TW201024664A - Method of generating a geodetic reference database product - Google Patents

Method of generating a geodetic reference database product Download PDF

Info

Publication number
TW201024664A
TW201024664A TW97150489A TW97150489A TW201024664A TW 201024664 A TW201024664 A TW 201024664A TW 97150489 A TW97150489 A TW 97150489A TW 97150489 A TW97150489 A TW 97150489A TW 201024664 A TW201024664 A TW 201024664A
Authority
TW
Taiwan
Prior art keywords
image
data
model
road
location
Prior art date
Application number
TW97150489A
Other languages
Chinese (zh)
Inventor
Krzysztof Miksa
James Hagan
Jay Clark
Original Assignee
Tele Atlas Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tele Atlas Bv filed Critical Tele Atlas Bv
Priority to TW97150489A priority Critical patent/TW201024664A/en
Publication of TW201024664A publication Critical patent/TW201024664A/en

Links

Abstract

A method of generating a geodetic reference database product is disclosed The method comprises acquiring mobile mapping data captured by means of digital cameras, range sensors and position determination means including GPS and IMU mounted to a vehicle driving across the earth surface, the mobile mapping data comprising simultaneously captured image data, range data and associated position data in a geographic coordinate system. Linear stationary earth surface features are derived from the mobile mapping data by processing the image data, range data and associated position data. 3D-models are generated for the linear stationary earth surface features in the geographic coordinate system from the image data, range data and associated position data and stored in a database to obtain the geodetic reference database product. A 3D-model could include an image representing the colors of the surface of the 3D model or a set of smaller images representing photo-identifiable objects along the model. The 3D-models could be used to rectify aerial imagery, to correct digital elevation models and to improve the triangulation of digital elevation models.

Description

201024664 九、發明說明: 【發明所屬之技術領域】 本發明係關於產生一大地測量參考資料庫產品之領域。 本發明係進一步關於一種用於產生一大地測量參考資料 庫產品之電腦實施系統、大地測量參考資料庫產品、電腦 ’ 程式產品及具備該電腦程式產品或該大地測量參考資料庫 • 產品的處理器可讀取媒體。一大地測量參考資料庫產品可 在正射糾正相同地理區域之不同影像時較有用。 Φ 【先前技術】 地面控制點(GCP)用以將衛星、空中或航空勘測成像正 射糾正至標準地圖投影。一地面控制點可以係在地球之表 面上的任一點,其在遙測影像、地圖或空中照片中可辨識 且可準確定位於該些之每一者上'一地面控制點在一座標 參考系統内具有已定義相關聯座標。一地面控制點係在已 知地點之地球之表面上的一點(即固定於一已制定座標參 φ 考系統内)。0(:1>係用以地理參考影像資料來源(諸如遙測 影像或掃描地圖)與分離勘測網格(諸如在地球物理勘測期 間所產生的該等者)。一 GCP可能係: -一紙張地圖之一部分之一複本,其顯示一選定點及其 ' 周圍; ' •來自一掃描地圖的一影像片,其顯示一選定點及其周 圍; _來自一數位地圖的一影像片,其顯示一選定點及其周 圍; 137051.doc 201024664 -選定點之一書面說明或草圖; -來自一空中/衛星或以地面為主 示一選定點及其周圍;或 -一特定地點之任一其仙本_ 丹他表不,其係建檔以便在一空中/ 衛星影像或平面地圖内可識方】。 一 GCP可以係任一照片可辨識特徵以識別在一座標參考 系統内具有相關聯精確X、YW座標的一點…⑽說明201024664 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of generating a geodetic reference library product. The present invention further relates to a computer implementation system for generating a geodetic reference library product, a geodetic reference library product, a computer program product, and a processor having the computer program product or the geodetic reference library Readable media. A large geodetic reference library product can be useful when orthrographically correcting different images in the same geographic area. Φ [Prior Art] Ground Control Point (GCP) is used to correct satellite, aerial or aerial survey imaging orthography to standard map projection. A ground control point can be attached to any point on the surface of the Earth, which is identifiable in telemetry images, maps or aerial photographs and can be accurately located on each of the 'one ground control point in a standard reference system Has defined associated coordinates. A ground control point is a point on the surface of the Earth at a known location (i.e., fixed in a defined coordinate system). 0(:1> is used to georeference image data sources (such as telemetry images or scanned maps) and separate survey grids (such as those generated during geophysical surveys). A GCP may be: - a paper map a copy of a portion that displays a selected point and its 'around;' • an image from a scanned map showing a selected point and its surroundings; _ an image from a digital map showing its selection Point and its surroundings; 137051.doc 201024664 - written description or sketch of one of the selected points; - from a sky / satellite or ground to indicate a selected point and its surroundings; or - a specific place of its sin Daniel does not, and his system is designed to be identifiable in an aerial/satellite image or a flat map. A GCP can be used to identify any photo-identifiable feature to identify an associated precision X, YW within a target reference system. a point of coordinates...(10) Description

在一衛星或空中成像中清晰可識別的一地球表面特徵。用 於CGP的最重要要求係其在欲正射糾正影像内的可見 度帛-特丨生係其持久性。- GCP應理想地具有一大 小’其係在欲正射糾正影像内的一像素之大小的至少4 倍。用於疋義GCP的地球表面特徵可以係文化特徵、線特 徵及自然特徵》A clearly identifiable surface feature of the Earth in a satellite or aerial imaging. The most important requirement for CGP is its ability to orthographically correct the visibility within the image. - The GCP should ideally have a size of at least 4 times the size of a pixel in the image to be corrected. The Earth's surface features for the Derogatory GCP can be cultural, linear, and natural.

的照片的一影像,其顯 一文化(人造)特徵通常係用作GCP的最佳點。其涵蓋道 :交叉點、道路與軌道交又點、道路與可見生物地理邊界 交又點(諸如-道路與在—森林與—農田之間邊界線的交 又點)K點、河流橋樑、大型矮小建築物(飛機棚、工 業建築物等)、機場等等。 在本申Μ案中’線特徵可在其在成像中具有良好定義邊 緣時使用。正常情況下選擇GCP作為兩個線特徵之交又點 、$成該交又點的兩個線特徵必須以大於6〇度的 一角度交叉》 自*、、〗特徵因為其不規則形狀而一般不佳。但是在缺少適 田文化特徵之區域内可能必需使用自然特徵。若一自然特 13705I.doc -8 - 201024664 徵具有良好定義的邊緣,則其可用作一 GCP。其可能係森 林邊界、森林小徑、森林空地、河流匯合處等。當選擇此 類點時,必須及時地將某些邊界可經歷變動(森林、水體) 考量在内。在存在不夠適當特徵的情形下,可能使勘測者 建立一可觀察到的特徵用於識別一 GCP之目的。 為了地理參考或糾正空中或衛星成像,必須為每一影像 選擇一組GCP。應在影像中均勻地選擇一組的該等GCP。 應選擇在一影像之邊緣附近的點且較佳的係在影像内均勻 分佈。該組GCP較佳的係還應關注場景内的地形變動,即 選擇在最高與最低標高兩者處的點。 GCP可藉由一位置決定構件(例如一 GPS接收器)由一人 進入現場並在一座標參考系統内搜集GCP之一影像或對應 說明及對應X、Y及Z座標兩者來加以產生。在"Accurate mapping of Ground Control Point for Image Rectification and Holistic Planned Grazing Preparation(用於影像糾正及 整體規劃牧場準備之地面控制點之準確製圖)”(Jed Gregory等人,愛達荷州立波卡提洛大學,GIS訓練及研究 中心,ID 83209-8130,2006年10月)中,必須建立GCP並 記錄其確切空間地點以確保成像之準確地理糾正。策略上 遍及欲地理糾正的區域設定十個GCP。該等GCP係使用以 一十字(+)形狀彼此交又而擺放的兩個塑膠條(六英吋寬且 六英尺長)來設定。所有GCP係使該十字之每一臂指向四個 主要方向(北、南、東、西)來定向。在放置每一 GCP之 後,使用一 Trimble GeoXT GPS單元在該十字中心處記錄 137051.doc •9· 201024664 一 GPS地點》該文件解釋收集準確GCP所必需的巨量時間 及努力v 基本上存在在一正射糾正程序中進行的兩個校正。正射 糾正係將一透視圖影像變換成一影像,其中每一像素在說 明地球表面之大地水準面上具有一已知XY位置且其中每 一像素係視為垂直於在該XY位置的地球表面來檢視。首 先,可校正任何偏移(平移與旋轉誤差)傾斜或比例尺問題 且其次可校正標高變化之失真效應。在應用於影像的目前 正射糾正程序中’標尚失真係水平誤差的主要原因。此係 解說於圖1中。設置於一飛機1内的一相機記錄地球表面2 之透視圖影像(此處以輪廊顯不)。然而,在該影像内的僅 一像素可代表該地球表面之一正交圖而其他像素均為地球 表面之成角度視圖表示。圖1顯示針對一給定y座標的地球 表面之一輪廓。假定水平線3代表在一座標參考系統内用 於給定y座標的地球之一參考表面之一輪廓,例如WGC84 或任何在一座標參考系統内說明地球表面之其他大地水準 面。在地球表面上顯示一建築物結構4,例如一橋樑,其 在地球表面2上的xyz位置及高度係已知。另外,在該空中 影像之捕獲點5之座標參考系統内的位置及方位係已知(例 如藉由準確的GPS及/或其他位置/方位決定構件)。藉由幾 何學,可決定該建築物結構之上側的該等像素並決定對應 X、y位置。但是,若該地球表面相對於參考表面3的高度 (即Z座標)未知’則將會在該正射糾正影像中引入一第一地 形引發誤差6。類似地’若該建築物結構之高度也係未 137051.doc -10- 201024664 會在最後正射糾正影像"入一額外建築物高度 正㈣ 該情況下,該上側或該建築物結構可在該 正射糾正影像内投影在正確xy位置旁邊數公尺處。一曰該 建築物結構為橋樑’若相對於該參考表面的標高資訊—未 •(準確)6知’則將會錯誤地投料橋樑上的道路。圖2解說 此類型誤差。 不一正射糾正影像’其甲使用-數位標高模型 ❿ 來正射糾^中影像。-贿或常稱為,•地球裸面" 係藉由曝露下面地形數位移除一數位表面模型職所固有 2所有文化及生物地料徵㈣立…刪係在—座標參 考系統内包含地點與標高資訊兩者的地球之一第一表面視 一DEM可表示為-光栅卜方格)、等值線或等高線集 或一三角不規則網狀網路。USGS咖全國標高資料集 (獅)係-可用的具成本效益_,但無法允許準確正射 糾正橋樑、建築物及抬高結構’如圖2中所示。由於不將 • 料橋樑之高度考量在内’該等橋樑之上側會相對於該等 橋樑之真實地點而偏移。在圖2中的該等橋襟之真實地點 . 係、由叠加於正射糾正影像上的白線來加以指示I顯示 —正射糾正影像’其中使用—準確地理編碼DSM來正射糾 正該空中影像。可看出,藉由使用該等建築物結構之正確 高度’將該等建築物結構正確地投影在該正射糾正影像空 間上。該等建築物結構在指示該等建築物結構外形的該等 白線與在該正射糾正影像内的該等視覺外形一致時㈣正 確投影。An image of the photo, its dominant cultural (artificial) features are usually used as the best point of GCP. It covers the intersection: intersections, roads and orbits, and roads and visible biogeographic boundaries. (such as - roads and intersections between - forests and farmland) K points, river bridges, large Short buildings (hangars, industrial buildings, etc.), airports, etc. The 'line feature' can be used in this application when it has a well defined edge in imaging. Under normal circumstances, GCP is selected as the intersection of two line features, and the two line features of the intersection and the point must intersect at an angle greater than 6 degrees. The feature is generally * because of its irregular shape. Not good. However, natural features may be necessary in areas where there is a lack of adapted cultural characteristics. If a natural special 13705I.doc -8 - 201024664 sign has a well-defined edge, it can be used as a GCP. It may be a forest boundary, a forest trail, a forest open space, a river confluence, etc. When selecting such points, certain boundaries must be considered in a timely manner (forest, water). In the event that there are insufficient features, the surveyor may be allowed to establish an observable feature for the purpose of identifying a GCP. For georeferencing or correcting aerial or satellite imaging, a set of GCPs must be selected for each image. A group of these GCPs should be evenly selected in the image. Points near the edge of an image should be selected and preferably evenly distributed within the image. The preferred group of GCPs should also focus on terrain changes within the scene, ie, select points at both the highest and lowest elevations. The GCP can be generated by a person using a position determining component (e.g., a GPS receiver) to enter the scene and collect an image or corresponding description of the GCP and corresponding X, Y, and Z coordinates in a standard reference system. In "Accurate mapping of Ground Control Point for Image Rectification and Holistic Planned Grazing Preparation" (Jed Gregory et al., Idaho State Pocatello) University, GIS Training and Research Center, ID 83209-8130, October 2006), GCP must be established and its exact spatial location must be recorded to ensure accurate geographic correction of the imaging. Ten GCPs are strategically placed throughout the area to be corrected. These GCPs are set using two plastic strips (six inches wide and six feet long) that are placed in a cross (+) shape and placed together. All GCPs point each arm of the cross to four mains. Directions (North, South, East, West) are oriented. After placing each GCP, use a Trimble GeoXT GPS unit to record 137051.doc •9· 201024664 a GPS location. This document explains the collection of accurate GCP The amount of time and effort required is basically two corrections that are made in an orthorectification procedure. The orthorectification system changes a perspective image. An image is replaced, wherein each pixel has a known XY position on the geoid surface indicating the surface of the earth and each pixel is viewed perpendicular to the surface of the earth at the XY position. First, any deviation can be corrected. Shift (translation and rotation error) tilt or scale problem and secondly correct the distortion effect of the elevation change. The main cause of the horizontal distortion of the standard distortion in the current orthorectification procedure applied to the image. This system is illustrated in Figure 1. A camera disposed in an aircraft 1 records a perspective image of the Earth's surface 2 (shown here as a porch). However, only one pixel in the image may represent one of the Earth's surfaces and other pixels. It is represented by an angular view of the Earth's surface. Figure 1 shows a contour of the Earth's surface for a given y coordinate. It is assumed that the horizontal line 3 represents one of the reference surfaces of the Earth for a given y coordinate within a standard reference system. Contours, such as WGC84 or any other geoid that describes the surface of the Earth within a standard reference system. Display a building structure 4 on the surface of the Earth, for example The bridge is known for its xyz position and height on the Earth's surface 2. In addition, the position and orientation within the coordinate reference system of the capture point 5 of the aerial image is known (eg by accurate GPS and/or other Position/orientation determining member. By geometry, the pixels on the upper side of the building structure can be determined and the corresponding X, y position determined. However, if the height of the earth surface relative to the reference surface 3 (ie, the Z coordinate) Unknown 'will introduce a first terrain induced error 6 in the orthorectified image. Similarly, if the height of the structure of the building is also not 137051.doc -10- 201024664 will be corrected in the final orthophotos " into an additional building height (four) in this case, the upper side or the structure of the building can be The ortho-corrected image is projected within a few meters of the correct xy position. Once the structure of the building is a bridge, the information on the bridge will be mistakenly fed if the information on the elevation of the reference surface is not (accurate). Figure 2 illustrates this type of error. The image is not corrected by an ortho-radiation image. - bribe or often referred to as "the earth's bare face" is to remove a digital surface model by exposing the terrain below. 2 All cultural and biological features (4)... Deleted in the coordinates reference system One of the first surface of the earth and the elevation information may be represented as a - grating square, a contour or a contour set or a triangular irregular mesh network. The USGS Coffee National Elevation Data Set (Lion) is available as a cost effective _, but does not allow accurate ortho-correction of bridges, buildings, and elevated structures as shown in Figure 2. Since the height of the bridge is not taken into account, the upper side of the bridge will be offset relative to the true location of the bridge. The real location of the bridges in Figure 2 is indicated by a white line superimposed on the orthorectified image. I display - ortho-corrected image 'which uses - accurate geocoding DSM to orthographically correct the aerial image . It can be seen that the building structures are correctly projected onto the orthorectified image space by using the correct height of the building structures. The building structures are correctly projected (4) when the white lines indicating the shape of the building structures coincide with the visual appearances within the ortho-corrected image.

