置 2 :背光模組 201025279 3 :顯示模組 4 :模式切換迴路 5、5a :顯示面板 51、51a :晝素單元 511、511a :子晝素單元 B :第三晝素 B1 :第三子晝素 應 Br .免區 C :控制訊號 D :顯示晝面The liquid crystal display device mainly comprises a display module and a backlight module. The display mode is to emit light from the backlight module to the display module, and then the liquid crystal molecules in the display module are rotated or tilted according to different driving (4). Due to the different rotation angles of the liquid crystal molecules, the brightness produced is different, which can cause different gradation changes of different elements. However, when the user views the liquid crystal display device sideways, a color shift problem occurs due to the shift caused by the angle of view. In other words, the color seen by the user when looking at the liquid crystal display device has deviated from the color of the color shirt. In addition, as the video product f continues to increase, the user's resolution requirements for the liquid crystal display device are also constantly increasing. Therefore, how to provide a display device and a display module thereof that can compensate for chromatic aberration and improve resolution has become an important issue. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a display device and a display module thereof that can compensate for chromatic aberration and resolution. 201025279 In order to achieve the above object, a display module according to the present invention comprises a mode switching circuit and a display panel. The mode switching circuit outputs a high resolution mode signal or a color difference compensation mode signal, and the display panel receives the high resolution mode signal or the color difference compensation mode signal to output a display surface. To achieve the above object, a display device according to the present invention comprises a backlight module and a display module. The display module is adjacent to the backlight module and includes a mode switching circuit and a display panel. The mode switching circuit outputs a high resolution mode signal or a color difference compensation mode signal, and the display panel receives the high resolution mode signal or the color difference compensation mode signal to output a display surface. As described above, the display device and the display module thereof according to the present invention output a high-resolution mode signal or a color difference compensation mode signal to the display panel through a mode switching circuit, and the display panel receives high resolution. After the mode signal or the chromatic aberration compensation mode signal, a display screen can be output, whereby the display device and the display module of the present invention can switch between the high resolution mode or the chromatic aberration compensation mode according to different needs of the user. . DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a display device and a display module thereof according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements are denoted by the same reference numerals. Please refer to FIG. 1, which is a schematic diagram of a display device 1 in accordance with a preferred embodiment of the present invention. The display device 1 can be, for example, a liquid crystal display device comprising a backlight module 2 and a display module 3. The backlight module 2 can be, for example, a cold cathode lamp backlight module or a light emitting diode 201025279 body backlight module, which emits i±j-light rays to the display module 3. The display module 3 is adjacent to the money group 2, and includes a mode switching circuit 4 and a display panel 5. Therefore, after receiving a control signal, the *mode switching circuit 4 outputs a high-resolution mode signal Hd or a color difference compensation mode signal L', and the display panel 5 receives the high-resolution mode signal h or the color difference compensation mode signal. After Lc, a display face D can be rotated. Referring to FIG. 1 and FIG. 2A, the operation mode of the display module 3 in the chromatic aberration compensation mode will be described. FIG. 2A is an equivalent circuit diagram of the display panel 5 in the chromatic aberration compensation mode of the embodiment. The display panel 5 may have a plurality of pixel units 51, each of which has a first element, a second element G, and a third element B. Among them, the first halogen second halogen G and the third halogen B can be represented as red halogen, green pigment and blue halogen, respectively. It should be noted that the color systems represented by the first halogen, the second halogen and the third halogen are respectively non-limiting. ® and the first denier, the first alizarin G and the third pixel B respectively have a complex number of sub-mersin, a second sub-halogen (1) and a plurality of third sub-halogens. In this embodiment, the first halogen R, the second halogen G, and the third halogen B respectively have two first sub-salm R1, two second sub-salm 1 and one second sub-pixel B1 is described, but it is not limited. Therefore, when the display panel 5 receives the color difference compensation mode signal Lc, the *- halogen element R, the second element G and the third pixel B respectively have a dark area Da and a bright area Br. In other words, one of the first sub-stimuli R1 of the first halogen R is a dark area Da having a lower grayscale value, and the other sub-alligen rj 201025279 is a bright area Br having a higher grayscale value. Similarly, the U-subsequent G1' of the second halogen Q and the third sub-salm m of the third halogen B are also classified into a dark region Da and a bright region Br. Wherein, in terms of the gray scale value, the rotation angle of the liquid crystal molecules (not shown) in the pot display panel 5 is turned off, that is, when the liquid crystal molecules are driven by different driving voltages, the liquid crystal molecules are rotated to different angles. 