TW201023877A - GLP-1 pharmaceutical compositions - Google Patents

GLP-1 pharmaceutical compositions Download PDF

Info

Publication number
TW201023877A
TW201023877A TW97148859A TW97148859A TW201023877A TW 201023877 A TW201023877 A TW 201023877A TW 97148859 A TW97148859 A TW 97148859A TW 97148859 A TW97148859 A TW 97148859A TW 201023877 A TW201023877 A TW 201023877A
Authority
TW
Taiwan
Prior art keywords
acid
peptide
pharmaceutical composition
salt
hglp
Prior art date
Application number
TW97148859A
Other languages
Chinese (zh)
Inventor
Zheng Xin Dong
Cheikh Roland Cherif
Rigol Jose-Antonio Cordero
Miravetes Resurreccion Alloza
Frederic Lacombe
Maestre Maria Dolores Tobalina
Original Assignee
Ipsen Pharma Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen Pharma Sas filed Critical Ipsen Pharma Sas
Priority to TW97148859A priority Critical patent/TW201023877A/en
Publication of TW201023877A publication Critical patent/TW201023877A/en

Links

Abstract

The present invention is directed to peptide analogues of glucagon-like peptide-1, the pharmaceutically-acceptable salts thereof, to methods of using such analogues to treat mammals and to pharmaceutical compositions useful therefore comprising said analogues.

Description

.201023877 六、發明說明: 【發明所屬之技術領域】 本發明是關於改進含有類胰高血糖激素胜肽 -1 (glucagon-like peptide-1)之胜肽類似物及/或其醫藥可接 受鹽之組成物,製備此等組成物之方法,醫藥組成物及使 用此等組成物治療哺乳動物之方法。 【先前技術】 類胰高血糖激素胜狀-1(7-3 6)醯胺(GLP-1)是在腸L-細 〇 胞經由胰高血糖激素前驅物前胰高血糖激素原之組織專一 性轉譯後加工合成(Varndell,J.M·,et al·,J. Histochem.201023877 VI. Description of the Invention: [Technical Field] The present invention relates to improving a peptide analog containing glucagon-like peptide-1 and/or a pharmaceutically acceptable salt thereof The composition, the method of preparing the composition, the pharmaceutical composition, and a method of treating a mammal using the composition. [Prior Art] The glucagon-like hyperglycemic hormone-like-1 (7-3 6) guanamine (GLP-1) is a specialized tissue of the glucagon in the gut of the intestinal L- fine sputum via the glucagon hormone precursor. Post-translational processing and synthesis (Varndell, JM·, et al·, J. Histochem

Cytochem,1 9 8 5:3 3:1 0 8 0-,6),並對進餐反應而釋放於循環 系統。GLP-1的血漿濃度從禁食程度約15 pmol/L提高至 4 0 pmol/L之餐後最高點程度。已證明對於已知的血漿葡萄 % ' 糖濃度升高,相較於靜脈投與葡萄糖,口服葡萄糖的血漿 胰島素增加近 3 倍(Kreymann, B.,et al.,Lancet 1987:2, 1 300-4)。此胰島素釋放的消化增強作用已知爲腸泌素 ® (incretin)作用,主要爲體液的且認爲GLP-1是人類最有效 的生理性腸泌素。除促胰島素分泌作用之外,GLP-1抑制 胰高血糖激素分泌,延遲胃排空(Wettergren A.,et al·,Dig Dis Sci 1993:38:665-73)且可提高周邊葡萄糖清除 (D’Alessio,D_A. et al·,J. Clin Invest 1 994:93:2293 -6)。 在i 994年觀察到皮下(s/c)單劑GLP-1能完全正常化 非胰島素依賴型糖尿病(NIDDM)病患的餐後葡萄糖程度 後,提出 GLP-1 的治療潛力(Gutniak,Μ·Κ·,et al.,Diabetes Care 1994:17:1039-44)。此效果被認爲是經由增加胰島素 201023877 釋放及降低胰高血糖激素分泌來仲介。再者,已顯示靜脈 輸注GLP-1會延遲NIDDM病患的餐後胃排空(Williams, B·, et al·,J. Clin Endo Metab 1996:81:327-32)。不同於擴醯尿 素類,GLP-1的促胰島素分泌作用是血漿葡萄糖濃度依賴 性的(Holz,G.G_ 4th,et al.,Nature 1 993:3 6 1:3 62-5)。因 此,在血漿葡萄糖濃度低時喪失GLP-1-仲介之胰島素釋放 以免於嚴重低血糖。此作用組合給予GLP-1獨特潛在的治 療優點剩過其他目前用於治療NID D Μ的藥劑。 ❹ 有諸多硏究已顯示當對健康受試者給予GLP-1時, GLP-1有效影響血糖量以及胰島素與胰高血糖激素濃度 (Orskov,C, Diabetologia 35:70 1 -7 1 1 , 1 992; Holst, J.J., et a 1., Potential of GLP-1 in diabetes management in Glucagon III, Handbook of Experimental Pharmacology, Lefevbre PJ, Ed. Experimental Berlin, Springer Verlag, 1 996, p. 311-326),該作用爲葡萄糖依賴性(Kreymann, B.,et al·, Lancet i i: 1 300- 1 304,1 9 8 7; Weir, G. C ., et al., Diabetes ® 38:338-342, 1989)。再者,其於糖尿病病患也有效(Gutniak, Μ ., N . Engl J Med 226:1 3 1 6- 1 322,1 992; Nathan, D . M., et al·,Diabetes Care 1 5:270-276, 1 992),使第 2 型糖尿病 患者血液葡萄糖量正常化(Nauck, M.A., et al., Diabetologia36:741-744, 1993),以及於第1型患者改進血 糖調控(Creutzfeldt,W.O·,et al·,Diabetes Care 1 9:5 80-586, 1 9 96),特別是證明其增加胰島素感受性/降低胰島素抗性 的能力。已提出GLP-1及其激動劑可用於處於發展爲非胰 島素依賴型糖尿病之受試者(參閱 WO 00/076 1 7)以及用於 201023877 治療妊娠糖尿病(美國專利公開第20040266670號)。 除前述以外,有許多治療用途於哺乳動物,例如對於 人類已提出GLP-1及其激動劑可包括但不限爲改善學習, 增強神經保護作用及/或減輕中樞神經系統疾病或失調之 症狀,例如透過神經元新生的調節以及例如帕金森氏症 (Parkinson's Disease)、阿茲海默症(Alzheimer’s Disease)、 亨丁 頓氏症(Huntington's Disease)、ALS、中風、ADD 以 及神經精神綜合症(neuropsychiatric syndromes)(美國專利 © 公開第20050009742號及20020115605號);轉換肝臟幹細 胞/前驅細胞爲功能性胰細胞(WO03/033 697);預防β-細胞 , 惡化(美國專利公開第20040053 8 1 9號及2003022025 1號) 以及刺激β-細胞增殖(美國專利公開第20030224983號); 治療肥胖(美國專利公開第 2004001 8975 號; ’ W098/1 9698);抑制食慾以及誘發飽足感(美國專利公開第 20030232754號);治療激躁性腸道症候群(WO 99/6 4060); 降低與心肌梗塞有關之發病率及/或死亡率(美國專利公開 ® 第 20040 1 62241 號,WO9 8/0853 1 )以及中風(參閱 WO 00/1 6797);治療以缺少Q-波心肌梗塞爲特徵之急性冠心症 (美國專利公開第20040002454號);減輕手術後的分解代 謝變化(美國專利第6,006,753號);治療休眠的心肌或糖尿 病性心肌症(美國專利公開第20050096276號);抑制血漿 血液的正腎上腺素量(美國專利公開第號20050096276);增 加尿液鈉排泄,減少尿液鉀濃度(美國專利公開第 2005003 795 8號);治療與毒性體液過多有關之狀況或失 調,例如腎衰竭、充血性心衰竭、腎病症候群、肝硬化、 201023877 肺水腫以及高血壓(美國專利公開第20050037958號);誘 發肌肉收縮反應以及增加心臟收縮性(美國專利公開第 200 5 003 795 8號);治療多囊性卵巢症候群(美國專利公開第 20040266678及20040029784號);治療呼吸窘迫(美國專利 公開第2004023 5726號);透過非營養路徑改善營養,亦即 透過靜脈內、皮下、肌肉內、腹膜、或其他注射或灌入(美 國專利公開第200402098 1 4號);治療腎病變(美國專利公 開第20040209 8 03號);治療左心室收縮性心臟衰竭,例如 〇 具有異常左心室射出率(美國專利公開第 2004009741 1 號);抑制胃寶十二指腸運動,例如用於治療或預防胃腸道 失調如腹瀉、手術後傾倒症候群以及激躁性腸道症候群以 及作爲內視鏡過程之預先給藥(美國專利公開第 20030216292號);治療重症疾病多發性神經病變(CIPN)以 ' 及全身性發炎反應症候群(SIRS)(美國專利公開第 20030199445號);調整三酸甘油酯量以及治療血脂異常(美 國專利公開第20030036504號以及20030143183號);治療 ® 缺血後再灌注血流引起之器官組織傷害(美國專利公開第 20020 1 47 1 3 1號);治療冠心病危險因子(CHDRF)症候群(美 國專利公開第號2002004563 6);及其他。 然而GLP-1爲代謝不穩定,在活體內(in Wv〇)的血漿 半衰期(t1/2)只有1-2分鐘。外源性投與GLP-1也被快速降 解(Deacon, C.F·,et al·,Diabetes 44:1126-1131,1995)。此 代謝不穩定性限制天然GLP-1的治療潛能。已進行許多嚐 試透過改善調配物來改善GLP-1及其類似物的治療潛能。 例如國際專利公開號WO 0 1 /57084敘述GLP-1類似物結晶 201023877 之製造方法,該GLP-1類似物結晶可用於製備含有結晶及 醫藥可接受載劑之醫藥組成物,例如可注射藥劑。已從鹽 水溶液成長GLP-l(7-37)OH之非均質微結晶體群集,並於 以鋅及/或間-甲苯酚浸泡處理結晶後檢驗(Kim and Haren, Pharma. Res. Vol. 12No. 11 (1995))。已從含鋅或魚精蛋白 (protamine)之磷酸鹽溶液製備含有類似針狀結晶之 GLP(7-3 6)NH2粗製結晶體懸浮液及不定形沉澱(Pridal,et. al., International Journal of Pharmaceutics Vol. 136,pp. O 53-59 ( 1 996))。歐洲專利公開號 EP 061 9322A2敘述 GLP-l(7-37)OH微結晶體形式之製備,經由混合蛋白質於 pH 7-8.5緩衝液與特定組合鹽類及低分子量聚乙二醇(PEG) 之溶液。美國專利第6,566,490號尤其敘述GLP-1微結晶 的種晶,認爲有助於經純化胜肽產物的製造。美國專利第 ' 6,555,521號(US’521)揭示具有四方晶形平桿狀或類似平板 形之GLP-1結晶,被認爲具有改善純度並展現延長活體內 活性。US’521教示此等結晶相當均勻,且比先前結晶體群 ® 集及不定形結晶體懸浮液(其被認爲快速沉澱,聚集一起或 凝結成塊,阻塞針頭且通常加重出不可預料的劑量)存在於 懸浮液中更長一段時間。 已提出生物可分解之聚[(dl-乳酸-聚甘醇酸)-β-乙二 醇·Ρ-(-乳酸-聚甘醇酸)]三嵌段共聚物用於控制釋放GLP-1 的調配物。然而如同其他聚合物體系,三嵌段共聚物的製 造涉及複雜的程序及不一致的微粒狀形成。 同樣地,生物可分解共聚物,例如聚(乳酸-乙醇 酸)(PLGA)也被提議用於胜肽調配物的持續傳送。然而習知 201023877 技藝不贊成使用此等生物可分解共聚物’因爲這些共聚物 通常在水中溶解度差且於製造期間需要水不互溶有機溶劑 (例如二氯甲烷)及/或嚴厲的製備條件。此等有機溶劑及/ 或嚴厲的製備條件被認爲會增加誘發胜肽或感興趣蛋白質 構形改變的風險,導致減少結構完整及並危及生物活性 (Choi et al., Pharm. Research, Vol. 21, No. 5, (2004).) 〇 普 羅賽瑪類(poloxamers)也有同樣的缺點。 上述參考文獻所述之GLP-1組成物用於製備GLP的醫 © 藥調配物較不理想,因爲他們傾向捕捉雜質及/或難於可再 現地製造及提供。亦知GLP類似物在提高濃度時會引起噁 心,因此有需要提供具有降低初始血漿濃專之持續性藥劑 功效(Ritzel et al·,Diabetologia,3 8: 72 0-725 ( 1 995 );Cytochem, 1 9 8 5:3 3:1 0 8 0-, 6), is released into the circulatory system in response to a meal. The plasma concentration of GLP-1 increased from a fasting degree of about 15 pmol/L to a maximum postprandial level of 40 pmol/L. It has been shown that for known plasma glucose % 'increased sugar concentrations, plasma glucose is increased nearly three-fold compared to intravenous glucose (Kreymann, B., et al., Lancet 1987: 2, 1 300- 4). This digestive enhancement of insulin release is known to be an incretin action, primarily humoral and is considered to be the most potent physiological enteroprotein in humans. In addition to insulin secretion, GLP-1 inhibits pancreatic hyperglycemic hormone secretion, delays gastric emptying (Wettergren A., et al., Dig Dis Sci 1993: 38: 665-73) and improves peripheral glucose clearance (D) 'Alessio, D_A. et al., J. Clin Invest 1 994:93:2293 -6). After i 994 observed that subcutaneous (s/c) single dose of GLP-1 completely normalizes the postprandial glucose level in patients with non-insulin dependent diabetes mellitus (NIDDM), the therapeutic potential of GLP-1 was proposed (Gutniak, Μ· Κ·, et al., Diabetes Care 1994: 17: 1039-44). This effect is thought to be mediated by increased insulin 201023877 release and decreased pancreatic hyperglycemic hormone secretion. Furthermore, intravenous infusion of GLP-1 has been shown to delay postprandial gastric emptying in NIDDM patients (Williams, B., et al., J. Clin Endo Metab 1996: 81: 327-32). Unlike diuretic hormones, the insulin-promoting effect of GLP-1 is plasma glucose concentration-dependent (Holz, G.G_ 4th, et al., Nature 1 993:3 6 1:3 62-5). Therefore, GLP-1-mediated insulin release is lost when plasma glucose concentration is low to avoid severe hypoglycemia. This combination of effects confers a unique potential therapeutic benefit to GLP-1 remaining in other agents currently used to treat NID D Μ. ❹ There have been many studies showing that GLP-1 effectively affects blood glucose levels and insulin and glucagon concentrations when administered to healthy subjects (Orskov, C, Diabetologia 35:70 1 -7 1 1 , 1 992; Holst, JJ, et a 1., Potential of GLP-1 in diabetes management in Glucagon III, Handbook of Experimental Pharmacology, Lefevbre PJ, Ed. Experimental Berlin, Springer Verlag, 1 996, p. 311-326), The role is glucose dependent (Kreymann, B., et al., Lancet ii: 1 300-1304, 1 9 8 7; Weir, G. C., et al., Diabetes ® 38:338-342, 1989) . Furthermore, it is also effective in diabetic patients (Gutniak, Μ., N. Engl J Med 226:1 3 1 6- 1 322,1 992; Nathan, D. M., et al., Diabetes Care 1 5: 270-276, 1 992), normalizing blood glucose levels in patients with type 2 diabetes (Nauck, MA, et al., Diabetologia 36: 741-744, 1993), and improving glycemic regulation in type 1 patients (Creutzfeldt, WO) ·, et al., Diabetes Care 1 9:5 80-586, 1 9 96), in particular, its ability to increase insulin sensitivity/inhibition of insulin resistance. GLP-1 and its agonists have been proposed for use in subjects developing non-insulin dependent diabetes (see WO 00/076 17) and for 201023877 treatment of gestational diabetes (US Patent Publication No. 20040266670). In addition to the foregoing, there are a number of therapeutic uses for mammals, for example, it has been suggested that GLP-1 and its agonists may include, but are not limited to, improving learning, enhancing neuroprotection and/or alleviating symptoms of central nervous system diseases or disorders, For example, through neuronal neonatal regulation and, for example, Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, ALS, Stroke, ADD, and Neuropsychiatric Syndromes) (U.S. Patent Application Publication No. 20050009742 and No. No. No. No. No. No. No. No. No. No. No. No. No. Publication No 2003022025 No. 1) and stimulating β-cell proliferation (U.S. Patent Publication No. 20030224983); treating obesity (US Patent Publication No. 2004001 8975; 'W098/1 9698); suppressing appetite and inducing satiety (US Patent Publication No. 20030232754) No.); treatment of irritable bowel syndrome (WO 99/6 4060); reduction associated with myocardial infarction Morbidity and/or mortality (U.S. Patent Publication No. 20040 1 62241, WO 9 8/0853 1 ) and stroke (see WO 00/1 6797); treatment of acute coronary heart disease characterized by a lack of Q-wave myocardial infarction (U.S. Patent Publication No. 20040002454); mitigating catabolic changes after surgery (U.S. Patent No. 6,006,753); treatment of dormant myocardial or diabetic cardiomyopathy (U.S. Patent Publication No. 20050096276); inhibiting the amount of ortho-adrenalin in plasma blood (U.S. Patent Publication No. 20050096276); increasing urine sodium excretion and reducing urine potassium concentration (U.S. Patent Publication No. 2005003 795 8); treating conditions or disorders associated with excessive toxic body fluids, such as renal failure, congestive heart failure , renal syndrome, cirrhosis, 201023877 pulmonary edema, and hypertension (U.S. Patent Publication No. 20050037958); induces muscle contraction and increases cardiac contractility (U.S. Patent Publication No. 200 5 003 795 8); treatment of polycystic ovarian syndrome (U.S. Patent Publication Nos. 20040266678 and 20040029784); Treatment of Respiratory Distress (US Patent Publication No. 2004023 5726); improving nutrition through non-nutrition pathways, ie by intravenous, subcutaneous, intramuscular, peritoneal, or other injection or infusion (US Patent Publication No. 200402098 14); treatment of renal lesions (US Patent Publication No. 20040209 8 03); treatment of left ventricular systolic heart failure, such as sputum with abnormal left ventricular ejection rate (US Patent Publication No. 2004009741 No. 1); inhibition of gastric treasure duodenal movement, for example for the treatment or prevention of gastrointestinal disorders such as diarrhea, Post-operative pour syndrome and irritable bowel syndrome and pre-dosing as an endoscopic procedure (US Patent Publication No. 20030216292); treatment of severe disease polyneuropathy (CIPN) with 'and systemic inflammatory response syndrome (SIRS) (U.S. Patent Publication No. 20030199445); modulating the amount of triglyceride and treating dyslipidemia (U.S. Patent Publication Nos. 20030336504 and 20030143183); Treatment® Organ Tissue Injury Caused by Post-Ischemic Reperfusion Blood Flow (US Patent Disclosure) No. 20010 1 47 1 3 No. 1); treatment of coronary heart disease risk factor (CHDRF) Waiting group (U.S. Patent Publication No. 20020045636); and others. However, GLP-1 is metabolically unstable, and the plasma half-life (t1/2) in vivo (in Wv〇) is only 1-2 minutes. Exogenously administered GLP-1 was also rapidly degraded (Deacon, C.F., et al., Diabetes 44: 1126-1131, 1995). This metabolic instability limits the therapeutic potential of native GLP-1. Many attempts have been made to improve the therapeutic potential of GLP-1 and its analogs by improving the formulation. For example, International Patent Publication No. WO 0 1/57084 describes a process for the production of GLP-1 analog crystals 201023877 which can be used to prepare pharmaceutical compositions containing crystalline and pharmaceutically acceptable carriers, such as injectables. A heterogeneous microcrystal cluster of GLP-1 (7-37) OH has been grown from a saline solution and examined after crystallization by zinc and/or m-cresol soaking (Kim and Haren, Pharma. Res. Vol. 12No. 11 (1995)). Preparation of a crude crystal suspension of GLP(7-3 6)NH2 containing similar needle crystals from a phosphate solution containing zinc or protamine and an amorphous precipitate (Pridal, et. al., International Journal of Pharmaceutics) Vol. 136, pp. O 53-59 (1 996)). European Patent Publication No. EP 061 9322 A2 describes the preparation of the GLP-1 (7-37) OH microcrystalline form via a mixed protein in a pH 7-8.5 buffer with a specific combination of salts and a low molecular weight polyethylene glycol (PEG) solution. . No. U.S. Patent No. 6,555,521 (U.S. Patent No. 5,521), which is incorporated herein by reference in its entirety, is incorporated herein by reference. US '521 teaches that such crystals are fairly uniform and present in comparison to previous crystal group® and amorphous crystal suspensions (which are believed to precipitate rapidly, aggregate together or clump together, block the needle and often exacerbate unpredictable doses) In the suspension for a longer period of time. Biodegradable poly[(dl-lactic acid-polyglycolic acid)-β-ethylene glycol·Ρ-(-lactic acid-polyglycolic acid)] triblock copolymer has been proposed for controlled release of GLP-1 Formulation. However, like other polymer systems, the manufacture of triblock copolymers involves complex procedures and inconsistent particulate formation. Likewise, biodegradable copolymers such as poly(lactic-glycolic acid) (PLGA) have also been proposed for the sustained delivery of peptide formulations. Conventional 201023877, however, does not favor the use of such biodegradable copolymers because these copolymers generally have poor solubility in water and require water-immiscible organic solvents (e.g., dichloromethane) and/or stringent manufacturing conditions during manufacture. Such organic solvents and/or stringent preparation conditions are believed to increase the risk of inducing a change in the peptide or protein of interest, resulting in reduced structural integrity and compromised biological activity (Choi et al., Pharm. Research, Vol.). 21, No. 5, (2004).) The poloxamers also have the same drawbacks. The GLP-1 compositions described in the above references are less desirable for the preparation of GLP medical formulations because they tend to trap impurities and/or are difficult to reproducibly manufacture and provide. It is also known that GLP analogs cause nausea when the concentration is increased, so there is a need to provide sustained pharmaceutical efficacy with reduced initial plasma concentration (Ritzel et al., Diabetologia, 3 8: 72 0-725 (1 995);

Gutniak et al., Diabetes Care, 1 7(9): 1 039- 1 044 (1 994);Gutniak et al., Diabetes Care, 1 7(9): 1 039- 1 044 (1 994);

