TW201025100A - Optical touch module and touch display apparatus - Google Patents

Optical touch module and touch display apparatus Download PDF

Info

Publication number
TW201025100A
TW201025100A TW97151241A TW97151241A TW201025100A TW 201025100 A TW201025100 A TW 201025100A TW 97151241 A TW97151241 A TW 97151241A TW 97151241 A TW97151241 A TW 97151241A TW 201025100 A TW201025100 A TW 201025100A
Authority
TW
Taiwan
Prior art keywords
light
light sensing
information
emitting elements
brightness
Prior art date
Application number
TW97151241A
Other languages
Chinese (zh)
Inventor
Fu-Chi Yang
Chia-Hang Lee
Tung-Ying Wu
Original Assignee
Chi Mei Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp filed Critical Chi Mei Optoelectronics Corp
Priority to TW97151241A priority Critical patent/TW201025100A/en
Publication of TW201025100A publication Critical patent/TW201025100A/en

Links

Abstract

An optical touch module is disposed opposite to a backlight unit which has a plurality of light-emitting elements turned on at different time. The optical touch module includes a plurality of data lines, a plurality of light sensing elements and a position decoding unit. Each of the light sensing units is electrically connected with at least one data line. The position decoding unit is electrically connected with the data lines and receives a light sensing information through each of the data lines, respectively. The light sensing information includes light sensing signals sensed, when each of the light-emitting element is turned on one time at different time, by the light sensing elements electrically connected with the data line. The position decoding unit compares the light sensing information with plural simulation information, or compares the plural light sensing information to produce a pressing position signal.

Description

201025100 九、發明說明: 【發明所屬之技術領域】 本發明關於一種觸控模組及觸控顯示裝置,特別關於 一種光學式觸控模組及觸控顯示裝置。 ' 【先前技術】 近年來,觸控面板已經逐漸廣泛應用於一般的消費性 電子商品上,例如行動通訊裝置、數位相機、數位音樂播 ❹ 放器(MP3 )、個人數位助理器(PDA )、衛星導航器(GPS )、 掌上型電腦(hand-held PC),甚至嶄新的超級行動電腦 (Ultra Mobile PC,UMPC)等,且上述的觸控面板皆結合 顯示螢幕而成為觸控螢幕。一般常見的觸控面板分為電阻 式、電容式、音波式及光學式,以下以光學式觸控模組做 為說明。 一種習知.的光學式觸控模組與一背光單元配合使 用,背光單元與光學式觸控模組相對而設,其中光學式觸 ® 控模組具有複數個光感測元件,光感測元件可將所感測到 的光線亮度轉換成電訊號。當背光單元持續發亮且使用者 ' 的手指觸碰或靠近光學式觸控模組時,由於手指會反射光 * 線,故按壓區域所對應的光感測元件所得到的光感測訊號 與按壓區域之外所對應的光感測元件所得到的光感測訊 號不同,藉此可計算出按壓位置。 以下將對光學式觸控模組的作動方式有進一步的敘 述。如圖1所示,一種習知的光學式觸控模組1包含複數 6 201025100 個感測單元11、複數條掃描線SLU〜13、複數條資料 〜12及複數個位置解碼單元 /、 4線DLu 陣列-署/ Η 12。其中掃描線與資料線呈 I早列叹置,在此並以掃描線的 向為γ軸。 ”方向為X軸’以資料線的方[0002] The invention relates to a touch module and a touch display device, and more particularly to an optical touch module and a touch display device. [Prior Art] In recent years, touch panels have been widely used in general consumer electronic products, such as mobile communication devices, digital cameras, digital music broadcasters (MP3), personal digital assistants (PDAs), Satellite navigation (GPS), hand-held PC, and even new Ultra Mobile PC (UMPC), etc., and the above touch panels are combined with the display screen to become a touch screen. Commonly used touch panels are classified into resistive, capacitive, sonic, and optical. The following is an optical touch module. A conventional optical touch module is used in combination with a backlight unit, and the backlight unit is opposite to the optical touch module, wherein the optical touch control module has a plurality of light sensing elements, and the light sensing The component converts the sensed light into a signal. When the backlight unit continues to illuminate and the user's finger touches or approaches the optical touch module, since the finger reflects the light* line, the light sensing signal obtained by the light sensing element corresponding to the pressing area is The light sensing signals obtained by the light sensing elements corresponding to the pressing regions are different, whereby the pressing position can be calculated. The manner in which the optical touch module is activated will be further described below. As shown in FIG. 1 , a conventional optical touch module 1 includes a plurality of 6 201025100 sensing units 11 , a plurality of scanning lines SLU 〜 13 , a plurality of data 〜 12 , and a plurality of position decoding units / 4 lines DLu Array - Department / Η 12. The scan line and the data line are I sighed early, and the direction of the scan line is the γ axis. "The direction is the X axis" to the side of the data line

,2:單元U與一掃描線SLn〜13及一資料線DL"' ^ 112以’並包含—光感測元件111及—開關112。開 2 112電性連接於光感測元件⑴、掃描線及資料線,當 =線傳送導通訊號至„112時,„_啟而導^ 1〜]2 ^測7"件111及資料線。光感測元件111感測光線亮度 以雨出二光感測訊號S1,經由資料線傳送至放大元件OP" 〜I2放大邊光感測訊號Si,再傳送至位置解碼單元h 解碼以後續處理而得到按壓位置。2: unit U and a scan line SLn~13 and a data line DL" '^112' and include a light sensing element 111 and a switch 112. The opening 2 112 is electrically connected to the light sensing component (1), the scanning line and the data line, and when the line transmits the communication number to „112, „_启导导^1~]2^Measure 7"111 and the data line. The light sensing component 111 senses the brightness of the light to rain out of the two-light sensing signal S1, and transmits it to the amplifying element OP"~I2 to the amplifying edge light sensing signal Si via the data line, and then transmits it to the position decoding unit h for decoding for subsequent processing. Get the pressed position.