•1U 137051.doc 201024664 應注意’ DEM與DSM兩者僅提供地球表面的一模型。其 不包含在感測影像、地圖及空中照片上可容易辨識的資 訊。若GCP不與一 DEM或DSM相關聯,其便不能用以正射 糾正此類影像。所使用GCP的準確性與GCP之數目(計數) 及橫跨欲糾正影像的分佈/密度將決定所得影像或正射糾 正程序之準確性。下面標高變化之特性決定Gcp之所需分 佈/密度。例如,堪薩斯州的一平直部分僅在該平直部分 罄 之邊緣處需要一些GCP»在一小河上的一小橋則不需要很 多。在一大峽谷之上的一大橋可能需要一高密度來正確說 明該橋樑之邊緣。同樣地,起伏的山丘將比一平坦傾斜需 要更多。 地理資訊系統時常在一視圖中組合數位地圖資訊與正射 糾正影像兩者。可提取或分析來自該影像的資訊以添加、 .校正或驗證數位地圖資訊。類似地,正射糾正影像可用以 提取數位地圖資訊用於一導航裝置内。在兩種情形下重 ❹ 要的係在該等正射糾正影像内的特徵地點對應於其在地球 上的真實地點°在第—情況下,由於不正確的高度,在正 • 射州正影像内的道路表面之位置與來自數位地圖之對應道 T表面不-致。例如參見圖2。在此情況下,導航裝置可 &測量不同於在其地圖資料庫内該等提取自較差正射糾正 象者的位置並可能提供一警報’其向該導航裝置之使用 者錯誤地通知Μ全的行駛條件。 :於從-空中影像或衛星影像產生—正確正射糾正影像 的要求係纟由該正射糾正影像所表示之區域内存在足夠 137051.doc 201024664 的GCP。現今,正射糾正的成本隨著欲由人捕獲之Gcp的 數量而線性遞增。越需要GCP來獲得一正射糾正影像之所 需準確性,便越需要人力。 缺少便宜、準確(具已知準確性)且良好分佈的地面控制 點以幫助控制位置準確導航及製圖應用。另外,先進駕駛 輔助系統(ADAS)要求關於道路的準確3〇位置資訊以控制 此類系統。此要求沿道路表面的一極密集Gcp網路以能夠 充分準確地糾正空中或衛星成像。對於該些應用而言,重 要的係將道路表面正確地定位於正射糾正影像内β為了能 夠如此,需要關於道路表面的標高資訊,尤其係橋樑、堤 岸、高架公路及行車天橋之標高資訊。 用於地理空間成像之校準及糾正的目前技術地面控制產 品係在全球之幾乎所有區域内不完整且不一致。下列資料 來源存在用於地理空間資料之校準及糾正: a) 導出自政府地形資料集之DEM/DTM資料。但是,該 些資料經常係粗链且過時。此外,其在地區間品質大幅變 動。 b) 導出自機載/衛星雷達平台的DEM/DTM。該些係較昂 貴且時常覆蓋許多商用製圖實體可能不感興趣的較大區域 帶。該些仍要求來自一獨立準確來源的位置校準。衛星平 台目前不提供一致滿足用於ADAS位準工作之精度要求的 資料; c) 高品質勘測級GPS地面控制點。該些係每點較昂貴且 要求用於在一些國家獲取的特殊准許。另外,用於可重複 137051.doc -13- 201024664 性的機會係最小; d)低品質GPS地面控制點(特定/非勘測級)。該些時常係 照=不可識別且可能受到快速廢棄影響。大地測量元資料 可能不-致且定義不清。另外,點的地點一般未良好規 劃; 匀來自車輛的GPS"軌跡線"。該些係幾乎照片不可識別 J_不提供高於行車道寬度的一準確性。首先,其難以關聯 象 其他軌跡線且將會基於微妙的行駛圖案(尤其在交又點處) 而給出不同的位置,從而使關聯運輸節點不可能。 f) 現有空中影像產品。該些可能有用於驗證/糾正低品質 輸出。但在地理空間資料產生中,該些係不合適。此外, 該些遭受一群局部化誤差影響,該等局部化誤差在2d影像 中不易偵測;以及 g) 現有政府或商用中心線地圖。該些地圖係抽象模型化 規格或中心線資料。此類資料集之準確性輪廓係不一致且 | 其缺少品質標高資料。 需要一種大地測量參考資料庫產品,其包含足夠Gcp或 地面控制資訊以足夠準確地三維正射糾正空中或衛星成像 來使用該產品作為用於GIS應用的一可靠資料來源,至少 在其應用於道路之表面時。 【發明内容】 本發明致力於提供一種產生一大地測量參考資料庫產品 之替代性方法,其可用於許多GIS應用中,諸如:影像正 射糾正、基本製圖、以地點為主的系統、3D視覺化、地形 137051.doc • 14- 201024664 製圖、車輛導航、智慧型車輛系統、Adas、飛行模擬、 駕駛艙内形勢認知。 依據本發明,該方法包含: -獲取藉由設置至一行駛於地球表面上之車輛的數位相 機、測距感測器及包括GPS及IMU的位置決定構件所捕獲 的行動製圖資料,該行動製圖資料包含在一地理座標系統 . 内同時捕獲影像資料、測距資料及相關聯位置資料; •藉由處理該影像資料、測距資料及相關聯位置資料從該 行動製圖資料來決定線性靜止地球表面特徵; ,從該影像資料、測距資料及相關聯位置資料在該地理座 標系統内為該等線性靜止地球表面特徵產生3d模型; -將該等3 D模型儲存於一資料庫内以獲得該大地測量參考 資料庫產品。 本發明係基於認識,即要準確正射糾正感測空中及衛星 影像,需要地球表面的一位置準確3D模型。另外,必須決 眷 定該感測影像與該3D模型的關係。目前3D模型(諸如dsm 與DEM)根據3D座標來說明地球表面。該些3D座標在俯視 • 時不具有對應於地球表面的一相關聯色彩值。因此,不可 能對齊該等3D模型與該等感測影像。另外,商用影像之像 素大小為5.0 m,具有一2 〇 m的水平準確性rsme與— m的垂直準確性RMSE。該些解析度及準確性限制正射糾 正程序產生具有-更高準確性的正射糾正影像。 行動製圖車輛捕獲藉由設置至一行驶於以道路為主的地 球表面上之車輛的數位相機、測距感測器(諸如雷射/雷達 137051.doc -15- 201024664 =器)及包括㈣及IMU的位置衫構件所_之行㈣ 圖資料,該行動製圖資料包含在一地 蔣吾“金咨』, 地理座糕系統内同時捕 獲景d象資料、雷射/雷達資料及相關聯位 定構件使吾人能夠以一5。⑽之水平絕對準確:與」= ::直準:性來決定該位[藉由該雷射/雷達感測器組 & “已決定相關聯位置資料,可建立—表面模型,其具有 一每刚m 50 em的相對水平準確性與一每⑽m 35响相• 1U 137051.doc 201024664 It should be noted that both DEM and DSM provide only one model of the Earth's surface. It does not include information that is easily identifiable on sensory images, maps, and aerial photographs. If the GCP is not associated with a DEM or DSM, it cannot be used to orthographically correct such images. The accuracy of the GCP used and the number of GCPs (counts) and the distribution/density across the image to be corrected will determine the accuracy of the resulting image or orthorectification procedure. The characteristics of the elevation changes below determine the required distribution/density of Gcp. For example, a straight portion of Kansas requires only a few GCPs at the edge of the straight section. A small bridge on a small river does not require much. A bridge over a large canyon may require a high density to properly account for the edge of the bridge. Similarly, undulating hills will require more than a flat slope. Geographic information systems often combine both digital map information and orthophoto corrected images in one view. Information from the image can be extracted or analyzed to add, correct, or verify digital map information. Similarly, orthorectified images can be used to extract digital map information for use in a navigation device. In both cases, the feature points in the orthorectified image correspond to their true location on the earth. In the first case, due to the incorrect height, the positive image is in the positive state. The position of the road surface inside is not related to the surface of the corresponding road T from the digital map. See, for example, Figure 2. In this case, the navigation device can & measure differently from the location in the map database that is extracted from the poor ortho-corrector and may provide an alert that erroneously informs the user of the navigation device Driving conditions. : The requirement for correct ortho-corrected image generation from - aerial imagery or satellite imagery is that there is enough GCP for 137051.doc 201024664 in the area represented by the orthorectified image. Today, the cost of orthorectification increases linearly with the number of Gcps that are to be captured by humans. The more you need GCP to get the accuracy of an ortho-corrected image, the more manpower is needed. There is a lack of inexpensive, accurate (with known accuracy) and well-distributed ground control points to help control positional navigation and mapping applications. In addition, the Advanced Driver Assistance System (ADAS) requires accurate 3〇 position information about the road to control such systems. This requires a dense Gcp network along the surface of the road to be able to adequately correct air or satellite imaging. For these applications, it is important to position the road surface correctly in the orthorectified image. In order to be able to do so, it is necessary to have information about the elevation of the road surface, especially the elevation information of bridges, banks, elevated highways and road bridges. Current technology ground control products for geospatial imaging calibration and correction are incomplete and inconsistent in almost all regions of the world. The following sources exist for the calibration and correction of geospatial data: a) DEM/DTM data derived from government topographic data sets. However, these materials are often thick and outdated. In addition, its quality has changed dramatically between regions. b) Derived from the DEM/DTM of the airborne/satellite radar platform. These systems are expensive and often cover a large area of interest that many commercial graphics entities may not be interested in. These still require position calibration from an independent accurate source. The satellite platform currently does not provide data that consistently meets the accuracy requirements for ADAS level work; c) High quality survey level GPS ground control points. These systems are expensive at each point and require special permission for access in some countries. In addition, the chances for repeatable 137051.doc -13- 201024664 are minimal; d) Low quality GPS ground control points (specific/non-survey level). These often photos are unrecognizable and may be affected by rapid discards. Geodetic metadata may not be accurate and the definition is unclear. In addition, the location of the point is generally not well planned; the GPS"track line" from the vehicle. These systems are almost unrecognizable. J_ does not provide an accuracy above the width of the lane. First, it is difficult to correlate with other trajectories and will give different positions based on subtle travel patterns (especially at intersections), making associated transport nodes impossible. f) Existing aerial imaging products. These may be used to verify/correct low quality output. However, in the generation of geospatial data, these lines are not suitable. In addition, these suffer from a group of localization errors that are not easily detectable in 2d images; and g) existing government or commercial centerline maps. These maps are abstract modeled specifications or centerline data. The accuracy profiles of such data sets are inconsistent and | they lack quality elevation data. There is a need for a geodetic reference library product that contains sufficient Gcp or ground control information to accurately or accurately correct three-dimensional orthorectification air or satellite imaging to use the product as a reliable source of information for GIS applications, at least in its application to the road When the surface is. SUMMARY OF THE INVENTION The present invention is directed to an alternative method of generating a geodetic reference library product that can be used in many GIS applications, such as: image ortho-correction, basic mapping, location-based systems, 3D vision , terrain 137051.doc • 14- 201024664 mapping, vehicle navigation, smart vehicle systems, Adas, flight simulation, cockpit situation awareness. According to the invention, the method comprises: - obtaining a motion map captured by a digital camera, a distance measuring sensor and a position determining means comprising a GPS and an IMU set to a vehicle traveling on the surface of the earth, the action mapping The data is contained in a geographic coordinate system. The image data, the ranging data and the associated location data are simultaneously captured. • The linear still earth surface is determined from the motion mapping data by processing the image data, the ranging data and the associated location data. Feature; generating, from the image data, ranging data, and associated location data, a 3d model for the linear stationary earth surface features in the geographic coordinate system; - storing the 3D models in a database to obtain the Geodetic reference library products. The present invention is based on the recognition that accurate ortho-corrective sensing of airborne and satellite imagery requires a positionally accurate 3D model of the Earth's surface. In addition, the relationship between the sensed image and the 3D model must be determined. Current 3D models (such as dsm and DEM) illustrate the Earth's surface based on 3D coordinates. The 3D coordinates do not have an associated color value corresponding to the surface of the earth when viewed from above. Therefore, it is impossible to align the 3D models with the sensed images. In addition, the commercial image has a pixel size of 5.0 m and a vertical accuracy RMSE of rsme and _m with a level of 2 〇 m. These resolutions and accuracy limits the orthorectification procedure to produce orthorectified images with - higher accuracy. The action cartographic vehicle captures a digital camera, ranging sensor (such as laser/radar 137051.doc -15- 201024664 = device) that is set to a vehicle traveling on the surface of the earth on the road and includes (4) IMU's position of the shirt component _ trip (four) map information, the action map data contains a place in the Jiang Wu "Golden Advisory", the geographic cake system simultaneously captures the scene d-ray data, laser / radar data and related joints The component enables us to be absolutely accurate at a level of 5. (10): with "=::direct: sex" to determine the position [by the laser/radar sensor group & "definite position information has been determined, Establish a surface model with a relative horizontal accuracy of exactly 50 m per and a (10) m 35 phase