Deacon et al., Diabetes, 44: 1126-1131 (1995).)。因此有 需要可更容易且可靠製造的glp-1調配物’更容易及可再 現地投與病患,並提供降低初始血漿濃度以降低或消除不 .欲的副作用。 【發明内容】 發明槪述 本發明可槪述於下列各段及申請專利範圍中。因此, 本發明提供一種含有GLP-ι類似物之醫藥組成物。特佳爲 根據式(I)之GLP-1類似物或其醫藥可接受鹽: (Aib8>35)hGLP-l(7-36)NH2 (I) 其中該組成物之調配物提供優異的製造、投與、藥物動力 201023877 學及藥物效力學特性,以及減輕負面副作用。較佳爲本發 明之醫藥組成物不由pH 4之透明水性ZnCl2溶液所構成’ 其中該[Aib8,35]hGLP-l(7-36)NH2以4 mg/ml的濃度存在以 及該ZnCl2以0.5 mg/ml的濃度存在。 本發明之一較佳具體例提供一種具有改善藥物釋放槪 況(pro file)之醫藥組成物,較佳具有降低初始爆發之情形。 本發明也提供含有式(I)化合物、具有延長作用期間之 醫藥組成物。 Ο 在較佳特徵中,本發明也提供一種醫藥組成物,其在 活體內於生理pH時在原位沉澱形成沉澱物以達持 續的釋放藥物槪況。 。 本發明之進一步具體例提供一種醫藥組成物,含有式 (I)化合物或其醫藥可接受鹽及醫藥可接受載劑或稀釋劑。 ' 較佳爲該載劑或稀釋劑含有水。 在較佳特徵中,本發明提供一種醫藥組成物,含有以 胜肽之鹽或以胜肽及其鹽之混合物製備之化合物或GLP-1 ® 胜肽類似物。 較佳爲在該醫藥組成物中GLP-1胜肽類似物的鹽是選 自列舉之有機酸的醫藥可接受鹽,例如乙酸、乳酸、蘋果 酸、抗壞血酸、琥珀酸、苯甲酸、檸檬酸、甲烷磺酸或甲 苯磺酸;或無機酸的醫藥可接受鹽,例如氫氯酸 '氫溴酸、 氫碘酸、硫酸或磷酸。強酸類的醫藥可接受鹽,例如氫氯 酸特佳。強酸的定義是具有ρΚΑ小於4.5的酸。在該醫藥 組成物中另外的較佳胜狀鹽類是有機酸的鹽類,例如乙酸 或三氟乙酸、乳酸、蘋果酸、抗壞血酸、琥珀酸、苯甲酸 201023877 或檸檬酸的鹽類。 在一較佳具體例中,醫藥組成物的溶解度、PH 放槪況能經由調節GLP-1類似物於鹽形式對GLP-1類 未於鹽形式之莫耳比來延長釋放槪況’並降低GLP-1 物濃度的初始尖峰。 在一較佳具體例中,醫藥組成物進一步含有二價 來降低組成物的水溶解度,並藉此延長釋放槪況同時 血漿濃度的初始爆發或尖峰。較佳的二價金屬包括 〇 銅。二價金屬的鹽形式特佳,包括但不限爲二價金屬 化物及乙酸鹽。CuAc2、CuCl2、ZnAc2及/或ZnCl2最 較佳爲二價金屬及/或二價金屬鹽類於該醫藥組成物 濃度從約〇.〇〇〇5mg/ml至約50mg/m存在。甚至更佳爲 金屬及/或二價金屬鹽類於該醫藥組成物中以濃度 ' 0.01 mg/ml至約0.50 mg/ml存在。更佳爲該醫藥組成 有稀釋劑,其中該稀釋劑含有醫藥可接受水溶液。稀 可含有無菌水。 β 在進一步具體例中,該醫藥組成物進一步含有二 屬及/或二價金屬鹽,其中該醫藥組成物中該GLP-1類 對該二價金屬及/或二價金屬鹽的莫耳比範圍從大約6 大約1:1。較佳爲該比範圍從大約5.5:1至大約1:1。 爲該比範圍從大約5.4:1至大約1.5:1。又甚至更佳爲 爲大約5.4:1、4.0:1或1.5:1。最佳爲該比爲大約1.: 本發明在此方面「大約」意指一比爲1.5: 1±10 %每一 値,因此預計比包括包含例如1.35-1.65:0.85-1.15的 較佳爲該醫藥組成物含有水性混合物、懸浮液 及釋 似物 類似 金屬 降低 鋅及 的氯 佳。 中以 二價 從約 物含 釋劑 價金 似物 :1至 更佳 該比 5:卜 目標 比。 或溶 -10- 201023877 液,其中該GLP-1的類似物,式(I)化合物或其鹽以濃度大 約0.5%-3 0%(w/w)存在。更佳爲該GLP-1類似物及/或其鹽 於該水性混合物、懸浮液或溶液的濃度爲大約1 %、2%、 3 %、4 %、5 %、6 %、7% ' 8 %、9% ' 10%、11%、12%、13%、 14%' 15%、16%' 17%、1 8 % ' 1 9 % ' 2 0 % > 21%' 22%' 23%' 2 4%、25% > 26%、27%、28%、29%或 3 0%(w/w)。更佳爲 該GLP-1類似物及/或其鹽於該水溶液的濃度爲大約1%、 2%、3% ' 4%、5 %、6% ' 7%、8%、9% ' 10%、11%、14%、 φ 15%' 16%' 1 9 %、2 0 %、2 1 %、2 2 %、2 3 %、2 4 %、2 5 %、2 6 %、 29%或3 0%(w/w)。又更佳爲該GLP-1類似物及/或其鹽之類 似物於該水溶液的濃度爲大約1 %、2 %、3 %、4 %、5 %、6 %、 9% ' 10% ' 11% ' 22% ' 23%、24%、2 5 % 或 26%(w/w) » 又 甚至更佳爲該GLP-1的類似物及/或其鹽於該水溶液的濃 度爲大約 1 %、2 %、3 %、4 %、5 %、6 %、1 0 %、2 2 %、2 3 %、 24%、25%或26%(w/w)。又更佳爲該GLP-1的類似物及/或 其鹽於該水溶液的濃度爲大約1 %、2 %、5 %、1 0 %、2 3 %或 ® 25%(w/w)。「大約」意指下列意思:對於濃度約0.5%至約 4 %、目標値± 〇 . 5 %是所欲範圍(例如〇 · 5 %至1 . 5 %爲大約 1%);對於目標濃度約5%及更高,目標値的20%是所欲範 圍(例如8%至12%爲大約10%)。 較佳爲[Aib8,35]hGLP-l(7-36)NH2、GLP-1 之類似物、 或其鹽於醫藥組成物的濃度爲約1 %(重量/體積)以及 [Aib8’35]hGLP-l(7-36)NH2對該二價金屬及/或二價金屬鹽 的莫耳比爲約1 .5 : 1。更佳爲[Aib8,35]hGLP-1 (7-36)NH2或 其鹽於該醫藥組成物的濃度爲約2% (重量/體積)以及 -11 · 201023877 [Aib8’35]hGLP-l(7-3 6)NH2或其鹽對該二價金屬及/或二價 金靥鹽的莫耳比爲約 1.5:1。 又更佳爲 [Aib8’35]hGLP-l(7-3 6)NH2或其鹽於該醫藥組成物的濃度 爲約10%(重量/體積)以及[Aib8,35]hGLP-l(7-36)NH2或其 鹽對該二價金屬及/或二價金屬鹽的莫耳比爲約K5:;!。最 佳爲[Aib8’35]hGLP-l (7-3 6)NH2或其鹽於該醫藥組成物的 濃度爲約 23%或約 25 %(重量/體積)以及 [Aib8’35]hGLP-l(7-3 6)NH2或其鹽對該二價金屬及/或二價 〇 金屬鹽的莫耳比爲約1.5:1。 在一較佳具體例中,GLP-1 之類似物、 [Aib8’35]hGLP-l(7-3 6)NH2、或其鹽於醫藥組成物的濃度爲 約5%(重量/體積)以及胜肽對二價金屬及/或二價金屬鹽 的莫耳比爲大約5.4: 1。更佳爲[Aib8,35]hGLP-l(7-36)NH2 ' 或其鹽於該組成物的濃度爲約5%(重量/體積)以及該比爲 大約4.0: 1。又更佳爲[Aib8’35]hGLP-l (7-36)NH2或其鹽於 該組成物的濃度爲約10%(重量/體積)以及該比爲大約 ® 5.4:1。又進一步較佳爲[八丨1)8’35]11〇1^-1(7-36口112或其鹽於 該組成物的濃度爲約10%(重量/體積)以及該比爲大約 4.0:1。 較佳爲所提供之該二價金屬及/或二價金屬鹽爲氯化 鋅或乙酸鋅。更佳爲所提供之該乙酸鋅爲ZnAc;r2 H20。 在另一具體例中,所提供之該二價金屬及/或二價金屬 鹽爲氯化銅或乙酸銅。 在一具體例中,使用鹸向上調整該醫藥組成物的pH。 更佳爲該pH調整是使用NaOH進行。又更佳爲以NaOH調 -12- 201023877 整該醫藥組成物的pH,以致使用0.9% NaCl稀釋至大約*/2 初始濃度時,使用直接電位測定法得到大約5.0-5.5的pH 値。 本發明之較佳具體例之特徵爲一種醫藥組成物,其中 該組成物經調配以致GLP-1之胜肽類似物或其鹽,例如根 據式(I)之化合物或其鹽釋放於有其需要之受試者(例如哺 乳動物,以人類爲佳)來延長期間。較佳爲該化合物之該釋 放延長至少1小時,更佳爲至少4、6、12或24小時。又 ❹ 更佳爲該組成物經調配以致根據式(I)之化合物釋放於受試 者達至少36、48、60、72、84或96小時。又更佳爲該組 成物經調配以致根據式(I)之化合物釋放於受試者達至少大 約5、 6、 7、 8、 9、 10、 11、 12、 13或14天。又更佳爲該 組成物經調配以致根據式(I)之化合物釋放於受試者達至少 ' 大約2、3或4週。甚至更佳爲該組成物經調配以致根據式 (I)之化合物釋放於受試者達至少大約1、1.5、2或3個月 或更久。 © 在本發明之一態樣中,調節GLP-1胜肽類似物於該醫 藥組成物中之鹽含量可改進GLP-1胜肽類似物於醫藥組成 物的溶解度及穩定度,且進一步經由減少初始爆發而改善 活體內釋放的槪況。 在本發明此態樣中,用語“調節”意指經由調整鹽形式 之GLP-1類似物對非鹽形式之GLP-1類似物的莫耳比之鹽 含量的調整。 甚至更佳爲胜肽鹽於該醫藥組成物中是氫氯酸或乙酸 的鹽,或該式(1)之胜肽的氯化物或乙酸鹽。在該醫藥組成 -13- ‘201023877 物中,乙酸鹽或氯化物是以乙酸鹽或氯化物對該式(1)化合 物之最終莫耳比範圍從大約0.5:1至大約10:1存在。更佳 爲該比範圍從大約〇.8:1至大約9:1。甚至更佳爲該比爲大 約1:1至大約6:1。最佳爲該比爲大約3.0:1,特別是3.2:1。 在本發明此態樣中,乙酸鹽或氯化物對胜肽之莫耳比 意指乙酸鹽(CH3COO_)或氯化物(Cl_)於該醫藥組成物之莫 耳比例對胜肽於該醫藥組成物之莫耳比例。例如醫藥組成 物中3:1之莫耳比’是指比例上乙酸鹽的莫耳量是胜肽的3 Φ 倍。此爲化合物相較於其他之化學計量比。 在本發明此態樣中用語“大約”意指1 . 5 : 1之比± 1 0 %每 —目標値,因此預計比値包括包含例如1.35-1.65:0.85-1.15 之比値。 在本發明額外較佳態樣中,經由調節組成物的乙酸量 ' 來調整醫藥組成物pH。較佳爲該醫藥組成物的PH範圍是 從pH 3至pH 6。更佳爲該醫藥組成物之該PH範圍是從pH 3.5至5.5。最佳爲該醫藥組成物之該PH範圍是從pH 4.2 ❹至pH 4.6。 較佳爲酸化醫藥組成物,可經由添加乙酸來增加乙酸 量。 在一具體例中,該醫藥組成物之pH增加可經由調節 乙酸量,開始自具有低乙酸量或無乙酸量之GLP-1類似物 之胜肽鹽。 在較佳具體例中,經由調節乙酸或氯化物量之最終醫 藥組成物的pH調整,使能調節參數例如胜肽濃度、鋅濃 度、化學穩定度、物理穩定度及經由減少初始爆發之活體 -14- 201023877 內的釋放槪況。 在本發明一態樣中,Zn或Cu含量是固定的,經由調 節乙酸量控制pH。增加乙酸量顯示溶解度及物理穩定度的 改善,減少乙酸量顯示對pH增加作用以及對Cmax減少作 用。 在較佳具體例中,該醫藥組成物含有水性混合物、懸 浮液或溶液。 本發明也提供一種引起GLP-1激動劑作用之方法,該 〇 方法包括將配體(ligand)GLP-l (7-36)NH2 之受體(receptor) 與GLP-1類似物或其鹽直接或間接接觸。 在上述方法中,配體GLP-1(7-36)NH2之該受體是存在 於動物受試者體內,較佳爲靈長類,更佳爲人類。因此, 在此具體例中本發明提供一種於有其需要之受試者從 ' GLP-1受體引起激動劑作用之方法,其包括投與該受試者 本發明之組成物,其中該組成物含有有效量之GLP-1類似 物或其醫藥可接受鹽。 © 上述方法之較佳態樣中,該受試者爲痛苦於或處於危 險發展爲選自由第I型糖尿病、第II型糖尿病、妊娠糖尿 病、肥胖、食慾過盛、飽足感不足以及代謝失調所組群組 之疾病或症狀的人類。較佳爲該疾病爲第I型糖尿病或第 II型糖尿病。 上述方法之另一更佳態樣中,該受試者爲痛苦於或處 於危險發展爲選自由第I型糖尿病、第II型糖尿病、肥胖、 升糖激素瘤(glucagonomas)、呼吸道分泌失調' 關節炎、骨 質疏鬆、中樞神經系統疾病、血管再狹窄、神經退化性疾 -15- 201023877 病、腎衰竭、充血性心衰竭、腎病症候群、肝硬化、肺水 腫、高血壓之疾病、所欲爲減少食物攝取之失調、中樞神 經系統疾病或失調(例如透過神經元新生的調節,以及例如 帕金森氏症(Parkinson's Disease)、阿兹海默症(Alzheimer’s Disease)、亨丁 頓氏症(Huntington's Disease)、ALS、中風、 ADD 以及神經精神綜合症(neuropsychiatric syndromes))、 激躁性腸道症候群、心肌梗塞(例如降低與此有關的發病率 及/或死亡率)、中風、急性冠心症(例如以缺少Q-波爲特徵) 〇 心肌梗塞、手術後分解代謝變化、休眠的心肌或糖尿病性 心肌症、尿液鈉排泄不足、尿液鉀濃度過多、與毒性體液 過多有關之狀況或失調(例如腎衰竭、充血性心衰竭、腎病 症候群、肝硬化、肺水腫以及高血壓)、多囊性卵巢症候群、 呼吸窘迫、腎病變、左心室收縮性心臟衰竭(例如具異常左 ' 心室射出率)、胃腸失調如腹瀉、手術後傾倒症候群以及激 躁性腸道症候群(亦即透過抑制胃賣十二指腸運動)、重症 疾病多發性神經病變(CIPN)、全身性發炎反應症候群 ® (SIRS)、血脂異常、缺血後再灌注血流引起之器官組織傷 害、以及冠心病危險因子(CHDRF)症候群所組群組之疾病 的人類。 本發明之另一態樣中,本發明特徵爲一種於有其需要 之受試者轉換肝臟幹細胞/前驅細胞爲功能性胰細胞、預防 P-細胞惡化及刺激β-細胞增殖、抑制血漿血液的正腎上腺 素量、誘發心肌收縮反應及增加心臟收縮性、透過非營養 路徑改善營養(例如透過靜脈內、皮下、肌肉內、腹膜、或 其他注射或灌入路徑)、預處理受試者以進行內視鏡過程以 -16- 201023877 及調整三酸甘油酯量之方法,該方法包括對該受試者投與 含有有效量式(I)化合物或其醫藥可接受鹽之本發明調配 物。較佳爲該受試者是哺乳類動物,更佳爲靈長類,又更 佳爲人類》 【實施方式】 利用於作爲本發明胜肽鹽之較佳GLP-1胜肽在文中以 下列形式表示,例如(Aib8,35)hGLP-l(7-36)NH2,置於第一組 圓括號中的天然序列具有經取代胺基酸(例如Aib8’35表示以 ® Aib取代hGLP-1中的Ala8及Gly35)。Aib爲α-胺異丁酸的 縮寫。縮寫GLP-1意指類胰高血糖激素胜肽-1 ; hGLP-1意 ,指人類類胰高血糖激素胜肽-1。第二組圓括號中的數字是指 存在於該胜肽之胺基酸號碼(例如hGLP-l(7-36)是指人類 GLP-1之胜肽序列的胺基酸7至36)。hGLP-1 (7-3 7)之序列 列於 Mojsov, S.,Int. J. Peptide Protein Res,. 40,1992, pp. 333-342。 hGLP-l(7-36)NH2中之命名“NH2”代表該胜肽的C·末端經醯 胺化。hGLP-1 (7-3 6)意指C-末端是游離酸。除非其他指示, ® hGLP-l(7-38)中殘基位置37及38分別爲Gly及Arg。 用於本發明之特佳GLP-1胜肽類似物是於醫藥可接受 鹽形式。此等鹽類之例包括但不限爲與有機酸類(例如乙 酸、乳酸、順丁烯二酸類、檸檬酸、蘋果酸、抗壞血酸、琥 珀酸、苯甲酸、甲基磺酸、甲苯磺酸或雙羥萘酸(pamoic acid))、無機酸類(例如氫氯酸、硫酸或磷酸)以及共聚酸類(例 如單寧酸、羧甲基纖維素、聚乳酸、聚乙醇酸、或聚乳酸-乙醇酸之共聚物)所形成者。製造本發明胜肽鹽之典型方法 爲技藝熟知且能由鹽交換之標準方法完成。因此,本發明胜 -17- 201023877 狀之TFA鹽(該TFA鹽產生自使用製備型HPLC,以含TFA 之緩衝溶液洗提之胜肽的純化)可被轉換爲另一種鹽,例如 經由溶解該胜肽於小量0.25 N乙酸水溶液而轉換爲乙酸 鹽。所得溶液施用於半製備型HPLC管柱(Zorbax,300 SB, C-8)。管柱經以(1) 0.1N乙酸銨水溶液洗提0.5小時、(2) 0.25N乙酸水溶液洗提0.5小時以及(3)以4 ml/分鐘之流速 (溶液A爲0.2 5N乙酸水溶液;溶液B爲0.25N乙酸於乙腈/ 水,80:20)之線性梯度(20%至100%的溶液B經歷30分鐘)。 〇 收即含有該胜肽之分層並凍乾至乾燥。 如熟悉該項技藝者所熟知,GLP-1的已知及可能用途是 多樣且眾多的(參閱 Todd,J.F.,et al.,Clinical Science, 1998,95,ρρ· 325-329; and Todd, J.F. et al., European Journal of Clinical Investigation, 1997, 27, pp.533-536)。因此投與本發明之化合物以引起激動劑 • 作用之目的,能如GLP-1本身一樣具有相同效果及用途。這 些不同的GLP-1用途可摘述如下:治療第I型糖尿病、第II 型糖尿病、肥胖、升糖激素瘤(glucagonomas)、呼吸道分泌 ® 失調、代謝失調、關節炎、骨質疏鬆、中樞神經系統疾病、 血管再狹窄、神經退化性疾病、腎衰竭、充血性心衰竭、腎 病症候群、肝硬化、肺水腫、高血壓、所欲爲減少食物攝取 之失調、以及各種其他及文中討論之狀況及失調。因此’本 發明包括文中定義之含有式(I)化合物爲活性成分之醫藥組 成物於其範圍內。 本發明調配物中的活性成分劑量可經變化’但活性成分 的量必須爲可獲得之適當量。選擇之劑量隨所欲之治療效 果、投與路徑、及治療持續期間而異’且通常由主治醫師決 -18 - 201023877 定。通常本發明活性之有效劑量在lxl(T7至200 mg/kg/天的 範圍內,較佳爲lxl (Γ4至1〇〇 mg/kg/天,其可以單劑或分爲 多劑投與。 本發明之調配物較佳爲非經腸投與,例如肌肉內、腹膜 內、靜脈內、皮下等等。 用於非經腸投與之根據本發明之製備物包括無菌水性 或非水性溶液、懸浮液、凝膠或乳化液,但可達到所欲在活 體內釋放槪況》非水性溶劑或運載劑(vehicles)之實例爲聚 φ 丙二醇、聚乙二醇、植物油(例如橄欖油及玉米油)、動物膠 以及可注射有機酯類如油酸乙酯。此等劑型亦可含有佐劑, 例如防腐劑、保濕劑、乳化劑以及分散劑。他們可經由例如 透過攔住細菌之濾器過濾、加入殺菌劑於組成物中、放射線 照射組成物或加熱組成物來滅菌。他們亦可被製造爲能溶解 ' 於無菌水或其他使用前可立即溶解之無菌注射媒介之無菌 固體組成物形式。 胖肽之合成 © 可用於實施本發明之胜肽能經由標準固相胜肽合成來 製備。例如參閱 Stewart,J.M., et al., Solid Phase Synthesis (Pierce Chemical Co., 2d ed. 1984)。 下列實施例說明能用於製造可有利實施本發明之胜肽 的合成方法,該合成方法爲熟悉該項技藝者所熟知。其他方 法亦爲熟悉該項技藝者所知。提供實施例僅爲舉例說明且不 因此於任何方面限制本發明之範圍。 該胜肽,例如GLP-1類似物能由熟悉該項技藝者所知 的不同合成法獲得,其可包括胜肽的最終沉澱、冷凍-乾燥 -19- 201023877 過程、真空乾燥或技藝已知的其他乾燥過程。離子交換層析 法、緩衝液之滲透交換以及透析過濾(difiltration)應爲本發 明純化或篩選不同鹽形式胜肽之適用方法。Deacon et al., Diabetes, 44: 1126-1131 (1995).). There is therefore a need for a glp-1 formulation that is easier and more reliable to manufacture' to more easily and reproducibly administer patients and to provide reduced initial plasma concentrations to reduce or eliminate undesirable side effects. SUMMARY OF THE INVENTION The present invention is described in the following paragraphs and claims. Accordingly, the present invention provides a pharmaceutical composition comprising a GLP-ι analog. Particularly preferred is a GLP-1 analogue according to formula (I) or a pharmaceutically acceptable salt thereof: (Aib8 > 35) hGLP-1 (7-36) NH2 (I) wherein the formulation of the composition provides excellent manufacture, Investment, drug power 201023877 and pharmacodynamics, as well as reducing negative side effects. Preferably, the pharmaceutical composition of the present invention is not composed of a transparent aqueous ZnCl2 solution of pH 4, wherein the [Aib8,35]hGLP-1 (7-36)NH2 is present at a concentration of 4 mg/ml and the ZnCl2 is 0.5 mg. The concentration of /ml is present. A preferred embodiment of the present invention provides a pharmaceutical composition having a drug release improving pro file, preferably having a reduced initial burst. The present invention also provides a pharmaceutical composition comprising a compound of the formula (I) and having an extended action period. Ο In a preferred feature, the present invention also provides a pharmaceutical composition which precipitates in situ to precipitate in situ at physiological pH for sustained release of the drug. . A further embodiment of the invention provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent. Preferably, the carrier or diluent contains water. In a preferred feature, the invention provides a pharmaceutical composition comprising a compound prepared as a salt of a peptide or a mixture of a peptide and a salt thereof, or a GLP-1 ® peptide analog. Preferably, the salt of the GLP-1 peptide analog in the pharmaceutical composition is a pharmaceutically acceptable salt selected from the group consisting of organic acids such as acetic acid, lactic acid, malic acid, ascorbic acid, succinic acid, benzoic acid, citric acid, Methanesulfonic acid or toluenesulfonic acid; or a pharmaceutically acceptable salt of a mineral acid such as hydrochloric acid 'hydrobromic acid, hydroiodic acid, sulfuric acid or phosphoric acid. Pharmaceutically acceptable salts of strong acids, such as hydrochloric acid, are particularly preferred. A strong acid is defined as an acid having a ρ ΚΑ less than 4.5. Further preferred salts in the pharmaceutical composition are salts of organic acids such as acetic acid or trifluoroacetic acid, lactic acid, malic acid, ascorbic acid, succinic acid, benzoic acid 201023877 or salts of citric acid. In a preferred embodiment, the solubility and pH of the pharmaceutical composition can be extended by adjusting the GLP-1 analog to the salt form to the molar ratio of the GLP-1 to the salt form. The initial spike in the concentration of GLP-1. In a preferred embodiment, the pharmaceutical composition further contains divalent to reduce the water solubility of the composition and thereby prolong the release condition and an initial burst or spike in plasma concentration. Preferred divalent metals include beryllium copper. Salt forms of divalent metals are particularly preferred, including but not limited to divalent metals and acetates. Preferably, CuAc2, CuCl2, ZnAc2 and/or ZnCl2 are divalent metals and/or divalent metal salts present in the pharmaceutical composition at a concentration of from about 0.5 mg/ml to about 50 mg/m. Even more preferably, the metal and/or divalent metal salt is present in the pharmaceutical composition at a concentration of from < 0.01 mg/ml to about 0.50 mg/ml. More preferably, the pharmaceutical composition is a diluent, wherein the diluent contains a pharmaceutically acceptable aqueous solution. Rarely contains sterile water. In a further embodiment, the pharmaceutical composition further comprises a di- and/or divalent metal salt, wherein the GLP-1 class has a molar ratio to the divalent metal and/or divalent metal salt in the pharmaceutical composition. The range is from about 6 to about 1:1. Preferably, the ratio ranges from about 5.5:1 to about 1:1. The ratio ranges from about 5.4:1 to about 1.5:1. Even more preferably it is about 5.4:1, 4.0:1 or 1.5:1. Preferably, the ratio is about 1. The term "about" in this context means that the ratio is 1.5: 1 ± 10% per 値, so it is preferred that the ratio includes, for example, 1.35 - 1.65: 0.85-1.15, preferably The pharmaceutical composition contains an aqueous mixture, a suspension, and a release similar to a metal to reduce zinc and chlorine. In the case of a divalent valence from an extract containing a valence of gold: 1 to better ratio 5: 卜 target ratio. Or a solution of -10-201023877, wherein the analog of GLP-1, the compound of formula (I) or a salt thereof is present at a concentration of from about 0.5% to about 30% (w/w). More preferably, the concentration of the GLP-1 analogue and/or its salt in the aqueous mixture, suspension or solution is about 1%, 2%, 3%, 4%, 5%, 6%, 7% '8% , 9% ' 10%, 11%, 12%, 13%, 14% ' 15%, 16% ' 17%, 1 8 % ' 1 9 % ' 2 0 % > 21%' 22% ' 23%' 2 4%, 25% > 26%, 27%, 28%, 29% or 30% (w/w). More preferably, the concentration of the GLP-1 analogue and/or its salt in the aqueous solution is about 1%, 2%, 3% '4%, 5%, 6% '7%, 8%, 9% '10% , 11%, 14%, φ 15% ' 16%' 1 9 %, 2 0 %, 2 1 %, 2 2 %, 2 3 %, 2 4 %, 2 5 %, 2 6 %, 29% or 3 0% (w/w). Still more preferably, the concentration of the GLP-1 analogue and/or its salt analog in the aqueous solution is about 1%, 2%, 3%, 4%, 5%, 6%, 9% '10%' 11 % ' 22% ' 23%, 24%, 2 5 % or 26% (w/w) » and even more preferably the concentration of the analog of GLP-1 and/or its salt in the aqueous solution is about 1%, 2%, 3%, 4%, 5%, 6%, 10%, 2 2%, 23%, 24%, 25% or 26% (w/w). Still more preferably, the concentration of the analog of GLP-1 and/or its salt in the aqueous solution is about 1%, 2%, 5%, 10%, 23% or 25% (w/w). "About" means the following meaning: for a concentration of about 0.5% to about 4%, the target 値± 〇. 5 % is the desired range (for example, 〇·5 % to 1.5% is about 1%); for the target concentration 5% and higher, 20% of the target 是 is the desired range (for example, 8% to 12% is about 10%). Preferably, [Aib8,35]hGLP-1(7-36)NH2, an analog of GLP-1, or a salt thereof, is at a concentration of about 1% (weight/volume) of the pharmaceutical composition and [Aib8'35]hGLP The molar ratio of -1(7-36)NH2 to the divalent metal and/or divalent metal salt is about 1.5:1. More preferably, [Aib8,35]hGLP-1 (7-36)NH2 or a salt thereof is present in the pharmaceutical composition at a concentration of about 2% (weight/volume) and -11 · 201023877 [Aib8'35]hGLP-l ( 7-3 6) The molar ratio of NH2 or its salt to the divalent metal and/or divalent gold cerium salt is about 1.5:1. More preferably, [Aib8'35]hGLP-1 (7-3 6)NH2 or a salt thereof is present in the pharmaceutical composition at a concentration of about 10% (w/v) and [Aib8,35]hGLP-1 (7- 36) The molar ratio of NH2 or its salt to the divalent metal and/or divalent metal salt is about K5:; Most preferably [Aib8'35]hGLP-l(7-3 6)NH2 or a salt thereof at a concentration of the pharmaceutical composition of about 23% or about 25% (weight/volume) and [Aib8'35]hGLP-l (7-3 6) The molar ratio of NH2 or its salt to the divalent metal and/or divalent europium metal salt is about 1.5:1. In a preferred embodiment, the analog of GLP-1, [Aib8'35]hGLP-1(7-3 6)NH2, or a salt thereof, is at a concentration of about 5% (weight/volume) of the pharmaceutical composition and The molar ratio of the peptide to the divalent metal and/or divalent metal salt is about 5.4:1. More preferably, [Aib8,35]hGLP-1 (7-36)NH2' or a salt thereof is present in the composition at a concentration of about 5% (weight/volume) and the ratio is about 4.0:1. Still more preferably [Aib8'35]hGLP-l(7-36)NH2 or a salt thereof is present in the composition at a concentration of about 10% (weight/volume) and the ratio is about 5.4:1. Still further preferably [eight 丨 1) 8'35] 11 〇 1 ^ -1 (the concentration of 7-36 mouth 112 or its salt at the composition is about 10% (weight/volume) and the ratio is about 4.0 Preferably, the divalent metal and/or divalent metal salt provided is zinc chloride or zinc acetate. More preferably, the zinc acetate provided is ZnAc; r2 H20. In another embodiment, The divalent metal and/or divalent metal salt provided is copper chloride or copper acetate. In one embodiment, the pH of the pharmaceutical composition is adjusted upward using hydrazine. More preferably, the pH adjustment is carried out using NaOH. More preferably, the pH of the pharmaceutical composition is adjusted by NaOH-12-201023877, so that when diluted with 0.9% NaCl to an initial concentration of about */2, a direct potential measurement is used to obtain a pH of about 5.0-5.5. A preferred embodiment is characterized by a pharmaceutical composition wherein the composition is formulated such that the peptide analog of GLP-1 or a salt thereof, for example, a compound according to formula (I) or a salt thereof, is released from the need thereof The tester (eg, a mammal, preferably a human) is extended for a period of time. Preferably, the release of the compound is extended by at least 1 More preferably, it is at least 4, 6, 12 or 24 hours. Further preferably, the composition is formulated such that the compound according to formula (I) is released to the subject for at least 36, 48, 60, 72, 84 or More preferably, the composition is formulated such that the compound according to formula (I) is released to the subject for at least about 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days. More preferably, the composition is formulated such that the compound according to formula (I) is released to the subject for at least about 2, 3 or 4 weeks. Even more preferably the composition is formulated such that the compound according to formula (I) is released The subject is at least about 1, 1.5, 2 or 3 months or longer. © In one aspect of the invention, modulating the salt content of the GLP-1 peptide analog in the pharmaceutical composition improves GLP -1 solubility and stability of the peptide analog in the pharmaceutical composition, and further improving the release of the in vivo by reducing the initial burst. In this aspect of the invention, the term "modulating" means via adjusting the salt form Modification of the molar ratio of the GLP-1 analogue to the molar ratio of the non-salt form of the GLP-1 analogue. More preferably, the peptide salt is a salt of hydrochloric acid or acetic acid in the pharmaceutical composition, or a chloride or acetate of the peptide of the formula (1). In the pharmaceutical composition-13- '201023877, acetic acid The salt or chloride is present in the final molar ratio of the compound of formula (1) from acetate or chloride in a range from about 0.5:1 to about 10:1. More preferably, the ratio ranges from about 〇8:1 to Approximately 9: 1. Even more preferably the ratio is from about 1:1 to about 6: 1. Preferably, the ratio is about 3.0:1, especially 3.2: 1. In this aspect of the invention, acetate or The molar ratio of chloride to peptide means the molar ratio of acetate (CH3COO_) or chloride (Cl_) to the pharmaceutical composition to the molar ratio of the peptide to the pharmaceutical composition. For example, a 3:1 molar ratio in a pharmaceutical composition means that the molar amount of acetate is 3 Φ times that of the peptide. This is the stoichiometric ratio of the compound compared to the others. The phrase "about" in this aspect of the invention means a ratio of 1.5:1 to ±10% per target 値, so the ratio 预计 includes a ratio of, for example, 1.35 - 1.65: 0.85-1.15. In an additional preferred aspect of the invention, the pH of the pharmaceutical composition is adjusted by adjusting the amount of acetic acid of the composition. Preferably, the pharmaceutical composition has a pH ranging from pH 3 to pH 6. More preferably, the pH of the pharmaceutical composition ranges from pH 3.5 to 5.5. The pH range most preferably for the pharmaceutical composition is from pH 4.2 to pH 4.6. Preferably, the medicinal composition is acidified, and the amount of acetic acid can be increased by adding acetic acid. In one embodiment, the pH increase of the pharmaceutical composition can be initiated from a peptide salt of a GLP-1 analog having a low or no acetic acid amount by adjusting the amount of acetic acid. In a preferred embodiment, the pH adjustment of the final pharmaceutical composition is adjusted by adjusting the amount of acetic acid or chloride to enable adjustment parameters such as peptide concentration, zinc concentration, chemical stability, physical stability, and living organisms via reduced initial bursts - Release conditions within 14-201023877. In one aspect of the invention, the Zn or Cu content is fixed and the pH is controlled by adjusting the amount of acetic acid. Increasing the amount of acetic acid showed an improvement in solubility and physical stability, and a decrease in the amount of acetic acid showed an effect on pH increase and a decrease in Cmax. In a preferred embodiment, the pharmaceutical composition contains an aqueous mixture, suspension or solution. The present invention also provides a method of causing a GLP-1 agonist comprising directing a receptor GLP-1 (7-36) NH2 receptor with a GLP-1 analogue or a salt thereof Or indirect contact. In the above method, the receptor of the ligand GLP-1(7-36)NH2 is present in an animal subject, preferably a primate, more preferably a human. Accordingly, in this particular embodiment the invention provides a method of eliciting an agonist effect from a 'GLP-1 receptor in a subject in need thereof, comprising administering to the subject a composition of the invention, wherein the composition The article contains an effective amount of a GLP-1 analog or a pharmaceutically acceptable salt thereof. © In a preferred aspect of the above method, the subject is suffering from or at risk of developing from type I diabetes, type II diabetes, gestational diabetes, obesity, excessive appetite, insufficient satiety, and metabolic disorders Humans with the disease or symptoms of the group. Preferably, the disease is Type I diabetes or Type II diabetes. In another preferred aspect of the above method, the subject is suffering from or at risk of developing from a type I diabetes, type II diabetes, obesity, glucagonomas, respiratory secretion disorders Inflammation, osteoporosis, central nervous system diseases, vascular restenosis, neurodegenerative diseases-15-201023877 Disease, renal failure, congestive heart failure, renal syndrome, cirrhosis, pulmonary edema, high blood pressure disease, desire to reduce Deregulation of food intake, central nervous system diseases or disorders (eg, through regulation of neuronal regeneration, and, for example, Parkinson's Disease, Alzheimer's Disease, Huntington's Disease) , ALS, stroke, ADD, and neuropsychiatric syndromes, irritable bowel syndrome, myocardial infarction (eg, reducing morbidity and/or mortality associated with this), stroke, acute coronary heart disease (eg, Characterized by a lack of Q-waves) myocardial infarction, postoperative catabolic changes, dormant myocardium or diabetic cardiomyopathy Insufficient urinary sodium excretion, excessive potassium in urine, conditions or disorders associated with excessive toxic body fluids (eg renal failure, congestive heart failure, renal syndrome, cirrhosis, pulmonary edema, and hypertension), polycystic ovarian syndrome , respiratory distress, nephropathy, left ventricular systolic heart failure (eg, abnormal left ventricular ejection rate), gastrointestinal disorders such as diarrhea, post-operative dumping syndrome, and irritable bowel syndrome (ie, by suppressing stomach sales of duodenal movement) , severe disease neuropathy (CIPN), systemic inflammatory response syndrome® (SIRS), dyslipidemia, organ damage caused by post-ischemic reperfusion, and coronary heart disease risk factor (CHDRF) syndrome group The disease of humans. In another aspect of the invention, the invention features a subject in need thereof to switch liver stem cells/precursor cells into functional pancreatic cells, prevent P-cell deterioration and stimulate β-cell proliferation, and inhibit plasma blood. Pre-adrenergic dose, induces myocardial contractile response and increases cardiac contractility, improves nutrition through non-nutrient pathways (eg, through intravenous, subcutaneous, intramuscular, peritoneal, or other injection or infusion routes), pre-treating subjects for The endoscopic procedure is performed by the method of -16-201023877 and adjusting the amount of triglyceride, the method comprising administering to the subject a formulation of the invention comprising an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof. Preferably, the subject is a mammal, more preferably a primate, and more preferably a human. [Embodiment] The preferred GLP-1 peptide used as a peptide salt of the present invention is represented by the following form in the text. For example, (Aib8, 35) hGLP-1 (7-36) NH2, the native sequence placed in the first set of parentheses has a substituted amino acid (eg, Aib8'35 indicates that Ala8 in hGLP-1 is replaced by ® Aib And Gly35). Aib is an abbreviation for α-amine isobutyric acid. The abbreviation GLP-1 means the pancreatic glucagon hormone peptide-1; hGLP-1 means human leukemia hormone glycopeptide-1. The numbers in the second set of parentheses refer to the amino acid number present in the peptide (e.g., hGLP-1 (7-36) refers to the amino acid 7 to 36 of the peptide sequence of human GLP-1). The sequence of hGLP-1 (7-3 7) is listed in Mojsov, S., Int. J. Peptide Protein Res,. 40, 1992, pp. 333-342. The designation "NH2" in hGLP-1 (7-36)NH2 represents the guanidine amination of the C-terminus of the peptide. hGLP-1 (7-3 6) means that the C-terminus is a free acid. Unless otherwise indicated, residues 37 and 38 in ® hGLP-1 (7-38) are Gly and Arg, respectively. A particularly preferred GLP-1 peptide analog for use in the present invention is in the form of a pharmaceutically acceptable salt. Examples of such salts include, but are not limited to, organic acids (eg, acetic acid, lactic acid, maleic acid, citric acid, malic acid, ascorbic acid, succinic acid, benzoic acid, methanesulfonic acid, toluenesulfonic acid or double Pamoic acid), inorganic acids (such as hydrochloric acid, sulfuric acid or phosphoric acid) and copolymeric acids (such as tannic acid, carboxymethyl cellulose, polylactic acid, polyglycolic acid, or polylactic acid-glycolic acid) Copolymer) formed by. Typical methods for making the peptide salts of the present invention are well known in the art and can be accomplished by standard methods of salt exchange. Thus, the present invention is a TFA salt of the form -17-201023877 (this TFA salt is produced from the use of preparative HPLC, purification of the peptide eluted with a TFA-containing buffer solution) can be converted to another salt, for example via dissolution The peptide is converted to acetate in a small amount of 0.25 N aqueous acetic acid. The resulting solution was applied to a semi-preparative HPLC column (Zorbax, 300 SB, C-8). The column was eluted with (1) 0.1 N ammonium acetate aqueous solution for 0.5 hour, (2) 0.25 N aqueous acetic acid solution for 0.5 hour, and (3) at a flow rate of 4 ml/min (solution A was 0.25 N aqueous acetic acid; solution B) A linear gradient of 0.25 N acetic acid in acetonitrile/water, 80:20) (20% to 100% solution B for 30 minutes). The sputum contains the layer of the peptide and is lyophilized to dryness. As is well known to those skilled in the art, the known and possible uses of GLP-1 are diverse and numerous (see Todd, JF, et al., Clinical Science, 1998, 95, ρρ·325-329; and Todd, JF). Et al., European Journal of Clinical Investigation, 1997, 27, pp. 533-536). Therefore, the administration of the compound of the present invention for the purpose of causing agonist action can have the same effect and use as GLP-1 itself. These different GLP-1 uses can be summarized as follows: treatment of type 1 diabetes, type 2 diabetes, obesity, glucagonomas, respiratory secretion disorders, metabolic disorders, arthritis, osteoporosis, central nervous system Disease, vascular restenosis, neurodegenerative diseases, renal failure, congestive heart failure, renal syndrome, cirrhosis, pulmonary edema, high blood pressure, dysregulation to reduce food intake, and various other conditions and disorders discussed in the text . Thus, the invention includes within its scope a pharmaceutical composition as defined herein containing a compound of formula (I) as the active ingredient. The dosage of the active ingredient in the formulations of the invention may be varied' but the amount of active ingredient must be an appropriate amount to obtain. The dosage chosen will vary depending on the desired therapeutic effect, route of administration, and duration of treatment' and is usually determined by the attending physician -18 - 201023877. Generally, an effective dose of the activity of the present invention is in the range of 1 x 1 (T7 to 200 mg/kg/day, preferably 1 x 1 (Γ4 to 1 mg/kg/day, which may be administered in a single dose or in multiple doses). Formulations of the invention are preferably administered parenterally, for example intramuscularly, intraperitoneally, intravenously, subcutaneously, etc. The preparations according to the invention for parenteral administration comprise sterile aqueous or nonaqueous solutions, Suspensions, gels or emulsions, but can achieve the desired release in vivo. Examples of non-aqueous solvents or vehicles are poly-propylene glycol, polyethylene glycol, vegetable oils (such as olive oil and corn oil). ), animal glues and injectable organic esters such as ethyl oleate. These dosage forms may also contain adjuvants such as preservatives, humectants, emulsifiers and dispersing agents which can be filtered and added, for example, through a filter that blocks bacteria. The bactericide is sterilized in the composition, the radiation illuminating composition or the heating composition. They can also be prepared as a sterile solid composition which can be dissolved in sterile water or other sterile injectable medium which can be dissolved immediately before use. Synthesis of the peptides useful in the practice of the present invention can be prepared via standard solid phase peptide synthesis. See, for example, Stewart, JM, et al., Solid Phase Synthesis (Pierce Chemical Co., 2d ed. 1984). Descriptions of synthetic methods that can be used to make peptides that are advantageous for practicing the present invention are well known to those skilled in the art. Other methods are also known to those skilled in the art. Examples are provided by way of illustration only and not The scope of the invention is therefore limited in any respect. The peptide, such as a GLP-1 analog, can be obtained by various synthetic methods known to those skilled in the art, which can include final precipitation of the peptide, freeze-drying-19- 201023877 Process, vacuum drying or other drying processes known in the art. Ion exchange chromatography, osmotic exchange of buffers, and difiltration should be suitable methods for purifying or screening peptides of different salt forms in the present invention.