光學式觸控额1的掃料料傳送導通訊號而開 啟,例如在一晝幀(Frame)的時間依序開啟一次。當掃 描線SLU傳送導通訊號至開關112時,開關112導通光感 測7G件111及資料線DLll,使得光感測元件ln的光感測 訊號Si可經由開關112、資料線DLu及放大元件〇Ριι傳 送至位置解碼單元pn。由於每一個感測單元11皆對應一 特定的掃描線及資料線,故每一感測單元n所傳送的光 感測訊號S!可依據對應的掃描線及資料線而視為有一特 定的座標,即Y座標可由掃描線決定,X座標可由資料線 決定。 又’使用者按壓光學式觸控模組1的區域所對應之光 感測元件的光感測訊號不同於其他光感測元件的光感測 7 201025100 訊號,故藉由分析光感測訊號即可得知按壓區域。例如, 假若與掃描線SL12&資料線DLU電性連接的光感測元件 111所傳送的光感測訊號不同於其他光感測訊號或一基準 訊號,則可得知按壓區域為掃描線SL12&資料線DLn的 交界處,並進而確定按壓座標。 ' 然而,光學式觸控模組1的作動方式,需要藉由掃描 線及開關來達成,而掃描線及開關的設置會提高製程的複 雜度,並導致開口率降低。 ❹ 因此,如何提供一種降低製程複雜度並提高開口率的 光學式觸控模組及觸控顯示裝置,實為重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種能夠降低 製程複雜度並提高開口率的光學式觸控模組及觸控顯示 裝置。 為達上述目的,依本發明之一種光學式觸控模組與一 ® 背光單元相對而設,背光單元具有複數個於不同時間點亮 的發光元件,光學式觸控模組包含複數資料線、複數個光 * 感測元件以及一位置解碼單元。各光感測元件與至少一資 • 料線電性連接。位置解碼單元與該等資料線電性連接,並 自各資料線接收一光感測資訊,光感測資訊包含與該資料 線電性連接之該等光感測元件於各發光元件於不同時間 點亮一次時所感測到的光感測訊號,位置解碼單元比對光 感測資訊與複數個模擬資訊或是比對該等光感測資訊以 201025100 產生一按壓位置訊號。 為達上述目的,依本發明之一種觸控顯示裝置包含一 平面顯示模組以及一光學式觸控模組。平面顯示模組具有 複數個於不同時間點亮的發光元件。光學式觸控模組與該 等發光元件相鄰而設,並包含複數資料線、複數光感測元 ' 件及一位置解碼單元。各光感測元件與至少一資料線電性 連接。位置解碼單元與該等資料線電性連接,並自各資料 線接收一光感測資訊,光感測資訊包含與該資料線電性連 ❿ 接之該等光感測元件於各發光元件於不同時間點亮一次 時所感測到的光感測訊號,位置解碼單元比對光感測資訊 與複數個模擬資訊或是比對該等光感測資訊以產生一按 壓位置訊號。 承上所述,依本發明之光學式觸控模組及觸控顯示裝 置之解碼單元與各資料線電性連接,藉由解碼單元比對各 資料線所傳送的光感測資訊可得知按壓區域之至少一方 向的座標。並且,本發明可藉由於不同時間點亮的發光元 ® 件得知按壓區域至少一方向的座標,本發明是藉由比對光 感測資訊與複數個模擬資訊來得到該方向的座標。如此一 * 來,可得到按壓區域之多維座標,並且本發明不需掃描線 • 及開關等元件即可達成上述之作動,進而降低成本及製程 複雜度並提高開口率。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之光 9 201025100 其中相同的元件將以相同 學式觸控模組及觸控顯示裝置 的參照符號加以說明。 所示,其顯示本發明第—較佳實施例之一種 先學式觸控聽2,絲式難馳2與-t光單元3 f =設’背光單元3具有複數個於不同時間^ ^The scanning material of the optical touch amount 1 is turned on by transmitting the communication number, for example, once in a frame time. When the scan line SLU transmits the communication number to the switch 112, the switch 112 turns on the light sensing 7G piece 111 and the data line DL11, so that the light sensing signal Si of the light sensing element ln can pass through the switch 112, the data line DLu and the amplifying element. Ρ ι Transfer to the position decoding unit pn. Since each of the sensing units 11 corresponds to a specific scan line and data line, the light sensing signal S! transmitted by each sensing unit n can be regarded as having a specific coordinate according to the corresponding scan line and data line. , that is, the Y coordinate can be determined by the scan line, and the X coordinate can be determined by the data line. In addition, the light sensing signal of the light sensing component corresponding to the area in which the user presses the optical touch module 1 is different from the light sensing 7 201025100 signal of the other light sensing component, so by analyzing the light sensing signal, The pressing area can be known. For example, if the light sensing signal transmitted by the light sensing element 111 electrically connected to the scan line SL12& data line DLU is different from other light sensing signals or a reference signal, it can be known that the pressing area is the scanning line SL12& The junction of the data line DLn and, in turn, the pressing coordinates. However, the operation mode of the optical touch module 1 needs to be achieved by scanning lines and switches, and the setting of the scanning lines and switches increases the complexity of the process and leads to a decrease in aperture ratio. ❹ Therefore, how to provide an optical touch module and a touch display device that reduce the complexity of the process and increase the aperture ratio is one of the important topics. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical touch module and a touch display device capable of reducing process complexity and increasing aperture ratio. To achieve the above objective, an optical touch module according to the present invention is disposed opposite to a backlight unit, and the backlight unit has a plurality of light-emitting elements that are lit at different times, and the optical touch module includes a plurality of data lines. A plurality of light* sensing elements and a position decoding unit. Each of the light sensing elements is electrically connected to at least one of the wires. The position decoding unit is electrically connected to the data lines, and receives a light sensing information from the data lines. The light sensing information includes the light sensing elements electrically connected to the data lines at different time points of the light emitting elements. The light sensing signal sensed when the light is turned on, the position decoding unit compares the light sensing information with the plurality of analog information or generates a pressing position signal with the light sensing information at 201025100. To achieve the above objective, a touch display device according to the present invention comprises a flat display module and an optical touch module. The flat display module has a plurality of light-emitting elements that are lit at different times. The optical touch module is disposed adjacent to the light emitting elements and includes a plurality of data lines, a plurality of light sensing elements, and a position decoding unit. Each of the light sensing elements is electrically connected to the at least one data line. The position decoding unit is electrically connected to the data lines, and receives a light sensing information from each data line. The light sensing information includes the light sensing elements electrically connected to the data lines, and the light sensing elements are different in the light emitting elements. The position sensing unit compares the light sensing information with the plurality of analog information or the pair of analog sensing information to generate a pressing position signal. According to the above, the decoding unit of the optical touch module and the touch display device according to the present invention is electrically connected to each data line, and the decoding unit compares the light sensing information transmitted by each data line. The coordinates of at least one direction of the pressing area. Moreover, the present invention can obtain coordinates of at least one direction of the pressing area by means of the illuminating element illuminating at different times. The present invention obtains coordinates of the direction by comparing the light sensing information with a plurality of analog information. In this way, the multi-dimensional coordinates of the pressing area can be obtained, and the present invention can achieve the above operation without scanning the components such as the line and the switch, thereby reducing the cost and the process complexity and increasing the aperture ratio. [Embodiment] Hereinafter, a light according to a preferred embodiment of the present invention will be described with reference to the related drawings. 9 201025100 The same components will be described with reference numerals of the same type of touch module and touch display device. As shown, it shows a prior art touch-sensitive 2, silk-type hard-working 2 and -t light unit 3 f = set. The backlight unit 3 has a plurality of different times ^ ^

