TW201023543A - Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers - Google Patents

Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers Download PDF

Info

Publication number
TW201023543A
TW201023543A TW97148762A TW97148762A TW201023543A TW 201023543 A TW201023543 A TW 201023543A TW 97148762 A TW97148762 A TW 97148762A TW 97148762 A TW97148762 A TW 97148762A TW 201023543 A TW201023543 A TW 201023543A
Authority
TW
Taiwan
Prior art keywords
correction
phase
circuit
signal
component
Prior art date
Application number
TW97148762A
Other languages
Chinese (zh)
Other versions
TWI382695B (en
Inventor
Chien-Cheng Tung
Thomas Edward Pare Jr
Original Assignee
Ralink Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralink Technology Corp filed Critical Ralink Technology Corp
Priority to TW97148762A priority Critical patent/TWI382695B/en
Publication of TW201023543A publication Critical patent/TW201023543A/en
Application granted granted Critical
Publication of TWI382695B publication Critical patent/TWI382695B/en

Links

Abstract

An embodiment of the present invention includes a calibration system employed in a multi-input-multi-output (MIMO) system for beamforming and receiving a plurality of streams. The system includes a first calibration circuit responsive to inphase (I) and quadrature (Q) pairs of stream and operative to calibrate each I and Q pair and a second calibration circuit responsive to the calibrated I and Q pairs for all streams, wherein the first and second calibration circuits perform calibration in the time domain.