對垂直準確性。錢更佳硬體,即提供—更密集雷射雲的 更快測距感測器,可實現一丨cm的準確性。 從該行動製圖資料之該等影像,可決定線性靜止地球表 面特徵。一線性靜止地球表面特徵可能係一道路區段、一 橋樑之上側、一天橋等。依據本發明之一線性靜止地球表 面特徵之一特性係其具有視覺可偵測邊緣與一平滑表面, 即不具有不連續性的一表面,使得該表面可近似為在該等 邊緣之間的一平坦表面。此使吾人能夠使用一 3D模型,其 藉由兩個折線來.說明該線性地球表面特徵’該等折線對應 於該地球表面特徵之平坦表面之左及右側。 該表面模型可用以將該影像資料變換成該地球表面之正 射糾正影像,其具有一2 cm的像素大小、一每1〇〇m 5〇 cm 的相對水平準確性。可將來自該表面模型的高度資訊添加 至該正射糾正影像之每一像素以獲得具有一每丨〇〇m 35 cm 的相對垂直準確性的一 3D正射糾正影像。從該影像資料, 可提取線性靜止地球表面特徵或地面控制物體Gc〇(諸如 道路表面)並作為3D模型儲存於一資料庫内用於成像之正 137051.doc •16· 201024664 射糾正。一靜止地球表面特徵之3D模型之特性係其具有可 在欲糾正成像内辨識且識別的一形狀及大小。 依據本發明之3 D表面模型之另一優點係該3 D模型定義 該表面與該等邊緣兩者1等邊緣係用以改良現有〇頂與 DSM之品[使用該等邊緣允許在不限於μμ之典型網格 圖案之位置處在該表面模型内放置切割線或折斷線。在表 面模型中,不清楚應如何三角測量四個相鄰勘測點,以提 供現實之最佳近似。存在兩個可能結果來三角測量該四個 點每可犯性定義一不同表面。德洛涅三角刮分 (Delaunay triangulation)將會選擇其中最大化該三角測量 中該等二角形之所有角度之最小角度的結果。但是,此結 果不-定係表示現實中表面的最佳結果。依據本發明之線 性靜止地球表面特徵之3D模型,即該等邊緣可用作折斷線 以控制一角測1: ’即選擇近似最佳現實的四個勘測點之三 角測量結果。該等3D模型還可用作在現有^^“或DSMr 的額外勘測點以在一 GIS應用内使用此一表面模型時或在 使用該表面模型來糾正空中成像時改良品質及可靠性。 由於在一座標參考系統内該3D模型之位置資訊係準確已 知,可準確地糾正該影像之對應部分。本發明使吾人能夠 以一容易方式並在較短時間週期内產生可用作Gc〇的一巨 量3D模型。3D模型超過具有⑽之—f料庫的—優點係一 3D模型模型化地球表面之一部分,而一 Gcp僅參考一 χγζ 座標。當使用具有GCP之-資料庫肖,必須估計在Gcp之 間的地點之標高資訊,⑼而可㉟導致製圖不準冑。該方法 137051.doc 17 201024664 助口人捕獲地球表面之31)模型。該些點物體可僅由人使 用標準勘測方法用於測量並模型化地球表面來手動收集, 由此校正圖2中所示之誤差。 依據本發明之方法組合以下三個領域之最佳者:準確位 S決定、高解析度雷射/fit或地面光達資料處理及高解 •:度影像處理。雷射/雷達資料與影像資料兩者具有一較 尚解析度及準確性,由於與空中成像相比,其代表在距記 0 冑表面相對較短距離處所捕獲的資料。此允許吾人使用較 低廉數位相機與雷射感測器。 一線性靜止地球表面特徵可能係在選擇自—群組之地球 表面中的任何實體及視覺線性特徵,該群組包含以下至少 者.道路^段之道路表面、水道、可從該行動製圖資料 為其導出-3D模型且其在一空中或衛星成像中照片可識別 的任何具有良好定義邊緣的實體特徵(諸如天橋、橋標、 建築物結構之基線)。 參纟另-具體實施例中,對應於道路區段的該等3D模型係 連結以獲得一連續線性控制網路;並將該連續線性地理網 ,㉟儲存於該大地測量參考資料庫產品内。該連續線性控制 網路向吾人提供地球表面之一連績且無縫3〇模型,從而允 許吾人準確地糾正對應於該等道路區段的該等影像區域。 隨著道路網路沿世界大部分延伸,藉由此發明,可產生— 準確道路標高模型,其可用以更準確地糾正幾乎世界任一 部分之空中及衛星成像。特定言之,藉由該連續線性控制 網路’可在成像中明顯改良該等道路之正射糾正。該連續 137051. -18- 201024664 線性控制網路提供該等道路及道路結構之表面之一極準確 DEM或DSM,其具有好上商用DSM或DEM 5倍的一解析 度。 在一具體實施例中,一線性靜止地球表面特徵對應於選 擇自一群組特徵的一道路區段之一線性特性,該群組特徵 包含:道路中心線、左道路邊緣、右道路邊緣、道路寬 度。該些特徵係用以說明該3D模型。該3D模型可能係道For vertical accuracy. Money is better and better, that is, a faster ranging sensor that provides a denser laser cloud that achieves an accuracy of one 丨 cm. From these images of the action mapping data, the linear stationary earth surface features can be determined. A linear stationary earth surface feature may be a road section, a bridge upper side, a day bridge, and the like. One of the characteristics of a linear stationary earth surface feature according to the present invention is that it has a visually detectable edge and a smooth surface, i.e., a surface that does not have discontinuities, such that the surface can be approximated as one between the edges Flat surface. This allows us to use a 3D model, which is illustrated by two fold lines, which illustrate the linear earth surface features' the fold lines corresponding to the left and right sides of the flat surface of the earth's surface features. The surface model can be used to transform the image data into an orthorectified image of the surface of the earth having a pixel size of 2 cm and a relative horizontal accuracy of 1 〇〇 m 5 〇 cm. Height information from the surface model can be added to each pixel of the orthorectified image to obtain a 3D ortho-corrected image having a relative vertical accuracy of 35 cm per 丨〇〇m. From this image data, a linear stationary earth surface feature or a ground control object Gc〇 (such as a road surface) can be extracted and stored as a 3D model in a database for imaging positive 137051.doc •16· 201024664 shot correction. The 3D model of a stationary earth surface feature is characterized by a shape and size that can be identified and identified within the image to be corrected. Another advantage of the 3D surface model according to the present invention is that the 3D model defines both the surface and the edges of the edges to improve the existing dome and DSM products [use of the edges allows for not limited to μμ A location of a typical grid pattern places a cut line or broken line within the surface model. In the surface model, it is not clear how to triangulate four adjacent survey points to provide the best approximation of reality. There are two possible outcomes to triangulating the four points for each violent definition of a different surface. Delaunay triangulation will select the result of maximizing the minimum angle of all angles of the triangles in the triangulation. However, this result does not determine the best results for the surface in reality. A 3D model of linear stationary earth surface features in accordance with the present invention, i.e., the edges can be used as break lines to control a corner measurement 1: </ RTI> to select the three angle measurements of the four survey points that approximate the best reality. These 3D models can also be used to improve quality and reliability when using this surface model in a GIS application at an additional survey point of an existing ^M" or DSMr or when using the surface model to correct aerial imaging. The position information of the 3D model in a standard reference system is accurately known, and the corresponding portion of the image can be accurately corrected. The present invention enables us to generate one that can be used as Gc in an easy manner and in a short period of time. A huge 3D model. The 3D model surpasses the (10)-f library--the advantage is that a 3D model models one part of the earth's surface, while a Gcp only refers to a χγζ coordinate. When using the GCP-database, it must be estimated The elevation information of the location between Gcp, (9) and 35 causes the drawing to be inaccurate. The method 137051.doc 17 201024664 The helper captures the 31) model of the Earth's surface. These points can be used only by people using standard survey methods. Used to measure and model the surface of the earth for manual collection, thereby correcting the error shown in Figure 2. The best of the following three areas is combined according to the method of the present invention: accurate bit S decision, Resolution laser/fit or ground light data processing and high resolution • Image processing. Both laser/radar data and image data have a higher resolution and accuracy, which is represented by aerial imaging. Data captured at a relatively short distance from the surface of the mark. This allows us to use lower-cost cameras and laser sensors. A linear stationary earth surface feature may be selected from any of the earth's surfaces selected from the group. Physical and visual linear features, the group comprising at least the road surface of the road segment, the waterway, any 3D model from which the motion map data can be derived and which is identifiable in an aerial or satellite imagery Physical features of well-defined edges (such as bridges, bridges, baselines of building structures). In other embodiments, the 3D models corresponding to road segments are linked to obtain a continuous linear control network; And storing the continuous linear geographic network, 35, in the geodetic reference library product. The continuous linear control network provides us with one of the achievements of the earth's surface. Seamless 3〇 model, allowing us to accurately correct the image areas corresponding to the road segments. As the road network extends along most of the world, by this invention, an accurate road elevation model can be generated, It can be used to more accurately correct air and satellite imaging in almost any part of the world. In particular, the continuous linear control network can significantly improve the orthorectification of such roads in imaging. The continuous 137051. -18- The 201024664 linear control network provides an extremely accurate DEM or DSM of the surface of such road and road structures, which has a resolution of 5 times better than commercial DSM or DEM. In a specific embodiment, a linear stationary earth surface feature Corresponding to a linear characteristic of a road segment selected from a group feature, the group feature includes: a road center line, a left road edge, a right road edge, and a road width. These features are used to illustrate the 3D model. The 3D model may be systematic

路中心線、左道路邊緣或右道路邊緣,其可視需要地組合 該道路寬度。說明該道路表面的一 3D模型可能基於左道路 邊緣與右道路邊緣。該3D模型說明在一空中或衛星影像中 可識別之道路的一形狀。較佳的係,該3〇模型對應於在影 像中可識別的道路邊緣與線性喷漆。與該3D模型相關聯的 β亥等座標可用以糾正該影像。另外,若該3 D模型準確說明 該表面,即標高偏差’則可極準確地糾正對應該3D模型之 影像内的區域。另外,該3D模型寸用於DTM細化/改良。 本發明之一具體實施例中,該決定線性靜止地球表面特 徵程序包含在該影像資料㈣測—道路表面,提取該等道 路表面邊緣之位置並藉由組合該影像資料、測距資料及相 關聯位置資料在該地理座標系統内將其與線性嗔漆相關聯 並從该道路表面之位置來計算該線性靜止地球表面特徵。 模型可基於向量,其說明在該座標參考系統内該線性 处止地球表面特徵之尺寸及位置。此係一種用於說明空間 …構之具效率方法。 在一具體實施例中,該方法進一步包含: 137051.doc •19· 201024664 藉由、’且《影像貝料與測距資料來為該等3D模型產生正射 糾正影像; -為該等正射糾正影像之每―像素決^在該地理座標系統 内的標高資訊; . 連、°該等正射糾正影像與該標高資訊以獲得3D正射糾正 影像;以及 儲存《亥等3D正射糾正影像並將該等影像連結至在該大 _ 地測量資料庫產品内的個別3D模型。該些特徵使吾人能夠 使用該3D模型之地球表面之可見特性來提高該等模 型。該等特性提供與在_3D模型之區域内的特定點相關的 額外準確地面控制資訊。該等可見特性也係靜止地球表面 特徵。靜止地球表面特徵或—道路區段之範例係:道路標 記,諸如&quot;Warning of,Give Way,just ahead(警告正前方 路)&quot;;停車線;引導箭頭;行人穿越道;高速公路出口處 的漸縮道路邊緣線;影線標記;人字形標記等。該些道路 • 標記可用作額外地面控制資訊,其可用以在欲糾正影像甲 偵測對應道路標記。例如,由一 3D模型所表示的一較長筆 . 直道路區段不向3D正射糾正影像提供關於該道路區段之開 始、結束及軌線之位置資訊。由於該道路係筆直的,該3D 模型不提供沿該道路區段的足夠道路控制資訊來在欲糾正 影像甲驗證沿該道路區段的像素之一位置。視覺化該道路 表面及/或道路標記,該等3D正射糾正影像使該糾正程序 能夠匹配來自兩個來源的照片可識別物體並使用與該等 正射糾正影像相關聯的位置資訊來將影像之對應區域繪製 137051.doc -20- 201024664 在該正射糾正成像上 能夠藉由該等道心“ Y等正射糾正影像使吾人 ,. 不°己之影像而具有一良好分佈的地面控 制點網路,以位署 ^ f眚絲心 製圖應用之準確性。在此具 體貫施例中,__ 1 n Λι|〜h 、 ' 1可^^括代表該31&gt;模型之整個正射 押 ^域之色彩的—影像、正射糾正影像之—鎮嵌或 :該模型的照片可識別物體的-組更小正射糾正影 像。A road centerline, a left road edge, or a right road edge that can optionally combine the road widths. A 3D model of the road surface may be based on the left and right road edges. The 3D model illustrates a shape of a road that is identifiable in an aerial or satellite imagery. Preferably, the 3〇 model corresponds to a road edge and linear paint that is identifiable in the image. The coordinates such as β hai associated with the 3D model can be used to correct the image. In addition, if the 3D model accurately describes the surface, i.e., the elevation deviation&apos;, the area within the image corresponding to the 3D model can be corrected very accurately. In addition, the 3D model is used for DTM refinement/improvement. In one embodiment of the present invention, the program for determining a linear stationary earth surface feature is included in the image data (4) to measure the surface of the road, extracting the position of the edge of the road surface, and combining the image data, the ranging data, and the associated The location data is associated with the linear paint in the geographic coordinate system and the linear stationary earth surface features are calculated from the location of the road surface. The model may be based on a vector that illustrates the linearity of the size and location of the earth's surface features within the coordinate reference system. This is a method for describing the efficiency of space. In a specific embodiment, the method further comprises: 137051.doc • 19· 201024664 by using, and “image material and ranging data to generate ortho-corrected images for the 3D models; Correction of each pixel-level elevation information in the geographic coordinate system; ., and the ortho-correction image and the elevation information to obtain a 3D ortho-correction image; and storing the 3D ortho-correction image These images are then linked to individual 3D models within the large survey database product. These features enable us to enhance the models using the visible features of the 3D model's earth's surface. These features provide additional accurate ground control information related to specific points within the area of the _3D model. These visible characteristics are also characteristics of the stationary earth's surface. Examples of stationary earth surface features or road segments: road markings such as &quot;Warning of,Give Way,just ahead&quot;;stop lines;leading arrows;walking crossings; highway exits Tapered road edge lines; hatch marks; herringbone marks, etc. These roads • Marks can be used as additional ground control information that can be used to detect the corresponding road markings in the image to be corrected. For example, a longer pen segment represented by a 3D model does not provide positional information about the start, end, and trajectory of the road segment to the 3D ortho-corrected image. Since the road is straight, the 3D model does not provide sufficient road control information along the road segment to verify the position of one of the pixels along the road segment in the image to be corrected. Visualizing the road surface and/or road markings, the 3D ortho-correction images enabling the correction program to match photo-recognizable objects from two sources and using the positional information associated with the ortho-corrected images to image Corresponding area drawing 137051.doc -20- 201024664 In this ortho-correction imaging, it is possible to have a well-distributed ground control point by using the "Y and other ortho-corrective images to correct the image. The network is based on the accuracy of the mapping application. In this specific example, __ 1 n Λι|~h , ' 1 can represent the entire positive shot of the model 31 ^ The color of the field—the image, the ortho-corrected image—the inlay or the: the photo of the model identifies the object-group smaller ortho-corrected image.