It::等發光元件為營光燈管或發光二極體,在= =具有五發光凡件31a〜31e為例,且發光元件仏〜 e以螢光燈管為例。在本實施例中,發光元件仏〜w :週期性且依序點亮,例如在—㈣mame)的時間内 依序點亮一次。 一圖2B為光學式觸控模組2的局部方塊圖。如圖2B所 不’光學式觸控模組2具有複數資料線DL2i 22、複數個光 感=元件21及一位置解碼單元p2。光感測元件21與至少 —資料線DL2^22電性連接,並且在本實施例中,發光元 件31 a〜31e之一设置方向τ (如圖2A所示)與各資料線 DL2i〜22電性連接之該等光感測元件21之一設置方向平 行,本實施例中,發光元件3la〜3le之設置方向τ及該 等光感測元件21之設置方向以γ軸向為例。 位置解碼單元P2分別與該等資料線DL21、DL22電性 連接’並自各資料線DL2i、DL22接收一光感測資訊L2i、 L22。且為增加訊號強度,本實施例的光學式觸控模組2更 包含複數個放大元件OP21、OP22 (如訊號放大器),分別 對應電性連接於各資料線DL21、DL22與位置解碼單元p2 之間。需注意者,圖2B為方便說明僅繪示兩條資料線 201025100 DLn、DL22及四個光感測元件21,但實際上,上述元件皆 可更多,並且呈陣列設置。另外,位置解碼單元&在圖 2B中為一位置解碼電路,在其他實施例中亦可為多個位置 解碼電路,分開設置並分別與各資料線對應電性連接。 由於本實施例不設置開關及掃描線,故當光感測元件 21感測到光線的亮度時,即傳送其光感測訊號經 由資料線DLS1、DL22、放大元件ορη、〇p22至位置解碼 單元P2。又,發光元件3la〜3le為依序點亮,故當其中 ❿一發光元件點亮時,各光感測元件21感測一亮度並產生 光感測訊號S2〗、S22傳送至位置解碼單元p2 ;當發光元件 3la〜31 e依序點焭一次時,光感測訊號、S22即分別構 成光感測資訊LZ1、La,即光感測資訊Lzi、L22包含與資 料線DLS1、DL22電性連接之該等光感測元件21於各發光 元件31a〜31e於不同時間點亮一次時所感測到的光感測 訊號 S21、S22。 φ 其中,光感測訊號心1、S22例如為一電流訊號或一電 壓況號’光感測資訊Ln、La為類比訊號。此外,當光學 式觸控模組2在不同的使用環境下’該等光感測元件21 所感測到的光感測訊號SZ1、S22會有訊號準位的差異,所 以光感測資訊、La可經過一低通濾波電路(可包含一低 通濾波益)以過濾尚頻直流訊號,進而提升光學式觸控模組 2的靈敏度。 圖2C顯示各發光元件31 a〜31 e於不同時間點亮一次 的周期時間内,其中一光感測資訊Lsi、La的波形示意圖。 201025100 /、中,實曲線Ml為使用者未觸碰(或未靠近)光學式觸 控模組2的光感測資訊L2i、&,虛曲線M2為使用者觸 碰(或A近)光學式觸控模組2的光感測資訊“丨、。 • 當使用者未觸碰光學式觸控模組2時,實曲線厘丨實際上 顯不發光元件Ma〜31e隨時間依序點亮的亮度_時間波 幵y且由實曲線Ml來看,有明顯的五個波段隨著時間分 別對應至五發光元件31a〜31e。當使用者觸碰光學式觸控 模組2時,虛曲線M2顯示出一高峰點Pei,高峰點Pei即 鲁 #應至使用者的按壓(或靠近)區域’且不同的高峰點對 應至不同的按壓區域,圖2C顯示的高峰點Pei屬於第二波 段,即靠近發光元件31b,若以圖2A來看,按壓區域大約 為資料線DL^上靠近發光元件31b之處。 承上所述,藉由光感測資訊Lsi、可得到按壓區域 之位置,以下將說明位置解碼單元&如何依據光感測資訊 LZ1、La解析按壓(或靠近)區域的座標。 首先說明如何解析按壓區域的X座標。由於該等光感 ❿ 測元件2丨皆經由一特定的資料線DL^'DLu來傳送光感 測資訊LZ1、L22,而使用者所按壓的區域會產生較高的亮 度,故可藉由判斷光感測資訊、[η (於此僅以兩個為 - 例,實際上當然可有更多光感測資訊進行比對)以產生一 按壓位置訊號SP,其中包含按壓區域的X座標。 舉例而言’當使用者按壓的區域包含到資料線 、 ^21 所連結的光感測元件21,而不包含資料線DL22所連結的 光感測元件21時’則資料線DL2!所傳送的光感測資訊 12 201025100 的平均亮度會大於資料線D L2 2所傳送的光感測資訊L 2 2的 平均亮度’故藉由判斷光感測資訊l21與光感測資訊;l22 的平均亮度,即可得知資料線DLn對應於按壓區域,按 壓位置訊號SP所包含X座標的資訊可依據資料線DLu而 確定。 工通使用平均亮度作為判斷依據僅為舉例說 二=可:其他判斷依據,例如用複數個模擬資訊作 重點;區域與各光感測資訊[2〗及[22作判斷。於此, 定。 域的x座標可依據資料線DL2,及DL22來確 位置解析㈣區域的Y座標。如圖2B所示, 個模擬資訊y(i)^姆光感測資訊其中之-與複數 包含按壓區域之壓,1錢SP,按壓位置訊號sp 解析是在X座襟解‘的貝讯。在本實施例中,Y座標的 線心確定之後,位之後’,續上述’當X座標依據資料 與複數個模擬資訊、解,單元P2可比對光感測資訊l21 x座標是依據資料到按壓位置訊號SP。當然,若 單元P2比對光感蜊 『確疋’則Y座標是由位置解碼 解析。 22與複數個模擬資tfl y⑴而進行It:: The light-emitting element is a camping light tube or a light-emitting diode, and the light-emitting element 仏~e is exemplified by a fluorescent tube. In the present embodiment, the light-emitting elements 仏~w are periodically and sequentially illuminated, for example, once in the time of - (d) mame. FIG. 2B is a partial block diagram of the optical touch module 2. As shown in Fig. 2B, the optical touch module 2 has a plurality of data lines DL2i 22, a plurality of optical sensing elements 21, and a position decoding unit p2. The light sensing element 21 is electrically connected to at least the data line DL2^22, and in the present embodiment, one of the light emitting elements 31a to 31e is set to have a direction τ (as shown in FIG. 2A) and each of the data lines DL2i to 22 One of the light sensing elements 21 is connected in a parallel direction. In the present embodiment, the direction τ of the light-emitting elements 31a to 3le and the direction in which the light-sensing elements 21 are disposed are exemplified by the γ-axis. The position decoding unit P2 is electrically connected to the data lines DL21 and DL22, respectively, and receives a light sensing information L2i, L22 from each of the data lines DL2i, DL22. In order to increase the signal strength, the optical touch module 2 of the present embodiment further includes a plurality of amplifying components OP21 and OP22 (such as signal amplifiers), which are respectively electrically connected to the data lines DL21 and DL22 and the position decoding unit p2. between. It should be noted that FIG. 2B shows only two data lines 201025100 DLn, DL22 and four light sensing elements 21 for convenience of description, but in fact, the above elements can be more and arranged in an array. In addition, the position decoding unit & is a position decoding circuit in FIG. 2B. In other embodiments, a plurality of position decoding circuits may be separately provided and electrically connected to the respective data lines. Since the switch and the scan line are not provided in this embodiment, when the light sensing element 21 senses the brightness of the light, the light sensing signal is transmitted via the data lines DLS1, DL22, the amplifying elements ορη, 〇p22 to the position decoding unit. P2. Moreover, the light-emitting elements 31a to 3le are sequentially illuminated. Therefore, when the first one of the light-emitting elements is lit, each of the light-sensing elements 21 senses a brightness and generates a light-sensing signal S2, which is transmitted to the position decoding unit p2. When the light-emitting elements 31a to 31e are sequentially clicked, the light sensing signals and S22 respectively constitute the light sensing information LZ1, La, that is, the light sensing information Lzi, L22 is electrically connected to the data lines DLS1 and DL22. The light sensing elements 21 are sensed by the light sensing signals S21 and S22 when the light emitting elements 31a to 31e are lit once at different times. φ where the optical sensing signal cores 1, S22 are, for example, a current signal or a voltage condition number 'the light sensing information Ln, La is an analog signal. In addition, when the optical touch module 2 is in different use environments, the light sensing signals SZ1 and S22 sensed by the light sensing elements 21 have a difference in signal level, so the light sensing information, La The sensitivity of the optical touch module 2 can be improved by filtering a frequency-dependent DC signal through a low-pass filter circuit (which can include a low-pass filter). Fig. 2C is a view showing the waveform of a light sensing information Lsi, La in a period of time during which the respective light-emitting elements 31a to 31e are lit at different times. 201025100 /, medium, solid curve Ml is the user's untouched (or not close) optical sensing information 2 optical sensing information L2i, & virtual curve M2 for user touch (or A near) optics The light sensing information of the touch module 2 is "丨,." When the user does not touch the optical touch module 2, the solid curve is actually illuminating the components Ma~31e in time. The brightness _ time wave 幵 y and from the solid curve M1, there are five bands that correspond to the five light-emitting elements 31a 31 31e respectively with time. When the user touches the optical touch module 2, the virtual curve M2 shows a peak point Pei, the peak point Pei is the user's pressing (or near) area and the different peak points correspond to different pressing areas, and the peak point Pei shown in Fig. 2C belongs to the second band. That is, close to the light-emitting element 31b, as seen in Fig. 2A, the pressing area is approximately the position of the data line DL^ near the light-emitting element 31b. As described above, the position of the pressed area can be obtained by the light sensing information Lsi, Will explain how the location decoding unit & according to the light sensing information LZ1, La solution The coordinate of the pressed (or near) area is first explained. First, how to analyze the X coordinate of the pressing area is explained. Since the light sensing elements 2 are transmitted through a specific data line DL^'DLu, the light sensing information LZ1, L22 is transmitted. The area pressed by the user will produce a higher brightness, so it can be judged by the light sensing information, [η (this is only two cases - in fact, of course, there can be more light sensing information Alignment) to generate a pressed position signal SP, which includes the X coordinate of the pressing area. For example, 'the area pressed by the user includes the light sensing element 21 connected to the data line, ^21, and does not include the data line. When the light sensing element 21 is connected to the DL 22, the average brightness of the light sensing information 12 201025100 transmitted by the data line DL2! is greater than the average brightness of the light sensing information L 2 2 transmitted by the data line D L2 2 By judging the average brightness of the light sensing information l21 and the light sensing information; l22, it can be known that the data line DLn corresponds to the pressing area, and the information of the X coordinate included in the pressing position signal SP can be determined according to the data line DLu. Use average bright As a basis for judging, it is only an example of two = can be: other judgment basis, for example, using a plurality of analog information as the focus; area and each light sensing information [2] and [22 for judgment. Here, the x coordinate of the domain can be According to the data lines DL2 and DL22, the Y coordinates of the (4) region are determined by position. As shown in Fig. 2B, the simulation information y(i)^m light sensing information includes - and the plural includes the pressure of the pressing region, 1 money SP The press position signal sp is parsed in the X block. In this embodiment, after the center of the Y coordinate is determined, after the bit ', continue the above 'when the X coordinate is based on the data and the plurality of analog information, the solution The unit P2 can compare the light sensing information l21 x coordinates according to the data to the pressing position signal SP. Of course, if the unit P2 is sensible to the light, the Y coordinate is resolved by the position decoding. 22 and a plurality of simulations tfl y (1)