Description

201023543 mt 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種無線通信傳送器及接收器,尤指一種透過使 用了正父分頻多工(Orthogonal Frequency Division Multiplexing, OFDM )技術之一多輸入多輸出(Multi-Input-Multi-Output,ΜΙΜΟ ) 傳送器及接收器,以達成天線波束形成的方法及裝置。 ❸ 【先前技術】 個人裝置,如電腦、行動電話、個人數位助理及類似的裝置, 近年來受到廣大的歡迎。隨著技術的進步,個人裝置的體積不斷地 縮小,也更便於攜帶。現今各式各樣的可攜式無線裝置透過彼此間 的通信,讓使用者在使用上更便利,並且使得資料、聲音及音頻訊 號的傳遞變得更加容易。為了達成這個目的,行動式網路的建置和 φ 可攜式無線裝置缺一不可。 對於應用在個人裝置的無線網路而言,一種適用於工業標準 IEEE 802.11η的數據機預期將被廣泛地使用。也就是說,多個天線 所形成之一陣列被放置在個人裝置之内部或週邊,而一射頻(radi〇 frequency ’ RF)半導體裝置則透過天線陣列及一類比數位轉換器 (analog-to-digitalconverter,ADC)接收訊號及資料。類比數位轉 換器通常内建在個人裝置之中,用來將所接收之訊號轉換至基頻。 接著,一基頻處理器將所接收之訊號處理並解碼,以取得原始資料, 5 201023543 橫列資料可能是由另一個人裝置 過來之檔案。 或類似裝備透過遠端無線傳輸傳送 為了達成這個目的,天線陣列(因其係由多個天線所电成,故 稱為多輸人多輸出系統)至—指定位置間的接收與傳送 鍵^改善處理資料或資訊的速率、單端接收及連線翻。最= =業準_G2.11n為了同步地處理平行·串已納入先進的 夕天線技術,以增加總處理能力,以及透過「聰明地」傳送和接收 射頻tfl號,改善連線品質。 鮮IEEE_n之-草案⑽巾規定了兩種基本的波束形 2方法··外顯式(ExpHdt)和内内隱式(Implidt)。在外顯式的波 形成方法中’-接收H測量—傳送器與接收器之間通道之一通道 狀態資訊(Channel State祕刪i〇n,CSI),並將通道狀態資訊回 ❹輕傳送器。傳送器即可使用通道狀態資訊去計算一最佳之「路徑」 或「方向」,以針對-特定用戶傳送封包,而這種使用通道狀態資訊 =方法有時即被稱為「縣形成」。料顯式㈣絲成方法直接測 置通道時’ f要在線關傳送通道狀態魏,造成祕常駐性耗時 的問題’使得網路的總處理能力下降。 、在内内隱式的波束形成方法中,波束狀態資訊不需要以一封包 逐封包之基準回傳至傳送H⑽式,而是依靠通道之—互易性質 (ChannelRedpiOdty)。通道的互紐f假設—上核通道與一下 201023543 串流通道在-轉置操作(Transp〇se〇perati〇n)上本質上相同,使得 接收器可使用測量到的通道狀態資訊,並以形成波束的方式將通道 狀態資訊之封包回送至傳送器。如此一來,外顯式的通道狀態資訊 不須要在線路上傳送,藉此消除網路常駐性耗時的問題。在内内隱 如波束形成方式中,下串流通道在傳送器與接收器之間需要一校 正程序,以確認通道的互易性質成立。在一存取點(Ac賴驗) ϋ Ϊ用戶之間(大量的通道狀態資訊在此週期性地被交換),校正程序 需要使用複數座標(c〇mplexcoordinati〇n)。所謂存取點係指在裝 置間網路透過無線通信方式傳送與接收訊號之一裝置。 、然而,近期被提出用於實現校正内隱式波束形成之方法存有難 乂處理複雜且缺乏效率的問題。舉例來說,在目前的標準中每 =子載體(SUb-carrier,一般有56或118個)須要執行一快速傅立 葉轉換’且將快速傅立葉轉換之結果從一個人裝置傳送至另一裝 ❹置’造成網路處理能力及效率降低,並使問題更為複雜。 因此,即使於内隱式的波束形成之方法被提出來,仍無法避免 寺間消耗及複雜校正交換的問題。如標準正EE8〇2 UnD2 〇所定 義’在内隱式的波束形成方法中,在一對傳送器與接收器之間需要 枚正交換’崎每—子賴巾如轉送麟祕冑訊。由於校正 ^彈係―耗時的流程’執行校正步制F會降低網路之總處理效能, 且無,通道之狀況如何改變,校正步驟仍須被重複,造成大量的資 料被傳送入網路中。 7 201023543 除此之外’由於内隱式的波束形成方法需要複雜的校正交換, 其複雜度與内部操作能力的議題變得更加重要。在此情形下,實現 過程或資料編排上的微小差異可能會產生不同供應商所提供之解決 方案無法相容的危險。另外,校正交換實際上必須透過硬體/韌體 來實現。 ⑩ 如標準IEEE8〇2.11nD2.0所描述之校正無法補償非線性的前 端衰減’例如同相成分及正交成分之非正交性。 如前所述,為了改善内隱式的波束形成方法之校正步驟,依標 準IEEE8〇2.l In DZ0發展-用來接收與傳送訊號之無線收發器實屬 必要。 【發明内容】 簡單來說,本發明-實施例包含一用於波束形成及接收複數個 波束之校正祕,雜正系統適祕—錄人多輸出线。該校正 系統包含-第-校正電路’對應於—波束之_成分及正交成分, 用來校正每-波束之同相成分及正交成分;一第二校正電路,對應 於所有波束校正後之同相成分及正交成分;其中,該第一校正電路 及該第二校正電路係用來在時域上執行校正。 【實施方式】 8 201023543 本發明之一實施例提供用於校正一多輸入多輸出系統之波束 形成的裝置(例如-接收器)及方法,以執行二階段式的校正流程。 第一階段係由傳送器及接收器對同相及正交收發訊號執行一增益更 正及一群組延遲計算。第二階段則對第一階段之結果執行一相位更 正及一第二群組延遲更正,以校正橫跨傳送器及接收器之訊號。其 中’第-階段之校正電路及第二階段之校正電路皆在時域上執行校 正。 凊參考第1圖,第1圖係本發明實施例一通用多輸入多輸出無 線收發器波束形成系統(Universal Multi-Input-Multi-Output201023543 mt. Description of the Invention: [Technical Field] The present invention relates to a wireless communication transmitter and receiver, and more particularly to one of Orthogonal Frequency Division Multiplexing (OFDM) technologies. Multi-Input-Multi-Output (ΜΙΜΟ) transmitter and receiver to achieve antenna beamforming methods and devices. ❸ [Prior Art] Personal devices, such as computers, mobile phones, personal digital assistants and similar devices, have been widely welcomed in recent years. As technology advances, the size of personal devices continues to shrink and is more portable. Today's various portable wireless devices communicate with each other, making it easier for users to use and making the transfer of data, sound and audio signals easier. In order to achieve this goal, the construction of mobile networks and φ portable wireless devices are indispensable. For wireless networks applied to personal devices, a data machine suitable for the industry standard IEEE 802.11n is expected to be widely used. That is to say, an array formed by a plurality of antennas is placed inside or around the personal device, and a radio frequency (RF) semiconductor device transmits through the antenna array and an analog-to-digital converter (analog-to-digital converter) , ADC) Receive signals and data. Analog digital converters are typically built into personal devices to convert received signals to the fundamental frequency. Then, a baseband processor processes and decodes the received signal to obtain the original data, and the 5 201023543 horizontal data may be a file that is accessed by another person. Or similar equipment transmits via remote wireless transmission. To achieve this goal, the antenna array (called a multi-input multi-output system because it is composed of multiple antennas) to - the receiving and transmitting keys between specified locations Rate of data or information, single-ended reception, and connection. The most == industry standard _G2.11n in order to synchronize parallel strings has been incorporated into the advanced antenna technology to increase the total processing power, and to improve the quality of the connection by transmitting and receiving RF tfl numbers "smartly". The fresh IEEE_n-draft (10) towel specifies two basic beamform 2 methods: ExpHdt and Implid. In the explicit wave formation method, the 'receive H measurement—one of the channel status information (channel state), and the channel status information is returned to the light transmitter. The transmitter can use the channel status information to calculate an optimal "path" or "direction" to transmit packets for a particular user, and