本,月之另-目的係提供—種使—電腦實施系統能夠產 生内容以儲存於-地面控制資料庫内的方法。 本發月之另-目的係提供—種校正—數位標高模型之地 理座標之方法。 本發月之另目的係提供一種糾正一空中或衛星影像之 方法,其中該方法包含 -獲取一空中或衛星影像; -獲取包含3D模型的一大地測量參考資料庫產品; 從該大地測量參考資料庫中檢索-或多個3D模型及對應 座標; -發現在該影像中其中該—或多個3D模型匹配該空中或衛 星影像的地點;以及 一使用在該座標參考系統内該等3D模型的位置來糾正該空 中或衛星影像。由於(例如)道路區段之3D模型更詳細地說 明地球表面且比一組地面控制點更大地延伸,其使吾人能 夠改良該糾正程序。該方法還可用以驗證正射糾正空中或 衛星影像並糾正(即校正)匹配但在該座標參考系統内具有 137051.doc -21 - 201024664 不同座標的影像部分。 【實施方式】 圖4顯示依據本發明 — 法之一簡化流程圖。藉由獲取 仃動製圖資料,該方法 開始於動作400。行動製圖資料係 藉由設置至一行駛於地球 艰表面上之車輛的數位相機、雷射 感測器(例如一雷射播Jw· 、„ 掃撝器)及包括GPS及ΙΜϋ的位置決定 構件來加以_,該行㈣时料包含在—地理座標系統This, the Month's other purpose is to provide a method for the computer-implemented system to generate content for storage in the -ground control database. The other purpose of this month is to provide a method for correcting the geographic coordinates of the digital elevation model. Another objective of this month is to provide a method of correcting an aerial or satellite imagery, wherein the method includes - acquiring an aerial or satellite image; - acquiring a geodetic reference library product comprising a 3D model; from the geodetic reference material Retrieving - or a plurality of 3D models and corresponding coordinates in the library; - finding locations in the image where the - or more 3D models match the aerial or satellite imagery; and using the 3D models in the coordinate reference system Location to correct the aerial or satellite imagery. Since the 3D model of the road section, for example, describes the earth's surface in more detail and extends more than a set of ground control points, it enables us to improve the corrective procedure. The method can also be used to verify that the orthorectification corrects the aerial or satellite imagery and corrects (i.e., corrects) the matching portion of the image having 137051.doc -21 - 201024664 different coordinates within the coordinate reference system. [Embodiment] Fig. 4 shows a simplified flow chart in accordance with one of the methods of the present invention. The method begins at act 400 by obtaining swaying cartographic data. The motion mapping data is set by a digital camera, a laser sensor (such as a laser broadcast Jw·, „broom) and a position determining component including GPS and ΙΜϋ, which are set on a vehicle that is traveling on the hard surface of the earth. _, the line (four) is included in the - geographic coordinate system

内同時捕獲影像資料、測距資料及相關聯位置㈣。具備 用於收集行動製圖資料之仿 针之位置決疋構件、雷射感測器及數 位相機的-車輛係名為—行動製圖系統議S。—位置決定 冓件係至乂配置以決定該車輛在一座標參考系統内的位置 以及視需要地該車辆之方位。應注意,取代雷射感測器, 可使用任何其他測距感測H (諸如雷射雷達、光達及雷達) 來捕獲可用以產生—3D模型或3D影像的資料。原則上, 可使用任何影像資料及測距資料,只要該資料包括採取6 個自由度的準確相關聯位置及方位資料_。 圖6顯示採取一汽車2〇之形式的一MMs系統。汽車扣具 備一或多個相機29⑴’ i = 1,2, 3,…!,以及一或多個雷射 掃為器23(j) ’ j = i,2, 3,... J。該-或多個相機29⑴之視角 可在相對於汽車21之行駛方向的任一方向上並因而可以係 一前視相機、一側視相機或一後視相機等。該(等)相機 29⑴之(若干)檢視視窗覆蓋在該車輛前面的整個道路表 面。較佳的係,在汽車21之行駛方向與一相機之視角之間 的角度係任一側上在-45度至+45度之範圍内。汽車2丨可由 137051.doc -22- 201024664 一駕駛者沿感興趣道路來行駛。 汽車21具備一較高準 該位置決定裝置包含 汽車21具備複數個車輪22。而且 確性位置決定裝置。如圖6中所示 下列組件: • ⑽(全球定位系統)單元,其係連接至-天線28並配 置以與複數個衛星SLi㈣,2, 3,...)通信並從接收自該等 衛星SU之信號來計算一位置信號。該⑽單元係連接至一Simultaneous capture of image data, ranging data and associated locations (4). A vehicle-based system called Motion Mapping System S, which is equipped with a positional component, a laser sensor, and a digital camera for collecting motion mapping data. - Position Determination The component is configured to determine the position of the vehicle within the target reference system and, if desired, the orientation of the vehicle. It should be noted that instead of a laser sensor, any other ranging sensing H (such as laser radar, light and radar) can be used to capture data that can be used to generate a 3D model or 3D image. In principle, any image data and ranging data can be used as long as the data includes accurate associated position and orientation data with 6 degrees of freedom. Figure 6 shows an MMs system in the form of a car. Car buckles Prepare one or more cameras 29(1)’ i = 1,2, 3,...! And one or more laser sweepers 23(j) ’ j = i, 2, 3,... J. The angle of view of the camera or cameras 29(1) may be in either direction relative to the direction of travel of the car 21 and thus may be a forward looking camera, a side view camera or a rear view camera or the like. The (several) view window of the camera 29(1) covers the entire road surface in front of the vehicle. Preferably, the angle between the direction of travel of the automobile 21 and the angle of view of a camera is in the range of -45 degrees to +45 degrees on either side. The car 2 can be driven by the driver along the road of interest 137051.doc -22- 201024664. The car 21 has a higher level. The position determining device includes the car 21 having a plurality of wheels 22. And the exact position determines the device. The following components are shown in Figure 6: • (10) (Global Positioning System) unit, which is connected to the antenna 28 and configured to communicate with and receive from a plurality of satellites SLi(4), 2, 3, ...) The signal of SU is used to calculate a position signal. The (10) unit is connected to one

,處理器μΡ。基於接收自該㈣單元的該等信號,微處理 ¥可決定適當顯示信號以顯示在汽車1内的-監視器24 上,向駕驶者通知汽車的位置以及可能其正行進的方向。 取代一咖單元’可使用—差分GPS單it。差分全球定位 系統(DGPS)係全球定位系統(Gps)的一增強,其使用固定 的、也面為主的參考站之一網路來廣播在由該等衛星系統 所指示之該等位置與該等已知固定位置之間的差異。該些 站廣播在。亥等測量衛星虛擬距離與實際(内部計算)虛擬距 離之間的差異,然後接收器站可以相同數量來校正其虛擬 距離。 DMI(距離測$儀器)。此儀器係—里程計,其藉由感 測該等車輪22之-或多個之旋轉數目來測量汽車21所行進 、離該職1還連接至微處理器μΡ以允許微處理器μΡ 在從來自該GPS單兀之輪出信號來計算顯示信號時將該 DMI所測量之距離考量在内。 …u( it n測量單几)。此一 可實施作為三個迴轉 儀單' 丨係配置以沿三個正交方向來測量旋轉加速度與 137051.doc •23- 201024664 平移加速度。該IMU還連接至微處理器μΡ以允許微處理器 μΡ在從來自該GPS單元之輸出信號來計算顯示信號時將該 DMI之測量考量在内。該IMU還可包含終止推算感測器。 應注意’習知此項技術者可發現全球導航衛星系統與内 建慣性及終止推算系統之許多組合以提供車輛並因此設備 (其參考該車輛之一參考位置及方位以已知位置及方位來 設置)之一準確地點與方位。, processor μΡ. Based on the signals received from the (four) unit, the micro-processing ¥ can determine the appropriate display signal to be displayed on the monitor 24 within the car 1 to inform the driver of the location of the car and possibly the direction in which it is traveling. Instead of a coffee unit, you can use a differential GPS single it. Differential Global Positioning System (DGPS) is an enhancement of the Global Positioning System (Gps) that uses a network of fixed, predominantly reference stations to broadcast the locations indicated by the satellite systems and The difference between known fixed positions is known. These stations are broadcast. Hai et al. measure the difference between the virtual distance of the satellite and the actual (internal calculation) virtual distance, and then the receiver station can correct its virtual distance by the same number. DMI (distance measurement $ instrument). The instrument is an odometer that measures the travel of the car 21 by sensing the number of rotations of the wheel 22 or more, and is also connected to the microprocessor 1 to allow the microprocessor to The distance from the GPS unit is used to calculate the distance measured by the DMI when calculating the display signal. ...u( it n measures a few). This can be implemented as a single gyroscope configuration of three gyroscopes to measure rotational acceleration in three orthogonal directions with a translational acceleration of 137051.doc •23- 201024664. The IMU is also coupled to the microprocessor μ to allow the microprocessor to take into account the measurement of the DMI when calculating the display signal from the output signal from the GPS unit. The IMU can also include a termination inferred sensor. It should be noted that the skilled artisan will be able to discover many combinations of GNSS and built-in inertia and termination estimation systems to provide vehicles and therefore equipment (referring to a known position and orientation of a reference position and orientation of the vehicle) Set) one of the exact locations and orientations.