Boc-/Ala-OH、Boc-D-Arg(Tos)-OH 及 Boc-D-Asp(OcHex) 是購買自 Nova Biochem,San Diego, California。Boc-Aun-OH 購買自 Bachem,King of Prussia,PA。Boc-Ava-OH 及 Boc-Ado-OH 購買自 Chem-Impex International, Wood Dale, IL。Boc-2Nal-OH 購買自 Synthetech,Inc. Albany, OR。 〇 用於文中之其他縮寫的全名如下:Boc爲第三丁氧羰 基,HF爲氟化氫,Fm爲甲醯基,Xan爲黃嘌呤酸基 (xanthyl)’Bzl爲苄基,Tos爲甲苯磺醯基,DNP爲2,4-二 硝基苯基,DMF爲二甲基甲醯胺,DCM爲二氯甲烷,HBTU 爲2-(1Η-苯并三唑-1-基)-1,1,3,3-四甲基脲六氟磷酸酯, ' DIEA爲二異丙基乙基胺,h〇Ac爲乙酸,TFA爲三氟乙酸, 2C1Z爲2-氯苄基氧羰基,2BrZ爲2·溴苄基氧羰基,OcHex 爲〇-環己基,Fmoc爲9-莽基甲氧基羰基,HOBt爲N-羥基 ® 苯并三唑;PAM樹脂爲4-羥基甲基苯基乙醯胺甲基樹脂; Tris爲三(羥甲基)胺基甲烷;以及Bis_Tris爲二(2·羥乙基) 胺基-三(羥甲基)甲烷(亦即2-二(2-羥乙基)胺基-2-(羥甲 基)-1,3-丙二醇)。用語“鹵基”或“鹵素”包括氟、氯、溴及碘。 除非其他定義,文中所用之全部技術及科學用語具有相 同E義如本本發明所屬領域具有通常知識者共同瞭解者。文 中提及之所有刊物、專利申請案、專利及其他參考文獻也并 入本文參考。 實施例1 -20- .201023877 (Aib8’35)hGLP-l(7-36)NH2 對於(Aib8’35)hGLP-l(7-36)NH2的詳細合成步驟已提供 於國際專利公開第WO 00/343 3 1號(PCT/EP99/09660) ’其內 容全部倂入本文中。簡言之,將Applied Biosystems(Foster City,CA)型號43 0A胜肽合成儀合成之化合物修飾以促進 Boc-化學固相胜肽合成。參閱 Schnolzer,et al_,Int. J. Peptide Protein Res.,40:180 (1992)。使用含 0.91 mmol/g 取代之 4-甲基二苯甲 基胺(MBHA)樹脂(Peninsula,Belmont, CA)。使用含下列側 _ 鏈保護的 Boc 胺基酸(Bachem,CA,Torrance,CA; Nova Biochem., LaJolla, CA) : Boc-Ala-OH ' Boc-Arg(Tos)-OH ' Boc-Asp(OcHex)-OH ' Boc-Tyr(2BrZ)-OH、Boc-His(DNP)-OH ' Boc-Val-OH、Boc-Leu-OH、 Boc-Gly-OH 、 Boc-Gln-OH 、 Boc-Ile-OH 、 Boc-Lys(2ClZ)-OH > Boc-Thr(Bzl)-OH、Boc-Ser(Bzl)-OH、Boc-Phe-OH、Boc-Aib-OH、 Boc-Glu(OcHex)-OH 以及 Boc-Trp(Fm)-OH。該 Boc 基經由處以 100% TFA 1 分鐘兩次移除。以 HBTU(2.0 mmol)及 DIEA(1.0 ml) 於4 ml的DMF預先活化Boc胺基酸(2.5 mmol)並偶合,而 ❹ 未先中和胜肽-樹脂 TFA鹽。偶合時間爲 5分鐘,除 Boc-Aib-OH殘基及下列殘基以外,Boc-Lys(2ClZ)-OH及 B〇c-His(DNP)-OH的偶合時間爲2小時》 胜肽鏈組合終了時,樹脂處以20%锍基乙醇/10%DIEA 於DMF之溶液30分鐘2次以移除His側鏈上的DNP基。然 後處以100%TFA 2分鐘2次以移除N-末端Boc基。以 10%DIEA於DMF(1分鐘1次)中和胜肽·樹脂後,處以15% 乙醇胺/15%水/70%DMF之溶液30分鐘2次以移除Trp側鏈 上的甲醯基。以DMF及DCM清洗胜肽-樹脂並於減壓下乾 -21 - 201023877 燥。經由在0°c攪拌胜肽-樹脂於10 ml含1 ml苯甲醚及二 硫蘇糖醇(24 mg)之HF達75分鐘做最後切割。經由大量氮 移除HF。以乙醚(6x10 ml)清洗殘基並以4N HOAc(6 X 10 ml) 萃取。 使用逆相 VYDAC® Cis 管柱(Nest Group, Southborough, ΜΑ)以逆相製備型高壓液相層析法(HP LC)純化水性萃取物 中之胜肽混合物。以線性梯度(2 0 %至5 0 %的溶液B經1 0 5 分鐘)以10 ml/分鐘的流速(溶液A =含有0.1% TFA的水;溶 〇 液B =含有0.1% TFA的乙腈)洗提管柱。收集分層並於分析 型HPLC檢查。合倂含有純化產物者並凍乾至乾燥。在此化 合物之一合成實施例中,得到135 mg的白色固體。根據分 析型HPLC分析,純度爲98.6%。電噴霧質譜儀(MS(ES))S 分析給予分子量3 3 3 9.7(與計算之分子量3 3 3 9.7 —致)。 實施例2Boc-/Ala-OH, Boc-D-Arg(Tos)-OH and Boc-D-Asp (OcHex) were purchased from Nova Biochem, San Diego, California. Boc-Aun-OH was purchased from Bachem, King of Prussia, PA. Boc-Ava-OH and Boc-Ado-OH were purchased from Chem-Impex International, Wood Dale, IL. Boc-2Nal-OH was purchased from Synthetech, Inc. Albany, OR. The full names of other abbreviations used in the text are as follows: Boc is a third butoxycarbonyl group, HF is hydrogen fluoride, Fm is a formazan group, Xan is xanthyl 'Bzl is a benzyl group, and Tos is toluene sulfonate. Base, DNP is 2,4-dinitrophenyl, DMF is dimethylformamide, DCM is dichloromethane, and HBTU is 2-(1Η-benzotriazol-1-yl)-1,1. 3,3-Tetramethylurea hexafluorophosphate, 'DIEA is diisopropylethylamine, h〇Ac is acetic acid, TFA is trifluoroacetic acid, 2C1Z is 2-chlorobenzyloxycarbonyl, 2BrZ is 2· Bromobenzyloxycarbonyl, OcHex is 〇-cyclohexyl, Fmoc is 9-fluorenylmethoxycarbonyl, HOBt is N-hydroxy® benzotriazole; PAM resin is 4-hydroxymethylphenylacetamidomethyl Resin; Tris is tris(hydroxymethyl)aminomethane; and Bis_Tris is bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (ie 2-di(2-hydroxyethyl)amino group -2-(hydroxymethyl)-1,3-propanediol). The term "halo" or "halogen" includes fluoro, chloro, bromo and iodo. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents and other references mentioned herein are also incorporated herein by reference. Example 1 -20- .201023877 (Aib8'35) hGLP-1 (7-36) NH2 Detailed synthesis steps for (Aib8'35) hGLP-1 (7-36) NH2 have been provided in International Patent Publication No. WO 00 /343 3 No. 1 (PCT/EP99/09660) 'The contents of which are incorporated herein. Briefly, compounds synthesized by the Applied Biosystems (Foster City, CA) Model 43A peptide synthesizer were modified to facilitate Boc-chemical solid phase peptide synthesis. See Schnolzer, et al., Int. J. Peptide Protein Res., 40:180 (1992). A 4-methyldiphenylmethylamine (MBHA) resin (Peninsula, Belmont, CA) containing 0.91 mmol/g was used. Use Boc amino acid with the following side-chain protection (Bachem, CA, Torrance, CA; Nova Biochem., LaJolla, CA): Boc-Ala-OH ' Boc-Arg(Tos)-OH ' Boc-Asp (OcHex )-OH ' Boc-Tyr(2BrZ)-OH, Boc-His(DNP)-OH ' Boc-Val-OH, Boc-Leu-OH, Boc-Gly-OH, Boc-Gln-OH, Boc-Ile- OH , Boc-Lys(2ClZ)-OH > Boc-Thr(Bzl)-OH, Boc-Ser(Bzl)-OH, Boc-Phe-OH, Boc-Aib-OH, Boc-Glu(OcHex)-OH And Boc-Trp(Fm)-OH. The Boc base was removed twice by 100% TFA for 1 minute. Boc amino acid (2.5 mmol) was pre-activated with 4 ml of DMF in HBTU (2.0 mmol) and DIEA (1.0 ml), and the peptide-resin TFA salt was not neutralized first. The coupling time was 5 minutes, except for the Boc-Aib-OH residue and the following residues, the coupling time of Boc-Lys(2ClZ)-OH and B〇c-His(DNP)-OH was 2 hours. At the end of the time, the resin was treated with 20% mercaptoethanol/10% DIEA in DMF for 30 minutes to remove the DNP group on the His side chain. The N-terminal Boc group was then removed 2 times with 100% TFA for 2 minutes. After neutralizing the peptide/resin with 10% DIEA in DMF (1 minute), the solution of 15% ethanolamine/15% water/70% DMF was applied twice for 30 minutes to remove the formazan group on the Trp side chain. The peptide-resin was washed with DMF and DCM and dried under reduced pressure -21 - 201023877. The final cleavage was carried out by stirring the peptide-resin at 10 °C in 10 ml of HF containing 1 ml of anisole and dithiothreitol (24 mg) for 75 minutes. The HF is removed via a large amount of nitrogen. The residue was washed with diethyl ether (6×10 ml) and extracted with 4N HOAc (6 X 10 ml). The peptide mixture in the aqueous extract was purified by reverse phase preparative high pressure liquid chromatography (HP LC) using a reverse phase VYDAC® Cis column (Nest Group, Southborough, ΜΑ). A linear gradient (20% to 50% solution B over 10 5 minutes) at a flow rate of 10 ml/min (solution A = water with 0.1% TFA; solution B = acetonitrile with 0.1% TFA) Strip the column. The layers were collected and examined by analytical HPLC. The combined product contains the purified product and is lyophilized to dryness. In one of the synthetic examples of this compound, 135 mg of a white solid was obtained. According to analytical HPLC analysis, the purity was 98.6%. Electrospray mass spectrometry (MS(ES)) S analysis gave a molecular weight of 3 3 3 9.7 (compared to the calculated molecular weight of 3 3 3 9.7). Example 2