this use of channel status information = method is sometimes referred to as "county formation." The material explicit (4) silking method directly measures the channel when 'f wants to close the transmission channel state Wei, causing the problem of the permanent resident time-consuming, which makes the total processing capacity of the network decrease. In the inner implicit beamforming method, the beam state information does not need to be transmitted back to the transport H(10) on the basis of a packet-by-packet, but depends on the channel-reciprocal property (ChannelRedpiOdty). The channel's mutual f assumption—the upper nuclear channel is essentially the same as the 201023543 streaming channel in the transpose operation (Transp〇se〇perati〇n), so that the receiver can use the measured channel state information and form The beam mode sends the packet of the channel status information back to the transmitter. In this way, the explicit channel status information does not need to be transmitted on the line, thereby eliminating the problem of network resident time. In the intrinsic implicit beamforming mode, the lower stream channel requires a correction procedure between the transmitter and the receiver to confirm that the reciprocal nature of the channel is established. The calibration procedure requires the use of a complex coordinate (c〇mplexcoordinati〇n) between an access point (Ac) and a user (a large number of channel status information is periodically exchanged here). An access point is a device that transmits and receives signals via wireless communication between devices. However, the recent proposed method for implementing the corrected implicit beamforming has problems that are difficult to handle and which are inefficient. For example, in the current standard, each sub-carrier (SUb-carrier, typically 56 or 118) is required to perform a fast Fourier transform 'and transfer the result of fast Fourier transform from one device to another' This reduces network processing power and efficiency, and complicates the problem. Therefore, even if an implicit beamforming method is proposed, the problem of inter-chassis consumption and complicated correction exchange cannot be avoided. As defined by the standard EE8〇2 UnD2 ’, in the implicit beamforming method, a positive exchange is required between a pair of transmitters and receivers, such as the transfer of the sneakers. Since the correction of the system - the time-consuming process of performing the correction step F will reduce the overall processing efficiency of the network, and no, how the status of the channel changes, the correction steps must be repeated, causing a large amount of data to be transmitted into the network. in. 7 201023543 In addition to the fact that the implicit beamforming method requires complex correction switching, the issue of complexity and internal operational capability becomes more important. In this case, minor differences in the implementation process or data arrangement may create a risk that the solutions provided by different vendors are not compatible. In addition, the calibration exchange must actually be implemented via hardware/firmware. 10 The correction as described in the standard IEEE 8 〇 2.11 nD 2.0 cannot compensate for the non-linearity of the front end attenuation of the non-linear components such as the in-phase component and the quadrature component. As mentioned earlier, in order to improve the correction procedure of the implicit beamforming method, it is necessary to develop a wireless transceiver for receiving and transmitting signals in accordance with the standard IEEE8〇2.l In DZ0 development. SUMMARY OF THE INVENTION Briefly, the present invention-embodiment includes a correction for beamforming and receiving a plurality of beams, and a miscellaneous positive system-recording multiple output lines. The correction system includes a -first-correction circuit corresponding to the -beam component and the quadrature component for correcting the in-phase component and the quadrature component of each beam; and a second correction circuit corresponding to all beam-corrected in-phase a component and an orthogonal component; wherein the first correction circuit and the second correction circuit are used to perform correction in the time domain. [Embodiment] 8 201023543 An embodiment of the present invention provides a device (e.g., a receiver) and method for correcting beamforming of a multiple input multiple output system to perform a two-stage calibration process. In the first stage, a transmitter and receiver perform a gain correction and a group delay calculation on the in-phase and quadrature transmit and receive signals. The second phase performs a phase correction and a second group delay correction on the results of the first phase to correct the signals across the transmitter and receiver. The 'stage-of-phase correction circuit and the second stage correction circuit perform correction in the time domain. Referring to FIG. 1, FIG. 1 is a general-purpose multiple input multiple output wireless transceiver beamforming system (Universal Multi-Input-Multi-Output) according to an embodiment of the present invention.