如圖21中所示的系統係一所謂的,,行動製圖系統,,,其(例 如)藉由使用設置於汽車21上的一或多個相機29⑴拍攝圖 像來收集地理資料。該(等)相機29⑴係連接至微處理器 μΡ。在該汽車前面的該(等)相機29⑴可能係一立體相機。 該(等)相機可配置以產生一影像序列,其中已使用一預定 圖框速率來捕獲該等影像。在一範例性具體實施例中,該 (等)相機之一或多個係靜止圖像相機,其係配置以以汽車 21之每一預定義位移或每一時間間隔來捕獲一圏像。該 (等)相機29(i)將該等影像傳送至該μΡβ在―具體實施例 中,該行動製圖車柄包含三個相機,一前視相機與在每一 側處的-相機’該等相機相對於該車輕之前進方向具有在 至60度之一範圍内且較佳的係45度的一視軸。在該情況 下’該前視相機捕獲尤其適合於在道路表面上偵測道路方 向的影像而該等側;^ &amp;拖# &amp; . # 相機捕獲尤其適合於沿該道路偵測物 體(啫如道路標誌)之影像。 而且,該等雷射掃描器 歇時獲得雷射樣本。該等 23(j)在汽車21正沿感興趣道路行 雷射樣本因而包含與該些感興趣 13705 丨.d〇c -24- 201024664 道路相關聯之環境相關的資料,並可能包括與道路表面、 建築物樓房、樹木、交通標誌、停靠汽車、人們、方向路 標、道路側等相關的資料。該等雷射掃描器23(j)還連接至 微處理器μΡ並將該些雷射樣本傳送至微處理器μΡ。 一般需要從該三個測量單元來儘可能準確地提供地點及 方位測量:GPS、IMU及DMI。該些地點及方位資料係在 • 該(等)相機29(i)拍攝圖像且該等雷射掃描器23(j)取得雷射 樣本時測量。該等圖像及雷射樣本兩者係儲存用於稍後在 該μΡ之一適當記憶體内結合在拍攝該些圖像的同時收集的 汽車21之對應地點及方位資料來使用。該等圖像包括視覺 資訊’例如關於道路表面、建築物樓房、樹木、交通標 誌、停靠汽車、人們、方向路標、標石等。該等雷射掃描 器23(j)提供一雷射掃描器點雲,其密集得足以採取沿該道 路資訊之一3D表示來視覺化。在一具體實施例中,該(等) 雷射掃描器23(j)係配置以產生一具有最小35 Hz與一度解 φ 析度的輸出以便為該方法產生一足夠密集輸出。一雷射掃 描器(諸如SICK所生產的MODEL LMS291-S05)能夠產生此 . 類輸出。雷射掃描器之最低組態係具有一雷射掃描器,其 在感測汽車正在行駛之道路表面的汽車21前面或後面下 視。一最佳組態係在汽車21之左或右側處區域掃描的一或 兩個雷射掃描器與在汽車21後面或前面下視的一雷射掃推 器。後者具有平行於汽車21之行駛方向的一旋轉掃描轴。 其他雷射掃描器具有與汽車21之行駛方向成45度角度的— 旋轉軸。未公開國際申請案第PCT/NL2007/050541號揭示 137051.doc -25- 201024664 使用其中兩個雷射掃描器以不同時間常數掃描相同表面的 構ie之另外優點。應注意,取代雷射掃描器,可使用任 何其他測距感測器,其提供距離資訊或一密集點雲。 圖7顯不可從圖6中所示之三個測量單元Gps、dmi及 . 所獲得之位置信號。圖7顯示微處理器μρ係配置以分 別計算六個不同參數,即相對於在一預定座標系統内一原 點的三個距離參數x、y、ζ與三個角度參數…、%及〜, φ 該等角度參數分別表示圍繞χ轴、y軸及ζ轴的一旋轉。較 佳的係,該Z方向與重力向量之方向一致。全球111[1^或 WGS84座標系統可用作預定座標參考系統。應注意,依據 本發明之方法可與一局部座標參考系統(諸如NAD 83)及其 他全國網格系統一起使用。該六個不同參數提供及時追蹤 該車輛之位置及方位所需的MMS平台之6(χ、y、標高、前 進、滾動、俯仰)定位及方位。該(等)相機及雷射掃描器相 對於汽車21具有一固定位置及方位。此使吾人能夠在取得 φ 一影像或雷射樣本瞬間從該六個參數準確地決定在該座標 參考系統内的每一雷射樣本之位置與在該座標參考系統内 . 的該相機之位置及方位。 在動作402中,在該影像資料中偵測一線性地球表面特 徵。一線性靜止地球表面特徵可能係在地球的表面内的任 一實體及視覺線性特徵,例如··道路區段之道路表面邊 緣、在兩個區域之間具有良好定義視覺邊緣的任何實體特 徵及可從該行動製圖資料為其導出一 3D模型且其在一空中 或衛星成像中照片可識別的任何其他地球表面特徵。 137051.doc -26- 201024664 在動作404中’從該MMS資料之影像資料、雷射資料及 位置資料中提取在該選定線性靜止地球表面特徵之座標參 考系統内的位置。在動作406中,為該選定線性地球表面 特徵產生一 3D模型並在動作408中,將該3D模型儲存於一 大地測量參考資料庫產品内。 存在可用以實施動作402、404及406的許多實施方案。 習知此項技術者應瞭解用以執行對應動作的適當方法及演 φ 算法。一方案可以係個別處理來自該MMS資料之影像並藉 由組合該影像資料、雷射資料及位置資料來提取該特徵之 3D位置資訊。若相同的線性特徵延伸一個以上影像則必 須組合該等對應影像之3〇位置資訊以模型化該線性特徵。 依據本發明,處理來自該MMS資料之該等影像以獲得正 射糾正鑲嵌。一正射糾正鑲嵌沿該行動製圖系統之軌跡線 之σ卩分來視覺化地球表面之一正射糾正視圖。在大多數 情況下,其代表道路表面、人行道及沿道路的道路側之一 • 部分。為了捕獲諸如碼頭及堤之建築物結構所定義之水 邊,該行動製圖系統可能係一船導航水路。 . 國際申請案WO08044927揭示一種用以從行動製圖影像 來產生正射糾正塊及鑲嵌之方法。該等影像係投影在代表 該行動製圖車輛前面之一道路表面的虛擬平面上。該道路 表面之真實表面模型可容易地導出自該雷射資料。習知此 項技術者可容易地調適w〇〇8〇44927中所揭示之方法以將 該等衫像投影在藉由處理該測距資料所獲得之真實表面模 型而不是該虛擬平面上來產生該等正射糾正影像。由於該 137051.doc -27· 201024664 真實表面模型之位置係已知,緊接在該地理參考系統内的 χγ位置後,還可從該影像資料與雷射資料容易地導出用 於每一像素的標高資訊並將其連結至該正射糾正鑲嵌。應 注意,在本申請案中,正射糾正影像意指包含元資料的一 . 影像,該元資料為每一像素定義s -座標參考系統内的xy 座標。該xy座標係在定義地球之3D模型的大地水準面上的 位置。另外,每一像素值係視為代表如垂直於在該”位 置的地球表面之方位所見的地球表面,即該地球表面模型 之地球表面。 該標高資訊定義在該&quot;真實世界&quot;表面之一 xy位置之高度 與在該xy位置由定義地球之3D模型的大地水準面所假定之 高度之間的高度差異。 該等如此獲得的正射糾正影像極適合於偵測諸如道路區 段之線性特徵並提取在該等線性特徵之座標參考系統内的 位置。從該等正射糾正影像,可產生一線性參考影像。一 • 線性參考影像係一影像,其中一特定行對應於一行動製圖 車輛之軌跡線且每一列像素表示沿垂直於該軌跡線之一線 • 的地球表面。未公開國際申請案PCT/NL2007/050477揭示 一種用以從行動製圖資料來產生線性參考影像之方法。在 線性參考影像中,將彎曲道路視覺化為筆直道路。對於筆 直道路,不難決定一道路區段之特性,諸如中心線、左道 路邊緣、右道路邊緣、道路寬度及線性道路標記。未公開 國際申請案PCT/NL2007/050159揭示一種用於從正射糾正 影像來產生道路寬度及中心資料之系統及方法並適合於使 13705 丨.doc -28- 201024664 用。未公開國際申請案PCT/NL2〇〇7/〇5〇569揭示一種用於 從影像來產生線性車道資訊資料之系統及方法,其中道路 在影像中具有-已知方位1巾請案允許吾人在線性參考 影像中準確偵測線性道路標記。 先前段落解釋料方法可用以從行動製圖資料來债測線 性特徵’決定在該等影像内的對應位置並計算在一座標參 考系統内的對應XY位置。組合該連結標高資訊,可容易The system as shown in Fig. 21 is a so-called, action mapping system that collects geographic information by, for example, taking images using one or more cameras 29(1) provided on the car 21. The (equal) camera 29(1) is connected to the microprocessor μΡ. The camera 29(1) in front of the car may be a stereo camera. The camera can be configured to generate a sequence of images in which a predetermined frame rate has been used to capture the images. In an exemplary embodiment, one or more of the cameras are configured to capture an artifact at each predefined displacement or every time interval of the automobile 21. The camera 29(i) transmits the images to the μΡβ. In a specific embodiment, the action cartographic handle includes three cameras, a front view camera and a camera at each side. The camera has a viewing axis in the light forward direction relative to the vehicle in a range of up to 60 degrees and preferably 45 degrees. In this case, the front view camera capture is particularly suitable for detecting images of the road direction on the road surface and the sides; ^ &amp; drag &amp;# Camera capture is particularly suitable for detecting objects along the road (啫Such as the road sign) image. Moreover, the laser scanner obtains a laser sample while resting. These 23(j) are in the car 21 along the road of interest to the laser sample and thus contain information relating to the environment associated with the 13705 丨.d〇c -24- 201024664 road, and may include the road surface , building buildings, trees, traffic signs, parking cars, people, direction signs, roadside and other related information. The laser scanners 23(j) are also coupled to the microprocessor μ and transmit the laser samples to the microprocessor μΡ. It is generally necessary to provide location and azimuth measurements from the three measurement units as accurately as possible: GPS, IMU and DMI. The location and orientation data are measured when the camera 29(i) takes an image and the laser scanner 23(j) takes a laser sample. Both of the images and the laser samples are stored for later use in a suitable memory of the μΡ in conjunction with the corresponding location and orientation data of the car 21 collected while the images were taken. Such images include visual information&apos; such as regarding road surfaces, building buildings, trees, traffic signs, parked cars, people, direction signs, landmarks, and the like. The laser scanners 23(j) provide a laser scanner point cloud that is dense enough to be visualized along a 3D representation of the road information. In one embodiment, the (and) laser scanner 23(j) is configured to produce an output having a minimum of 35 Hz and a degree of resolution to produce a sufficiently dense output for the method. A laser scanner (such as the MODEL LMS291-S05 from SICK) is capable of producing this type of output. The minimum configuration of the laser scanner has a laser scanner that looks down in front of or behind the car 21 that senses the surface of the road on which the car is traveling. An optimal configuration is one or two laser scanners scanned in the area to the left or right of the car 21 and a laser scanner viewed from behind or in front of the car 21. The latter has a rotational scanning axis parallel to the direction of travel of the car 21. Other laser scanners have a rotational axis that is at an angle of 45 degrees to the direction of travel of the car 21. Unpublished International Application No. PCT/NL2007/050541 discloses 137051.doc -25- 201024664 an additional advantage of using two laser scanners to scan the same surface at different time constants. It should be noted that instead of a laser scanner, any other ranging sensor can be used that provides distance information or a dense point cloud. Figure 7 shows the position signals obtained from the three measurement units Gps, dmi and . shown in Figure 6. Figure 7 shows a microprocessor μp configuration to calculate six different parameters, i.e., three distance parameters x, y, ζ and three angle parameters ..., % and ~ relative to an origin within a predetermined coordinate system, φ These angular parameters represent a rotation around the x-axis, the y-axis, and the x-axis, respectively. Preferably, the Z direction is consistent with the direction of the gravity vector. The global 111 [1^ or WGS84 coordinate system can be used as a predetermined coordinate reference system. It should be noted that the method in accordance with the present invention can be used with a local coordinate reference system (such as NAD 83) and other national grid systems. The six different parameters provide 6 (χ, y, elevation, forward, roll, pitch) positioning and orientation of the MMS platform required to track the position and orientation of the vehicle in time. The camera and laser scanner have a fixed position and orientation relative to the car 21. This enables us to accurately determine the position of each laser sample in the coordinate reference system and the position of the camera in the coordinate reference system from the six parameters at the instant of obtaining the φ image or laser sample and Orientation. In act 402, a linear earth surface feature is detected in the image data. A linear stationary earth surface feature may be any physical and visual linear feature within the surface of the Earth, such as the road surface edge of a road segment, any physical feature with a well defined visual edge between the two regions, and From the action mapping material, a 3D model is derived therefrom and any other surface features of the earth that are identifiable by the photo in aerial or satellite imaging. 137051.doc -26- 201024664 In act 404, the position in the coordinate reference system of the selected linear stationary earth surface feature is extracted from the image data, the laser data, and the location data of the MMS data. In act 406, a 3D model is generated for the selected linear earth surface feature and, in act 408, the 3D model is stored in a geodetic reference library product. There are many embodiments that can be used to implement acts 402, 404, and 406. Those skilled in the art should be aware of appropriate methods and algorithms for performing the corresponding actions. A solution may separately process images from the MMS data and extract the 3D location information of the feature by combining the image data, the laser data, and the location data. If the same linear feature extends more than one image, the 3 position information of the corresponding images must be combined to model the linear feature. In accordance with the present invention, the images from the MMS data are processed to obtain an ortho-correction mosaic. An ortho-rectification corrects the sigma of the trajectory along the trajectory of the motion mapping system to visualize one of the orthorectified views of the earth's surface. In most cases, it represents one of the road surface, the sidewalk, and the road side along the road. In order to capture the water edge defined by the structure of a building such as a wharf and a levee, the action mapping system may be a navigational waterway. International application WO08044927 discloses a method for generating orthorectifying blocks and inlays from an action graphics image. The images are projected onto a virtual plane representing one of the road surfaces in front of the motion graphics vehicle. The true surface model of the road surface can be easily derived from the laser material. Those skilled in the art can readily adapt the method disclosed in WO 〇〇 〇 44927 to project the jersey image onto the real surface model obtained by processing the ranging data instead of the virtual plane. Wait for the orthophoto to correct the image. Since the position of the 137051.doc -27· 201024664 real surface model is known, immediately after the χγ position in the geo-reference system, the image data and the laser data can be easily derived for each pixel. Level information and link it to the ortho-correction mosaic. It should be noted that in the present application, an orthorectified image means an image containing metadata defining the xy coordinates within the s-coordinate reference system for each pixel. The xy coordinate is the position on the geoid that defines the 3D model of the Earth. In addition, each pixel value is considered to represent the earth's surface as seen perpendicular to the orientation of the earth's surface at the "position", ie the earth's surface of the earth's surface model. The elevation information is defined in the &quot;real world&quot; The height difference between the height of an xy position and the height assumed at the xy position by the geoid that defines the 3D model of the earth. The ortho-corrected images thus obtained are highly suitable for detecting linearities such as road segments. Characterizing and extracting locations within the coordinate reference system of the linear features. From the ortho-corrected images, a linear reference image can be generated. A linear reference image is an image in which a particular line corresponds to an active cartographic vehicle The trajectory line and each column of pixels represent the surface of the earth along a line perpendicular to the trajectory. The unpublished international application PCT/NL2007/050477 discloses a method for generating a linear reference image from motion mapping data. In the image, the curved road is visualized as a straight road. For a straight road, it is not difficult to determine the characteristics of a road section. Such as a centerline, a left road edge, a right road edge, a road width, and a linear road marking. The unpublished international application PCT/NL2007/050159 discloses a system and method for generating road width and center data from orthophoto correction images and Suitable for use in 13705 丨.doc -28- 201024664. The unpublished international application PCT/NL2〇〇7/〇5〇569 discloses a system and method for generating linear lane information from images, wherein the road is in the image The presence-known orientation 1 towel request allows us to accurately detect linear road markings in linear reference images. The previous paragraph interpretation method can be used to determine the linear features from the action mapping data to determine the corresponding position within the images. And calculate the corresponding XY position in a standard reference system. Combining the link elevation information can be easily