調配物程序步驟I 2^1材料、儲備溶液、計算 © A)材料:ZnCl2、NaOH顆粒及氫氯酸 35%獲自 Panreac Quimica,Barcelona, Spain。WFI(注射/沖洗用無菌水)獲自 B. Braun Medical, Barcelona, Spain。 B)儲備滚液 (nZnCl,,τ>Η = 3 : 1 .攪拌下添加35%HC1至WFI以達到ρΗ = 3。 2.轉移已稱重之一定量 ZnCl2於量瓶(volumetric flask)。攪拌下添加PH = 3 HC1以達到最終濃度爲大約1-4 mg ZnC h/ml。 -22- 201023877 nnZnCl,. dH = 2 : 1. 攪拌下添加35%HC1至WFI以達到PH = 2。 2. 轉移已稱重之一定量ZnCl2於量瓶。攪拌下添加PH = 2 HC1以達到最終濃度爲大約4-12mgZnCl2/ml。 (iii) NaOH,0.1 卒 1〇 mg/ml : 1.轉移已稱重之一定量NaOH於量瓶。攪拌下添加WFI1 以達到最終濃度爲大約〇.l-l〇mg NaOH/ml。 (iv) 冷凍乾燥 20 ms 分奘(Aib8’35、HGLP-l (7-36)NH,/小 〇 瓶: 1. 製備乙酸與WFI之0·04%(ν/ν)稀釋。 2. 轉移已稱重之一定量(Aib8’35)HGLP-l(7-36)NH2(乙酸 鹽)於量瓶。攪拌下添加足夠0.04%乙酸以至終濃度爲20 mg(Aib8’35)HGLP-l(7-36)NH2/ml。使用 〇·45μιη 濾器過濾滅 ' 菌後,將1 ml分裝之溶液轉移到凍乾小瓶,冷凍乾燥並將 乾燥產物保存在-22°C。 (v) 洽凍乾燥 50 mg 分裝(Aib8,35)HGLP-lf7-36)NH,/小 ❹瓶: 1. 製備乙酸與WFI之0·1%(ν/·ν)稀釋。 2. 轉移已稱重之一定量(Aib8’35)HGLP-l(7-36)NH2(乙酸 鹽)於量瓶。攪拌下添加足夠〇.1 %乙酸以至終濃度爲50 mg(Aib8’35)HGLP-l(7-36)NH2/ml。濾器過濾滅菌後,將 1 ml 分裝之溶液轉移到凍乾小瓶並冷凍乾燥。 C)計算 (i)決定組成物之賦形劑(E)的總重/體積: E = (A X 100/T) - (A/P) -23- 201023877 其中: E =賦形劑於mg A =純化胜肽(mg)的含量; T =組成物之目標濃度·,例如2爲目標爲2% :以及 P =純化胜肽的濃度(胜肽mg/調配物100 mg) 關於賦形劑的總體積’假設1 ml = 1 g來應用。 (ii) 決定ZnCh的體積/重量(W)以添加到每mi或g之組 成物溶液: 〇 a)W=100%E於組成物’其中未做pH調整; b) W = 8 0% E於液體調配物’其中胜狀爲約1%、或約 2%或至約1 0%,並使用鹼調整pH ; c) W = 5 0% E於半固體或凝膠調配物,其中胜肽爲約 1 %、或約2 %或至約1 0%,並使用鹼調整PH ; ' d)W = 66.66% E於半固體或凝膠調配物,其中胜肽爲約 25%,並使用驗調整pH; e)W = 9 0% E於調配物’其中從冷凍乾燥製備物再組成胜 ❷ 肽,以及使用鹼調整pH。 (iii) 決定NaOH之體積/重量(W)以添加到每mi或g之 組成物溶液: a) W = 2 0% E於調配物,其中胜肽爲約1%、或約2%或至 約10%,並使用鹼調整pH ; b) W = 50% E於半固體或凝膠調配物,其中胜狀爲約 1 %、或約2%或至約1 〇%,並使用鹼調整pH ; c) W = 33.33% E於半固體或凝膠調配物,其中胜肽爲約 25%,並使用鹼調整pH ; -24- 201023877 d)W=10% E於調配物,其中從冷凍乾燥製備物再組成 胜肽,以及使用鹼調整pH。 (iv)決定用於每一組成物之ZnCl2(mg/ml或mg/g)濃度: [ZnCl2] = ( 1 36.29 x A)/(W x 3 3 3 9.7 6 x R) 其中: A =純化胜肽的含量(mg); R =胜肽/Zri之莫耳比 R= 1 . 5之調配物,其中胜肽爲約1 %、或約2 %或約1 〇 % φ 或至約2 3 % ; R = 4.0調配物,其中胜肽爲約25% ;以及 W =添加到每一 g或ml之組成物溶液的ZnCl2溶液重 量(g)或體積(ml)。 2.2含1-10%冷凍乾燥胖肽及ZnCh、無1?11調整之組成物之 ' 製備 當文中使用含有百分比胜肽之調配物,是描述一調配 物含有某重量胜肽於每一組成物總重,例如1 %胜肽是描 © 述一調配物含有1 g胜肽於每1 00 g總組成物。含有約1 %、 或約2 %至約1 0%胜肽之調配物如下製備。如所述製備之 (Aib8’35)HGLP-l(7-3 6)NH2的冷凍乾燥樣品與ZnCl2儲備溶 液(pH 3)以100 %總賦形劑體積且[胜肽:Zn] = 1.5:1充分混 合。 A) 1 %組成物之製備是經由混合 20 mg冷凍乾燥 (Aib8’35)HGLP-l(7-36)NH2(參閱上述 2.1 B(iv))與 2 ml 的 ZnCl2 溶液(0.272 mg/ml;參閱上述 2.1 B (i)) B) 2%組成物之製備是經由混合 20 mg冷凍乾燥 -25- 201023877 (Aib8,35)HGLP-l(7-36)NH2(參閱上述 2.1 B (iv))與 1 ml 的 ZnCl2 溶液(0.544 mg/ml;參閱上述 2.1 B (i)) C) 10%組成物之製備是經由混合 50 mg冷凍乾燥 (Aib8,35)HGLP-l(7-36)NH2(參閱上述 2.1 B (v))與 0.45 ml 的 ZnCl2 溶液(3.023 mg/ml;參閱上述 2.1 B (i)) 使冷凍乾燥胜肽及溶液平衡至室溫。經指定體積的 ZnCl2溶液注射到含有冷凍乾燥胜肽的小瓶內,並使1 %或 2%胜肽組成物水合約2分鐘,乃至10%胜狀組成物水合約 〇 60分鐘,或直到全部冷凍乾燥胜狀完全水合且溶液無胜肽團 塊。水合之後搖動再組成的胜肽大約1分鐘。 可移出適量已溶解胜肽用於投藥,例如loo Ul依照上 述A製備之1%胜肽溶液等同於1 mg劑量,50 ul依照上述 B製備之2%胜肽溶液等同於1 mg劑量,150 ul依照上述C ' 製備之10%胜肽溶液等同於15 mg劑量等等。 使用本申請案之教示,熟悉該項技藝者能變化胜肽及 ZnCl2的量以得到以下詳述1%、2%及10%組成物及所欲劑 〇 量以外的組成物。 2.3含1-10%冷凍乾燥胖肽及ZiiCl7、县pH調整之組成物的 製備 含約1 %、或約2%至約1 0%胜肽之調配物如下製備。如 所述製備之(Aib8’35)HGLP-l(7-36)NH2的冷凍乾燥樣品與 ZnCl2儲備溶液(pH 3)以90%總賦形劑體積充分混合。經由 添加稀釋之NaOH溶液達到所欲之溶液pH。 A) 1%組成物之製備是經由混合 20 mg冷凍乾燥 (Aib8’35)HGLP-l(7-36)NH2(參閱上述 2.1 B (i v))與 1.8 ml 的 -26- 201023877Formulation Procedure Step I 2^1 Materials, stock solutions, calculations © A) Materials: ZnCl2, NaOH particles and hydrochloric acid 35% were obtained from Panreac Quimica, Barcelona, Spain. WFI (sterile water for injection/rinsing) was obtained from B. Braun Medical, Barcelona, Spain. B) Reserve roll (nZnCl,, τ > Η = 3 : 1 . Add 35% HCl to WFI with stirring to achieve ρ Η = 3. 2. Transfer one of the weighed ZnCl2 to the volumetric flask. Add PH = 3 HC1 to reach a final concentration of approximately 1-4 mg ZnC h/ml. -22- 201023877 nnZnCl,. dH = 2 : 1. Add 35% HCl to WFI with stirring to reach pH = 2. Transfer one of the weighed ZnCl2 to the measuring flask and add PH = 2 HC1 with stirring to reach a final concentration of approximately 4-12 mg ZnCl2/ml. (iii) NaOH, 0.1 stroke 1 〇 mg/ml: 1. Transfer has been weighed One of the quantitative NaOH was added to the measuring flask. WFI1 was added with stirring to reach a final concentration of approximately 〇.ll〇mg NaOH/ml. (iv) Freeze-dried 20 ms tiller (Aib8'35, HGLP-l (7-36) NH , / small bottles: 1. Prepare 0.04% (v / ν) dilution of acetic acid and WFI. 2. Transfer one of the weighed (Aib8'35) HGLP-l (7-36) NH2 (acetate In a measuring flask, add enough 0.04% acetic acid to a final concentration of 20 mg (Aib8'35) HGLP-1 (7-36) NH2/ml with stirring. After filtering the bacteria with a 〇·45 μιη filter, 1 ml Transfer the solution to a lyophilized vial, freeze-dry and The dried product is stored at -22 ° C. (v) lyophilized 50 mg aliquot (Aib8, 35) HGLP-lf7-36) NH, / ❹ bottle: 1. Prepare 0.1% of acetic acid and WFI (v /·ν) Dilution 2. Transfer one of the weighed (Aib8'35) HGLP-1 (7-36) NH2 (acetate) in a measuring flask. Add enough 〇.1% acetic acid to the final concentration with stirring. 50 mg (Aib8'35)HGLP-l(7-36)NH2/ml. After filter sterilization, transfer 1 ml of the solution to the lyophilized vial and freeze-dry. C) Calculate (i) Determine the composition Total weight/volume of excipient (E): E = (AX 100/T) - (A/P) -23- 201023877 where: E = amount of excipient in mg A = purified peptide (mg); T = target concentration of the composition ·, for example 2 is the target of 2%: and P = concentration of the purified peptide (peptide mg / formulation 100 mg) About the total volume of the excipient 'assuming 1 ml = 1 g application. (ii) Determine the volume/weight (W) of ZnCh to be added to the composition solution per mi or g: 〇a) W = 100% E in the composition 'without pH adjustment; b) W = 8 0% E In a liquid formulation, wherein the scent is about 1%, or about 2% or to about 10%, and the pH is adjusted using a base; c) W = 50% E in a semi-solid or gel formulation, wherein the peptide Is about 1%, or about 2% or to about 10%, and adjusts the pH with a base; 'd)W = 66.66% E in a semi-solid or gel formulation, wherein the peptide is about 25% and used Adjust pH; e) W = 90% E in the formulation 'where the composition is reconstituted from the freeze-dried preparation, and the pH is adjusted using a base. (iii) Determine the volume/weight (W) of NaOH to add to the composition solution per mi or g: a) W = 2 0% E in the formulation, wherein the peptide is about 1%, or about 2% or Approximately 10%, and adjust the pH with a base; b) W = 50% E in a semi-solid or gel formulation in which the winning form is about 1%, or about 2% or to about 1%, and the pH is adjusted using a base. c) W = 33.33% E in a semi-solid or gel formulation in which the peptide is about 25% and the pH is adjusted using a base; -24-201023877 d) W=10% E in the formulation, from freeze-drying The preparation reconstitutes the peptide and the pH is adjusted using a base. (iv) Determine the concentration of ZnCl2 (mg/ml or mg/g) for each composition: [ZnCl2] = (1 36.29 x A) / (W x 3 3 3 9.7 6 x R) where: A = purification The content of the peptide (mg); R = the peptide/Zri molar ratio R = 1.5, wherein the peptide is about 1%, or about 2% or about 1% φ or to about 2 3 %; R = 4.0 formulation wherein the peptide is about 25%; and W = ZnCl2 solution weight (g) or volume (ml) added to each g or ml of the composition solution. 2.2 Containing 1-10% freeze-dried fat peptide and ZnCh, composition without adjustment of 1?11 Preparation The use of a formulation containing a percentage peptide is described as a formulation containing a weight peptide in each composition. The total weight, for example, 1% peptide is described as a formulation containing 1 g of peptide in every 100 g of total composition. Formulations containing from about 1%, or from about 2% to about 10% peptide are prepared as follows. The lyophilized sample of (Aib8'35)HGLP-1 (7-3 6)NH2 prepared as described was mixed with ZnCl2 stock solution (pH 3) at 100% total excipient volume and [peptide: Zn] = 1.5: 1 mix well. A) 1% of the composition was prepared by mixing 20 mg of freeze-dried (Aib8'35) HGLP-1 (7-36) NH2 (see 2.1 B(iv) above) with 2 ml of ZnCl2 solution (0.272 mg/ml; See 2.1 B (i) above. B) The 2% composition was prepared by mixing 20 mg freeze-dried -25 - 201023877 (Aib8,35) HGLP-1 (7-36) NH2 (see 2.1 B (iv) above) With 1 ml of ZnCl2 solution (0.544 mg/ml; see 2.1 B (i) above) C) 10% of the composition was prepared by mixing 50 mg of freeze-dried (Aib8, 35) HGLP-1 (7-36) NH2 ( Refer to 2.1 B (v) above and 0.45 ml of ZnCl 2 solution (3.023 mg/ml; see 2.1 B (i) above) to equilibrate the freeze-dried peptide and solution to room temperature. A specified volume of ZnCl2 solution is injected into a vial containing the freeze-dried peptide and the 1% or 2% peptide composition water contract is allowed for 2 minutes, or even 10% of the composition water contract for 60 minutes, or until all frozen The dried succulent is completely hydrated and the solution is free of peptide peptides. After hydration, shake the reconstituted peptide for about 1 minute. An appropriate amount of dissolved peptide can be removed for administration. For example, loo Ul is prepared according to the above-mentioned A. The 1% peptide solution is equivalent to the 1 mg dose, and 50 ul of the 2% peptide solution prepared according to the above B is equivalent to the 1 mg dose, 150 ul. The 10% peptide solution prepared according to the above C' is equivalent to the 15 mg dose and the like. Using the teachings of the present application, those skilled in the art will be able to vary the amount of peptide and ZnCl2 to obtain compositions other than the 1%, 2%, and 10% compositions described below and the desired amount of ruthenium. 2.3 Preparation of Composition Containing 1-10% Freeze-Dried Fat Peptide and ZiiCl7, County pH Adjustment A formulation containing about 1%, or about 2% to about 10% peptide was prepared as follows. The lyophilized sample prepared as described (Aib8'35)HGLP-1 (7-36)NH2 was thoroughly mixed with a ZnCl2 stock solution (pH 3) at 90% of the total excipient volume. The desired pH of the solution is achieved by the addition of a diluted NaOH solution. A) 1% of the composition was prepared by mixing 20 mg of freeze-dried (Aib8'35) HGLP-1 (7-36) NH2 (see 2.1 B (i v) above) with 1.8 ml of -26-201023877