TransceiverBeamformingSystem) 10 之示意圖。系統 1〇 包含一接收 器電路12、一傳送器電路14、一通道處理器16、一使用者設定檔 儲存單元I8及一多重存取控制(Multiple Access Contrd’ MAC) 單元20。接收器電路丨2及傳送器電路14有時被稱為無線收發器, φ 用來以封包形式,傳送及接收資訊。 如第1圖所示,接收器電路12包含串接於一序列之一接收器 射頻(Radio Frequency,RF)模組22,一接收器校正模組24、一 快速傅立葉轉換(Fast Fourier Transform,FFT)器26、一頻域等化 器(Frequency Equalizer ’ FEQ)通道估計電路28、一解碼器3〇及 一循環冗餘碼(Cyclic Redundancy Code,CRC )檢杳器 32。 傳送器電路14包含串接於一序列之一傳送器射頻模組34、一 9 201023543 傳送器校正馳36、-逆快稍轉(ίην⑽细f〇u細 τ麵f_)轉換器38、—空間映射矩陣單元4q、—星狀圖映料 (ConsteU知Mappe〇 42、―聽編碼_ 41。錄圖映射器幻 係由資料編· 41接收已編碼之請,並將已編碼之倾映射至符 號星狀圖點(Symbol ConstelIati〇nP〇ints)。 ❹ 如第1圖所示,接收器電路u另透過估計電路28輪 處=器㈣傳送器電路14另透過空間映射矩陣單元㈣接於^ ^又疋檔儲料χ 18。通道處理器16另轉接於循環冗餘竭檢 J 32,使用者設定檔儲存單元ls另輕接於多重存取控制單元 2〇,以接收多重存取控制單元2〇之輸出訊號。 -般來說,第丨圖中之系統1G用來對_多輸入多輸出 (mUlti-input_multi_〇呻ut,MIM〇)之架構執行正交分頻多工 ❹(〇rth—nalFrequencyDivi—歷 之-關鍵特色係在時域上執行校正,藉此避免使用到非必要的頻 寬。具體來說,本發明可免除在網路上傳送校正資訊的需求 糸統須要在賴上執行校正,以及毅正=#简子鐘――傳送。 解,戶tL1圖中/接收器電路12中之各元件執行不同的功能,以 s斤接收之峨。模組22用來將-射頻訊號轉換至 私則用來校正波束形成。快速傅立葉轉換過土 、組 換執行-喊峨— 201023543 用來將通道解碼,而檢查器%用來執行一冗餘 錯誤。透過電路28所執行的通道估測包含對每 —Μ少 正交多分工财之參數(或—參數_卜 /付體’計算Schematic of TransceiverBeamformingSystem) 10. The system 1A includes a receiver circuit 12, a transmitter circuit 14, a channel processor 16, a user profile storage unit I8, and a Multiple Access Contrd' MAC unit 20. The receiver circuit 丨2 and the transmitter circuit 14 are sometimes referred to as wireless transceivers, and φ is used to transmit and receive information in the form of packets. As shown in FIG. 1, the receiver circuit 12 includes a receiver RF (Radio Frequency, RF) module 22, a receiver calibration module 24, and a Fast Fourier Transform (FFT). The device 26, a frequency equalizer 'FEQ' channel estimation circuit 28, a decoder 3A, and a Cyclic Redundancy Code (CRC) detector 32. The transmitter circuit 14 includes a series of transmitter RF modules 34, a 9 201023543 transmitter calibration unit 36, a reverse speed (ίην (10) fine f〇u thin τ surface f_) converter 38, - space Mapping matrix unit 4q, - star map material (ConsteU know Mappe 〇 42, ― listen code _ 41. The map mapper phantom receives the encoded request from the data edit 41, and maps the encoded tilt to the symbol Star constellation point (Symbol ConstelIati〇nP〇ints). 第 As shown in Fig. 1, the receiver circuit u is further transmitted through the estimation circuit 28 at the wheel = (4) transmitter circuit 14 and through the spatial mapping matrix unit (4) connected to ^ ^ The file processor 16 is further switched to the cyclic redundancy check J 32, and the user profile storage unit ls is additionally connected to the multiple access control unit 2 to receive the multiple access control unit. 2〇The output signal. - Generally speaking, the system 1G in the figure is used to perform orthogonal frequency division multiplexing for the architecture of _ multiple input multiple output (mUlti-input_multi_〇呻ut, MIM〇). rth-nalFrequencyDivi—the key feature of the calendar is to perform corrections on the time domain to avoid In particular, the present invention eliminates the need to transmit correction information on the network, and it is necessary to perform correction on the basis, and Yi Zheng = #简子钟 - transmission. Solution, household tL1 picture / reception Each component in the circuit 12 performs a different function to receive the signal. The module 22 is used to convert the RF signal to the private sector for correcting beamforming. Fast Fourier transform over the earth, group change execution - shouting – 201023543 is used to decode the channel, and the checker % is used to perform a redundancy error. The channel estimation performed by circuit 28 contains parameters for each-minimum orthogonal multi-join work (or - parameter_卜/付Body 'computation