地產生該線性特徵之-3D模型。較佳的係該观型係一 以向量為主的模型。 可以不同方式來模型化一道路區段。圖9顯示一些範 例。該30模型可根據道路中心線92、鋪設邊緣90、合法邊 緣91(即行車道線之左及右邊緣)或其任—組合來說明道路 區段。應注意’該道路中心線可能係在道路邊緣或指示道 路中心線之道路噴漆之間的中點。當在一應用中使用請 模型時’應瞭解使用哪個定義H體實施例中,藉由 折線來說明該等線性特徵。在電腦圖形學中,一折線係由 一或多個線段所組成的—連續線…折線係由每-線段之 端點來指定。在一具體實施例中’一折線係用以說明一道 路區段。此外’可添加道路寬度與在x、y平面内垂直道路 區段之方向之斜率以說明道路表面之大小/寬度及形狀。 在另“具體實施例中,一道路區段係說明為對應於該等鋪 設邊緣的兩個折線。此外’可添加對應於該道路中心線的 一一道路區段之道路表面之形狀可透過說明道路中 心線的使«、說明道路區段之鋪設邊緣或邊 I37051.doc -29- 201024664 者定義為柔軟圓形表面。一般而言’道路表面可近似為在 兩個折線(例如左及右邊緣線)之間的最短線。 圖8藉由範例顯示對應於道路t心線81與邊緣、線8〇&lt; 線。另外圖8顯示一第一道路區段82、一第二道路區段83 及一第三道路區段84。第一道路區段82對應於—高速公路 直至一出口之一道路區段之最後部分。第二道路區段83對 . 應於在兩個高速公路之間的交叉點而第三道路區段84對廣 於另一高速公路區段之開始。由於該等3D模型包含標高資 訊’故第一道路區段82將會低於第三道路區段84而第二道 路區段83將會從第一道路區段82之位準將高度逐漸改變至 第三道路區段84之位準。此係用以正確糾正飛機或衛星成 像的有價值資訊。另外,該第二道路區段之斜率及曲率提 供重要資訊用於ADAS應用。 該3D模型還可藉由導出自該雷射資料的一DSM來說明在 邊緣線之間的道路表面之表面。此DSM將比導出自機載咬 φ 衛星平台之目前DSM或具有一更密的雷射點網格。如 此獲得的DSM可用以從具有更準確且密集標高資訊來局部 豐富來自機載或衛星平台的DSM/DEM » 在該資料庫中儲存道路區段之該等3D模型。在動作41〇 中,將该等道路區段之3D模型連結在一起以形成一連續控 制網路。該網路之該等節點對應於接點而該網路之分支對 應於在接點之間或連接至接點的道路區段。在動作Μ〗 中,將該連續線性控制網路儲存於該地理參考資料庫内。 該網路提供一構件以從該資料庫容易地提取一地區之道路 137051,doc •30- 201024664 表面之-職。該網路之—特性係該等道路區段在來自該 道路網路之-連續且無縫DSM的—接點内觸碰。可確信此/ 點,由於該等道路區段係導出自相同資料來源,即相时 動製圖會期。 主要地1影像資料係用以先在該影像内衫道路表面 之地點並藉由組合在該等影像内的地點與該雷射資料,決 定在-座標參考系統内該道路表面之位置。然而,該影像 資料可進一步用以使用該道路表面之”真實世界&quot;外觀來/提 高該3D模型,顯示道路標記、道路表面之紋理及色彩、人 灯道類型、路肩等。另夕卜,該些標記可形成一密集⑽陣 列以實現完成一道路區段之定位及/或糾正。在動作々Μ 中,為一線性特徵產生一正射糾正影像。如上所說明,在 動作402至406中,已形成該道路表面之一正射糾正影像或 鑲嵌。因此動作414可限於選擇該等正射糾正影像之對應 區域或像素以構成用於一 3D模型的正射糾正影像。視需要 地,在動作416中,將標高資訊與用於一3〇模型之正射糾 正影像的每一像素相關聯。若該線性特徵係一道路區段’ 則該道路表面可近似為在該等邊緣線之間的一平坦表面。 該標高資訊可藉由在該等邊緣線之間的插值技術來導出。 在動作418中,藉由連結正射糾正影像與該標高資訊,產 生一 3D正射糾正影像。在動作42〇中,將該3D正射糾正影 像與至對應3D模型之一連結一起儲存於該地理參考資料庫 内。 因此,在一具體實施例中,一31)模型進一步包含由該等 137051.doc 31· 201024664 折線所說明之對應道路區段的—正射糾正影像。該正 正影像可準確地導出自該影像資料、測距資料及位置/方 位資料。從以上戶斤說明之程序所建立的正射糾丨影像可用 作-參考影像以改良糾正空中或衛星影像之程序並甚至校 正/改良經糾正的空中或衛星影像。該等道路嘴漆(諸如道 路中心線、虛線、停車線)可用以在欲糾正/校正影像中發 現一匹配。此將提供額外的地面控制點以沿道路區段來糾 正/校正影像。該雷射資料可進一步用以將標高資訊指派 至與一3D模型相關聯之正射糾正影像的每一像素。該標高 資訊可用以在對應於從捕獲欲糾正影像之位置查看時 的一影像内變換該正射糾正影像。此改良在該糾正程序中 該匹配程序之準確性並降低錯誤匹配之機會。 應注意,一 3D正射糾正影像(其包括標高資訊)之大小不 應限於道路之表面之區域。其可能代表在道路走廊内的所The -3D model of the linear feature is generated. Preferably, the view is a vector-based model. A road segment can be modeled in different ways. Figure 9 shows some examples. The 30 model may illustrate the road segment based on the road centerline 92, the paving edge 90, the legal edge 91 (i.e., the left and right edges of the lane line), or any combination thereof. It should be noted that the road centerline may be at the midpoint between the edge of the road or the painted road marking the centerline of the road. When using the model in an application, it should be understood which definition of the H-body embodiment is used, and the linear features are illustrated by polylines. In computer graphics, a fold line consists of one or more line segments—continuous lines... fold lines are specified by the endpoints of each line segment. In a specific embodiment, a fold line is used to illustrate a road section. Furthermore, the slope of the road width and the direction of the vertical road section in the x, y plane can be added to account for the size/width and shape of the road surface. In another embodiment, a road segment is illustrated as two fold lines corresponding to the paving edges. Further, the shape of the road surface that can be added to the one-way road segment corresponding to the road centerline can be described. The road centerline is defined as «, the edge of the pavement section or the edge I37051.doc -29- 201024664 is defined as a soft round surface. In general, the 'road surface can be approximated at two fold lines (eg left and right edges) The shortest line between the lines. Figure 8 shows by way of example the line corresponding to the road t-line 81 and the edge, line 8 〇 &lt; line. Figure 8 shows a first road section 82, a second road section 83 And a third road section 84. The first road section 82 corresponds to the last part of the highway section up to one of the highways. The second road section 83 is opposite to the two highways. The intersection and the third road segment 84 are wider than the beginning of another highway segment. Since the 3D models include elevation information 'the first road segment 82 will be lower than the third road segment 84 and the second Road section 83 will be from first road section 82 The level gradually changes to the level of the third road segment 84. This is used to correctly correct valuable information for aircraft or satellite imaging. In addition, the slope and curvature of the second road segment provide important information for ADAS applications. The 3D model can also illustrate the surface of the road surface between the edge lines by a DSM derived from the laser data. This DSM will have a denser than the current DSM derived from the onboard bite φ satellite platform. The laser point grid. The DSM thus obtained can be used to locally enrich the DSM/DEM from the airborne or satellite platform with more accurate and dense elevation information » The 3D models of the road segments are stored in the database. In act 41, the 3D models of the road segments are joined together to form a continuous control network. The nodes of the network correspond to contacts and the branches of the network correspond to between contacts Or a road segment connected to the joint. In the action Μ, the continuous linear control network is stored in the georeferenced database. The network provides a component to easily extract a road from the database. 137 051,doc •30- 201024664 Surface-to-job. The characteristics of the network are that the road segments are touched in the continuous and seamless DSM from the road network. You can be sure this / point Since the road segments are derived from the same data source, that is, the phase-in-time mapping period. The primary image data is used to first locate the image on the road surface of the image and by combining them in the images. The location and the laser data determine the location of the road surface within the coordinate reference system. However, the image data can be further used to use the "real world" appearance of the road surface to enhance/enhance the 3D model, display road markings , the texture and color of the road surface, the type of people's lamp, shoulders, etc. In addition, the indicia can form a dense (10) array to accomplish the positioning and/or correction of a road segment. In action ,, an orthorectification image is generated for a linear feature. As explained above, in acts 402 through 406, one of the road surfaces has been formed to orthographically correct the image or mosaic. Thus, act 414 can be limited to selecting corresponding regions or pixels of the orthorectified images to form an orthorectified image for a 3D model. Optionally, in act 416, the elevation information is associated with each pixel of the orthorectified image for a 3 〇 model. If the linear feature is a road segment' then the road surface can be approximated as a flat surface between the edge lines. The elevation information can be derived by interpolation techniques between the edge lines. In act 418, a 3D ortho-corrected image is generated by linking the orthorectification corrected image to the elevation information. In act 42, the 3D orthorectification image is stored in the georeferenced library along with one of the corresponding 3D models. Thus, in one embodiment, a 31) model further includes an orthorectified image of the corresponding road segment as illustrated by the 137051.doc 31·201024664 fold line. The positive image can be accurately derived from the image data, ranging data, and position/location data. The ortho-rectification image created from the procedures described above can be used as a reference image to improve the process of correcting aerial or satellite imagery and even to correct/improve corrected aerial or satellite imagery. These road mouth paints (such as road centerlines, dashed lines, and stop lines) can be used to find a match in the image to be corrected/corrected. This will provide additional ground control points to correct/correct the image along the road segment. The laser data can be further used to assign elevation information to each pixel of the orthorectified image associated with a 3D model. The elevation information can be used to transform the orthorectified image within an image corresponding to when viewed from the location at which the image is to be corrected. This improvement in the corrective procedure matches the accuracy of the procedure and reduces the chance of mismatching. It should be noted that the size of a 3D ortho-corrected image (which includes elevation information) should not be limited to the area of the surface of the road. It may represent the place in the road corridor

有地球表面之一正射糾正視圖,其可從該影像資料及測距 資料導出。 應注意,取代用於一道路區段之一 3〇正射糾正影像可 產生影像片。一影像片係一靜止地球表面特徵之一表示。 靜止道路表面特徵之範例係:一停車線、 'Give Way’ just ahead”、引導箭頭、下水道柵欄、速度限 制、行人穿越道、在出口處的漸縮道路邊緣線、銳利緣石 邊緣、用於人孔蓋的金屬帽及圖9之任何其他方向指示 9〇。其他道路表面特徵係影線標記或人字形標記、反映箭 頭、分岔箭頭。交通標誌手冊2003(第5章,道路標記, 137051.doc -32· 201024664 ISBN 0 η 552479 7)提供可使用之道路標記之—概述。圖 10解說&quot;Warning of,Give Way,just 讣⑸士,1〇〇、影線標記 102、停車線H)4及方向指示1〇6β $夕卜,任何其他料嘴 漆、人行道類型之光㈣化、標石基底、獨特低位準地質 特徵均可用以產生一影像片。 -影像片&amp;含從-正射糾i影像所獲得之靜止地球表面 . 特徵之一快照影像與代表在該座標參考系統内的χγ位置 及高度資訊之標高的元資料。一影像片之至少一像素必須 具有相關聯位置資訊以在該座標參考系統内定義該影像片 之位置。此可能係相對於相關聯3D模型的一相對位置。視 需要地,該影像片可能具有該行動製圖會期之最初正射糾 正影像或塊或影像的一參考以允許手動驗證該影像片。一 影像片之每一像素可包含在該座標參考系統内的相關聯標 问負訊。於是該影像片也係一 3D正射糾正影像。—影像片 之大小取決於該靜止道路表面特徵之大小與像素大小。一 φ 像素較佳的係代表3至15乘3至15 〇^的一區域,在一座標 參考系統内具有一高於5〇 cm的絕對水平解析度與一高於 . i,5m的絕對垂直解析度。在該資料庫產品内的解析度取決 於該影像資料、測距資料及位置/方位資料之準確性/解析 度及該資料庫產品期望用於之應用。 該等影像片具備至對應3〇模型的一連結並儲存於該大地 測量參考資料庫内。該等影像片可用作GCP以在空中或衛 星成像中加以發現以及引導在空中或衛星成像中發現用於 一 3D模型之一匹配地點之程序。 137051.doc -33· 201024664 依據本發明之方法從已藉由一相對較低廉車輛所捕獲之 貝料來產生一大地測量參考資料庫產品,該車輛可具備相 對較低廉的數位相機、雷射感測器及位置決定構件。該方 法建立照片可識別資料集,其可在正射糾正程序中用作 &amp;面控制物體。本發明允許吾人獲得地面控制物體與GCP 之大董收集,其係比傳統地面控制產生大若干數量級。該 方法在所有大地測量維度下具有--致且可驗證準確性輪 φ ^ °該方法不需要在現場先建立特殊照片可識別地球表面 f記以便用以正射糾正未來空中成像。另外,該資料庫產 «口包3實質上照片可識別材料,其將存在許多年。由於資 料庫產品包含3〇資訊’故其還可用以校正3D表面模型。 MMS貝料之用途之另—優點係在—行動製圖會期中,該 影像資料以及該雷射資料在不止一次橫跨一接點或行進一 道路區段時不止一次地記錄地球表面之區域。該些區域可 能包含-靜止道路表面特徵,其可用作一地面控制物體。 • #際上’該靜止道路表面特徵在該座標參考系統内具有相 同地點。但是,該定位決定可能在一行動製圖會期内具有 • 一些絕對及相對不準確性。依據本發明之方法將兩次或多 : 欠選擇該些線性靜止道路表面特徵並將每次決定對應χγ 位置及標高資訊2座標。對於每一決定線性靜止道路表面 特徵,可在包含一 3D模型及說明χγζ位置之元資料以及視 需要最初正射糾正影像之—參考的f料庫内進行一記錄。 藉由分析與相同線性地球表面特徵相關的記錄,可從該資 ㈣Μ除冗餘資訊。例如’藉由組合(即平均化)或異常 137051.doc •34· 201024664 排除相同線性靜止道路表面特徵之該等影像及元資料,可 移除冗餘資訊^藉由平均化該XY位置及標高資訊,可為 一 3 D模型計算具有用於該等ΧΥΖ座標之平均值的元資料。 平均值將在該座標參考系統内一般更準確地定義該3D模型 之位置。 在圖5中,提出一種適合於實施本發明之電腦配置5〇〇之There is an orthorectified view of the Earth's surface that can be derived from the image data and ranging data. It should be noted that instead of using one of the three sections of the road section to correct the image, an image patch can be produced. An image slice is represented by one of the features of a stationary earth surface. Examples of surface features of stationary roads: a stop line, 'Give Way' just ahead, guide arrows, sewer fences, speed limits, pedestrian crossings, tapered road edges at the exit, sharp edge edges, for people The metal cap of the hole cover and any other direction of Figure 9 indicate 9 〇. Other road surface features are hatch marks or chevron marks, reflecting arrows, and dividing arrows. Traffic Sign Handbook 2003 (Chapter 5, Road Marking, 137051. Doc -32· 201024664 ISBN 0 η 552479 7) Provide usable road markings - an overview. Figure 10 explains &quot;Warning of,Give Way,just 讣(5)士,1〇〇, hatch mark 102, parking line H) 4 and direction indication 1〇6β $ 夕, any other nozzle paint, sidewalk type light (four), stone base, unique low quasi-geological features can be used to generate an image. - Video film &amp; A stationary earth surface obtained by imaging an image. A snapshot image of the feature and metadata representing the elevation of the χγ position and height information in the coordinate reference system. At least one pixel of an image must be There is associated location information to define the location of the image within the coordinate reference system. This may be a relative position relative to the associated 3D model. Optionally, the image may have the initial positive duration of the motion mapping session A reference to correct an image or block or image to allow manual verification of the image slice. Each pixel of an image slice may contain an associated tagged message within the coordinate reference system. The image slice is also a 3D positive Correcting the image. The size of the image depends on the size of the surface features of the stationary road and the size of the pixel. A preferred area of φ pixels represents an area of 3 to 15 by 3 to 15 〇^, which has a standard reference system. An absolute horizontal resolution above 5〇cm and an absolute vertical resolution higher than .i, 5m. The resolution in the database depends on the accuracy of the image data, ranging data and position/orientation data. Sex/resolution and the application that the database product is intended for. The video images have a link to the corresponding 3〇 model and are stored in the geodetic reference library. GCP is used to discover in air or satellite imaging and to guide the discovery of a matching location for a 3D model in air or satellite imaging. 137051.doc -33· 201024664 The method according to the invention has been The bait material captured by the lower-cost vehicle produces a large geodetic reference library product that can be equipped with a relatively inexpensive digital camera, laser sensor and position determining component. This method establishes a photo-recogniable data set, which can Used as a &amp; face control object in an orthorectification procedure. The present invention allows us to obtain a collection of ground control objects and GCPs that are orders of magnitude larger than conventional ground control. The method has a versatile and verifiable accuracy round φ ^ ° in all geodetic dimensions. This method does not require the creation of special photographs on the scene to identify the Earth's surface f for use in orthophotos to correct future aerial imaging. In addition, the database produces «port 3's essentially photo-recognizable material that will exist for many years. It can also be used to correct 3D surface models because the library product contains 3 pieces of information. Another advantage of the use of MMS bedding is that during the active mapping session, the image data and the laser data record the surface of the earth surface more than once across a joint or a road segment. These areas may contain - stationary road surface features that can be used as a ground control object. • #上上' The stationary road surface features have the same location within the coordinate reference system. However, this positioning decision may have some absolute and relative inaccuracies during the action charting session. Two or more methods are employed in accordance with the present invention: the linear stationary road surface features are under-selected and each time a corresponding χ gamma position and elevation information 2 coordinates are determined. For each decision on the linear stationary road surface feature, a record can be made in a library containing a 3D model and a meta-information describing the position of the χγζ and a reference to the original ortho-corrected image. Redundant information can be removed from this resource by analyzing the records associated with the same linear earth surface features. For example, by combining (ie averaging) or anomalous 137051.doc •34· 201024664 to exclude such images and meta-data of the same linear stationary road surface features, redundant information can be removed ^ by averaging the XY position and elevation Information can be calculated for a 3D model with metadata for the average of the coordinates. The average will generally define the location of the 3D model more accurately within the coordinate reference system. In FIG. 5, a computer configuration suitable for implementing the present invention is proposed.