ZnCl2溶液(參閱上述2.1 B (i)) B) 2%組成物之製備是經由混合 20 mg冷凍乾燥 (Aibs,35)HGLP-l(7-36)NH2(參閱上述 2.1 B(iv))與 0·9 ml 的 ZnCh溶液(參閱上述2.1 B (i)) C) 10%組成物之製備是經由混合50 mg冷凍乾燥 (Aib8,35)HGLP-l(7-36)NH2(參閱上述 2.1 B(v))與 0.40 ml 的 ZnCl2溶液(參閱上述2.1 B⑴) 對上述溶液添加必要體積之稀釋NaOH溶液(賦形劑總 φ 體積的10%)以達到目標濃度及pH。例如對每一: 1 %組成物:添加0.2 ml恰當濃度的NaOH溶液 2%組成物:添加0.1 ml恰當濃度的NaOH溶液 I) 1 0%組成物:添加0.05 ml恰當濃度的NaOH溶液 使用本申請案之教示,熟悉該項技藝者能變化胜肽及 ' ZnCl2的量以得到以下詳述1%、2%及10%組成物以外的組 成物。 2.4含1-10%胜肽及ZnCb、無PH調整之液體組成物之製備 © 含有約1%、或約2%至約10%胜肽之液體調配物如下製 備。稱重(Aib8’35)HGLP-l(7-36)NH2樣品並與ZnCl2儲備溶 液(pH 3)混合以達1%、2%、至10%胜肽之目標濃度。混合 後,組成物經濾器滅菌並保存到使用。. 2.5含1-10%胖肽及ZnCb、PH調整之液體組成物之製備 含有約1%、或約2%至約10%胜肽之液體調配物如下製 備。稱重(Aib8’35)HGLP-l(7-36)NH2樣品並與ZnCl2儲備溶 液(pH 3)以80%總賦形劑體積充分混合。鋅溶液可爲ZnCl2 或ZnAc2*2H20。經由添加稀釋之NaOH溶液達到所欲之溶 -27- 201023877 液pH。使用此方法製備製備物C5至C13» 使用本申請案之教示,熟悉該項技藝者能變化胜肽及 ZnCl2的量以得到文中所述1%、2%及10%以外之組成物。 2.6含25%胜肽及ZnCl,、無pH調整之半因體/凝膠組成物之 製備 含有約25%胜肽之半固體或凝膠調配物如下製備。稱重 (八丨1>8’35)1101^-1(7-36)1^2樣品並與211(:12儲備溶液(?112) 以66.66%總賦形劑體積充分混合。鋅溶液可爲ZnCl2或 〇 ΖηΑ(ί2·2Η20。使用此方法製備製備物C1及C2 » 更詳言之,使用“推拉”混合法製備半固體或凝膠組成 物: a) 稱重所欲量之胜肽於事先已裝特殊兩向掌控閥 (two-way hand valve) HV(I.D. = 0.5 mm)之拋棄式針筒 S1 的 ' 筒中,並將管子置入針筒Luer洞內; b) 以不鏽鋼棒SR使針筒塞關緊; OHV於S1內,連接至真空來源並打開HV-10分鐘後 ❿ 關閉HV ; d) 精確稱重鋅溶液於第二拋棄式針筒S2的筒中; e) 然後將S2連接到HV的游離部分; f) 打開HV並經由真空汲取溶劑至含有胜肽粉末的筒S j 中; g) 關閉HV並移除溶劑針筒S2,藉此水合S1中的胜肽 粉末; h) 移除SR並緩慢鬆開針筒塞; 〇推動針筒塞(推及拉)但未打開HV,以至粉末團塊完全 -28- 201023877 爲溶劑浸泡; j) 將兩向不鏽連接者SC(I.D. = l.〇 mm)置於具有管子置 入針筒Luer洞內之針筒S2,且其塞子推至最末端; k) 打開S1內HV以排出真空,然後移除HV。推動針筒 塞以至針筒內空氣最小化;以及 l) 以SC連接S1及S2,通過SC從S1至S2捏製組成物。 使用本申請案之教示,熟悉該項技藝者能變化胜肽及ZnCl2 solution (see 2.1 B (i) above) B) 2% of the composition was prepared by mixing 20 mg of freeze-dried (Aibs, 35) HGLP-1 (7-36) NH2 (see 2.1 B(iv) above) 0·9 ml of ZnCh solution (see 2.1 B (i) above) C) 10% of the composition was prepared by mixing 50 mg of freeze-dried (Aib8, 35) HGLP-1 (7-36) NH2 (see 2.1 B above) (v)) Add the necessary volume of diluted NaOH solution (10% of the total φ volume of the excipient) to the above solution with 0.40 ml of ZnCl 2 solution (see 2.1 B(1) above) to reach the target concentration and pH. For example: for each: 1% composition: add 0.2 ml of the right concentration of NaOH solution 2% composition: add 0.1 ml of the appropriate concentration of NaOH solution I) 10% composition: add 0.05 ml of the appropriate concentration of NaOH solution using this application In the teachings of the case, those skilled in the art can change the amount of the peptide and 'ZnCl2 to obtain a composition other than the 1%, 2%, and 10% compositions detailed below. 2.4 Preparation of liquid compositions containing 1-10% peptide and ZnCb, pH-free adjustment. Liquid formulations containing from about 1%, or from about 2% to about 10%, of the peptide are prepared as follows. The (Aib8'35)HGLP-1 (7-36) NH2 sample was weighed and mixed with a ZnCl2 stock solution (pH 3) to achieve a target concentration of 1%, 2%, to 10% peptide. After mixing, the composition is sterilized by a filter and stored for use. 2.5 Preparation of a liquid composition containing 1-10% fat peptide and ZnCb, pH adjustment A liquid formulation containing about 1%, or about 2% to about 10%, of the peptide is prepared as follows. The (Aib8'35)HGLP-1 (7-36) NH2 sample was weighed and thoroughly mixed with a ZnCl2 stock solution (pH 3) at 80% of the total excipient volume. The zinc solution can be ZnCl2 or ZnAc2*2H20. The pH of the desired solution -27-201023877 is achieved by adding a diluted NaOH solution. Preparation of Preparations C5 to C13 using this method. Using the teachings of the present application, those skilled in the art will be able to vary the amount of peptide and ZnCl2 to obtain compositions other than 1%, 2%, and 10% as described herein. 2.6 Preparation of a half-factor/gel composition containing 25% peptide and ZnCl without pH adjustment A semi-solid or gel formulation containing about 25% peptide was prepared as follows. Weigh (Bagua 1 > 8'35) 1101^-1 (7-36) 1^2 sample and mix well with 211 (:12 stock solution (?112) with 66.66% total excipient volume. Zinc solution can be Is ZnCl2 or 〇ΖηΑ (ί2·2Η20. Preparation of preparations C1 and C2 using this method) More specifically, a semi-solid or gel composition is prepared using a “push-pull” mixing method: a) weighing the desired peptide In the 'tube of the disposable syringe S1 with a special two-way hand valve HV (ID = 0.5 mm), and put the tube into the Luer hole of the syringe; b) with a stainless steel rod SR Close the syringe plug; OHV in S1, connect to the vacuum source and turn on the HV for 10 minutes, then turn off the HV; d) Accurately weigh the zinc solution in the barrel of the second disposable syringe S2; e) Then connect the S2 To the free portion of the HV; f) open the HV and draw the solvent via vacuum to the cartridge S j containing the peptide powder; g) turn off the HV and remove the solvent syringe S2, thereby hydrating the peptide powder in S1; h) Remove the SR and slowly loosen the syringe plug; 〇 push the syringe plug (push and pull) but not open the HV, so that the powder mass is completely -28- 201023877 as solvent soak; j) The stainless connector SC (ID = l.〇mm) is placed in the syringe S2 with the tube inserted into the Luer hole of the syringe, and the stopper is pushed to the extreme end; k) the HV in the S1 is opened to discharge the vacuum, and then moved In addition to HV. Pushing the syringe plug to minimize air in the syringe; and l) connecting S1 and S2 with SC and kneading the composition from S1 to S2 through SC. Using the teachings of this application, those skilled in the art can change the peptide and

ZnCl2的量以得到文中所述25%以外之組成物。 〇 2.7含25%胜肽及ZnCl2、pH調整之半固體/凝膠組成物之製 含有約25%胜肽之半固體或凝膠調配物如下製備。稱重 (八丨1>8’35)1101^-1(7-36)^^2樣品並與211(:丨2儲備溶液(?112) 以66.66%總賦形劑體積充分混合。鋅溶液可爲ZnCl2或. ' ZnAc2«2H20。經由添加稀釋(mg)之NaOH溶液達到所欲之溶 液pH。在此實施例中,添加到粉末的液體總體積在鋅及 NaOH溶液之間必須分配。因此,調整鋅溶液濃度以至所需 © 鋅溶液的總體積降低到添加於胜肽粉末之總液體體積的 50%(步驟d)。如下詳述將添加至胜肽粉末的剩下50%總液體 體積添加至NaOH溶液。使用此方法製備製備物C3及C4。 使用“推拉”混合法製備pH經調整之半固體或凝膠組成 物: a) 稱重所欲量之胜肽於事先已裝特殊兩向掌控閥 (two-way hand valve HV(I.D. = 0.5 mm)之拋棄式針筒 S1 的筒 中,並將管子置入針筒Luer洞內; b) 以不鏽鋼棒SR使針筒塞關緊; -29- 201023877 關閉 中; 粉末 ❿ 爲溶 入針 塞以 度; 需的 連接 ZnCl Ο ΗV於S 1內,連接至真空來源並打開HV。1 〇分鐘後 HV ; d) 精確稱重鋅溶液於第二拋棄式針筒S2的筒中; e) 然後將S2連接到HV的游離部分; Ο打開HV並經由真空汲取溶劑至含有胜肽粉末的筒S1 g) 關閉HV並移除溶劑針筒S2,藉此水合S1中的胜肽 t h) 移除SR並緩慢鬆開針筒塞; i) 推動針筒塞(推及拉)但未打開HV,以至粉末團塊完全 劑浸泡; j) 將兩向不鏽連接者SC(I.D. = 1.0mm)置於具有管子置 筒Luer洞內之針筒S2,且其塞子推至最末端; k) 打開S1內HV以排出真空,然後移除HV。推動針筒 至針筒內空氣最小化;以及 l) 以SC連接S1及S2,通過SC從S1至S2捏製組成物。 m) 均質化之後’移出一混合產物之分裝來測定胜肽濃 η)精確稱重剩下的中間大塊產物並計算達到所欲pH所 NaOH溶液量; 〇)精確稱重NaO Η溶液於第三拋棄式針筒S3;以及 Ρ)緩慢壓縮針筒塞使針筒室內的空氣減至最少。以SC 兩針筒’並通過SC捏製組成物。 使用本申請案之教示,熟悉該項技藝者能變化胜肽及 2的量以得到文中所述25%以外之組成物。 -30- 201023877 表1 實施例 編號 本胜肽 溶液 Zn比 **胜肽: 胜狀% 劑量 C1 10 Z11CI2 0.846 mg/ml 5.4:1 1 mg C2 5 0.40 mg ZnCb/ml 5.4:1 1 mg C3 10 50% ZnCl2 1.69 mg/ml, 50% NaOH 1 mg/ml 5.4:1 1 mg C4 10 50% Z11CI2 2.28 mg/ml5 50% NaOH 1 mg/ml 4:1 1 mg C5 5 80% ZnCl2 0.674 mg/ml, 20% NaOH 3.81 mg/ml 4:1 1 mg C6 2 80% ZnCl2 0.26 mg/ml, 20% NaOH 2.15 mg/ml 5.4:1 1 mg C7 10 80% ZnCl2 3.81 mg/ml, 20% NaOH 4.47 mg/ml 1.5:1 1 mg C8 10 80% Z11AC2.2H2O 2.3 mg/ml, 20% NaOH 6.1 mg/ml 4:1 1 mg C9 2 80% Z11CI2 0.695 mg/ml,20% NaOH 1.75 mg/ml 1.5:1 1 mg C10 2 80% ZnAc2.2H20 1.12 mg/ml, 20% NaOH 1.44 mg/ml 1.5:1 1 mg C11 2 80% ZnCl2 0.695 mg/ml, 20% NaOH 1.75 mg/ml 1.5:1 1 mg C12 1 80% ZnCl2 0.384 mg/ml, 20% NaOH 0.875 mg/ml 1.5:1 1 mg C13 10 80% ZnCl2 3.85 mg/ml, 20% NaOH 4.47 mg/ml 1.5:1 15 mg 顯示目標値。全部案例之實際値爲目標的5 %以內The amount of ZnCl2 was such that a composition other than 25% as described herein was obtained. 2.7 2.7 Preparation of a semi-solid/gel composition containing 25% peptide and ZnCl2, pH adjustment A semi-solid or gel formulation containing about 25% peptide is prepared as follows. Weigh ((8丨1> 8'35) 1101^-1(7-36)^^2 sample and mix well with 211(:丨2 stock solution (?112) with 66.66% total excipient volume. Zinc solution It may be ZnCl2 or . ' ZnAc 2 « 2 H 20. The desired solution pH is achieved by adding a diluted (mg) NaOH solution. In this embodiment, the total volume of liquid added to the powder must be distributed between the zinc and NaOH solutions. Adjust the zinc solution concentration so that the total volume of the required zinc solution is reduced to 50% of the total liquid volume added to the peptide powder (step d). The remaining 50% total liquid volume added to the peptide powder is detailed below. Add to NaOH solution. Prepare preparations C3 and C4 using this method. Prepare pH adjusted semi-solid or gel composition using "push-pull" mixing method: a) Weigh the desired amount of peptide beforehand with special two To the barrel of the disposable syringe S1 of the two-way hand valve HV (ID = 0.5 mm), and place the tube into the Luer hole of the syringe; b) close the syringe plug with the stainless steel rod SR; -29 - 201023877 Closed; Powder ❿ is dissolved into the needle plug; the desired connection ZnCl Ο ΗV in S 1 , connected to Vacuum the source and turn on the HV. 1 〇 After HV; d) accurately weigh the zinc solution in the barrel of the second disposable syringe S2; e) then connect S2 to the free part of the HV; Ο open the HV and draw the solvent via vacuum to the peptide containing the peptide Cartridge S1 g) Turn off the HV and remove the solvent syringe S2, thereby hydrating the peptide in S1 th) Remove the SR and slowly loosen the syringe plug; i) Push the syringe plug (push and pull) but not open the HV So that the powder agglomerate is completely soaked; j) Place the two-way stainless connector SC (ID = 1.0 mm) in the syringe S2 with the tube barrel Luer hole, and push the stopper to the extreme end; k) Open The HV in S1 is to evacuate the vacuum and then remove the HV. Pushing the syringe to minimize the air in the syringe; and l) connecting S1 and S2 with SC and kneading the composition from S1 to S2 through SC. m) After homogenization, 'removal of a mixture of mixed products to determine the peptide concentration η) accurately weigh the remaining intermediate bulk product and calculate the amount of NaOH solution to achieve the desired pH; 〇) accurately weigh the NaO Η solution The third disposable syringe S3; and Ρ) slowly compresses the syringe plug to minimize air in the syringe chamber. The composition was kneaded by SC two syringes' and by SC. Using the teachings of this application, those skilled in the art will be able to vary the amount of peptide and 2 to obtain a composition other than 25% as described herein. -30- 201023877 Table 1 Example No. of this peptide solution Zn ratio ** peptide: wins % dose C1 10 Z11CI2 0.846 mg / ml 5.4: 1 1 mg C2 5 0.40 mg ZnCb / ml 5.4: 1 1 mg C3 10 50% ZnCl2 1.69 mg/ml, 50% NaOH 1 mg/ml 5.4:1 1 mg C4 10 50% Z11CI2 2.28 mg/ml5 50% NaOH 1 mg/ml 4:1 1 mg C5 5 80% ZnCl2 0.674 mg/ml , 20% NaOH 3.81 mg/ml 4:1 1 mg C6 2 80% ZnCl2 0.26 mg/ml, 20% NaOH 2.15 mg/ml 5.4:1 1 mg C7 10 80% ZnCl2 3.81 mg/ml, 20% NaOH 4.47 mg /ml 1.5:1 1 mg C8 10 80% Z11AC2.2H2O 2.3 mg/ml, 20% NaOH 6.1 mg/ml 4:1 1 mg C9 2 80% Z11CI2 0.695 mg/ml, 20% NaOH 1.75 mg/ml 1.5: 1 1 mg C10 2 80% ZnAc2.2H20 1.12 mg/ml, 20% NaOH 1.44 mg/ml 1.5:1 1 mg C11 2 80% ZnCl2 0.695 mg/ml, 20% NaOH 1.75 mg/ml 1.5:1 1 mg C12 1 80% ZnCl2 0.384 mg/ml, 20% NaOH 0.875 mg/ml 1.5:1 1 mg C13 10 80% ZnCl2 3.85 mg/ml, 20% NaOH 4.47 mg/ml 1.5:1 15 mg Target 値 is displayed. The actual case of all cases is less than 5% of the target

**顯示目標値。全部案例之實際値爲目標的10%以內 • 3.0 GL· P _ 1受體親和力之測定 • 可用於實施本發明之化合物能使用下列程序測試其結 合GLP-1受體的能力。 細胞培養= Φ 將表現 GLP-1受體之 RIN 5F大鼠胰島素瘤細胞 (ATCC-#CRL-2058 > 美國菌種中心,Manassas,VA)培養於 含有 1 0%胎牛血清之 DMEM(Dulbecco’s modified Eagle’s medium),並維持在約37 °C於5% C02/95%空氣之濕潤氣氛 中。 放射線配體結合= 將RIN細胞於20 ml冰冷的5 0 mM Tris-HC1中,以 Brinkman Polytron(Westbury,NY)(設定 6,1 5 秒)均質化來 製備用於放射線配體結合硏究的膜。經由離心(39,000 g/10 -31- 201023877 分鐘)清洗均質物兩次,並將最終小片再懸浮於含有2.5 mM MgCl2、0.1 mg/ml 枯草桿菌素(bacitracin)(Sigma Chemical, St. Louis,MO)及 0.1% BSA 之 50 mM Tris-HCl» 對於分析, 將分裝(0.4 ml)培育於 0·05 nM(125I)GLP-l(7-36)(~2200**Show target 値. The actual range of all cases is within 10% of the target. • Determination of 3.0 GL·P _ 1 receptor affinity • Compounds useful in the practice of the present invention can be tested for their ability to bind to the GLP-1 receptor using the following procedure. Cell Culture = Φ RIN 5F rat insulinoma cells (ATCC-#CRL-2058 > American Types Center, Manassas, VA) expressing GLP-1 receptor were cultured in DMEM containing 10% fetal bovine serum (Dulbecco's) Modified Eagle's medium) and maintained at a temperature of about 37 ° C in a humidified atmosphere of 5% C02 / 95% air. Radiation ligand binding = RIN cells were homogenized in 20 ml ice-cold 50 mM Tris-HC1 and homogenized in Brinkman Polytron (Westbury, NY) (set 6, 15 seconds) to prepare for radioligand binding studies. membrane. The homogenate was washed twice by centrifugation (39,000 g/10 -31 - 201023877 minutes) and the final pellet was resuspended in 2.5 mM MgCl2, 0.1 mg/ml bacitracin (Sigma Chemical, St. Louis) , MO) and 0.1% BSA 50 mM Tris-HCl» For analysis, the aliquot (0.4 ml) was incubated at 0. 05 nM (125I) GLP-l (7-36) (~2200)

Ci/mmol,New England Nuclear,Boston,ΜΑ),含及不含 0.05 ml未標記之競爭性測試胜肽。培育(25 °C )l〇〇分鐘後,經由 透過事先已浸泡於0.5%聚乙烯亞胺之GF/C濾器(Brandel, Gaithersburg,MD)快速過濾,將結合之(125I)GLP-l(7-36)與 ❹ 游離者分開。然後以5 ml分裝之冰冷50 mM Tris-HCl清洗 濾器3次,然後以γ射線光譜儀(Wall ac LKB, Gaithersburg, MD)計數捕捉於濾器上之結合的放射線活性。專一結合定義 爲 總(125I)GLP-l(7-36)結 合減去 1000 nM GLPl(7-36)(Bachem,Torrence, CA)存在下之結合。 4.溶解彦對pH之測宏 4.1.化合物溶解度對pH於磷酸鹽I緩衝液(PBS)之測定 可能有益用於實施本發明之化合物,可使用下列步驟經 測試以決定在不同pH及溫度時其於PBS的溶解度。 溶解一包預混合粉末(SIGMA,產品編號:P-3813)於1 公升去離子水而產生含138mMNaCM、2.7mMKCl且pH7.4 之10 mM磷酸鹽緩衝液以製造儲備之PBS緩衝溶液。以磷 酸及/或氫氧化鈉調整此儲備溶液pH而製造具有各種pH値 之PBS緩衝液。 2 mg的化合物樣品將被測試,例如稱重2 mg實施例1 之化合物於玻璃小瓶中。對每一小瓶添加5 0 μ L分裝之特定 pH的PBS緩衝液。旋轉此溶液並視需要以超音波震盪至清 -32- 201023877 澈》記錄每一受測試pH溶解2 mg化合物所需之緩衝液總體 積,並計算溶解度。 將在室溫(20-25 °C )是清澈之胜肽溶液置於冷藏室(4 °C) 隔夜,然後在4°C檢驗胜肽的溶解度。 4.2. 化合物溶解摩對pH於鹽液之測宙 可能有益用於實施本發明之化合物,可使用下列步驟經 測試以決定在不同pH及溫度時其於鹽液的溶解度。 溶解9 g NaCl於1公升去離子水以製備儲備之鹽溶液。 φ 以HC1及/或NaOH調整此儲備溶液pH而製造具有各種pH 値之鹽溶液。 2 mg的化合物樣品將被測試,例如稱重2 mg實施例1 之化合物於玻璃小瓶中。對每一小瓶添加50μί分裝之特定 pH的鹽溶液。旋轉此小瓶並視需要以超音波震盪至清澈。 ' 記錄每一受測試pH溶解2 mg化合物所需之鹽液總體積,並 計算溶解度。 將在室溫(20-25 °C )是清澈之溶液置於冷藏室(4°C )隔 ® 夜,然後在4 °C檢驗溶解度。 4.3. 化合物於pH 7.0鹽液之溶解度測宙 可能有益用於實施本發明之化合物,可使用下列步驟測 試以決定其在室溫於具有pH = 7之鹽液的溶解度。 溶解9 g NaCl於1公升去離子水以製備鹽溶液。2 mg 的化合物樣品將被測試,例如稱重實施例1之化合物於玻璃 小瓶中並添加1 ml分裝的鹽,旋轉及超音波震盪至清澈。 記錄用於溶解2 mg胜肽所需之鹽總體積,並計算在室溫的 溶解度。 -33- 201023877 4.4.化合物於各種pH之鹽的溶解度測宙 可能有益用於實施本發明之化合物,可使用下列步驟經 測試以決定在室溫時他們於鹽溶液的溶解度。 溶解9 g NaCl於1公升去離子水以製備儲備之鹽溶液。 以HC1及NaOH處理此儲備鹽溶液pH以得到具有各種pH 値之鹽溶液。 2 mg的化合物樣品將被測試,例如稱重實施例1之化 合物於玻璃小瓶中。添加50 μί分裝之特定pH的鹽緩衝液。 〇 旋轉及超音波震盪該溶液至清澈。記錄用於溶解2 mg胜肽 所需之緩衝液總體積並計算溶解度。 5 .化合物的水溶解度對鋅濃度之測宏 ·» 可能有益用於實施本發明之化合物,可使用下列步驟經 測試以決定在不同鋅濃度時其於pH 7水的溶解度。 ' 溶解ZnCl2於去離子水製備濃度爲100 ing/ml的儲備鋅 溶液,並使用HC1調整pH至2.7。將儲備溶液做適當稀釋 製備具有各種ZnCl2濃度(“Zn測試溶液”)的溶液。 ® 1 mg的化合物將被測試,例如將實施例1之化合物1 mg 溶解於25 0 μί各Zn測試溶液中以產生具有化合物4 mg/ml 之溶液。然後使用0.2 N NaOH調整此溶液pH直到觀察到形 成白色沉澱。離心此沉澱溶液並使用HP LC分析該母液。測 量測試化合物的UV吸收區域尖峰,以及經由比較校正曲線 測定測試化合物於母液的濃度。 作爲可用於實施本發明之一代表性化合物之實施例,如 前述分析測試實施例1之化合物並得到下列結果(水溶液, p Η 7 · 0,室溫): -34- 201023877 表2Ci/mmol, New England Nuclear, Boston, ΜΑ), with and without 0.05 ml unlabeled competitive test peptide. After incubation (25 °C) for 1 minute, the (125I)GLP-1 (7I) was combined by rapid filtration through a GF/C filter (Brandel, Gaithersburg, MD) previously immersed in 0.5% polyethyleneimine. -36) Separate from ❹ free. The filter was then washed 3 times with 5 ml of ice-cold 50 mM Tris-HCl, and the bound radioactivity captured on the filter was counted by a gamma ray spectrometer (Wall ac LKB, Gaithersburg, MD). The specific combination is defined as the total (125I)GLP-1 (7-36) binding minus the binding in the presence of 1000 nM GLP1 (7-36) (Bachem, Torrence, CA). 4. Dissolution of pH to pH 4.1. Compound Solubility Determination of pH in phosphate I buffer (PBS) may be beneficial for the practice of the compounds of the invention, which can be tested to determine at different pH and temperature using the following procedure Its solubility in PBS. A pack of premixed powder (SIGMA, product number: P-3813) was dissolved in 1 liter of deionized water to produce a 10 mM phosphate buffer containing 138 mM NaCM, 2.7 mM KCl and pH 7.4 to make a stock PBS buffer solution. The pH of this stock solution was adjusted with phosphoric acid and/or sodium hydroxide to prepare a PBS buffer having various pH値. A 2 mg sample of the compound will be tested, for example, 2 mg of the compound of Example 1 in a glass vial. Add 50 μL of the specific pH PBS buffer to each vial. Rotate this solution and, if necessary, oscillate with ultrasound to clear -32-201023877. Record the total buffer volume required to dissolve 2 mg of compound per test pH and calculate the solubility. The clear peptide solution was placed in a cold room (4 ° C) overnight at room temperature (20-25 ° C), and then the solubility of the peptide was tested at 4 ° C. 4.2. Dissolution of Compounds to pH Measurements of Salts It may be beneficial to practice the compounds of the present invention which can be tested to determine their solubility in the salt liquor at various pH and temperature. 9 g of NaCl was dissolved in 1 liter of deionized water to prepare a stock salt solution. φ The pH of the stock solution is adjusted with HC1 and/or NaOH to produce a salt solution having various pH enthalpy. A 2 mg sample of the compound will be tested, for example, 2 mg of the compound of Example 1 in a glass vial. A 50 μί dispense of a specific pH salt solution was added to each vial. Rotate the vial and converge to clear as needed. ' Record the total volume of salt solution required to dissolve 2 mg of compound per test pH and calculate the solubility. Place the clear solution at room temperature (20-25 °C) in a freezer (4 °C) for a night, then check the solubility at 4 °C. 4.3. Solubility Measurement of Compounds in a pH 7.0 Salt Solution It may be beneficial to practice the compounds of the present invention, which can be tested to determine its solubility at room temperature in a saline solution having a pH of 7 using the following procedure. 9 g of NaCl was dissolved in 1 liter of deionized water to prepare a salt solution. A 2 mg sample of the compound will be tested, for example, by weighing the compound of Example 1 in a glass vial and adding 1 ml of the dispensed salt, rotating and ultrasonically oscillating to clear. The total volume of salt required to dissolve the 2 mg peptide was recorded and the solubility at room temperature was calculated. -33- 201023877 4.4. Solubility Measurement of Compounds at Salts of Various pH It may be beneficial to practice the compounds of the present invention, which can be tested to determine their solubility in the salt solution at room temperature using the following procedure. 9 g of NaCl was dissolved in 1 liter of deionized water to prepare a stock salt solution. The pH of the stock salt solution was treated with HC1 and NaOH to obtain a salt solution having various pH hydrazines. A 2 mg sample of the compound will be tested, e.g., the compound of Example 1 is weighed into a glass vial. Add 50 μί of the specific pH of the salt buffer.旋转 Rotate and ultrasonically oscillate the solution to clarity. The total buffer volume required to dissolve the 2 mg peptide was recorded and the solubility was calculated. 5. Measurement of Water Solubility of Compounds to Zinc Concentration Macro» may be beneficial for use in the practice of the compounds of the invention, which may be tested to determine their solubility in water at pH 7 at different zinc concentrations. 'Dissolve ZnCl2 in deionized water to prepare a stock zinc solution at a concentration of 100 ing/ml and adjust the pH to 2.7 using HC1. The stock solution was appropriately diluted to prepare a solution having various ZnCl2 concentrations ("Zn test solution"). ® 1 mg of the compound will be tested, for example, by dissolving 1 mg of the compound of Example 1 in 25 μL of each Zn test solution to produce a solution having the compound 4 mg/ml. The pH of the solution was then adjusted using 0.2 N NaOH until a white precipitate formed. This precipitation solution was centrifuged and the mother liquor was analyzed using HP LC. The UV absorption region spike of the test compound is measured, and the concentration of the test compound in the mother liquor is determined via a comparison calibration curve. As an example of a representative compound which can be used in the practice of the present invention, the compound of Test Example 1 was analyzed as described above and the following results were obtained (aqueous solution, p Η 7 · 0, room temperature): -34 - 201023877 Table 2