以下詳細說明位 D 3A顯示位置解瑪單 碼單疋匕如何解析γ座標。圖 解碼單元ρ2具有2:方塊圖,如圖3Α所示,位置 攻、-位置位移元件 暫存一元件231、—第二暫存元件 相位偏移元件234、二維陣 13 201025100 累加元件23 7及一比對 列元件235、一乘法元件236 元件238。 請同時參照圖3A、圖3B及_ 3C,其中圖3B顯示發 光元件3la〜3le依序點亮時的亮度_位置波形,圖顯示 發光元件31a〜31e依序點亮時的亮度-時間波形。模擬資 訊y⑴可依據發光元件31a〜31e點亮時的亮度_位置波形 (如圖3B所示)及亮度-時間波形(如圖3C所示)計^ 而得到。在本實施例中,模擬資訊y(i)亦為類比訊號二與 光感測資訊L21比對。 請同時參照圖3A及圖3B,於本實施例中,第一暫存 元件231儲存發光元件31a〜31e之其中之一的一第一真产 -位置波形A1。位置位移元件233與第一暫存元件231電 性連接,並將第一亮度-位置波形A1依據各發光元件31a 〜31e的間距dx偏移複數次,而得到複數個第二亮度_位 置波形A2〜A5 (圖3B所示),於此假設各發光元件31a 〜31e的間距dx相同。第二亮度_位置波形A2〜A5即可代 表發光元件31b〜31e點亮時的亮度-位置波形。 二維陣列元件235與位置位移元件233電性連接,並 依據一位置參數i及亮度-位置波形A1〜A5取得複數個權 重值Al(i)〜A5(i)。權重值Al(i)〜A5(i)的意義如圖3B所 示’若位置參數i位於圖3B所示的位置,則通過該位置的 鉛垂線與各亮度-位置波形A1〜A5的交點即為其權重值 Al(i)〜A5(i),例如在圖3B中,亮度-位置波形A4及A5 的權重值A4(i)及A5(i)皆為零;當然,上述權重值的計算 14 201025100 僅為舉例說明。 一一請同時參照圖3A及圖3C,第二暫存元件232儲存發 光兀件3la〜3ie之其中之—的—第―亮度_時間波形幻。 相位偏移元件234與第二暫存元件M2電性連接,並將第 儿度時間波开> R1依據各發光元件〜的點亮時間 差也偏移複數次’而得到複數個第二亮度-時間波形R2〜 (如圖3C所示)’於此假設各發光元件31a〜31e的點 =日守間差dt相同。第二亮度-時間波形R2〜R5即可代表發 光το件31b〜31e點亮時的亮度_時間波形。 再者’乘法元4 236與二維陣列元件235及相位偏移The following detailed description of the bit D 3A shows how the position solver code unit 解析 解析 coordinates. The picture decoding unit ρ2 has a 2: block diagram, as shown in FIG. 3A, the position attack, the position shifting element temporarily stores an element 231, the second temporary element phase shifting element 234, the two-dimensional array 13 201025100, the accumulating element 23 7 And a pair of column elements 235, a multiplying element 236 element 238. 3A, 3B, and 3C, FIG. 3B shows the luminance_position waveform when the light-emitting elements 31a to 3le are sequentially turned on, and the luminance-time waveforms when the light-emitting elements 31a to 31e are sequentially turned on are shown. The analog information y(1) can be obtained based on the luminance_position waveform (as shown in Fig. 3B) and the luminance-time waveform (shown in Fig. 3C) when the light-emitting elements 31a to 31e are lit. In this embodiment, the analog information y(i) is also compared with the analog signal 2 and the optical sensing information L21. Referring to FIG. 3A and FIG. 3B simultaneously, in the embodiment, the first temporary storage element 231 stores a first real-position waveform A1 of one of the light-emitting elements 31a to 31e. The position shifting element 233 is electrically connected to the first temporary storage element 231, and the first brightness-position waveform A1 is offset by a plurality of times according to the pitch dx of each of the light-emitting elements 31a to 31e, thereby obtaining a plurality of second brightness_position waveforms A2. 〜A5 (shown in FIG. 3B), it is assumed here that the pitch dx of each of the light-emitting elements 31a to 31e is the same. The second luminance_position waveforms A2 to A5 represent the luminance-position waveforms when the light-emitting elements 31b to 31e are turned on. The two-dimensional array element 235 is electrically connected to the position shifting element 233, and obtains a plurality of weight values A1(i) to A5(i) according to a positional parameter i and brightness-position waveforms A1 to A5. The meaning of the weight values Al(i) to A5(i) is as shown in FIG. 3B. 'If the position parameter i is located at the position shown in FIG. 3B, the intersection of the vertical line passing through the position and the respective brightness-position waveforms A1 to A5 is For its weight values Al(i)~A5(i), for example, in FIG. 3B, the weight values A4(i) and A5(i) of the luminance-position waveforms A4 and A5 are all zero; of course, the calculation of the above weight values 14 201025100 For illustrative purposes only. Referring to FIG. 3A and FIG. 3C simultaneously, the second temporary storage element 232 stores the -th brightness_time waveform of the light-emitting elements 3a to 3ie. The phase shifting element 234 is electrically connected to the second temporary storage element M2, and the first time wave is turned on. R1 is also shifted by a plurality of times according to the difference in lighting time of each of the light-emitting elements to obtain a plurality of second brightnesses. The time waveform R2 to (as shown in FIG. 3C) is assumed to be the same as the point = day-to-day difference dt of each of the light-emitting elements 31a to 31e. The second luminance-time waveforms R2 to R5 represent the luminance_time waveform when the light-emitting elements 31b to 31e are turned on. Furthermore, 'multiplication element 4 236 and two-dimensional array element 235 and phase shift

兀件234電性連接,並將權重值Al(i)〜A5(i)對應地與亮 度·時間波形R1〜R5相乘,而產生複數個相乘資訊J1(i) 乃(1) °本實施例的乘法元件236可具有複數個乘法器。 」後累加元件237將相乘資訊η⑴〜乃⑴累加而得到模 擬資Λ y(i)之一’模擬資訊y(i)的一個例子可參照圖3d所The element 234 is electrically connected, and the weight values A1(i) to A5(i) are multiplied by the brightness and time waveforms R1 to R5, respectively, to generate a plurality of multiplication information J1(i) is (1) ° The multiplying element 236 of an embodiment can have a plurality of multipliers. The post-accumulation component 237 accumulates the multiplication information η(1) to (1) to obtain one of the simulation assets y(i). An example of the simulation information y(i) can be referred to FIG. 3d.