一概述。電腦配置500包含一處理器511,用於實施算術運 算。處理器511係連接至複數個記憶體組件,包括一硬碟 5 12、唯讀記憶體(R〇M)5〗3、電可抹除可程式化唯讀記憶 體(EEPR〇M)514及隨機存取記憶體(RAM)515。該等記憶 體組件包含一電腦程式,其包含資料,即配置以允許處理 器5 11執行依據本發明之用於產生一空間資料變化訊息之 方法或用於處理一空間資料變化訊息之方法的指令。並不 一定需提供該些記憶體類型之全部者。而且,該些記憶體 ,、牛不必實體靠近處理器511而定位,而可在處理器5&quot;遠 端定位。㈣等方法相關聯之輸入資料及輸出資料可或可 不儲存作為電腦配置則之部分。例如,該輸入資料可經 由網路服務來加以存取。甚至可能藉由在另—處理器上運 行的一程序來執行一動作。 處理益511還連接至用於由—❹者輸人指令、資料等 的構件’如—鍵盤516與-滑鼠517。還可提供為習知此項 技術者所瞭解的其他輸人構件,諸如—觸摸螢幕、一軌跡 球及/或一語音轉換器。 可提供-讀取單元519,其係連接至處理器5ιι。讀取單 137051.doc -35- 201024664 π519係ge&lt;置以從-可移除f料載體或可移除儲存媒體(如 一軟碟520或一 CDROM 521)來讀取資料並可能將資料寫入 於其上。其他可移除資料載體可能係磁帶、DVD、CD_ R、DVD-R、記憶棒、固態記憶體(SD卡、usb棒)、cf 卡、HDDVD、藍光等,如習知此項技術者所瞭解。 處理器511可連接至用於在紙張上列印輸出資料的一印 表機523,以及一顯示器518,例如一監視器或lcd(液晶 φ 顯示器)螢幕、抬頭顯示器(投影至前視窗)或習知此項技術 者所瞭解的任何其他類型顯示器。 處理器511可連接至一揚聲器529及/或一光學讀取器 531,諸如一數位相機/網路相機或一掃描器,該掃描器係 配置用於掃描圖形及其他文件。 另外’處理器511可藉由I/O構件525來連接至一通信網 路527 ’例如公共交換電話網路(PSTN)、一區域網路 (LAN)、一廣域網路(WAN)、一無線 lan(wlan)、 ❹ GPRS、UMTS、網際網路等。處理器511可配置以透過網 路527與其他通信配置通信。 . 資料載體52〇、521可能包含採取資料及指令之形式的一 電腦程式產品,該等資料及指令係配置以向該處理器提供 用以執行依據本發明之一方法之能力。但*,此類電腦程 式產品可替代性地經由電信網路527來下載至一記情體粗 件内。 、 處理器5 11可實施為一獨立系統或複數個平行操作處理 器,每一處理器係配置以實施一更大電腦程式之子任務, 137051.doc • 36· 201024664 或具有數個子處理器的一或多個主處理器。本發明之功能 性之部分甚至可藉由透過電信網路527與處理器5 11通信的 遠端處理器來加以實施。 圖5之電腦系統内所包含之組件係一般存在於一通用電 腦系統内的該等組件,且期望代表此項技術中熟知的此類 電腦組件之一廣泛分類。 • 因而’圖5之電腦系統可以係一個人電腦、一工作站、 一迷你電腦、一主機電腦等。該電腦還可包括不同匯流排 組態、網路平台、多處理器平台等。可使用各種作業系 統,包括 UNIX、Solaris、Linux、Windows、Macintosh 〇S及其他適當作業系統。 圖11顯示一種用於糾正一空中或衛星影像之方法之一流 程圖。在動作1100中,獲取該空中或衛星影像。較佳的 係,δ亥影像係一透視圖影像而非該透視圖影像之一正射糾 正影像,由於該正射糾正影像可能包含從執行正射糾正程 φ 序所引發之失真,其無法糾正或可能在執行該糾正程序時 引起額外失真。在動作1102中,獲取該大地測量參考資料 .庫,其包含藉由本發明所獲得之3]〇模型。在動作11〇4中, 從該大地測量參考資料庫檢索一3D模型。較佳的係,僅選 擇3D模型’其係預期為欲糾正影像所覆蓋。在動作^⑽ 中’在該影像中搜尋匹配該3D模型的一地點。該扣模型 說明一照片可識別區域之邊界。因此,可在該影像中發現 對應匹配區域。該3D模型之一正射糾正視圖可用以發現一 匹配區域。 137051.doc -37- 201024664 正常情況下,拍攝空中或衛星影像之數位相機之位置在 該座標參考系統内係已知。此允許吾人將該模型變換成 從該數位相機之位置查看時的一透視圖影像並在該影像中 發現對應地點。此變換改良在影像中發現正確地點之成功 率。在發現地點之後,使用相鄰3D模型來在影像中發現該 等對應地點。重複此程序直至相鄰3〇模型落入該影像。依 此方式,在該等3D模型與在影像内的對應地點之間的關聯 φ 性提供該輸入以在動作1中糾正該影像。每一匹配3D模 型係用作一地面控制物體。現在具有一地點落入於個別影 像所視覺化之地球表面之假定區域内部的所有3]〇模型係用 作上面應投影該等影像的DSM。在該影像内的該等匹配地 點組合對應3D模型使吾人能夠正確正射糾正對應於該等匹 配地點的該等影像部分。不由該等形成該網路之該等3〇模 型所覆蓋的該等區域可藉由一般已知糾正演算法來加以糾 正。 φ 圖12顯示一種用於校正一 OEM之方法的一流程圖。在動 作1200中’獲取欲校正的一數位標高模型或數位表面模 .型。在動作1202中,獲取該大地測量參考資料庫。.在動作 1204中,從該大地測量參考資料庫中檢索一或多個3〇模 型。在動作1206中,搜尋一地點,在此地點處該一或多個 3D模型匹配該數位標高模型。在動作12〇8中,決定在該 3D模型之座標參考系統内的該等座標與在該dEm内的地 點之間的該等偏差。分析該等偏差以決定誤差種類。該誤 差可能係一平移誤差、一比例縮放誤差、一局部誤差。基 137051.doc -38- 201024664 於該等分析結果,即誤差種類,在動作1210中,校正該數 位標高模型。用於校正一DEM之方法可進一步調適以改良 一 DEM之三角測量,該DEM包括代表地球表面之色彩資 汎 DEM可代表為一光柵(一方格)或一三角形不規則網 • 路。备使用德洛〉里二角剖分時,最大化在三角測量内所有 角度之最小角度。其傾向於避免極瘦三角形。但是,藉由 4點所形成的一四邊形具有兩個可能三角測量。動作丨21〇 φ 現進一步調適以使用3D模型,其說明具有一平坦或柔軟圓 形表面的一道路區段之外部邊緣作為折斷線以控制三角測 量。代表一道路區段之3D模型說明一柔軟圓形表面區域之 外邊緣。在一具體實施例中,該等折斷線係用以添加額外 標高至該DEM且該三角測量使用該額外點。在另一具體實 施例中,動作1210係調適以選擇最佳對應於該3〇模型所定 義表面的兩個可能三角測量之一者。 依據本發明之大地測量資料庫可進—步用以藉由添加對 • 應於代表一道路區段之一 3D模型的一密集點網路來局部改 良一 DEM/DSM。該3D模型還可用以替換該之一 . S應部分。此提供-DEM/DSM,其可用於導航應用内, 諸如ADAS應用等。 已出於解說與說明呈現本發明之前述詳細說明。並不希 望詳盡無遺或將本發明褐限於所揭示的精確形式,且顯然 可根據以上教導進行許多修改及變更。選擇該等說明且體 實施例目的在於最佳地解釋本發明之原理及其實際 從而使習知此項技術者能根據所預期的特定用途以各種具 137051.doc •39· 201024664 體實施例與各種修改來最佳地利用本發明。期望本發明之 範疇由其隨附申請專利範圍來定義。 【圖式簡單說明】 參考附圖,使用若干範例性具體實施例,以上已更詳細 地論述本發明,其中 圖1示意性顯示在該正射糾正程序中的一失真來源; 圖2顯示一正射糾正影像及一 用途;I. Overview. Computer configuration 500 includes a processor 511 for performing arithmetic operations. The processor 511 is connected to a plurality of memory components, including a hard disk 5 12, a read-only memory (R〇M) 5 〖3, an electrically erasable programmable read-only memory (EEPR 〇 M) 514, and Random access memory (RAM) 515. The memory components include a computer program containing data, ie, instructions configured to allow the processor 5 11 to perform a method for generating a spatial data change message or a method for processing a spatial data change message in accordance with the present invention. . It is not necessary to provide all of these memory types. Moreover, the memory, the cow does not have to be physically located close to the processor 511, but can be positioned at the processor 5&quot; far end. (4) The input data and output data associated with the method may or may not be stored as part of the computer configuration. For example, the input data can be accessed via a web service. It is even possible to perform an action by a program running on another processor. The processing benefit 511 is also connected to means for inputting instructions, data, etc., such as - keyboard 516 and - mouse 517. Other input components known to those skilled in the art, such as a touch screen, a trackball, and/or a voice converter, may also be provided. A read-read unit 519 is provided that is coupled to the processor 5ι. Reading a single 137051.doc -35- 201024664 π519 is a ge&lt;&lt;&gt;&lt;&gt;&lt;&gt;&lt;&gt;&lt;&gt;&gt; On it. Other removable data carriers may be tapes, DVDs, CD_Rs, DVD-Rs, memory sticks, solid state memories (SD cards, usb sticks), cf cards, HDDVDs, Blu-rays, etc., as is known to those skilled in the art. . The processor 511 can be connected to a printer 523 for printing output data on paper, and a display 518 such as a monitor or lcd (liquid crystal φ display) screen, a head up display (projected to the front window) or a habit Know any other type of display known to the person skilled in the art. The processor 511 can be coupled to a speaker 529 and/or an optical reader 531, such as a digital camera/network camera or a scanner, the scanner being configured to scan graphics and other files. In addition, the processor 511 can be connected to a communication network 527 by an I/O component 525, such as a public switched telephone network (PSTN), a regional network (LAN), a wide area network (WAN), and a wireless LAN. (wlan), GPRS GPRS, UMTS, Internet, etc. Processor 511 can be configured to communicate with other communication configurations over network 527. The data carrier 52, 521 may contain a computer program product in the form of data and instructions configured to provide the processor with the ability to perform a method in accordance with the present invention. However, such computer program products can alternatively be downloaded to a rough body via telecommunications network 527. The processor 5 11 can be implemented as a stand-alone system or a plurality of parallel operation processors, each of which is configured to implement a sub-task of a larger computer program, 137051.doc • 36· 201024664 or one with several sub-processors Or multiple main processors. Portions of the functionality of the present invention may even be implemented by a remote processor that communicates with processor 51 through telecommunications network 527. The components contained within the computer system of Figure 5 are typically found in a general purpose computer system and are desirably broadly classified on behalf of one of such computer components well known in the art. • Thus the computer system of Figure 5 can be a personal computer, a workstation, a mini computer, a host computer, and the like. The computer can also include different bus configurations, network platforms, multi-processor platforms, and more. A variety of operating systems are available, including UNIX, Solaris, Linux, Windows, Macintosh, and other suitable operating systems. Figure 11 shows a flow chart of one method for correcting an aerial or satellite image. In act 1100, the aerial or satellite imagery is acquired. Preferably, the ΔHai image is a perspective image instead of one of the perspective images, and the ortho-corrected image may contain distortion caused by performing an orthorectification sequence φ, which cannot be corrected. Or may cause additional distortion when performing this correction procedure. In act 1102, the geodetic reference material library is obtained, which includes the 3] model obtained by the present invention. In act 11〇4, a 3D model is retrieved from the geodetic reference library. Preferably, only the 3D model is selected, which is intended to be covered by the image to be corrected. In action ^(10) 'search for a location in the image that matches the 3D model. The buckle model illustrates the boundary of a photo-recognizable area. Therefore, a corresponding matching area can be found in the image. One of the 3D models of the orthorectified correction view can be used to find a matching area. 137051.doc -37- 201024664 Under normal circumstances, the position of a digital camera that takes aerial or satellite imagery is known within the coordinate reference system. This allows us to transform the model into a perspective image as viewed from the position of the digital camera and find the corresponding location in the image. This transformation improves the success rate of finding the right place in the image. After the location is discovered, adjacent 3D models are used to find the corresponding locations in the image. Repeat this procedure until the adjacent 3〇 model falls into the image. In this manner, the input φ is provided between the 3D model and the corresponding location within the image to correct the image in action 1. Each matched 3D model is used as a ground control object. Now all 3] 〇 models with a location within the assumed region of the Earth's surface visualized by individual images are used as DSMs on which the images should be projected. The matching of the matching points in the image corresponds to the 3D model so that we can correctly orthographically correct the portions of the image corresponding to the matching locations. The areas covered by the three 〇 models that form the network can be corrected by a generally known correction algorithm. φ Figure 12 shows a flow chart of a method for correcting an OEM. In action 1200, a digital scale model or a digital surface model to be corrected is acquired. In act 1202, the geodetic reference library is obtained. In act 1204, one or more 3〇 models are retrieved from the geodetic reference library. In act 1206, a location is searched for at which location the one or more 3D models match the digital elevation model. In act 12-8, the deviations between the coordinates in the coordinate reference system of the 3D model and the locations within the dEm are determined. These deviations are analyzed to determine the type of error. This error may be a translation error, a scaling error, or a local error. Base 137051.doc -38- 201024664 The digital elevation model is corrected in act 1210 for the results of the analysis, i.e., the type of error. The method for correcting a DEM can be further adapted to improve the triangulation of a DEM that includes a color representative of the earth's surface. The DEM can be represented as a raster (a grid) or a triangular irregular network. When using Detroit's two-corner split, maximize the minimum angle of all angles within the triangulation. It tends to avoid extremely thin triangles. However, a quadrilateral formed by 4 points has two possible triangulations. The action 丨21〇 φ is further adapted to use a 3D model that illustrates the outer edge of a road segment having a flat or soft circular surface as a break line to control the triangulation. The 3D model representing a road segment illustrates the outer edge of a soft circular surface area. In a specific embodiment, the broken lines are used to add an additional elevation to the DEM and the triangulation uses the additional point. In another specific embodiment, act 1210 is adapted to select one of two possible triangulations that best corresponds to the defined surface of the 3〇 model. The geodetic database in accordance with the present invention can be further adapted to locally improve a DEM/DSM by adding a dense point network that is representative of a 3D model of a road segment. The 3D model can also be used to replace one of the S. This provides -DEM/DSM, which can be used in navigation applications, such as ADAS applications. The foregoing detailed description of the invention has been presented by way of illustration The invention is not intended to be exhaustive or to limit the invention to the precise form disclosed. The descriptions of the embodiments are intended to be illustrative of the principles of the present invention and the practice thereof so that the skilled person can use various embodiments with the 137051.doc •39· 201024664 Various modifications are made to make the best use of the present invention. It is intended that the scope of the invention be defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The invention has been discussed in more detail above with reference to the accompanying drawings, in which FIG. 1 schematically shows a source of distortion in the orthorectification procedure; FIG. 2 shows a positive Shooting correction images and a use;

圖3顯示一正射糾正影像及一 DSM之用途; 圖4顯示依據本發明之方法之一流程圖; 圖5係一種用於實施依據本發明之方法之範例性電腦系 統的一方塊圖; 圖6顯示具有一相機及一雷射掃描器之一 mms系統; 圖7顯示地點及方位參數之一圖式; 圖8解說線性靜止道路表面特徵之範例; 圖9解說用以模型化線性罄 天旺释止道路表面特徵之道路特 性; 圖1〇顯示額外地面控制資訊之範例; 圖11顯不一種用於糾正一空φ赤痛f㈢ 二甲或衛星影像之方法之一流 程圖;以及 圖12顯示一種用於校正— 【主要元件符號說明】 DEM之方法的一流程圖 飛機 2 地球表面 水平線 137051.doc 3 2010246643 shows a use of an orthorectified image and a DSM; FIG. 4 shows a flow chart of a method according to the invention; FIG. 5 is a block diagram of an exemplary computer system for implementing the method according to the invention; 6 shows a mms system with one camera and one laser scanner; Figure 7 shows a map of the location and orientation parameters; Figure 8 illustrates an example of the surface characteristics of a linear stationary road; Figure 9 illustrates the model used to model linear 罄天旺Figure 1 shows an example of additional ground control information; Figure 11 shows a flow chart of one method for correcting an air φ red pain f (3) dimethyl or satellite imagery; and Figure 12 shows a For correction - [Main component symbol description] A flow chart of the DEM method Aircraft 2 Earth surface horizontal line 137051.doc 3 201024664