ZnCl2 濃度(pg/ml) 溶解度(mg/ml) 0 5.788 80 0.0770 500 0.05 79 1000 0.0487 1500 0.0668 2500 0.1131 0 6.使用IEF凝膠之等雷點(dH泪丨丨宙 使用 Invitrogen 之 NovexIEFpH3-10 凝膠測量 GLP-1 胜肽(例如實施例1之化合物)的pi。將欲測試之胜肽化合 物溶解於水至濃度爲0.5 mg/ml。對於每一此等化合物,將 ' 5 pL所得溶液混與5pL的Novex®樣品緩衝液2X(含有20 - 11^精胺酸(無鹼)’2〇1111^離胺酸(無鹼)及15%甘油),並將 所得1 〇 pL樣品溶液與蛋白質標準樣品載入凝膠。 進行緩衝液(Running buffer)也獲自Invitrogen,以及 φ 根據業者指示進行凝膠,通常如下:固定100 v 1小時, 隨後固定200V 1小時,隨後固定500V30分鐘。 r 然後將凝膠固定於含有3,5%磺柳酸之12% TCA 30分 鐘,然後根據No vex® Colloidal Blue套組之指示以膠體考 馬斯亮藍(Colloidal Coomassie Blue)染色2小時 > 然後於 水隔夜脫色。 掃瞄凝膠並以片段分析程式1.2分析。相對於具有pi 値:10.7、9_5、8.3、8.0、7.8、7.4、6.9、6.0、5.3、5.2、 4.5、4.2及3.5之標準化合物,計算未知胜狀的Pi。 -35- 201023877 實施例1之化合物所測量之pi爲7.60。 7.大鼠之活體內分析 使用下列分析能測試本發明之組成物以決定其在活體ZnCl2 concentration (pg/ml) Solubility (mg/ml) 0 5.788 80 0.0770 500 0.05 79 1000 0.0487 1500 0.0668 2500 0.1131 0 6. Use the IFE gel and other lightning spots (dH lacrimal sinus using Invitrogen's Novex IEFpH3-10 condensate The gel measures the pi of the GLP-1 peptide (such as the compound of Example 1.) The peptide compound to be tested is dissolved in water to a concentration of 0.5 mg/ml. For each of these compounds, a solution of '5 pL is mixed. With 5pL of Novex® Sample Buffer 2X (containing 20 - 11^ arginine (no base) '2〇1111^ lysine (no base) and 15% glycerol), and the resulting 1 〇pL sample solution and protein The standard sample was loaded into the gel. The running buffer was also obtained from Invitrogen, and φ was geled according to the manufacturer's instructions, usually as follows: Fix 100 v for 1 hour, then fix 200 V for 1 hour, then fix 500 V for 30 minutes. The gel was fixed to 12% TCA containing 3,5% sulfonylic acid for 30 minutes and then stained with Colloidal Coomassie Blue for 2 hours according to the instructions of the Novex® Colloidal Blue kit> Decolorization. Scanning The gel was analyzed by Fragment Analysis Program 1.2. Pis with unknown wins were calculated relative to standard compounds with pi 値: 10.7, 9_5, 8.3, 8.0, 7.8, 7.4, 6.9, 6.0, 5.3, 5.2, 4.5, 4.2, and 3.5. -35- 201023877 The pi measured by the compound of Example 1 was 7.60. 7. In vivo analysis of rats The following analysis can be used to test the composition of the present invention to determine its in vivo

I 內促進的能力及增強之功效。 7.1.實驗步驟: 實驗之前一天,稱重大約 300-3 50g 之成熟雄 Sprague-Dawley 大鼠(Taconic,Germantown, NY),在氯代 氫氧化物麻醉下植入右心房頸插管。然後在時間0之注射 〇 適當測試組成物或運載劑對照組之前將大鼠禁食1 8小 時。整個實驗中大鼠持續禁食。 稀釋10〇11^/1111211(:12溶液於具有?112.7 7#之11(:1溶 液製備0·5 mg/ml ZnCl2溶液。將1 mg的式(I)化合物 ((Aib8’35)hGLPl(7-36)NH2)溶解於 250 μΐ^ 此溶液以產生具 有pH 4化合物4 mg/ml及0.5 mg/ml Ζη之清澈溶液。 在時間 〇 時,對大鼠皮下(sc)注射 (a)(Aib8,35)hGLP-l(7-36)NH2)之前述溶液或運載劑對照 © 組。兩情形之注射體積皆非常少(4-6 μΙ〇,且投與受試者之 GLP-1化合物劑量爲75 pg/kg。皮下注射後在適當時間透 過靜脈(iv)插管抽出500μ1血液樣品,並靜脈給予大鼠葡萄 糖挑爨以測試增強胰島素分泌的出現。葡萄糖挑釁的時間 爲化合物注射後〇. 2 5、1、6、1 2及24小時。抽取初始血 液樣品之後,靜脈注射葡萄糖(lg/kg)並以注入5 00μ1肝素 化鹽水(l〇U/ml)。之後,在注射葡萄糖後2.5、5、10及20 分鐘抽取5 00 μ1血液樣品。這些之各個隨後立即透過插管 經由靜脈注射5 00 μ1肝素化鹽水(l〇U/ml)。離心血液樣品, -36- 201023877 從每一樣品收集血漿並將樣品保存在—20 °C直到分析胰島 素含量。使用大鼠胰島素酵素結合免疫吸附分析法(ELISA) 套組(American Laboratory Products Co., Windham, NH)測 定每一樣品的胰島素量。 7.1.1. 結果: 觀察到由葡萄糖注射誘發之持續性增強胰島素活性超 過實驗的全部24小時。 8.狗之活體內分析 〇 習知技藝已有許多活體內分析法,能使熟悉該項技藝 者測定組成物在活體內促進活性化合物延長釋放的能力。 8.1. 1%胖肽細成物: 經由實施例製備含有l%(w/w)之式(I)化合物於ZnCl2 緩衝溶液(胜肽:Zn比=1.5 :1.0)之水性測試調配物。 ' 飼養共6隻42-78月齡且體重14-21 kg的雄小獵犬’ 自由取水且每曰一次餵食(約 400 g乾標準飮食(SAFE 12 5)。投與測試組成物之前將狗禁食18小時。 ® 在肩胛間區域經由皮下路徑投與測試組成物。以 0.33-12 mm 之 0.3 ml Terumo 針筒(BS = 30M2913)作成投與 的體積(每一動物約20μΙ〇。如此得到大約〇.2mg胜肽的理 論劑量。 定期取血液樣品,約在投與後時間=0、8、1 5、3 0、4 5 分鐘,以及1、2、4、8及12小時,以及1、2、3、4、5 及6天。採樣後快速冷卻血液直到離心’然後輕輕倒出血 漿並於分析期間快速冷凍。離線固相萃取之後進行胜肽血 漿濃度的測定,隨後經由上線相萃取偶合LC-MS/MS,以 -37- .201023877The ability to promote and enhance the efficacy within I. 7.1. Experimental Procedure: One day prior to the experiment, approximately 300-3 50 g of mature male Sprague-Dawley rats (Taconic, Germantown, NY) were weighed and implanted into the right atrial neck cannula under chlorinated anesthesia. The rats were then fasted for 18 hours prior to injection of time 0 适当 appropriate test composition or vehicle control group. The rats continued to fast for the entire experiment. Dilute 10〇11^/1111211(:12 solution in 11 with 112.7 7# (1 solution to prepare 0.5 mg/ml ZnCl2 solution. 1 mg of compound of formula (I) ((Aib8'35) hGLPl ( 7-36) NH2) is dissolved in 250 μM of this solution to produce a clear solution with a pH 4 compound of 4 mg/ml and 0.5 mg/ml 。η. At time ,, the rats are injected subcutaneously (sc) (a) ( Aib8, 35) hGLP-1 (7-36) NH2) in the aforementioned solution or vehicle control group. In both cases, the injection volume is very small (4-6 μΙ〇, and the GLP-1 compound administered to the subject) The dose was 75 pg/kg. After subcutaneous injection, 500 μl blood samples were taken through the intravenous (iv) cannula at appropriate time, and glucose challenge was given intravenously to test for enhanced insulin secretion. The time of glucose provocation was after compound injection. 2 5, 1, 6, 1 2 and 24 hours. After taking the initial blood sample, intravenous glucose (lg/kg) was injected with 500 μl of heparinized saline (10 μL/ml). After that, after glucose injection 500 μl of blood sample was taken at 2.5, 5, 10, and 20 minutes. Each of these was immediately injected intravenously with 500 μl of heparin through the cannula. Brine (l〇U/ml). Centrifuge the blood sample, -36- 201023877 Collect plasma from each sample and store the sample at -20 °C until the insulin content is analyzed. Use rat insulin enzyme binding immunosorbent assay (ELISA) The amount of insulin in each sample was determined by a kit (American Laboratory Products Co., Windham, NH). 7.1.1. Results: Continuously enhanced insulin activity induced by glucose injection was observed over all 24 hours of the experiment. There are a number of in vivo assays available in vivo to enable the skilled artisan to determine the ability of the composition to promote prolonged release of the active compound in vivo. 8.1. 1% fat peptide fines: prepared by example An aqueous test formulation containing 1% (w/w) of the compound of formula (I) in a ZnCl2 buffer solution (peptide: Zn ratio = 1.5: 1.0). 'Feeding a total of 6 42-78 months old and weighing 14-21 The kg of the male beagle's free access to water and fed once a week (about 400 g dry standard foraging (SAFE 12 5). The dog was fasted for 18 hours before the test composition was administered. ® was administered via the subcutaneous route in the interscapular region Test composition A 0.3 ml Terumo syringe (BS = 30M2913) of 0.33-12 mm was used to make a volume (about 20 μM per animal). This gave a theoretical dose of about 0.2 mg of peptide. Blood samples are taken periodically, approximately at the time of administration = 0, 8, 15, 5, 45 minutes, and 1, 2, 4, 8 and 12 hours, and 1, 2, 3, 4, 5 and 6 day. The blood was rapidly cooled after sampling until centrifugation' and then the hemorrhage was gently poured and rapidly frozen during the analysis. Determination of peptide plasma concentration after offline solid phase extraction followed by LC-MS/MS via on-line phase extraction, -37-.201023877

Analyst v 1.2軟體處理所得數據 。 該組成物經證明延長釋放活性胜肽至少2天。 8.2. l%(~Aib8’35)hGLPn7-36)NHd溶液: 使用實質相同於如上8.1節所述之活體內分析步驟, 檢驗下列組成物他們釋放受試者胜肽經過一段延長時間的 能力。對於每一下列四組成物,胜肽的濃度爲約 l%(wt/wt),胜肽對鋅的比爲約1.5:1,以及投與胜肽的劑 量爲大約1 mg。 φ 溶液 8.2.A : (Aib8’35)hGLPl(7-36)NH2 於含有(i)90%The data obtained by the Analyst v 1.2 software. The composition was shown to prolong the release of the active peptide for at least 2 days. 8.2. l% (~Aib8'35) hGLPn7-36) NHd solution: The following compositions were tested for their ability to release the peptide of the subject for an extended period of time using an in vivo assay procedure substantially as described in Section 8.1 above. For each of the following four compositions, the concentration of the peptide is about 1% (wt/wt), the ratio of the peptide to zinc is about 1.5:1, and the dose of the peptide is about 1 mg. φ solution 8.2.A : (Aib8'35)hGLPl(7-36)NH2 contains (i)90%

ZnCl2(0.29 8 mg/ml)及(ii)10% NaOH(0.975 mg/ml)之溶液; 溶液 8.2.B:(Aib8,35)hGLPl(7-36)NH2 於 ZnCl2 之溶液 (0.286 mg/ml); 溶液8.2.C:實質類似溶液8.2.B,並使用AcOH/AcO· • 緩衝; 溶液8.2.D:實質類似溶液溶液8.2.A。 所提供延長釋放(Aib8’35)hGLPl(7-36)NH2之組成物, Φ 如第1圖描述。 8.3. 1% fAib8,35MiGLPl(7-36)NH7)溶液: 使用實質相同於如上8.1節所述之活體內分析步驟, 檢驗下列組成物其釋放受試者胜肽經過一段延長時間的能 力。對於下列組成物,胜肽的濃度爲約2%(wt/wt),胜狀對 鋅的比爲約1.5:1,以及投與胜肽的劑量爲大約1 mg。 溶液 8.3. : (Aib 8 3 5 )hGLPl(7-36)NH2 於含有(i) 80% ZnCl2 (0.695 mg/ml)及(ii) 20% NaOH(1.75 mg/ml)之溶液; 所提供延長釋放(Aib8’35)hGLPl(7-36)NH2之組成物’ -38- 201023877 如第5圖描述。 8.4 . 1 0 %胖肽溶液: 使用實質相同於如上8.1節所述之活體內分析步驟, 檢驗下列組成物其釋放受試者胜肽經過一段延長時間的能 力。對於每一下列四組成物,胜狀的濃度爲約10%(wt/wt), 胜肽對鋅的比爲約1.5:1,以及投與胜肽的劑量爲大約15 mg。 溶液 8.4.A: (Aib8’35)hGLPl(7-36)NH2 於含有(i)90% ❹ ZnCl2 (3.3 67 mg/ml)及(ii) 10% NaOH(5.01 mg/ml)之溶液; 溶液 8.4.B: (Aib8’35)hGLPl(7-36)NH2 於 ZnCl2 之溶 $ (2.993 mg/ml); 溶液8.4.C:實質類似溶液8.4.B,並使用AcOH/AcO_ 緩衝;a solution of ZnCl2 (0.29 8 mg/ml) and (ii) 10% NaOH (0.975 mg/ml); solution 8.2.B: (Aib8,35) hGLP1(7-36) NH2 in ZnCl2 (0.286 mg/ml) Solution 8.2.C: Substantially similar to solution 8.2.B, and using AcOH/AcO· • buffer; solution 8.2.D: substantially similar to solution solution 8.2.A. An extended release (Aib8'35) hGLP1(7-36)NH2 composition is provided, Φ as depicted in Figure 1. 8.3. 1% fAib8, 35MiGLP1(7-36)NH7) Solution: The following composition was tested for its ability to release the peptide of the subject for an extended period of time using an in vivo assay procedure substantially as described in Section 8.1 above. For the following compositions, the concentration of the peptide was about 2% (wt/wt), the ratio of the triumph to the zinc was about 1.5:1, and the dose of the peptide was about 1 mg. Solution 8.3. : (Aib 8 3 5 )hGLPl(7-36)NH2 in a solution containing (i) 80% ZnCl2 (0.695 mg/ml) and (ii) 20% NaOH (1.75 mg/ml); Release (Aib8'35) hGLP1(7-36) NH2 composition '-38- 201023877 as described in Figure 5. 8.4. 10% fat peptide solution: The following composition was tested for its ability to release the peptide of the subject for an extended period of time using an in vivo assay procedure substantially as described in Section 8.1 above. For each of the following four compositions, the concentration of the winning form was about 10% (wt/wt), the ratio of the peptide to zinc was about 1.5:1, and the dose of the peptide was about 15 mg. Solution 8.4.A: (Aib8'35) hGLP1(7-36)NH2 in a solution containing (i) 90% ❹ ZnCl2 (3.3 67 mg/ml) and (ii) 10% NaOH (5.01 mg/ml); 8.4.B: (Aib8'35) hGLP1(7-36) NH2 dissolved in ZnCl2 $ (2.993 mg/ml); solution 8.4.C: substantially similar to solution 8.4.B, using AcOH/AcO_ buffer;

' 溶液8.4.D:實質類似溶液8.4.A 所提供延長釋放(Aib8,35)hGLPl(7-36)NH2之組成物, 如第2圖描述。 ❹ 8 . 5 .半固體組成物: 使用實質相同於如上8.1節所述之活體內分析步驟, 檢驗下列半固體組成物他們釋放受試者胜肽經過一段延長 時間的能力。對於組成物8.5.A,胜肽的濃度爲約5%,而 組成物 8·5·Β、8.4.C 及 8.5.D.之胜肽的濃度爲約 10%(wt/wt)。至於組成物8.5.Α、8.5.Β及8.5.C之胜肽對 鋅的比爲約5.4:1,而組成物8.5.D的比爲約4.0:1。至於全 部四組成物,所投與的胜肽劑量爲大約1 mg。 組成物 8.5.A : (Aib8’35)hGLPl(7-36)NH2 於含有 -39- 201023877' Solution 8.4.D: Substantially similar to the composition of extended release (Aib8,35) hGLP1(7-36)NH2 provided by solution 8.4.A, as depicted in Figure 2. ❹ 8.5. Semi-solid composition: The following semi-solid compositions were tested for their ability to release the peptide of the subject for an extended period of time using an in vivo assay procedure substantially as described in Section 8.1 above. For composition 8.5.A, the concentration of the peptide was about 5%, and the concentration of the peptides of the compositions 8·5·Β, 8.4.C and 8.5.D. was about 10% (wt/wt). As for the composition 8.5. Α, 8.5. Β and 8.5. C, the ratio of the peptide to zinc was about 5.4:1, and the ratio of the composition 8.5.D was about 4.0:1. For all four components, the dose of peptide administered was approximately 1 mg. Composition 8.5.A : (Aib8'35)hGLPl(7-36)NH2 containing -39- 201023877