Tfx ° 、’’T、上所述可得到模擬資訊 y(i)的關係式如下: ^ Rl+ Α2(〇· ^2 +A3(i)-R3 + A4(i)· R4 + A5(i)· R5 於此需說明位置參數i的意義,在本實施例中,位置 參數i可包含5 ,丨、,, 向的座r 至J 一維的位置座標,本實施例是包含Y軸 1 A $’例如依據γ軸向將光學式觸控模組2區分為100 73 位置參數i對應至這100等份,並有100個由小 至大的值。咯办 田位置參數i對應至其中一等份時,即代表使 用者按壓於兮望八 邊寺份。而當位置參數i為不同值時,可得到 15 201025100 不同的模擬資訊y(i),例如圖3D顯示其中一模擬資訊y⑴ 的波幵V纟中有-而峰點PE2,高峰點&對應至位置參數 i的值’即隨著位置參數i的值不同,高峰點&亦不同, 且兩者相對應。如此一來,若位置參數丨有1〇〇個值, 產生100個模擬資訊y⑴。 、 如圖3A所示,比對元件238與累加元件237電性連 接,並比對模擬資訊y(i)與光感測資訊以得到按壓位 置訊號Sp。本實施例中,由於模擬資訊y(i)包含複數個位 _ f參數i的值所對應的亮度波形,所以t模擬f訊y(i)與 光感測資訊LZ1相互比對時,光感測資訊L2】會近似模擬資 訊y(i)中某一位置參數i之值的亮度波形,因而可得到按 壓位置的Y轴座標。 例如可參考圖2C及圖3D,圖2C的虛曲線撾2可當 作光感測貧訊Ln的波形示意圖,其高峰點Pe〗代表真正使 用者按壓區域的Y座標,圖3D為依據位置參數丨的其中 之—值所得到的模擬資訊yw,其高峰點pE2代表模擬使 用者按壓區域的Y座標,當兩高峰點Pei及Pm相合時, 或說模擬資訊y(i)與光感測資訊Lsi的相關性為最高時, 則依據該模擬資訊y⑴之位置參數i的值可確定按壓區域 • 的Y座標。 絲上所述,位置解碼單元j>2可依據光感測資訊l2i得 到按壓位置訊號Sp,其中包含按壓(或靠近)區域的χ軸 座標與Υ軸座標。 另外,圖3Α所示的位置解碼單元ρ2僅為舉例說明, 16 201025100 並不限制於此態樣,例如,若第一暫存元件231儲存發光 元件31a〜31e之所有的亮度_位置波形A1〜A5,且第二暫 存το件232儲存發光元件31a〜31e之所有的亮度_時間波 形R1〜R5,則位置解碼單元A可省略位置位移元件233 及相位偏移元件234。 值得一提的是,模擬資訊y⑴可如上述為線上 (online)计算,或是事先(〇ff_line)計算好並儲存於一 記憶單元(圖中未顯示)。當使用者的手指觸碰光學式觸 ❹ 控模組2時’位置解碼單元P2比對光感測資訊l21及L22 與儲存於其記憶單元令的複數個模擬資訊y(i),進而得到 按壓位置訊號SP。 上述係以位置參數丨包含γ軸向的座標為例,另外, 本貝%例的位置參數i亦可包含Z軸向(如圖2A所示指 出光學式觸控模組2的方向)的座標。實際上,當使用者 之手私菲近光學式觸控模組2的距離不同(即z方向), φ 光感測元件21所感測到的光感測訊號亦不同,例如越靠 近光學式觸控模組2 ’所感測到的光感測訊號越強。 因此’光感測資訊對應使用者靠近光學式觸控模組2 距離的不同,亦會有不同的亮度-時間波形圖。如此,位置 解碼單疋P2便可比對複數個模擬資訊(如圖2B所示的 ζ(ι)’其以Z軸向的多個座標進行模擬)與光感測資訊、 L22 ’而得到Z方向的座標。 當然’本實施例的模擬資訊亦可同時以Y軸向及Z軸 向的座標進行模擬而得到,即位置參數i包含二維的位置 17 201025100 座標(如圖2B所示的yz(i));藉由比對光感測資訊L2i、 L22及上述的模擬資訊yz(i)而一次得到包含Y軸向及Z軸 向之按壓(靠近)座標資訊的按壓位置訊號SP。在其他實 施例中,位置參數i更可包含三維的位置座標,即模擬資 訊同時以X、Y、Z轴向的座標進行模擬而得到,藉由比 對光感測資訊及上述的模擬資訊而一次得到包含X、Y及 Z軸向之按壓座標資訊的按壓位置訊號Sp。 圖4為本發明第二較佳實施例之一光學式觸控模組4 ⑩ 的局部方塊圖。如圖4所示,與光學式觸控模組2不同的 是,光學式觸控模組4更具有資料線DL23、DL24,且各光 感測元件21與兩條資料線電性連接。資料線DL21、DL22 與沿Y轴向設置的光感測元件21電性連接,資料線DL23、 DL24與沿X軸向設置的光感測元件21電性連接。需注意 者,圖4為方便說明僅繪示兩條資料線DL23、DL24,實際 上可有更多條資料線。此外,本實施例之光學式觸控模組 4所搭配之背光模組之發光元件是以發光二極體為例,且 ® 該等發光元件設置為二維陣列,且於不同時間點亮,例如 是週期性依序點亮。 位置解碼單元P3分別與該等資料線dl21〜24電性連 接,並自各資料線DL21〜24接收'一光感測資訊L21〜24。以 下將說明位置解碼單元P3如何依據光感測資訊l21〜24解析 使用者之手指按壓(或靠近)區域的座標。 首先說明如何解析按壓區域的X座標。由於沿著Y方 向設置之該等光感測元件21皆經由一特定的資料線 18 201025100 DL21、〇1^22來傳送光感測資 _ .. m ^ 的區域會產生較而使用者所按壓 r认同的冗度,故可#由判斷光感測資訊 22以產生-按愿位置訊號%,其令包含按遷區域的X座 於此’藉由位置解碼單元p;判斷光感測資訊^與光 感測資訊La的平均亮度(於此僅以兩個為例,實際上當 然可有更多光感測資訊進行比對),即可得知哪一條資: 線對應於按壓區域,即按壓位置訊號Sp所包含χ座標的Tfx ° , ''T, above can be obtained as follows: ^ Rl+ Α2(〇· ^2 +A3(i)-R3 + A4(i)· R4 + A5(i) R5 Here is the meaning of the positional parameter i. In this embodiment, the positional parameter i may include the position coordinates of the seat r to J in the range of 5, 丨, , , , and the present embodiment includes the Y-axis 1 A. For example, the optical touch module 2 is divided into 100 73 according to the γ axis. The positional parameter i corresponds to the 100 equal parts, and there are 100 values from small to large. The positional parameter i corresponds to one of them. When aliquoting, it means that the user presses to look at the octagonal temple. When the positional parameter i is different, you can get 15 201025100 different simulation information y(i), for example, Figure 3D shows one of the simulation information y(1) In the 幵V幵, there is - and the peak point PE2, the peak point & corresponds to the value of the position parameter i', that is, the value of the position parameter i is different, the peak point & is also different, and the two correspond. If the position parameter 丨 has 1 value, 100 analog information y(1) is generated. As shown in FIG. 3A, the comparison element 238 and the accumulation element 237 are electrically connected and compared. The information y(i) and the light sensing information are obtained to obtain the pressed position signal Sp. In this embodiment, since the analog information y(i) includes the brightness waveform corresponding to the value of the plurality of bit_f parameters i, t simulates f When the signal y(i) and the light sensing information LZ1 are compared with each other, the light sensing information L2] approximates the brightness waveform of the value of a positional parameter i in the analog information y(i), so that the Y axis of the pressed position can be obtained. For example, referring to FIG. 2C and FIG. 3D, the virtual curve of FIG. 2C can be regarded as a waveform diagram of the light sensing lean Ln, and the peak point Pe represents the Y coordinate of the real user pressing area, and FIG. 3D is based on The simulation information yw obtained by the value of the position parameter ,, the peak point pE2 represents the Y coordinate of the simulated user pressing area, when the two peaks Pei and Pm coincide, or the analog information y(i) and the light sensation When the correlation of the measurement information Lsi is the highest, the Y coordinate of the pressing area can be determined according to the value of the position parameter i of the simulation information y(1). As described above, the position decoding unit j>2 can be obtained according to the light sensing information l2i Pressing the position signal Sp, which contains the pressed (or near) area In addition, the position decoding unit ρ2 shown in FIG. 3A is only an example, and 16 201025100 is not limited to this aspect, for example, if the first temporary storage element 231 stores the light-emitting elements 31a to 31e. All of the brightness_position waveforms A1 to A5, and the second temporary storage unit 232 stores all of the luminance_time waveforms R1 to R5 of the light-emitting elements 31a to 31e, and the position decoding unit A can omit the positional displacement element 233 and the phase deviation. Shift element 234. It is worth mentioning that the simulation information y(1) can be calculated online as described above, or calculated in advance (〇ff_line) and stored in a memory unit (not shown). When the user's finger touches the optical touch control module 2, the position decoding unit P2 compares the light sensing information l21 and L22 with a plurality of analog information y(i) stored in the memory unit, thereby obtaining a press. Position signal SP. For example, the position parameter 丨 includes a coordinate of the γ axis, and the position parameter i of the example of the sample may also include a coordinate of the Z axis (the direction indicating the optical touch module 2 as shown in FIG. 2A ). . In fact, when the distance between the user's hand and the optical touch module 2 is different (ie, the z direction), the light sensing signal sensed by the φ light sensing element 21 is also different, for example, the closer to the optical touch The stronger the light sensing signal sensed by the control module 2'. Therefore, the light sensing information has different brightness-time waveforms corresponding to the distance of the user from the optical touch module 2. In this way, the position decoding unit P2 can compare the plurality of analog information (such as ζ(ι)' shown in FIG. 2B to simulate with a plurality of coordinates in the Z-axis) and the light sensing information, L22' to obtain the Z direction. The coordinates of the coordinates. Of course, the simulation information of this embodiment can also be obtained by simulating the coordinates of the Y axis and the Z axis at the same time, that is, the position parameter i includes the two-dimensional position 17 201025100 coordinates (yz(i) as shown in FIG. 2B). By pressing the light sensing information L2i, L22 and the above-described analog information yz(i), the pressing position signal SP including the pressing (close) coordinate information in the Y-axis and the Z-axis is obtained at one time. In other embodiments, the positional parameter i may further include a three-dimensional position coordinate, that is, the simulation information is simultaneously simulated by the coordinates of the X, Y, and Z axes, by comparing the light sensing information and the above analog information. A pressed position signal Sp including the pressing coordinate information of the X, Y, and Z axes is obtained. 4 is a partial block diagram of an optical touch module 4 10 according to a second preferred embodiment of the present invention. As shown in FIG. 4, unlike the optical touch module 2, the optical touch module 4 further has data lines DL23 and DL24, and each of the light sensing elements 21 is electrically connected to two data lines. The data lines DL21 and DL22 are electrically connected to the photo sensing elements 21 disposed along the Y-axis, and the data lines DL23 and DL24 are electrically connected to the photo sensing elements 21 disposed along the X-axis. It should be noted that FIG. 4 shows only two data lines DL23 and DL24 for convenience of description, and actually there may be more data lines. In addition, the light-emitting elements of the backlight module matched with the optical touch module 4 of the embodiment are exemplified by the light-emitting diodes, and the light-emitting elements are arranged in a two-dimensional array and are lit at different times. For example, it is periodically illuminated in sequence. The position decoding unit P3 is electrically connected to the data lines dl21 to 24, respectively, and receives 'one light sensing information L21 to 24' from each of the data lines DL21 to 24. The following describes how the position decoding unit P3 analyzes the coordinates of the area pressed (or approached) by the user's finger based on the light sensing information 141 to 24. First, how to analyze the X coordinate of the pressing area will be explained. Since the light sensing elements 21 disposed along the Y direction are transmitted through a specific data line 18 201025100 DL21, 〇1^22, the area of the light sensing element _.. m ^ is generated by the user. r is the redundancy of the identity, so it can be determined by the light sensing information 22 to generate a -% position signal, which causes the X-slot containing the area to be moved by the position decoding unit p; determining the light sensing information ^ And the average brightness of the light sensing information La (in this case, only two, in fact, there may be more light sensing information for comparison), you can know which one: the line corresponds to the pressing area, ie Pressing the position signal Sp contains the coordinates of the χ

資訊可依據具有較高亮度之光感測資訊所對應的的資料 線DL21、DL22而確定。 同樣的原則可用來解析按壓區域的γ座標。由於沿著 X方向設置之該等光感測元件21皆經由一特定的資料線 23 DL24來傳送光感測負訊[η、l24,而使用者所按壓 的區域會產生較高的亮度,故可藉由判斷光感測資訊Lu、 L24以產生一按壓位置訊號SP,其中包含按壓區域的γ座 標。即按壓位置訊號SPI_所包含Y座標的資訊可依據具有The information can be determined based on the data lines DL21, DL22 corresponding to the light sensing information having higher brightness. The same principle can be used to resolve the gamma coordinates of the pressed area. Since the light sensing elements 21 disposed along the X direction transmit the light sensing negative signals [η, l24] through a specific data line 23 DL24, the area pressed by the user generates higher brightness, so The light sensing information Lu, L24 can be determined to generate a pressed position signal SP containing the gamma coordinates of the pressed area. That is, the information of the Y coordinate included in the pressed position signal SPI_ can be based on