4 5 6 7 21 22 23(j) 24 28 29(i) 80 81 82 83 84 90 91 92 100 102 104 106 建築物結構 捕獲點 第一地形引發誤差 額外建築物高度引發誤差 汽車 車輪 雷射掃描器 監視器 天線 相機 邊緣線 道路中心線 第一道路區段 第二道路區段 第三道路區段 鋪設邊緣/方向指示 合法邊緣 道路中心線 &quot;Warning of 'Give Way' ahead&quot; 影線標記 停車線 方向指示 電腦配置 137051.doc -41 - 500 2010246644 5 6 7 21 22 23(j) 24 28 29(i) 80 81 82 83 84 90 91 92 100 102 104 106 Building structure capture point first terrain induced error additional building height induced error car wheel laser scanner Monitor Antenna Camera Edge Line Road Center Line First Road Section Second Road Section Third Road Section Laying Edge/Direction Indicates Legal Edge Road Centerline &quot;Warning of 'Give Way' ahead&quot; Shadow Marking Parking Line Direction Indication computer configuration 137051.doc -41 - 500 201024664

511 512 513 514 515 516 517 518 519 520 521 523 525 527 529 531 處理器 硬碟 唯讀記憶體(ROM) 電可抹除可程式化唯讀記憶體 (EEPROM) 隨機存取記憶體(RAM) 鍵盤 滑鼠 顯示器 讀取單元 軟碟/資料載體 CDROM/資料載體 印表機 I/O構件 通信網路/電信網路 揚聲器 光學讀取器 137051.doc • 42-511 512 513 514 515 516 517 518 519 520 521 523 525 527 529 531 Processor hard disk read-only memory (ROM) electrically erasable programmable read-only memory (EEPROM) random access memory (RAM) keyboard Mouse display read unit floppy disk / data carrier CDROM / data carrier printer I / O components communication network / telecommunication network speaker optical reader 137051.doc • 42-

Claims (1)

201024664 十、申請專利範固: 1. 一種產生一大地測量參考資料庫產品之方法,該方法包 含: -獲取藉由設置至一行駛於地球表面上之車輛的數位相 機、測距感測器及位置決定構件所捕獲的行動製圖資 料,該行動製圖資料包含在一地理座標系統内同時捕獲 影像資料、測距資料及相關聯位置資料; -藉由處理該影像資料、測距資料及相關聯位置資料從該 行動製圖資料來決定線性靜止地球表面特徵; -從該影像資料、測距資料及相關聯位置資料在該地理座 輮系統内為該等線性靜止地球表面特徵產生3D模型; •將該等3D模型儲存於一資料庫内以獲得該大地測量參 考資料庫產品。 / 2. 如請求項1之方法’其中該方法進一步包含: -連結該等3D模型以獲得一連續線性控制網路;以及 -將該連續線性控制網路儲存於該大地測量參考資料庫產 品内。 3. 如印求項丨或2之方法,其中—線性靜止地球表面特徵對 應於選擇自一群組特徵的一道路區段之一線性特性該 群組特徵包含··道路中心線、左道路邊緣、右道路邊 緣、道路寬度。 如&quot;月求項1或2之方法,其中決定線性靜止地球表面特徵 包含: _在該影像資料内偵測一道路表面;以及 137051.doc 201024664 藉由’、且。該影像資料、測距資料及相關聯位置資料在該 地理座標系統内提取該道路表面之位置; -從該道路表面之該位置來計算_或多個折線,其代表該 線性靜止地球表面特徵。 5.如請求項1或2之方法,其中該3D模型係基於向量。 6·如請求項1或2之方法,其中該方法進-步包含: 藉由組合影像資料與測距資料為該等3D模型產生正射 糾正影像, 為該等正射糾正影像之每_像素決定在該地理座標系統 内的標高資訊; 連結β亥等正射糾正影像與該標高資訊以獲得3d正射糾 正影像;以及 -健存該等3DJE射糾正影像並將該等影像連結至該大地 測量資料庫產品内的個別3Ε&gt;模型。 7· -種大地測量參考資料庫產品,其包含代表線性靜止地 ❹ 球表面特徵的3D模型,《中該等3D模型已藉由如請求項 I至6之方法之任一者來產生。 .8.如請求項7之大地測量參考資料庫產品,其進一步包含 藉由該等3D模型之連結所構造的一連續線性控制網路。3 9.如請求項7或8之大地測量參考資料庫產品,其中該產品 進:步包含正射糾正影像’每一正射糾正影像係代表: 3D模型所代表之該地球表面之至少一部分,其中—正射 糾正影像之每一像素包含相關聯的標高資訊。 10. 一種改良一數位標高模型之三角測量之方法,其中該方 I37051.doc 201024664 法包含 -獲取該數位標高模型; _獲取如請求項7之一大地測量參考資料庫產品; _從該大地測量參考資料庫中檢索一3D模型,其中該3D 模型說明一柔軟圓形表面區域之外部邊緣; -發現其中該3D模型在該數位標高模型内匹配的地點; 以及 -使用該柔軟圓形表面區域之該等外部邊緣作為折斷線以 控制該三角測量。 種校正一數位標高模型之地理座標之方法,其中該方 法包含 -獲取該數位標高模型; _獲取如請求項7之一大地測量參考資料庫產品; _從該大地測量參考資料庫中檢索一或多個3D模型; -發現其中該等3D模型匹配該數位標高模型之地點; -決定在該數位標高模型内的發現地點之位置與相關聯於 該一或多個分支之座標之間的位置偏差;以及 -使用該等位置偏差來校正該數位標高模型之該等地理座 標。 12. —種糾正一空中或衛星影像之方法,其中該方法包含 獲取一空中或衛星影像; _獲取如請求項8之一大地測量參考資料庫產品; -從該大地測量參考資料庫中檢索一或多個31)模型及對 應座標; 137051.doc 201024664 -發現在該影像中其中該一或多個3D模型匹配該空令或 衛星影像之地點;以及 -使用在該座標參考系統内該等3D模型的位置與對應發 現地點來糾正該空中或衛星影像。 -種電腦實施系統’其包含—處理器(5ιι)與連接至該處 理器之記憶體(512、513、514、515),該記憶體包含一 電腦程式,該電腦程式包合杳 Λ匕矛貢料及指令,該等資料及指 令係配置以允許該處理器Γ 裔pil)執仃如請求項1至6及10至 12之方法之任一者。 14. 一禋 α Λ 六巴兮可由一電腦配置載入的資料 及才日*7 ’從而允許兮带 1 9 μ電腦配置執行如請求項1至6及10至 12之方法之任一者。 一種處理器可讀取媒體 腦程式產品包含可由一 而允許該電腦配置執 任一者。 15. ’其具備一電腦程式產品,該電 電腦配置載入的資料及指令,從 如請求項1至6及10至12之方法之 137051.doc201024664 X. Applying for a patent: 1. A method for generating a geodetic reference library product, the method comprising: - obtaining a digital camera, a ranging sensor, and a vehicle set by a vehicle traveling on the surface of the earth The action mapping data captured by the location determining component, the motion mapping data includes capturing image data, ranging data and associated location data simultaneously in a geographic coordinate system; - processing the image data, ranging data and associated locations by processing the image data Data from the action mapping data to determine a linear stationary earth surface feature; - generating a 3D model for the linear stationary earth surface features from the image data, ranging data, and associated location data; The 3D model is stored in a database to obtain the geodetic reference library product. / 2. The method of claim 1 wherein the method further comprises: - concatenating the 3D models to obtain a continuous linear control network; and - storing the continuous linear control network in the geodetic reference library product . 3. The method of claim 2 or 2, wherein the linear stationary earth surface feature corresponds to one of a road segment selected from a group feature, the linear feature comprising the road center line, the left road edge , right road edge, road width. For example, the method of "Study Item 1 or 2", wherein the linear stationary earth surface feature is determined to include: _ detecting a road surface in the image data; and 137051.doc 201024664 by ', and. The image data, ranging data, and associated location data extract the location of the road surface within the geographic coordinate system; - calculate _ or a plurality of fold lines from the location of the road surface that represent the linear stationary earth surface feature. 5. The method of claim 1 or 2, wherein the 3D model is based on a vector. 6. The method of claim 1 or 2, wherein the method further comprises: generating an orthorectified image for the 3D models by combining the image data and the ranging data, for each _pixel of the ortho-corrected image Determining the elevation information in the geographic coordinate system; linking the ortho-correction image and the elevation information to obtain a 3d ortho-correction image; and - storing the 3DJE-corrected images and linking the images to the ground Measure individual 3Ε&gt; models in the database product. 7. A geodetic reference library product comprising a 3D model representative of a linear static ruthenium surface feature, wherein the 3D models have been generated by any of the methods of claims 1 through 6. 8. The geodetic reference library product of claim 7, further comprising a continuous linear control network constructed by linking the 3D models. 3 9. The geodetic reference library product of claim 7 or 8, wherein the product includes: an orthorectified image: each orthorectification image representation: at least a portion of the surface of the earth represented by the 3D model, Where - each pixel of the orthorectified image contains associated elevation information. 10. A method for improving triangulation of a one-digit elevation model, wherein the method I37051.doc 201024664 comprises: obtaining the digital elevation model; _ obtaining a geodetic reference library product as claimed in claim 7; _ from the geodetic measurement Retrieving a 3D model in the reference library, wherein the 3D model illustrates an outer edge of a soft circular surface region; - finding a location in which the 3D model matches within the digital elevation model; and - using the soft circular surface region The outer edges act as break lines to control the triangulation. A method of correcting a geographic coordinate of a digital elevation model, wherein the method includes: obtaining the digital elevation model; _ acquiring a geodetic reference library product as in claim 7; _ retrieving from the geodetic reference database a plurality of 3D models; - finding a location in which the 3D models match the digital elevation model; - determining a positional deviation between a location of the discovered location within the digital elevation model and a coordinate associated with the one or more branches And - using the positional deviations to correct the geographic coordinates of the digital elevation model. 12. A method of correcting an aerial or satellite image, wherein the method comprises acquiring an aerial or satellite image; _ acquiring a geodetic reference library product as claimed in claim 8; - retrieving a reference from the geodetic reference database Or a plurality of 31) models and corresponding coordinates; 137051.doc 201024664 - found in the image where the one or more 3D models match the location of the air or satellite imagery; and - use the 3D within the coordinate reference system The location of the model and the corresponding discovery location to correct the aerial or satellite imagery. - a computer implementation system comprising: a processor (5 ιι) and a memory (512, 513, 514, 515) connected to the processor, the memory comprising a computer program, the computer program comprising a spear The stipulations and instructions are configured to allow the processor to perform any of the methods of claims 1 through 6 and 10 through 12. 14. A 禋 α Λ 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 兮 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 A processor readable media brain program product includes one that allows the computer to configure any of them. 15. ‘There is a computer program product that is loaded with information and instructions, such as the methods of Requests 1 to 6 and 10 to 12, 137051.doc
TW97150489A 2008-12-24 2008-12-24 Method of generating a geodetic reference database product TW201024664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97150489A TW201024664A (en) 2008-12-24 2008-12-24 Method of generating a geodetic reference database product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97150489A TW201024664A (en) 2008-12-24 2008-12-24 Method of generating a geodetic reference database product

Publications (1)

Publication Number Publication Date
TW201024664A true TW201024664A (en) 2010-07-01

Family

ID=44852236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97150489A TW201024664A (en) 2008-12-24 2008-12-24 Method of generating a geodetic reference database product

Country Status (1)

Country Link
TW (1) TW201024664A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634314B (en) * 2016-03-22 2018-09-01 日商三菱電機股份有限公司 Measuring device
TWI664388B (en) * 2018-02-20 2019-07-01 日商三菱電機股份有限公司 Measurement monitoring device and measurement monitoring program product
US10769948B2 (en) 2018-12-27 2020-09-08 Industrial Technology Research Institute Parking spot detection system and method thereof
TWI742976B (en) * 2020-12-29 2021-10-11 財團法人工業技術研究院 Structure diagnosis system and structure diagnosis method
US11703457B2 (en) 2020-12-29 2023-07-18 Industrial Technology Research Institute Structure diagnosis system and structure diagnosis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634314B (en) * 2016-03-22 2018-09-01 日商三菱電機股份有限公司 Measuring device
TWI664388B (en) * 2018-02-20 2019-07-01 日商三菱電機股份有限公司 Measurement monitoring device and measurement monitoring program product
US10769948B2 (en) 2018-12-27 2020-09-08 Industrial Technology Research Institute Parking spot detection system and method thereof
TWI742976B (en) * 2020-12-29 2021-10-11 財團法人工業技術研究院 Structure diagnosis system and structure diagnosis method
US11703457B2 (en) 2020-12-29 2023-07-18 Industrial Technology Research Institute Structure diagnosis system and structure diagnosis method

Similar Documents

Publication Publication Date Title
US8958980B2 (en) Method of generating a geodetic reference database product
Brenner Extraction of features from mobile laser scanning data for future driver assistance systems
US8351704B2 (en) Method of capturing linear features along a reference-line across a surface for use in a map database
Guan et al. Automated road information extraction from mobile laser scanning data
KR100912715B1 (en) Method and apparatus of digital photogrammetry by integrated modeling for different types of sensors
EP2074379B1 (en) Method and apparatus for generating an orthorectified tile
US20100118116A1 (en) Method of and apparatus for producing a multi-viewpoint panorama
JP2020500290A (en) Method and system for generating and using location reference data
KR20110044217A (en) Method of displaying navigation data in 3d
Ravi et al. Lane width estimation in work zones using LiDAR-based mobile mapping systems
Soheilian et al. Generation of an integrated 3D city model with visual landmarks for autonomous navigation in dense urban areas
TW201024664A (en) Method of generating a geodetic reference database product
Maurice et al. A photogrammetric approach for map updating using UAV in Rwanda
WO2010068185A1 (en) Method of generating a geodetic reference database product
TW201024665A (en) Method of generating a geodetic reference database product
Li et al. Terrestrial mobile mapping towards real-time geospatial data collection
Wang Semi-automated generation of high-accuracy digital terrain models along roads using mobile laser scanning data
Keitaanniemi et al. Measurement strategies for street-level SLAM laser scanning of Urban environments
Zhang A comparison of digital photogrammetric and LIDAR high resolution digital elevation models
Vivero et al. A new digital terrain model for the Tasman Glacier, New Zealand, using digital photogrammetry techniques
Haiyan Automated Extraction of Road Information from Mobile Laser Scanning Data
H Ali THE REAL TIME GPS TRACKING ON THE IMAGE SATELLITE BY USING GEOGRAPHICAL INFORMATION SYSTEM PROGRAM
McCrink et al. Evaluation of NAIP/ADS40 Stereo Imagery for GIS-Based Landslide Inventory Mapping at the California Geological Survey
Liu et al. Measurable realistic image-based 3D mapping