ZnCl2(0.40 mg/ml)於WFI之半固體組成物。 組成物8.5.B:實質類似組成物8·5·Α·,其中ZnCLz 濃度已向上調整以保持胜肽:Zn比爲約5.4:1。 組成物 8.5.C: (Aib8’35)hGLPl(7-36)NH2 於含有⑴ 50% ZnCl2(1.6 9 mg/ml)及(ii)5 0% NaOH(lmg/ml)之半固體。 組成物 8.5.D: (Aib8’35)hGLPl(7-36)NH2 於含有(i)50% ZnCl2(2.2 8 mg/ml)及(ii)5 0% NaOH(lmg/ml)之半固體。 所提供延長釋放(Aib8’35)hGLPl(7-36)NH2之組成物, 〇 如第3圖描述。 8.6 .半因體細成物: 使用實質相同於如上8.1節所述之活體內分析步驟’ 檢驗下列半固體組成物其釋放受試者胜肽經過一段延長時 間的能力。使用5.22 mg/ml ZnCl2溶液、pH = 2.0調配此組 ' 成物。提供足夠胜肽以產生具有胜肽對鋅比爲約4:1之25% 胜肽半固體組成物。使用1〇 mg/ml NaOH調整組成物pH 如文中所提供者。投與之胜肽劑量爲大約1 5 mg。 G 所提供延長釋放(Aib8’35)hGLPl(7-36)NH2之組成物 8.6,如第6圖描述。 8.7 .半因體組成物: 使用實質相同於如上8.1節所述之活體內分析步驟, 檢驗下列半固體組成物其釋放受試者胜狀經過一段延長時 間的能力。使用8.5 mg/ml ZnCl2溶液、ρΗ = 2·0調配此組 成物。提供足夠胜肽以產生具有胜肽對鋅比爲約1.5:1之 2 3 %胜肽半固體組成物。根據如上2.6節詳述調配組成物。 投與之胜肽劑量爲大約15 mg(相當於約65 μΐ^的組成物)。 -40- 201023877 所提供延長釋放(Aib8,35)hGLPl(7-36)NH2之組成物 8.6,如第7圖描述。 以所揭示調配物之各種變換之進一步分析同樣已進行 活體內分析,並已確認本發明之組成物提供式(I)化合物有 用的藥劑輸送平台。使用本申請案之技術,熟悉該項技藝 者能改變胜肽、ZnCl2量及pH以製備如文中所述之本發明 組成物。 實施例9 Φ 1.以乙酸量於10%胜肽溶液之PK槪況調 此實施例揭示以15mg/狗劑量程度單一皮下投與含有 10%(Aib8’35)hGLPl(7-36)NH2 以及 氯化鋅 [(Aib8’35)hGLPl(7-36)NH2:Zn= 1.5:1]之兩即刻準備組成物 後之(Aib8’35)hGLPl(7-36)NH2於雄小獵犬之藥物動力學硏 ' 究。 進行活體內分析之方法相同如8.1章節所揭示。 此實施例舉例說明經由乙酸量於醫藥組成物之PK槪 ❹ 況調節,以及藉此醫藥組成物中的比[乙酸/胜肽]對pH之 影響。 經由調節乙酸量控制pH調節,乙酸量減少顯示對pH 增加作用。 乙酸變化也顯示作用於Cmax。通常乙酸量減少會減少 C m a X 値。 乙酸量增加顯示對溶解度及物理穩定性的改善。 根據所選調配物,經由調節乙酸/胜肽比對溶解度或穩 定性的改善,是經由調節胜肽/Zn比(例如對Cmax)來抵銷。 -41- 201023877 此可被視爲是一系統具有三個可調整穩定性、溶解度、PH 或Cmax的變數。 在此實施例中,縮寫SD意指標準偏差。AUC意指青 高素類(Artemisinin)的血獎濃度-時間曲線下面積。 縮寫MRT的意思是平均滯留時間(MRT),是一參數用 於評估相較於具有藥劑濃度尖峰時間tmax之MRT的生物 利用率之速率。使用時間〇至最後採樣時間所得數據計算 MRTt。 φ 表3中集合具有不同[乙酸/胜肽]比之10 %胜肽組成物 批次及小獵犬皮下投與之結果。對於[3.7:1]之[乙酸/胜狀] 莫耳比’血漿濃度値中藥劑尖峰Kmad声 810 1^/1111(3〇 = 1.80 11§/1111),而具有較低比[3.2:1]之批次則提供 5.65 ng/ml(SD = 2.61 ng/ml)之 Cmax 値。 表3 ❷ 調配物 10% 15mg 10% 15mg 胜肽/Zn 比 1.5:1__!·5:1 . 參數 單位 平均 (n=5) S.D. 平均 (n=4) S.D. 劑量 Mgkg1 857.7 131.0 694.8 46.5 tmax Imax d 0.208 0.167 0.111 0.068 ngmT1 8.10 1.80 5.65 2.61 tl/2jqip d 3.32 0.66 6.77 2.04 AUQ ngmr】d 53.5 14.3 38.2 9.2 AUC ngmr1 d 55.4 15.7 41.6 8.9 AUCextr^j. % 2.99 1.83 8.44 5.00 MRTt d 9.31 2.25 7.48 1.39 MRT d 9.96 2.60 9.85 2.54 [乙酸:胜狀] 3.7:1 3.2:1 10. GLP-1胖狀鹽/二價金屬調配物 -42- 201023877 1 0.1 .方法 製備(Aib8’35)hGLP-l(7-36)NH2 1 mg/mL 水及 PBS 溶液 並調整 pH 至 7.0» 製備 CaCl2、CuCl2、MgCl2 及 ZnCl2 於水 之lOmg/mL儲備溶液。調整CaCl2、MgCl2及ZnCl2溶液之 pH至7.0。因爲沉源出Cu,CuCl2溶液pH無法被鹼化。因 此,使用pH 4.4的CuCl2溶液。Semi-solid composition of ZnCl2 (0.40 mg/ml) in WFI. Composition 8.5.B: Substantially similar composition 8·5·Α·, where the ZnCLz concentration has been adjusted upward to maintain the peptide: Zn ratio is about 5.4:1. Composition 8.5.C: (Aib8'35) hGLP1(7-36)NH2 is a semisolid containing (1) 50% ZnCl2 (1.69 mg/ml) and (ii) 50% NaOH (1 mg/ml). Composition 8.5.D: (Aib8'35) hGLP1(7-36)NH2 is a semisolid containing (i) 50% ZnCl2 (2.2 8 mg/ml) and (ii) 50% NaOH (1 mg/ml). The composition of the extended release (Aib8'35) hGLP1(7-36)NH2 is provided, as described in Figure 3. 8.6. Semi-body fines: The following semi-solid compositions were tested for their ability to release the subject peptide over an extended period of time using the same in vivo assay step as described in Section 8.1 above. This group of compounds was formulated using a 5.22 mg/ml ZnCl2 solution at pH = 2.0. Sufficient peptides are provided to produce a 25% peptide semisolid composition having a peptide to zinc ratio of about 4:1. The composition pH was adjusted using 1 〇 mg/ml NaOH as provided herein. The dose of peptide administered was approximately 15 mg. G provides a composition of extended release (Aib8'35) hGLP1(7-36)NH2 8.6, as depicted in Figure 6. 8.7. Semi-factor composition: The ability of the following semi-solid composition to release the subject over a prolonged period of time is tested using an in vivo assay step substantially identical to that described in Section 8.1 above. This composition was formulated using 8.5 mg/ml ZnCl2 solution with ρΗ = 2.0. Sufficient peptides are provided to produce a 23% peptide semisolid composition having a peptide to zinc ratio of about 1.5:1. The composition was formulated as detailed in Section 2.6 above. The dose of peptide administered was approximately 15 mg (equivalent to a composition of approximately 65 μM). -40- 201023877 Provides extended release (Aib8,35) hGLP1(7-36) NH2 composition 8.6, as depicted in Figure 7. Further analysis of the various transformations of the disclosed formulations has also been performed in vivo and it has been confirmed that the compositions of the present invention provide a pharmaceutical delivery platform useful for the compounds of formula (I). Using the techniques of this application, those skilled in the art will be able to modify the peptide, ZnCl2 amount and pH to prepare a composition of the invention as described herein. Example 9 Φ 1. PK in an amount of acetic acid in a 10% peptide solution. This example discloses that a single subcutaneous administration of 10% (Aib8'35) hGLP1(7-36)NH2 is carried out at a 15 mg/dog dose level. Two of zinc chloride [(Aib8'35)hGLPl(7-36)NH2:Zn=1.5:1] immediately after preparation of the composition (Aib8'35) hGLPl(7-36)NH2 in the drug power of the male beagle Learning 硏'. The method of performing in vivo analysis is the same as disclosed in Section 8.1. This example illustrates the adjustment of the PK ❹ condition of the pharmaceutical composition via the amount of acetic acid, and thereby the effect of the ratio [acetic acid/peptide) on the pH in the pharmaceutical composition. The pH adjustment was controlled by adjusting the amount of acetic acid, and the decrease in the amount of acetic acid showed an effect on pH increase. The change in acetic acid also showed an effect on Cmax. Usually the reduction in the amount of acetic acid reduces C m a X 値. An increase in the amount of acetic acid shows an improvement in solubility and physical stability. The improvement in solubility or stability via adjustment of the acetate/peptide ratio is offset by adjusting the peptide/Zn ratio (e.g., to Cmax), depending on the formulation selected. -41- 201023877 This can be considered as a variable with three adjustable stability, solubility, pH or Cmax for a system. In this embodiment, the abbreviation SD means the standard deviation. AUC means the area under the blood concentration-time curve of the artemisinin. The abbreviation MRT means mean residence time (MRT), a parameter used to estimate the rate of bioavailability compared to MRT with a drug concentration spike time tmax. The MRTt is calculated using the data obtained from the time 最后 to the last sampling time. φ Table 3 contains the results of different [acetic acid / peptide) ratio of 10% peptide composition batch and beagle subcutaneous administration. For [3.7:1] [acetic acid/victoric] molar ratio 'plasma concentration 药剂 medium drug spike Kmad sound 810 1^/1111 (3〇 = 1.80 11§/1111), with a lower ratio [3.2:1] The batch provides a Cmax 5.6 of 5.65 ng/ml (SD = 2.61 ng/ml). Table 3 调 Formulation 10% 15mg 10% 15mg peptide/Zn ratio 1.5:1__!·5:1. Parameter unit average (n=5) SD average (n=4) SD dose Mgkg1 857.7 131.0 694.8 46.5 tmax Imax d 0.208 0.167 0.111 0.068 ngmT1 8.10 1.80 5.65 2.61 tl/2jqip d 3.32 0.66 6.77 2.04 AUQ ngmr]d 53.5 14.3 38.2 9.2 AUC ngmr1 d 55.4 15.7 41.6 8.9 AUCextr^j. % 2.99 1.83 8.44 5.00 MRTt d 9.31 2.25 7.48 1.39 MRT d 9.96 2.60 9.85 2.54 [Acetic acid: wins] 3.7:1 3.2:1 10. GLP-1 fat salt / divalent metal formulation -42- 201023877 1 0.1 . Method preparation (Aib8'35) hGLP-l (7-36 NH2 1 mg/mL water and PBS solution and adjust the pH to 7.0» Prepare a stock solution of CaCl2, CuCl2, MgCl2 and ZnCl2 in water at 10 mg/mL. The pH of the CaCl2, MgCl2 and ZnCl2 solutions was adjusted to 7.0. Since the sinking source Cu, the pH of the CuCl2 solution cannot be alkalized. Therefore, a CuCl2 solution of pH 4.4 was used.