較高亮度之光感測資訊所對應的的資料線DL23、DL24而確 定。 本實施例之按壓區域的Z座標可藉由位置解碼單元p3 比對光感測資訊L2丨〜24及模擬資訊z(i)而得到。由於比對 模擬資訊z(i)的技術特徵已於第一實施例詳述,故於此不 再贅述。 當然,本實施例的模擬資訊亦可同時以X、Y及Z軸 向的座標進行模擬而得到,即位置參數i包含三維的位置 座標(如圖4所示的xyz(i));藉由比對光感測資訊L21〜24 19 201025100 及上述的模擬資訊xyz(i)而一次得到包含X、Y及Z軸向 之按壓(靠近)座標資訊的按壓位置訊號SP1。需注意者, 第一實施例與第二實施例之解析按壓區域的技術可交互 運用而產生更多的變化態樣。 本發明較佳實施例之一種觸控顯示裝置7如圖5所 ' 示,其包含一平面顯示模組8及一光學式觸控模組2。平 面顯示模組8具有一平面顯示面板9及一背光單元3與平 面顯示面板9相對而設,背光單元3具有複數個於不同時 ❿ 間點亮的發光元件。光學式觸控模組2與背光單元3相對 而設,其中光學式觸控模組2係為一光學式觸控面板,可 貼合於平面顯示面板9,亦可利用半導體製程將其整合於 平面顯示面板9中,當平面顯示面板9為液晶顯示面板 時,例如可整合於彩色濾光基板或薄膜電晶體基板。此 外,依實際狀況需要,觸控顯示裝置7更可包含一 1/8相 位延遲元件(圖中未顯示),其與光學式觸控模組2相對 而設,可將線性偏振光轉為圓形偏振光,以確保光線不會 ® 因反射而改變其偏振態。由於背光單元3及光學式觸控模 組2已詳述於上,故不再贅述。另外,本實施例的光學式 • 觸控模組2所具有的光感測元件21可對應各晝素設置, ' 例如一光感測元件21對應一畫素設置,以提升顯示品質。 需注意者,上述之光學式觸控模組2亦可以光學式觸控模 組4取代。 此外,本發明亦可應用於自發光型顯示裝置,例如有 機電激發光(Organic Electro-Luminescence,OEL )顯示裝 20 201025100 置。由於此類顯示裳置係由複數發光元件以掃描方式發光 (即於不同時間點亮)而顯示影像,故本發明亦可應用於 么光型顯示裝置而達到觸控之目的。 f上所述,依本發明之光學式觸控模組及觸控顯示裝 碼單元與各資料線€性連接,藉由解碼單元比對各 貝;斗線所傳送的光感測資訊可得知按壓區域之至少一方 向的座標。並且,本發明$葬由 件得知松厭「从、 同時間點亮的發光元 戌η 少一方向的座標’本發明是藉由比對光 =貝鎖複數個模擬資訊來得到該方向的座標。如此一 ,可侍到按壓區域之多維座標 及開關等元件即可達成上述之作勤%料月不需㈣線 複雜度並提高·率 冑’進而降低成本及製程 以上所述僅為舉例性,而非為限制 本發明之精神與料,㈣其進行 何未脫離 應包含於後附之申請專利範圍中。效修改或變更’均 【圖式簡單說明】 圖1為一種習知光學式觸控模一方塊圖; 圖2Α為依據本發明第一較佳會# 控模組與光單元的示意圖;^例之—種光學式觸 圖2Β為圖从之光學式觸控模一局部方塊圖; 圖2C為觸碰(或靠近)及未觸礎(或未 式觸控模組之光感測資訊的亮度·時間波形圖. 子 圖从為圖2Β之位置解碼單元的方塊圖;’ 21 201025100 圖3B為圖2A之發井矛/4 _ . 件點亮時的亮度-位置波形圖, Θ為圖2Α之發光元件點亮時的亮度時間波形圖; 圖3D為一模擬資訊的亮度_時間波形圖; 圖4為依據本發明第二較佳實施例之-種光學式觸控 模組的局部方塊圖;以及 圖5為依據本發明較佳實施例之一種觸控顯示裝置的 示意圖。 ❹ 【主要元件符號說明】 1、2、4:光學式觸控模組 11 :感測單元 111、21 :光感測元件 112 :開關 231 :第一暫存元件 232:第二暫存元件 2 3 3 .位置位移元件 ❷234 .相位偏移元件 235 :二維陣列元件 236 .乘法元件 ' 237 ·•累加元件 238 :比對元件 3:背光單元 31a〜31e :發光元件 7 :觸控顯示裝置 22 201025100 8 :平面顯示模組 9 :平面顯示面板 A1 :第一亮度-位置波形 Al(i)〜A5(i):權重值 A2〜A5:第二亮度-位置波形 dt :點党時間差 dx :間距 DLu、DL12、DL/21 〜24 ·貧料線 • i :位置參數 J1⑴〜J5(i):相乘資訊 L21、L22、L23、L24 :光感測資訊The data lines DL23 and DL24 corresponding to the higher brightness light sensing information are determined. The Z coordinate of the pressing area of this embodiment can be obtained by comparing the light sensing information L2 丨 24 24 and the analog information z (i) by the position decoding unit p3. Since the technical features of the comparison simulation information z(i) have been described in detail in the first embodiment, they will not be described again. Of course, the simulation information of this embodiment can also be obtained by simulating the coordinates of the X, Y, and Z axes at the same time, that is, the position parameter i includes a three-dimensional position coordinate (such as xyz(i) shown in FIG. 4); The pressing position signal SP1 including the coordinate information of the X, Y, and Z axes (close to) coordinate information is obtained once for the light sensing information L21 to 24 19 201025100 and the above-described analog information xyz(i). It should be noted that the techniques of the first embodiment and the second embodiment for analyzing the pressing area can be used interchangeably to produce more variations. A touch display device 7 of the preferred embodiment of the present invention includes a flat display module 8 and an optical touch module 2 as shown in FIG. The flat display module 8 has a flat display panel 9 and a backlight unit 3 opposite to the flat display panel 9. The backlight unit 3 has a plurality of light-emitting elements that are illuminated at different times. The optical touch module 2 is disposed opposite to the backlight unit 3, wherein the optical touch module 2 is an optical touch panel that can be attached to the flat display panel 9 or integrated into the semiconductor process. In the flat display panel 9, when the flat display panel 9 is a liquid crystal display panel, for example, it can be integrated in a color filter substrate or a thin film transistor substrate. In addition, the touch display device 7 may further include a 1/8 phase delay component (not shown), which is opposite to the optical touch module 2 and can convert the linearly polarized light into a circle. Polarized light to ensure that light does not change its polarization due to reflection. Since the backlight unit 3 and the optical touch module 2 have been described in detail above, they will not be described again. In addition, the optical sensing component 21 of the optical touch panel 2 of the present embodiment can correspond to each pixel setting, for example, a light sensing component 21 corresponds to a pixel setting to improve display quality. It should be noted that the above optical touch module 2 can also be replaced by an optical touch module 4. Furthermore, the present invention is also applicable to a self-luminous display device such as an Organic Electro-Luminescence (OEL) display device 20 201025100. Since such display is performed by displaying a plurality of light-emitting elements in a scanning manner (i.e., lighting at different times), the present invention can also be applied to a light-type display device to achieve the purpose of touch. According to the present invention, the optical touch module and the touch display coding unit of the present invention are connected to each data line, and the light sensing information transmitted by the bucket line is obtained by the decoding unit. Knowing the coordinates of at least one direction of the pressing area. Moreover, the present invention discloses that the coordinates of the illuminating element η which is lit at the same time are less than one direction. The present invention obtains the coordinates of the direction by comparing the plurality of analog information of the light=beacon lock. In this way, the multi-dimensional coordinates and switches and other components of the pressing area can be obtained to achieve the above-mentioned work. The monthly complexity is not required (four) line complexity and the rate is increased, thereby reducing the cost and the process. It is not intended to limit the spirit and material of the present invention, and (4) its unsuccessfulness should be included in the scope of the appended patent application. Effect Modification or Change 'Each [Simple Description] Figure 1 is a conventional optical touch FIG. 2 is a schematic diagram of a first control module and a light unit according to the present invention; and an optical touch diagram 2 is a partial block diagram of the optical touch mode. Figure 2C is a graph of the brightness and time waveforms of the touch (or near) and untouched (or the light sensing information of the non-touch module. The sub-picture is a block diagram of the position decoding unit of Figure 2; '21 201025100 Figure 3B is the hair lance of Figure 2A / 4 _ . The brightness-position waveform diagram of the time, 亮度 is the luminance time waveform diagram when the illuminating element of FIG. 2 is lit; FIG. 3D is a luminance_time waveform diagram of a simulation information; FIG. 4 is a second preferred embodiment of the present invention. A partial block diagram of an optical touch module; and FIG. 5 is a schematic diagram of a touch display device according to a preferred embodiment of the present invention. ❹ [Main component symbol description] 1, 2, 4: optical touch Module 11: sensing unit 111, 21: light sensing element 112: switch 231: first temporary storage element 232: second temporary storage element 2 3 3. position displacement element ❷ 234. phase shifting element 235: two-dimensional array Element 236. Multiplication element '237 ·• Accumulation element 238: Alignment element 3: Backlight unit 31a~31e: Light-emitting element 7: Touch display device 22 201025100 8: Flat display module 9: Flat display panel A1: First brightness - Position waveforms Al(i) to A5(i): Weight values A2 to A5: Second brightness - Position waveform dt: Point time difference dx: Spacing DLu, DL12, DL/21 ~ 24 · Poor line • i : Position Parameter J1(1)~J5(i): Multiplication information L21, L22, L23, L24: Light sensing information