'Because the angle of rotation of the liquid crystal molecules is different, the brightness produced is different, so it can be divided into different gray scale values according to various brightnesses. For example, the larger the gray scale value, the brighter the brightness. Therefore, by the value obtained by summing the gray scale values of the dark area Da and the bright area Br, the output display area of the output is a color difference compensation display surface. Thereby, it is possible to compensate for the color shift when viewed from the side view so that the chromatic aberration compensates for the color smear displayed on the face, which is closer to the color seen in the front view when viewed from the side. Referring to FIG. 1 and FIG. 2B, FIG. 2B is a schematic diagram showing an equivalent circuit when the display surface is in the resolution mode. .仰 When the display panel 5 receives the high-resolution mode signal 1^, the books:::Γ and the sub-pictures, (1), and B1 can form a complex: the child is 901, each child The unit 511 has a first sub-gold R1, a second sub-pixel G1 and a third sub-pixel B1. Therefore, when the display panel 5 receives the high-resolution mode signal Hd, the number of the display surface of the sub-cell unit 511 that is more than the number of the sub-units 51 is a high-resolution display. . Thereby, the image quality of the display screen D without the panel 5 can be obtained. In the case of ', ', and in addition, the eye is shown in Fig. 3A and Fig. 3B, wherein Fig. 3 is another equivalent of the panel 5a of the 201025279 yoke example, and the equivalent circuit diagram in the color difference compensation mode, FIG. 3B is an equivalent circuit diagram of the display panel 5a in the high resolution mode. In the display panelization, each of the first pixel R, the second pixel G, and the second pixel B has more (four) first sub-pixels R, second sub-tendin (1) and first sub-pixel B1 . In this embodiment, the first halogen R, the second halogen G, and the second halogen B respectively have four first sub-small scales, four second sub-small elements G1, and four thirds. Subpixel B1 is described, but it is not limited. Therefore, as shown in FIG. 3A, when the display panel 5a receives the color difference 3 compensation mode signal, the first pixel r, the second pixel 〇, and the third pixel B = may have different grayscale values. Multiple dark areas and bright areas (not shown in the figure). Similarly, by averaging the sum of the grayscale values of the dark regions and the bright regions, it is possible to compensate for the difference in the roundness. Thereby, each element can use more sub-pictures to adjust the gray scale value, and the display panel 5a can more effectively complement the color shift of the j-member side view, so that the color displayed in the side view is more φ is the color seen when facing the front view. In addition, as shown in FIG. 3B, when the display panel 5a receives the high-resolution, mode signal, the pixel units 51a may jointly form a plurality of sub-pixels 511a, and each of the sub-cell units 5Ua has only a first sub-unit. It is a scorpion, a scorpion G1 and a third scorpion B1. Further, by the more sub-single unit 511a, the image quality of the display surface of the south display panel 5& It is worth mentioning that the pattern and arrangement of the first element, the second pixel and the first pixel of each element unit are not limited. According to different designs and requirements of 201025279, different patterns and patterns may be used. Arrangement. In summary, according to the present invention, the mode-switching loop, the device and the display module are compensated by the compensation mode, and the board is receiving the high-resolution mode or the color difference compensation mode. After the signal, it can be output-displayed, and the display device and its display module of the invention can be switched between high-resolution mode or chromatic aberration-compensation according to different users. The above is intended to be illustrative only and not limiting. Any spirit and (4) that are not to be removed shall be included in the scope of the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a display device according to a preferred embodiment of the present invention; FIG. 2A is a schematic diagram of an equivalent circuit of a display panel in a color difference compensation mode according to the embodiment; FIG. 2B is a display of the embodiment. FIG. 3A is a schematic diagram of an effective circuit when the panel is in a high-resolution mode; and FIG. 3A is an equivalent circuit diagram of the display panel of the present embodiment in a color difference compensation mode, and the 3B is a display panel in a high-resolution mode. The equivalent circuit diagram. [Description of main component symbols] 1 : Display device 2 : Backlight module 201025279 3 : Display module 4 : Mode switching circuit 5 , 5a : Display panel 51 , 51a : Alizarin unit 511 , 511a : Sub-cell unit B : Triterpenoid B1: The third sub-genogen should be Br. Free zone C: Control signal D: display face
Da :暗區 G:第二畫素 G1 :第二子晝素Da : Dark area G: Second pixel G1 : Second child element
Hd :高解析度模式訊號 L :光線 φ Lc:色差補償模式訊號 R :第一畫素 R1 :第一子晝素 11Hd : High resolution mode signal L : Light φ Lc: Color difference compensation mode signal R : First pixel R1 : First sub element 11