添加 4 μΙ> 金屬離子水或 PBS 溶液至 200 pL(Aib8,35)hGLP-l(7-36)NH2 1 mg/mL 溶液製造 200 pg/mL ❷ 最終金屬離子濃度。混合所得溶液並檢査沉澱。若形成沉 澱,離心懸浮液。以 HPLC 測定(Aib8,35)hGLP-l(7-36)NH2 濃度》 1 0 · 2 .結果 表4: (Aib8,35)hGLP-l(7-3 6)NH2於存在二價金屬離子下之溶 解度 水溶液,mg/mL PBS 溶液,mg/mL CaCl2 >1 (pH 7.1) >1 (pH 6.8) CuCl2 0.058 (pH 7.1) 0.039 (pH 6.8) MgCl2 >1 (pH 7.2) >1 (pH 6.9) ZnCl2 0.108 (pH 6.9) 0.056 (pH 6.8) 10.3.(Aib8’35)hGLP-l(7-36)NH,/二僭金靨 pH 5.5 清澈溶液調 配物之藥物動力學硏究 使用下列步驟製備三種不同的 (Aib8’35)hGLP-l(7-36)NH2 調配物: (1) (Aib8’35)hGLP-l(7-36)NH2 鹽酸鹽與 CuCl2 (2) (Aib8’35)hGLP-l(7-36)NH2 鹽酸鹽與 ZnCl2 -43- 201023877 (3) (Aib*’35)hGLP-l(7-36)NH2 乙酸鹽與 ZnCl2 GLP-1類似物的TFA鹽(使用製備型HPLC純化胜肽’ 以含緩衝溶液之TFA洗提所得之TFA鹽)能被轉換爲另一 種鹽,例如將胜肽溶解於小量0.25 N乙酸水溶液得到乙酸 鹽。將所得溶液施用於半製備型HPLC管柱(Zorbax ’ 300 38,(:-8)。以(1)0.11^乙酸銨水溶液0.5小時,(2)0.25\乙 酸水溶液0.5小時以及(3)線性梯度(20%至100%的溶液B 經30分鐘)以流速4ml/分鐘(溶液A爲0.25N乙酸水溶液; φ 溶液B爲0.25N乙酸於乙腈/水,80:20)洗提管柱。收集含 有胜肽之分層並冷凍乾燥到乾。 經由凍乾步驟製備(Aib8,35)hGLP-l(7-36)NH2鹽酸 Λ 鹽。將 20mg(Aib8’35)hGLP-l(7-36)NH2 乙酸鹽溶解於 4mL 20 mM HC1水溶液並在室溫培育10分鐘。冷凍樣品並凍乾 ' 隔夜。進行凍乾另兩次,並測定最終產物的氯化物含量。 測定之氯化物含量爲5.3 8 %。 mrAib8,35、hGLP-l(7-36)NH,鹽酸鹽與 CuCU : 〇 將(Aib8’35)hGLP-l(7-36)NH2 HC1 5.3 mg(胜肽含量爲 9 5%)溶解於50μL20mMCuCl2水溶液。以大約2μL的lN NaOH 調整 pH 至約 5.5。(Aib8’35)hGLP-l(7-36)NH2/CuCl2 的莫耳比爲1 .5: 1。胜肽濃度爲10%(30 mM)於水(w/w),具 pH大約5.5。 (2) (Άίΐ)8,35、1ιΟΕΡ-Π7-36)ΝΗ,鹽酸轉與 ZnCl?: 將(Aib8’35)hGLP-l(7-36)NH2 HC1 5.3 mg(胜肽含量爲 95%)溶解於50 pL 20 mM ZnCl2水溶液。以大約2 pL的1 N NaOH 調整 pH 至約 5.5。(Aib8’35)hGLP-l(7-36)NH2/ZnCl2 -44 - 201023877 的莫耳比爲1.5:1。胜肽濃度爲10%(30mM)與水(w/w),具 pH大約5.5 » L3_) (Aib8’35、hGLP-U7-36)NH,乙酸鹽與 ZnCl,: 將(Aib8’35)hGLP-l(7-36)NH2 乙酸鹽 5.5 mg(胜肽含量 爲92%)溶解於50 pL 20 mM ZnCl2水溶液。凍乾所得溶液 隔夜並再溶解於50 μί水。以大約1 μΐ^的1 N NaOH調整 pH 至約 5.5。(Aib8,35)hGLP-l(7-36)NH2/ZnCl2 的莫耳比爲 1.5:卜胜肽濃度爲10%(30mM)於水(w/w),具pH大約5.5。 ❹ 1〇.4.劑量及血液樣品收集 以0.3 mg/大鼠(3 kL的10%溶液)皮下投與大鼠此三種 (Aib8’35)hGLP-l(7-36)NH2 調配物。在 5、10、15、30 分鐘、 1、2、4、8小時以及1、2、3、4、7、10天收集血液樣品。 經由離心從血液收集血漿並保存在-80 °C »也收集注射位置 的組織,於5x甲醇均質化,並保存在-80°C。 兩隻大鼠用於 5、10、15、30分鐘以及 1、2、4、8 小時數據點。一隻大鼠用於1、2、3、4、7、10天數據點。 ❿ 1 0.5. LC-MS/MS樣品製備 以ΙΟμί甲酸酸化血漿(2 00μΙ〇並以600pL乙腈沉澱。 經由離心收集上清液並在真空下濃縮至乾燥。將殘留物溶 解於150 μί的3 0%乙腈於水並離心。注射50μί上清液用 於LC-MS/MS分析。 稀釋組織甲醇萃取物(1〇μΜ至1 mL 30%乙腈於水,並 注射50μΙ^上清液用於LC-MS/MS分析。 1 0.6. LC-MS/MS 分析 以裝備Turbo Ionspray探針之ΑΡ14000質譜儀系統進 -45- 201023877 行LC-MS/MS分析。使用分子離子偵測之MRM模式與668.9 及136.1離子對。 使用Luna C8(2) 2x30 mm 3μ管柱以流速〇.3〇 mL/分 鐘從10% B至90% B進行10分鐘來執行HPLC分開。緩 衝液A是1 %甲酸於水以及緩衝液B是1 %甲酸於乙腈。 LOQ 爲 0.5 ng/mL。 1 0.7 .結果與總結 以其標準校正作圖計算胜肽的血漿濃度。使用〇.〇6 mg/mL (Aib8’35)hGLP-l(7-36)NH2(0.3 mg/大鼠於 5 mL 甲醇 萃取物)作爲100%來計算留在注射位置的百分比。 表 5: (Aib8’35)hGLP-l(7-36)NH2 血漿濃度 時間 小時 投藥 (Aib8,35)hGLP-1(7-36) NH2 HC1 及 CuCl2 之血發濃度(ng/mL) 投藥 (Aib8’35)hGLP-1(7-36) NH2 HC1 及 ZnCl2 之血漿濃度(ng/mL) 投藥 (AibM5)hGLP-1(7-36) NH2乙酸鹽及ZnCl2 之血漿濃度(ng/mL) 0.083 4.76 5·06±3·85 25.9±14.57 0.17 3.18 13·04±12.81 16.35±5.02 0.25 3.44 13.65±8.14 32.2 0.5 7·95±5·3 13.86±11.8 19.5±3.68 1 11.8 12.4±10.61 11.5 2 11.4±1.27 12.9±0_35 8.64 4 5.9±5.2 6.39±4.62 5.48 8 0.9±0.37 0.72 6.41 24 1.35 1.08 0.94 48 0.68 1.21 72 0.66 0.47 0.77 96 0.15 1.35 0.33 168 0.17 0.74 0.82 240 0.35 0.6 1.09 (Aib8’35)hGLP-l(7-3 6)NH2鹽酸鹽調配物之藥物動力學 槪況的全部時間過程作圖示於第 8 圖。 -46- 201023877 (Aib8’35)hGLP-l(7-3 6)NH2鹽酸鹽調配物之藥物動力學槪況 的早期時間過程作圖示於第9圖。(Aib8’35)hGLP-l(7-36)NH2 乙酸鹽調配物之藥物動力學槪況的全部時間過程作圖示於 第10圖。(Aib8’35)hGLP-l(7-36)NH2乙酸鹽調配物之藥物動 力學槪況的早期時間過程作圖示於第11圖。 表6: (Aib8’35)hGLP-l(7-3 6)NH2留在注射位置之評估百分比 時間 天 (Aib8’35)hGLP-1 (7-3 6)NH2 HC1及CuC12投藥留在注 射位置之評估百分比(%) (Aib8,35)hGLP-l (7-36)NH2 HC1及ZnCl2投藥留在注 射位置之評估百分比(%) (Aib8,35)hGLP-l(7-36)NH2 乙酸鹽及ZnCl2投藥留在注 射位置之_百分比(%) 1 1.58 10.59 6.96 2 24.88 26.94 9.97 3 12 21.87 11.6 4 0.14 0.04 0.23 7 0.47 0.06 0.03 10 0.01 0.02 0.01 (Aib8’35)hGLP-l(7-3 6)NH2在注射位置的組織積聚槪況 進一步示於第12圖。 表7 : PK參數 投藥 投藥 投藥 (Aib8,35)hGLP-l(7-36) (Aib8>35)hGLP-l(7-36) (Aib8’35)hGLP-l(7-36) NH2HC1 及 CuCl2 之 NH2HC1 及 ZnCl2 之 NH2乙酸鹽及ZnCl2 血漿濃度(ng/mL) 血度(ng/mL) 之血黎濃度(ng/mL) Tmax · h 1 0.5 0.25 cmax » ng/ml 11.8 13.8 32.2 AUC ng-hr/ml 204 514 394 結果指出GLP-1類似物的鹽形式,特別是組合二價金 屬鹽類,提供可接受之降低初始血漿濃度之持續性釋放調配 物,其可降低或消除不欲的副作用。 該數據指出強酸鹽類,例如GLP-1類似物的HC1鹽顯 示初始血漿濃度的進一步減少。不受此理論約束’相信 -47- 201023877 GLP-1類似物HC1鹽之初始血漿濃度的大量減少與活體內的 中和過程有關。上述pH 5.5之組成物(1)及(2),100%酸是氯 化物形式且沒有游離酸。因此,皮下注射之後體液能更快中 和溶液,藉此更快沉澱溶液。這些中和作用時間減少造成更 小、較不明確的初始血漿濃度或尖峰。 以上引用之刊物倂入本文作爲參考。本發明之額外具體 例將從以上揭示而顯而易見的,並欲包含於完全如本文所述 之本發明並定義於下列申請專利範圍中》 〇 【圖式簡單說明】 第1圖描繪對狗單劑皮下(S.C.)投與大約lmg的 [Aib8,35]hGLP-l(7-36)NH2之後所得之血漿槪況(中位數 値)。在每一案例中,胜肽是以含有大約l%(wt/vol)胜肽且 具有胜肽:Zn莫耳比爲大約1.5之水性鋅組成物來投與。實 心方形及空心方形代表組成物中pH是如文中所述以NaOH 調整;實心三角形代表組成物中pH未經NaOH調整;實心 圓形代表組成物經AcOH/AcO-緩衝。 ® 第2圖描繪對狗單劑皮下(s.c.)投與大約15 mg的 [Aib8’35]hGLP-l(7-36)NH2之後所得之血漿槪況(中位數 値)。在每一案例中,胜肽是以含有大約10%(wt/vol)胜肽且 具有胜肽:Zn莫耳比爲大約1.5之水性鋅組成物來投與。實 心方形及空心方形代表組成物中pH是如文中所述以NaOH 調整;實心三角形代表組成物中pH未經NaOH調整;實心 圓形代表組成物經AcOH/AcO-緩衝。 第3圖描繪對狗單劑皮下(S.C.)投與大約1 mg的 [Aib8’35]hGLP-l(7-36)NH2之後所得之血漿槪況(中位數 -48- 201023877 値)。在每一案例中,胜狀是以含有下列之半固體水性鋅組 成物來投與:實心圓:約5%(wt/vol)胜肽,胜肽:Zn莫耳比 約5.4: 1,無pH調整:空心圓:約l〇%(wt/vol)胜肽,胜肽:Zn 莫耳比約5.4:1,pH調整;空心方形:約10% (wt/vol)胜肽, 胜肽:Zn莫耳比約5.4:1,經NaOH調整pH;實心方形:約 10%(wt/vol)胜肽,胜肽:Zri莫耳比約4:1,經NaOH調整pH。 第4圖提供可用於製備本發明某些調配物之各種裝置 的圖式表現。 Φ 第5圖描繪對狗單劑皮下(s.c.)投與大約1 mg的 [Aib8’35]hGLP-l(7-36)NH2之後所得之血漿槪況(中位數 値)。該胜肽是以且具有胜肽濃度約2%及胜肽:Zn莫耳比約 1 . 5 :1之水性鋅組成物來投與。 第6圖描繪對狗單劑皮下(s.c.)投與大約15 mg的 [Aib8’35]hGLP-l(7-36)NH2之後所得之血漿槪況(中位數 値)。該胜肽是以且具有胜肽濃度約25 %及胜肽:Zn莫耳比約 4:1之半固體鋅組成物來投與。 © 第7圖描繪對狗單劑皮下(s.c.)投與大約15 mg的 [Aib8,35]hGLP-l(7-36)NH2之後所得之血漿槪況(中位數 値)。該胜肽是以且具有胜狀濃度約2 3 %及胜肽:Zn莫耳比約 1.5:1之半固體鋅組成物來投與。 第8圖描繪對大鼠單劑皮下(s.c.)投與下列〇.3mg之 GLP-1類似物鹽酸鹽測試調配物(3 pL的10%溶液)之後所得 全部時間過程之血漿槪況(中位數値): (l)(Aib8,35)hGLP-l(7-36)NH2 鹽酸鹽與 CuCl2 : (Aib8,35)hGLP-l(7-36)NH2/CuCl2 的莫耳比爲 1.5:1。該胜肽 -49- 201023877 濃度爲l〇%(30 mM)於水(w/w)且大約pH5.5。 (2)(Aib8’35)hGLP-l(7-36)NH2 鹽酸鹽與 ZnCl2 : (Aib8’35)hGLP-l(7-3 6)NH2/ZnCl2 的莫耳比爲 1.5:1。該胜肽 濃度爲1〇%(3〇1111^)於水(%/评)且大約?115.5。 第9圖描繪對大鼠單劑皮下(s.c.)投與下列〇.3mg之 GLP-1類似物乙酸鹽測試調配物(3 μί的10〇/〇溶液)之後所得 全部時間過程之血漿槪況(中位數値): (Aib8'35)hGLP-l (7-36)ΝΗ2 乙酸鹽與 ZnCl2 : φ (Aib8’35)hGLP-l(7-36)NH2/ZnCl2 的莫耳比爲 1.5:1。該胜肽 濃度爲10%(30〇11^)於水(%/^)且大約?115.5。 第10圖描繪對大鼠單劑皮下(s.c.)投與第8圖所示 0.3mg之測試調配物(3 pL的10%溶液)之後所得初期時間過 ' 程之血漿槪況(中位數値)。 第11圖描繪對大鼠單劑皮下(s.c.)投與第9圖所示 〇.3mg之測試調配物(3 μί的10%溶液)之後所得初期時間過 程之血漿槪況(中位數値)。 ❹ 第12圖描繪對大鼠單劑皮下(s.c.)投與第8圖所示 〇.3mg之三測試調配物(3 μί的10%溶液)之後,所估計繼續 存在於注射位置的(Aib8,35)hGLP-l(7-36)NH2百分比。 【主要元件符號說明】 HV 掌 控 閥 S 1 拋 棄 式 針 筒 S2 第 二 拋 棄 式 針 筒 SC 兩 向 不 鏽 連 接 者 SR 不 鏽 鋼 棒 -50-Add 4 μΙ> metal ion water or PBS solution to 200 pL (Aib8, 35) hGLP-1 (7-36) NH2 1 mg/mL solution to make 200 pg/mL 最终 final metal ion concentration. The resulting solution was mixed and the precipitate was checked. If a precipitate is formed, the suspension is centrifuged. Determination by HPLC (Aib8, 35) hGLP-1 (7-36) NH2 concentration 1 0 · 2 . Results Table 4: (Aib8, 35) hGLP-1 (7-3 6) NH2 in the presence of divalent metal ions Solubility aqueous solution, mg/mL PBS solution, mg/mL CaCl2 >1 (pH 7.1) >1 (pH 6.8) CuCl2 0.058 (pH 7.1) 0.039 (pH 6.8) MgCl2 >1 (pH 7.2) >1 (pH 6.9) ZnCl2 0.108 (pH 6.9) 0.056 (pH 6.8) 10.3. (Aib8'35) hGLP-1 (7-36) NH, / bismuth ruthenium pH 5.5 The pharmacokinetics of the clear solution formulation Three different (Aib8'35) hGLP-1 (7-36) NH2 formulations were prepared by the following procedure: (1) (Aib8'35) hGLP-1 (7-36) NH2 hydrochloride and CuCl2 (2) (Aib8 '35) hGLP-1 (7-36) NH2 hydrochloride and ZnCl2 -43- 201023877 (3) (Aib*'35) hGLP-1 (7-36) NH2 acetate and TFA of ZnCl2 GLP-1 analogue The salt (purified peptide using preparative HPLC 'TFA salt eluted with TFA containing buffer solution) can be converted to another salt, for example, the peptide is dissolved in a small amount of 0.25 N aqueous acetic acid to obtain an acetate. The resulting solution was applied to a semi-preparative HPLC column (Zorbax '300 38, (:-8). With (1) 0.11 ^ ammonium acetate aqueous solution for 0.5 hour, (2) 0.25 / acetic acid aqueous solution for 0.5 hour and (3) linear gradient (20% to 100% solution B over 30 minutes) eluted at a flow rate of 4 ml/min (solution A was 0.25 N aqueous acetic acid; φ solution B was 0.25 N acetic acid in acetonitrile/water, 80:20). The peptide was layered and lyophilized to dryness. (Aib8, 35) hGLP-1 (7-36) NH2 guanidine hydrochloride salt was prepared via a lyophilization step. 20 mg (Aib8'35) hGLP-1 (7-36) NH2 The acetate was dissolved in 4 mL of 20 mM HCl solution and incubated for 10 minutes at room temperature. The sample was frozen and lyophilized 'overnight. Freeze-dried twice and the chloride content of the final product was determined. The chloride content was determined to be 5.3 8 %. mrAib8,35, hGLP-l(7-36)NH, hydrochloride and CuCU: 溶解(Aib8'35)hGLP-l(7-36)NH2 HC1 5.3 mg (yield peptide content 9 5%) dissolved In 50 μL of 20 mM CuCl 2 aqueous solution, adjust the pH to about 5.5 with about 2 μL of 1N NaOH. (Aib8'35) hGLP-1 (7-36) NH2/CuCl2 has a molar ratio of 1.5: 1. The peptide concentration is 10% ( 30 mM) in water (w/w) With a pH of about 5.5. (2) (Άίΐ) 8,35,1ιΟΕΡ-Π7-36)ΝΗ, hydrochloric acid to ZnCl?: (Aib8'35)hGLP-l(7-36)NH2 HC1 5.3 mg (peptide) The content was 95%) dissolved in 50 pL of 20 mM ZnCl 2 aqueous solution. Adjust the pH to approximately 5.5 with approximately 2 pL of 1 N NaOH. (Aib8'35) hGLP-1 (7-36) NH2/ZnCl2 -44 - 201023877 has a molar ratio of 1.5:1. The peptide concentration is 10% (30 mM) and water (w/w), with a pH of about 5.5 » L3_) (Aib8'35, hGLP-U7-36) NH, acetate and ZnCl,: (Aib8'35) hGLP -l (7-36) NH2 acetate 5.5 mg (92% peptide) was dissolved in 50 pL of 20 mM ZnCl2 aqueous solution. The resulting solution was lyophilized overnight and redissolved in 50 μί water. Adjust the pH to approximately 5.5 with approximately 1 μM of 1 N NaOH. (Aib 8, 35) The molar ratio of hGLP-1 (7-36) NH2/ZnCl2 was 1.5: the concentration of the peptide was 10% (30 mM) in water (w/w) with a pH of about 5.5. ❹ 1〇.4. Dose and blood sample collection The three (Aib8'35) hGLP-1 (7-36) NH2 formulations were administered subcutaneously in 0.3 mg/rat (3 kL 10% solution). Blood samples were collected at 5, 10, 15, 30 minutes, 1, 2, 4, 8 hours and 1, 2, 3, 4, 7, and 10 days. Plasma was collected from the blood by centrifugation and stored at -80 °C. The tissue at the injection site was also collected, homogenized in 5x methanol, and stored at -80 °C. Two rats were used for 5, 10, 15, 30 minutes and 1, 2, 4, and 8 hour data points. One rat was used for 1, 2, 3, 4, 7, and 10 day data points. ❿ 1 0.5. LC-MS/MS sample preparation Acidified plasma with ΙΟμί carboxylic acid (200 μΙ〇 and precipitated with 600 pL of acetonitrile. The supernatant was collected by centrifugation and concentrated to dryness under vacuum. The residue was dissolved in 150 μί of 3 0 % acetonitrile in water and centrifuged. Inject 50 μί of the supernatant for LC-MS/MS analysis. Dilute tissue methanol extract (1 μμΜ to 1 mL 30% acetonitrile in water and inject 50 μΙ^ supernatant for LC- MS/MS analysis. 1 0.6. LC-MS/MS analysis was performed on a 400014000 mass spectrometer system equipped with a Turbo Ionspray probe. LC-MS/MS analysis was performed at -45-201023877. MRM mode using molecular ion detection with 668.9 and 136.1 Ion pairing. HPLC separation was performed using a Luna C8(2) 2x30 mm 3μ column at a flow rate of 〇3〇mL/min from 10% B to 90% B for 10 minutes. Buffer A was 1% formic acid in water and buffered. Liquid B was 1% formic acid in acetonitrile. LOQ was 0.5 ng/mL. 1 0.7. Results and summary The plasma concentration of the peptide was calculated using its standard calibration plot. Using 〇.〇6 mg/mL (Aib8'35) hGLP- l (7-36) NH2 (0.3 mg/rat in 5 mL methanol extract) as 100% to calculate the percentage remaining at the injection site. Table 5: (A Ib8'35) hGLP-1 (7-36) NH2 plasma concentration time administration (Aib8, 35) hGLP-1 (7-36) NH2 HC1 and CuCl2 blood concentration (ng/mL) Administration (Aib8'35) hGLP-1(7-36) Plasma concentration of NH2 HC1 and ZnCl2 (ng/mL) Administration (AibM5) hGLP-1 (7-36) Plasma concentration of NH2 acetate and ZnCl2 (ng/mL) 0.083 4.76 5·06 ±3·85 25.9±14.57 0.17 3.18 13·04±12.81 16.35±5.02 0.25 3.44 13.65±8.14 32.2 0.5 7·95±5·3 13.86±11.8 19.5±3.68 1 11.8 12.4±10.61 11.5 2 11.4±1.27 12.9±0_35 8.64 4 5.9±5.2 6.39±4.62 5.48 8 0.9±0.37 0.72 6.41 24 1.35 1.08 0.94 48 0.68 1.21 72 0.66 0.47 0.77 96 0.15 1.35 0.33 168 0.17 0.74 0.82 240 0.35 0.6 1.09 (Aib8'35)hGLP-l(7-3 6) The overall time course of the pharmacokinetic profile of the NH2 hydrochloride formulation is illustrated in Figure 8. -46-201023877 (Aib8'35) The early time course of the pharmacokinetic profile of the hGLP-1 (7-3 6) NH2 hydrochloride formulation is illustrated in Figure 9. The overall time course of the pharmacokinetic profile of the (Aib8'35) hGLP-1 (7-36) NH2 acetate formulation is illustrated in Figure 10. The early time course of the pharmacokinetics of the (Aib8'35) hGLP-1 (7-36) NH2 acetate formulation is illustrated in Figure 11. Table 6: (Aib8'35) hGLP-1 (7-3 6) NH2 remained at the injection site for the estimated percentage of time (Aib8'35) hGLP-1 (7-3 6) NH2 HC1 and CuC12 administration remained at the injection site Percentage of evaluation (%) (Aib8, 35) hGLP-1 (7-36) NH2 HC1 and ZnCl2 administration percentage at the injection site (%) (Aib8, 35) hGLP-1 (7-36) NH2 acetate And ZnCl2 administration remains at the injection site _ percentage (%) 1 1.58 10.59 6.96 2 24.88 26.94 9.97 3 12 21.87 11.6 4 0.14 0.04 0.23 7 0.47 0.06 0.03 10 0.01 0.02 0.01 (Aib8'35) hGLP-l (7-3 6 The tissue accumulation of NH2 at the injection site is further shown in Fig. 12. Table 7: PK parameters for administration and administration (Aib8, 35) hGLP-1 (7-36) (Aib8 > 35) hGLP-1 (7-36) (Aib8'35) hGLP-1 (7-36) NH2HC1 and CuCl2 NH2 acetate and ZnCl2 NH2 acetate and ZnCl2 plasma concentration (ng/mL) Blood (ng/mL) blood concentration (ng/mL) Tmax · h 1 0.5 0.25 cmax » ng/ml 11.8 13.8 32.2 AUC ng- Hr/ml 204 514 394 The results indicate that the salt form of the GLP-1 analog, particularly the combined divalent metal salt, provides an acceptable sustained release formulation that reduces the initial plasma concentration, which reduces or eliminates unwanted side effects. . This data indicates that strong acid salts, such as the HC1 salt of the GLP-1 analog, show a further reduction in the initial plasma concentration. Without being bound by this theory, it is believed that the large reduction in the initial plasma concentration of the HC1 salt of the GLP-1 analogue is related to the neutralization process in vivo. The above compositions (1) and (2) having a pH of 5.5, the 100% acid is in the form of a chloride and has no free acid. Therefore, the body fluid can neutralize the solution more quickly after subcutaneous injection, thereby precipitating the solution faster. These reductions in neutralization time result in smaller, less defined initial plasma concentrations or spikes. The above cited publications are incorporated herein by reference. Additional specific examples of the present invention will be apparent from the above disclosure, and are intended to be included in the scope of the invention as described herein and are defined in the following claims. Plasma conditions (median 値) obtained after subcutaneous (SC) administration of approximately 1 mg of [Aib8,35]hGLP-1 (7-36)NH2. In each case, the peptide was administered as an aqueous zinc composition containing about 1% (wt/vol) peptide and having a peptide: Zn molar ratio of about 1.5. Solid squares and open squares indicate that the pH of the composition is adjusted with NaOH as described herein; solid triangles indicate that the pH of the composition is not adjusted with NaOH; solid circles indicate that the composition is buffered with AcOH/AcO-. ® Figure 2 depicts the plasma status (median 値) obtained after administration of approximately 15 mg of [Aib8'35]hGLP-1 (7-36) NH2 subcutaneously (s.c.) to a dog. In each case, the peptide was administered as an aqueous zinc composition containing about 10% (wt/vol) peptide and having a peptide: Zn molar ratio of about 1.5. Solid squares and open squares indicate that the pH of the composition is adjusted with NaOH as described herein; solid triangles indicate that the pH of the composition is not adjusted with NaOH; solid circles indicate that the composition is buffered with AcOH/AcO-. Figure 3 depicts the plasma status (median -48-201023877 値) obtained after administration of approximately 1 mg of [Aib8'35]hGLP-1 (7-36) NH2 subcutaneously (S.C.) in dogs. In each case, the win was administered as a semi-solid aqueous zinc composition containing: solid circles: about 5% (wt/vol) peptide, peptide: Zn molar ratio about 5.4: 1, none pH adjustment: open circle: about l〇% (wt/vol) peptide, peptide: Zn molar ratio about 5.4:1, pH adjustment; hollow square: about 10% (wt/vol) peptide, peptide: The Zn molar ratio is about 5.4:1, the pH is adjusted by NaOH; the solid square: about 10% (wt/vol) peptide, the peptide: Zri molar ratio is about 4:1, and the pH is adjusted by NaOH. Figure 4 provides a graphical representation of various devices that can be used to prepare certain formulations of the present invention. Φ Figure 5 depicts the plasma status (median 値) obtained after administration of approximately 1 mg of [Aib8'35]hGLP-1 (7-36) NH2 subcutaneously (s.c.) to a dog. The peptide is administered as an aqueous zinc composition having a peptide concentration of about 2% and a peptide:Zn molar ratio of about 1.5:1. Figure 6 depicts the plasma status (median 値) obtained after administration of approximately 15 mg of [Aib8'35]hGLP-1 (7-36) NH2 subcutaneously (s.c.) to a dog. The peptide is administered as a semi-solid zinc composition having a peptide concentration of about 25% and a peptide:Zn molar ratio of about 4:1. © Figure 7 depicts the plasma status (median 値) obtained after administration of approximately 15 mg of [Aib8,35]hGLP-1 (7-36)NH2 to a single dose of dog subcutaneously (s.c.). The peptide is administered as a semi-solid zinc composition having a winning concentration of about 23% and a peptide:Zn molar ratio of about 1.5:1. Figure 8 depicts plasma conditions of the entire time course obtained after subcutaneous (sc) administration of the following 3 mg of GLP-1 analogue hydrochloride test formulation (10 pL of 10% solution) to a single dose of rats (middle) The number of digits 値): (l) (Aib8, 35) hGLP-l (7-36) NH2 hydrochloride and CuCl2: (Aib8, 35) hGLP-l (7-36) NH2 / CuCl2 molar ratio of 1.5 :1. The peptide -49-201023877 has a concentration of 10% (30 mM) in water (w/w) and is approximately pH 5.5. (2) (Aib8'35) hGLP-1 (7-36) NH2 hydrochloride and ZnCl2: (Aib8'35) hGLP-1 (7-3 6) NH2/ZnCl2 have a molar ratio of 1.5:1. The concentration of the peptide is 1% (3〇1111^) in water (%/rated) and approximate? 115.5. Figure 9 depicts the plasma condition of the entire time course obtained after subcutaneous (sc) administration of the following 3 mg of the GLP-1 analogue acetate test formulation (3 μί 10 〇 / 〇 solution) to a single dose of rats ( Median 値): (Aib8'35) hGLP-l (7-36) ΝΗ2 acetate and ZnCl2: φ (Aib8'35) hGLP-l(7-36)NH2/ZnCl2 has a molar ratio of 1.5:1 . The peptide concentration is 10% (30〇11^) in water (%/^) and approximate? 115.5. Figure 10 depicts plasma sputum (median 値) obtained after a single dose of subcutaneous (sc) administration of 0.3 mg of the test formulation (10 pL of 10% solution) shown in Figure 8 ). Figure 11 depicts the plasma status (median 値) of the initial time course obtained after subcutaneous (sc) administration of a single dose of 3 mg of the test formulation (3 μί of 10% solution) shown in Figure 9. . ❹ Figure 12 depicts the administration of a single dose of a subcutaneous (sc) to the sputum of 3 mg of the test formulation (3 μί of 10% solution) shown in Figure 8, which is estimated to continue to exist at the injection site (Aib8, 35) hGLP-1 (7-36) NH2 percentage. [Main component symbol description] HV palm control valve S 1 disposable syringe S2 second disposable cylinder SC two-way stainless steel connector SR stainless steel rod -50-

Claims (1)

201023877 七、申請專利範圍: 1·—種醫藥組成物,含有以GLP-1類似物之醫藥可接受鹽 或該類似物之鹽與類似物之混合物製備之 GLP-1類似 物,藉此提供類似物鹽對胜肽類似物於該醫藥組成物之 —莫耳比,其中可調整莫耳比來調節溶解度、pH及釋放 以影響胜肽於該醫藥組成物之活體內釋放槪況。 2.如申請專利範圍第1項之醫藥組成物,其中該GLP-1類 似物是[Aib8’35]hGLP-l(7-36)NH2。 0 3.如申請專利範圍第2項之醫藥組成物,進一步含有二價 金屬及/或二價金屬鹽。 4.如申請專利範圍第3項之醫藥組成物,其中該二價金屬 是鋅或銅。 ' 5 .如申請專利範圍第3項之醫藥組成物,其中該組成物含 有選自由CuAc2、CuCl2、ZnAc2及/或ZnCh所組群組之二 價金屬鹽。 6. 如申請專利範圍第2或5項之醫藥組成物,其中該 φ [Aib8’35]hGLP-l(7-36)NH2的鹽是有機酸之醫藥可接受鹽。 7. 如申請專利範圍第6項之醫藥組成物,其中該有機酸是 選自由乙酸、三氟乙酸、乳酸、蘋果酸、抗壞血酸、琥 珀酸、苯甲酸、檸檬酸、甲烷磺酸及甲苯磺酸所組群 組。 8. 如申請專利範圍第7項之醫藥組成物,其中該酸是乙酸。 9. 如申請專利範圍第2或5項之醫藥組成物,其中該 [Aib8’35]hGLP_l(7-3 6)NH2的鹽是無機酸之醫藥可接受鹽。 10.如申請專利範圍第9項之醫藥組成物,其中該無機酸是 -51- 201023877 選自由氫氯酸、氫溴酸、氫碘酸、硫酸及磷酸所組群 11. 如申請專利範圍第10項之醫藥組成物,其中該酸是氫氯 酸。 12. 如申請專利範圍第 3項之醫藥組成物,其中該 [Aib8’35]hGLP-l(7-36)NH2鹽對 GLP-1胜肽類似物的莫耳 比範圍是大約0.5:1至大約10:1。 1 3 ·如申請專利範圍第3項之醫藥組成物,其中在該醫藥組 φ 成物中該[八丨1)8’35]11〇1^-1(7-36)^^2鹽對該二價金屬及/或 二價金屬鹽之莫耳比範圍從大約6:1至大約1:1。 14. 如申請專利範圍第13項之醫藥組成物,在該醫藥組成物 中該[Aib8’35]hGLP-l(7-3 6)NH2鹽對該二價金屬及/或二價 ' 金屬鹽之莫耳比範圍從大約5.4:1至大約1.5:1。 15. 如申請專利範圍第14項之醫藥組成物,其中該醫藥可接 受鹽是[八比8,35]11〇1^-1(7-36川112.11(:1.211。 16. 如申請專利範圍第14項之醫藥組成物,其中該醫藥可接 參 受鹽是[Aib 8 3 5 ]hGLP-l(7-36)NH2 ·乙酸鹽· Zn。 17. 如申請專利範圍第14項之醫藥組成物,其中該醫藥可接 受鹽是[八比8,35]]^1^-1(7-36)1^2.11(:1.銅。 -52-201023877 VII. Patent application scope: 1. A pharmaceutical composition comprising a GLP-1 analogue prepared by using a pharmaceutically acceptable salt of a GLP-1 analogue or a mixture of a salt of the analog and the analog, thereby providing a similar The molar ratio of the salt to the peptide analog in the pharmaceutical composition, wherein the molar ratio can be adjusted to adjust the solubility, pH, and release to affect the release of the peptide in the living body of the pharmaceutical composition. 2. The pharmaceutical composition of claim 1, wherein the GLP-1 analog is [Aib8'35]hGLP-1 (7-36)NH2. 0. The pharmaceutical composition of claim 2, further comprising a divalent metal and/or a divalent metal salt. 4. The pharmaceutical composition of claim 3, wherein the divalent metal is zinc or copper. The pharmaceutical composition of claim 3, wherein the composition contains a divalent metal salt selected from the group consisting of CuAc2, CuCl2, ZnAc2, and/or ZnCh. 6. The pharmaceutical composition according to claim 2, wherein the salt of φ [Aib8'35]hGLP-1 (7-36)NH2 is a pharmaceutically acceptable salt of an organic acid. 7. The pharmaceutical composition according to claim 6 wherein the organic acid is selected from the group consisting of acetic acid, trifluoroacetic acid, lactic acid, malic acid, ascorbic acid, succinic acid, benzoic acid, citric acid, methanesulfonic acid and toluenesulfonic acid. Group of groups. 8. The pharmaceutical composition of claim 7, wherein the acid is acetic acid. 9. The pharmaceutical composition according to claim 2 or 5, wherein the salt of [Aib8'35]hGLP_l(7-3 6)NH2 is a pharmaceutically acceptable salt of a mineral acid. 10. The pharmaceutical composition according to claim 9 wherein the inorganic acid is -51-201023877 selected from the group consisting of hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid. A pharmaceutical composition of 10, wherein the acid is hydrochloric acid. 12. The pharmaceutical composition of claim 3, wherein the molar ratio of the [Aib8'35]hGLP-1 (7-36)NH2 salt to the GLP-1 peptide analog is about 0.5:1 to About 10:1. 1 3 · The pharmaceutical composition of claim 3, wherein in the pharmaceutical group φ, the [八丨1) 8'35]11〇1^-1(7-36)^^2 salt pair The molar ratio of the divalent metal and/or divalent metal salt ranges from about 6:1 to about 1:1. 14. The pharmaceutical composition of claim 13, wherein the [Aib8'35]hGLP-1 (7-3 6)NH2 salt is a divalent metal and/or a divalent 'metal salt The molar ratio ranges from about 5.4:1 to about 1.5:1. 15. The pharmaceutical composition of claim 14 wherein the pharmaceutically acceptable salt is [8 to 8, 35] 11 〇 1 ^ -1 (7-36 chuan 112.11 (: 1.211. 16. The pharmaceutical composition of Item 14, wherein the pharmaceutically acceptable salt is [Aib 8 3 5 ]hGLP-l(7-36)NH2 ·acetate·Zn. 17. The pharmaceutical composition as claimed in claim 14 And the pharmaceutically acceptable salt is [8 to 8, 35]] ^ 1 ^ -1 (7-36) 1 ^ 2.11 (: 1. copper. - 52-
TW97148859A 2008-12-16 2008-12-16 GLP-1 pharmaceutical compositions TW201023877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97148859A TW201023877A (en) 2008-12-16 2008-12-16 GLP-1 pharmaceutical compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97148859A TW201023877A (en) 2008-12-16 2008-12-16 GLP-1 pharmaceutical compositions

Publications (1)

Publication Number Publication Date
TW201023877A true TW201023877A (en) 2010-07-01

Family

ID=44851796

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97148859A TW201023877A (en) 2008-12-16 2008-12-16 GLP-1 pharmaceutical compositions

Country Status (1)

Country Link
TW (1) TW201023877A (en)

Similar Documents

Publication Publication Date Title
JP2009533460A (en) Pharmaceutical composition of hGLP-1, exendin-4 and analogs thereof
JP2011001381A (en) Glp-1 pharmaceutical composition
US20120277151A1 (en) Glp-1 pharmaceutical compositions
KR101247665B1 (en) Glp-1 pharmaceutical compositions
US20120077746A1 (en) Glp-1 analogues pharmaceutical compositions
RU2445972C2 (en) Pharmaceutical compositions glp-1
US20070004616A1 (en) GLP-1 pharmaceutical compositions
TW201023877A (en) GLP-1 pharmaceutical compositions
US20070244034A1 (en) GLP-1 pharmaceutical compositions
KR20130008062A (en) Glp-1 pharmaceutical compositions