Ml :實曲線 M2 :虛曲線 〇Pll、〇Pl2、〇卩2.1〜24 .放大元件 Pll、Pl2、卩2、P3 :位置解碼單元 Pei、Pe2 :向峰點 • R1:第一亮度-時間波形 R2〜R5 :第二亮度-時間波形 Si、S21、S22 .光感測訊號 ' SLn、SL12、SL13 .掃描線Ml: real curve M2: dashed curve 〇 P11, 〇 Pl2, 〇卩 2.1~24. Amplifying elements P11, Pl2, 卩2, P3: position decoding unit Pei, Pe2: peak point • R1: first brightness-time waveform R2~R5: second brightness-time waveform Si, S21, S22. Light sensing signal 'SLn, SL12, SL13. Scanning line

Sp、SP1 :按壓位置訊號 T :設置方向 y(i)、z(i)、yz(i)、xyz(i):模擬資訊 23Sp, SP1: Press the position signal T: Set the direction y(i), z(i), yz(i), xyz(i): analog information 23

Claims (1)

201025100 十、申請專利範園: 1、Γΐ光學式觸控模μ,與一背光單元相對而設,該背 光單元具有複數個於不同時間點亮的發光元件,該光 學式觸控模組包含: 複數資料線; 複數光感測元件,各光感測元件與至少一資料線電性 連接;以及 一位置解碼單元,與該等資料線電性連接,並自各資 料線接收一光感測資訊,該光感測資訊包含與該資 料線電性連接之該等光感測元件於各發光元件於不 同時間點亮一次時所感測到的光感測訊號,該位置 解碼單元比對該光感測資訊與複數個模擬資訊或是 比對該等光感測資訊以產生一按壓位置訊號。 2請專·圍第1項所述之鮮式職模組,其中 該等發光元件為週期性點亮。 3、 如申請相範圍第1項所述之光學式觸㈣組,其中 該等發光元件為依序點亮。 4、 如,請專利範圍帛1摘述之光學式觸控模組,其中 5亥等發光元件為螢光燈管或發光二極體。 5、 如申請專利範圍第1項所述之光學式難模組,其中 與各資料線電性連接之該等光感測元件之一設置方向 與該等發光元件之一設置方向平行。 6、 如申請專利範圍第1項所述之光學式觸控模組,其中 该光感測資訊及該等模擬資訊為類比訊號。 24 201025100 7、 如申請專利範圍第1項所述之光學式觸控模組,其中 該等模擬資訊預先儲存於一記憶單元。 8、 如申請專利範圍第1項所述之光學式觸控模組,其中 各模擬資訊依據一可變化的位置參數計算而得到。 9、 如申請專利範圍第8項所述之光學式觸控模組,其中 ' 該位置參數包含至少一維的位置座標。 10、 如申請專利範圍第1項所述之光學式觸控模組,其中 該等模擬資訊依據該等發光元件點亮時的亮度-位置 參 波形計算而得到。 11、 如申請專利範圍第1項所述之光學式觸控模組,其中 該等模擬資訊依據該等發光元件點亮時的亮度-時間 波形計算而得到。 12、 如申請專利範圍第1項所述之光學式觸控模組,其中 該位置解碼單元具有: 一第一暫存元件,儲存該等發光元件之其中之一的一 第一亮度-位置波形; ® 一第二暫存元件,儲存該等發光元件之其中之一的一 第一亮度-時間波形; — 一位置位移元件,與該第一暫存元件電性連接,並將 - 該第一亮度-位置波形依據各發光元件的間距偏移 複數次,而得到複數個第二亮度-位置波形; 一相位偏移元件,與該第二暫存元件電性連接,並將 該第一亮度-時間波形依據各發光元件的點亮時間 差偏移複數次,而得到複數個第二亮度-時間波形; 25 201025100 二維陣列元件,依據一位置參數、該第一亮度-位置波 形及該等第二亮度-位置波形取得複數個權重值; 一乘法元件,將該等權重值對應地與該第一亮度-時間 波形及該等第二亮度-時間波形相乘,而產生複數個 相乘育訊, • 一累加元件,將該等相乘資訊累加而得到該等模擬資 訊之一;及 一比對元件,比對該等模擬資訊與該光感測資訊。 ❿ 13、如申請專利範圍第1項所述之光學式觸控模組,更包 含: 複數個放大元件,分別對應電性連接於各資料線與該 位置解碼單元之間。 14、 如申請專利範圍第1項所述之光學式觸控模組,其係 為一光學式觸控面板或整合於一平面顯示面板中。 15、 一種觸控顯示裝置,包含: 一平面顯示模組,具有複數個於不同時間點亮的發光 β 元件;以及 一光學式觸控模組,與該等發光元件相鄰而設,該光 ' 學式觸控模組包含: - 複數資料線; 複數光感測元件,各光感測元件與至少一資料線電 性連接;及 一位置解碼單元,與該等資料線電性連接,並自各 資料線接收一光感測資訊,該光感測資訊包含與 26 201025100 該資料線電性連接之該等光感測元件於各發光 元件於不同時間點亮一次時所感測到的光感測 訊號’該位置解碼單元比對該光感測資訊與複數 個模擬資訊或是比對該等光感測資訊以產生一 按壓位置訊號。 16、 如申請專利範圍第15項所述之觸控顯示裝置,其甲 該等發光元件為週期性點亮。201025100 X. Patent application: 1. The optical touch mode μ is opposite to a backlight unit. The backlight unit has a plurality of light-emitting elements that are lit at different times. The optical touch module includes: a plurality of light sensing elements, each of the light sensing elements is electrically connected to the at least one data line; and a position decoding unit electrically connected to the data lines and receiving a light sensing information from each of the data lines, The light sensing information includes the light sensing signals sensed by the light sensing elements electrically connected to the data lines when the light emitting elements are lit once at different times, and the position decoding unit compares the light sensing signals. Information and a plurality of analog information or a comparison of the light sensing information to generate a pressed position signal. 2 Please refer to the fresh job module described in item 1, wherein the light-emitting elements are periodically lit. 3. The optical touch (four) group as described in item 1 of the scope of the application, wherein the light-emitting elements are sequentially illuminated. 4. For example, please select the optical touch module as described in the patent scope ,1, wherein the light-emitting element such as 5 hai is a fluorescent tube or a light-emitting diode. 5. The optical hard module according to claim 1, wherein one of the light sensing elements electrically connected to each of the data lines is disposed in a direction parallel to a direction in which one of the light emitting elements is disposed. 6. The optical touch module of claim 1, wherein the light sensing information and the analog information are analog signals. The optical touch module of claim 1, wherein the analog information is pre-stored in a memory unit. 8. The optical touch module of claim 1, wherein the simulation information is obtained according to a variable position parameter. 9. The optical touch module of claim 8, wherein the position parameter comprises at least one dimensional position coordinate. 10. The optical touch module of claim 1, wherein the analog information is obtained based on a brightness-position parameter waveform when the light-emitting elements are turned on. 11. The optical touch module of claim 1, wherein the analog information is calculated based on a brightness-time waveform of the light-emitting elements when they are illuminated. 12. The optical touch module of claim 1, wherein the position decoding unit has: a first temporary storage element, storing a first brightness-position waveform of one of the light-emitting elements a second temporary storage element storing a first brightness-time waveform of one of the light-emitting elements; a position-shifting element electrically coupled to the first temporary storage element, and The brightness-position waveform is offset by a plurality of times according to the pitch of each of the light-emitting elements to obtain a plurality of second brightness-position waveforms; a phase shifting element electrically connected to the second temporary storage element, and the first brightness- The time waveform is offset by a plurality of times according to the lighting time difference of each of the light-emitting elements to obtain a plurality of second brightness-time waveforms; 25 201025100 two-dimensional array elements according to a position parameter, the first brightness-position waveform, and the second The luminance-position waveform obtains a plurality of weight values; a multiplication element that multiplies the weight values by the first luminance-time waveform and the second luminance-time waveforms to generate a complex Multiplication sterile information, • an accumulation element, and the other one obtained by multiplying the accumulated information resources such simulation information; and a ratio of the analog information element, other than the information to the light sensing. The optical touch module of claim 1, further comprising: a plurality of amplifying components respectively electrically connected between each data line and the position decoding unit. 14. The optical touch module of claim 1, which is an optical touch panel or integrated in a flat display panel. A touch display device comprising: a flat display module having a plurality of light-emitting beta elements that are illuminated at different times; and an optical touch module disposed adjacent to the light-emitting elements, the light The learning touch module comprises: - a plurality of data lines; a plurality of light sensing elements, each of the light sensing elements being electrically connected to the at least one data line; and a position decoding unit electrically connected to the data lines, and Receiving a light sensing information from each of the data lines, the light sensing information including the light sensing elements sensed by the light sensing elements electrically connected to the data lines of the 26 201025100 when the light emitting elements are lit at different times The signal 'the position decoding unit compares the light sensing information with the plurality of analog information or compares the light sensing information to generate a pressing position signal. 16. The touch display device of claim 15, wherein the light-emitting elements are periodically illuminated. 17、 如申請專利範圍第15項所述之觸控顯示装置,其甲 該等發光元件為依序點亮。 18、 如申請專利範圍第15項所述之觸控顯示裝置,其中 °亥專發光元件為螢光燈管或發光二極體。 19、 如申請專利範圍第15項所述之觸控顯示裝置,其中 與各資料線電性連接之該等光感測元件之一設置方 向與該等發光元件之—設置方向平行。 其中17. The touch display device of claim 15, wherein the light-emitting elements are sequentially illuminated. 18. The touch display device of claim 15, wherein the illumination element is a fluorescent tube or a light emitting diode. 19. The touch display device of claim 15, wherein one of the light sensing elements electrically connected to each of the data lines is disposed in a direction parallel to a direction in which the light emitting elements are disposed. among them 20、 如申請專利範圍第15項所述之觸控顯示褒置 該光感測資訊及該等模擬資訊為類比訊號。 其中 如申明專利範圍第15項所述之觸控顯示裳置 該等模擬資訊預先儲存於一記憶單元。 22、如:請專利範㈣15項所述之觸控顯示裝置,其中 j擬資訊依據—可變化的位置參數計算而得到。 ,钮:ί利範圍第22項所述之觸控顯示裝置,其中 该位置參數包含至少—維的位置座標。 專利犯圍第15項所述之觸控顯示裝置,苴中 ㈣模擬資訊依據該等發光元件點亮時的亮度二 27 201025100 波形計算而得到。 25、 如申請專利範圍第15項所述之觸控顯示裝置,其中 該等模擬資訊依據該等發光元件點亮時的亮度·•時間 波形計算而得到。 26、 如申請專利範圍第15項所述之觸控顯示裝置,其中 ' 該位置解碼單元具有: 一第一暫存元件,儲存該等發光元件之其中之一的一 第一亮度-位置波形; ❿ 一第二暫存元件,儲存該等發光元件之其中之一的一 第一亮度-時間波形; 一位置位移元件,與該第一暫存元件電性連接,並將 該第一亮度-位置波形依據各發光元件的間距偏移 複數次,而得到複數個第二亮度-位置波形; 一相位偏移元件,與該第二暫存元件電性連接,並將 該第一亮度-時間波形依據各發光元件的點亮時間 差偏移複數次,而得到複數個第二亮度-時間波形; ® 二維陣列元件,依據一位置參數、該第一亮度-位置波 形及該等第二亮度-位置波形取得複數個權重值; ^ 一乘法元件,將該等權重值對應地與該第一亮度-時間 - 波形及該等第二亮度-時間波形相乘,而產生複數個 相乘貧訊, 一累加元件,將該等相乘資訊累加而得到該等模擬資 訊之一;及 一比對元件,比對該等模擬資訊與該光感測資訊。 28 201025100 27、 如申請專利範圍第15項所述之觸控顯示裝置,其中 該光學式觸控模組更包含複數個放大元件,分別對應 電性連接於各資料線與該位置解碼單元之間。 28、 如申請專利範圍第15項所述之觸控顯示裝置,其中 該光學式觸控模組為一光學式觸控面板或整合於該 平面顯示模組之一平面顯示面板中。20. The touch display device as described in claim 15 of the patent application, the light sensing information and the analog information are analog signals. The touch display device described in claim 15 of the patent scope is pre-stored in a memory unit. 22. For example, please refer to the touch display device described in Item 15 (4), wherein the information is obtained based on the calculation of the position parameter that can be changed. The touch display device of claim 22, wherein the positional parameter comprises at least a dimensional position coordinate. According to the touch display device described in Item 15 of the patent, the simulation information is obtained based on the waveform of the brightness of the light-emitting elements when the light-emitting elements are turned on. The touch display device according to claim 15, wherein the analog information is obtained by calculating a brightness·• time waveform when the light-emitting elements are turned on. The touch display device of claim 15, wherein the position decoding unit has: a first temporary storage element, storing a first brightness-position waveform of one of the light-emitting elements; a second temporary storage element storing a first brightness-time waveform of one of the light-emitting elements; a position-displacement element electrically coupled to the first temporary storage element, and the first brightness-position The waveform is offset by a plurality of times according to the pitch of each of the light-emitting elements to obtain a plurality of second brightness-position waveforms; a phase shifting component is electrically connected to the second temporary storage element, and the first brightness-time waveform is based on The illumination time difference of each of the light-emitting elements is offset a plurality of times to obtain a plurality of second brightness-time waveforms; the two-dimensional array element, according to a position parameter, the first brightness-position waveform, and the second brightness-position waveform Obtaining a plurality of weight values; ^ a multiplication element, wherein the weight values are correspondingly multiplied by the first luminance-time-waveform and the second luminance-time waveform to generate a plurality of phases Poor hearing, an accumulation element, and the other one obtained by multiplying the accumulated information resources such simulation information; and a ratio of the analog information element, like the ratio of the light-sensing information. The touch display device of claim 15 , wherein the optical touch module further comprises a plurality of amplifying components respectively electrically connected between the data lines and the position decoding unit. . The touch display device of claim 15, wherein the optical touch module is an optical touch panel or integrated in a flat display panel of the flat display module. 2929
TW97151241A 2008-12-29 2008-12-29 Optical touch module and touch display apparatus TW201025100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97151241A TW201025100A (en) 2008-12-29 2008-12-29 Optical touch module and touch display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97151241A TW201025100A (en) 2008-12-29 2008-12-29 Optical touch module and touch display apparatus

Publications (1)

Publication Number Publication Date
TW201025100A true TW201025100A (en) 2010-07-01

Family

ID=44852446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97151241A TW201025100A (en) 2008-12-29 2008-12-29 Optical touch module and touch display apparatus

Country Status (1)

Country Link
TW (1) TW201025100A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164084A (en) * 2011-12-16 2013-06-19 原相科技股份有限公司 Optical touch control device, display module and light source assembly of optical touch control device
US8766951B2 (en) 2010-08-17 2014-07-01 Chunghwa Picture Tubes, Ltd. Optical touch module and optical touch display panel
US8803847B2 (en) 2010-11-29 2014-08-12 Au Optronics Corp. Touch display device
US9189117B2 (en) 2013-08-02 2015-11-17 Focaltech Electronics, Ltd. Touch display device
US9904413B2 (en) 2011-12-08 2018-02-27 Pixart Imaging Inc. Optical touch device, and light source assembly and display module thereof
TWI662461B (en) * 2013-08-07 2019-06-11 敦泰電子有限公司 Touch control apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766951B2 (en) 2010-08-17 2014-07-01 Chunghwa Picture Tubes, Ltd. Optical touch module and optical touch display panel
US8803847B2 (en) 2010-11-29 2014-08-12 Au Optronics Corp. Touch display device
US9904413B2 (en) 2011-12-08 2018-02-27 Pixart Imaging Inc. Optical touch device, and light source assembly and display module thereof
CN103164084A (en) * 2011-12-16 2013-06-19 原相科技股份有限公司 Optical touch control device, display module and light source assembly of optical touch control device
CN103164084B (en) * 2011-12-16 2016-08-03 原相科技股份有限公司 Optical touch control apparatus and display module thereof and light source assembly
US9189117B2 (en) 2013-08-02 2015-11-17 Focaltech Electronics, Ltd. Touch display device
TWI662461B (en) * 2013-08-07 2019-06-11 敦泰電子有限公司 Touch control apparatus

Similar Documents

Publication Publication Date Title
RU2468414C1 (en) Display device
CN102402332B (en) Readout circuit for touch sensor
TW201025100A (en) Optical touch module and touch display apparatus
US5905489A (en) Coordinate input device
CN102402331B (en) There is display device and the driving method thereof of touch sensor
KR100981847B1 (en) Display device with touch panel
TWI553514B (en) Electronic device and method for driving a touch sensor integrated in a display module of an electronic device
CN105739749B (en) Touch panel device
CN105278729B (en) Display equipment with integrated touch screen
CN105487734B (en) Capacitance touching control formula flexible display panels and its flexible display
US20100031188A1 (en) Method for zooming image and electronic device using the same
CN104007869A (en) Display device with integrated touch screen
CN101393338A (en) Display,display system ,electric device and panel,and methods forming the same
US20130063398A1 (en) Optical touch display panel and touch sensing method thereof
CN101566747A (en) Liquid crystal display and method of driving the same
CN104461187A (en) Display device with integrated touch screen
CN111352520B (en) Touch sensing device for realizing high resolution and display apparatus including the same
TWI441061B (en) Photo sensing device suitable for optical touch display panel and applications thereof
TWI710948B (en) Touch-and-display device and sensing system
CN106537314A (en) Full-wave synchronous rectification for self-capacitance sensing
US9710074B2 (en) Digitizer using position-unique optical signals
JP2009146173A (en) Sensing device, display device, and electronic apparatus
CN106528034B (en) A kind of method of adjustment and mobile terminal of contents displayed on interface
TW200846994A (en) Light pointing device employed in input apparatus and driving method thereof
TWI345172B (en) Systems for displaying and capturing images