在第1圖中,接收器電路14中之各元件執 =卿傳送之訊號映射至一已知的星狀圖,二 爭凡40對映射器42之輸出執行一空間上的映射 Ζ ^ 41 Binary Convolutional Encoder), (Puncturer) ; 交錯運算ϋ。逆快速傅立雜翻38將空間映射轉單㈣之^ 出透過逆快賴立#賴從親賴至_。傳送^校正触/ $常對逆快速傅立葉轉_8之輸綠行校正,而傳送器射卿且 通吊將-基頻訊號轉換至射頻,使得轉換後之射頻訊號可以在裝 置間的網路被傳送,後續將舉例作簡短說明。 、In Fig. 1, the signals transmitted by the respective components in the receiver circuit 14 are mapped to a known star map, and the spatial mapping of the output of the 40 pairs of mappers 42 is performed. ^ 41 Binary Convolutional Encoder), (Puncturer) ; Interleaved operation. Inverse fast Fu Li misfolded 38 to map the space map to the single (four) ^ out through the reverse fast Lai Li #赖从亲到至_. The transmission ^ calibration touch / $ is often corrected for the inverse fast Fourier turn _8 green line correction, and the transmitter shoots and transmits the base frequency signal to the radio frequency, so that the converted RF signal can be in the network between the devices. It is transmitted, and a short description will be given later. ,

通道處理器16用來決定每一子載體的最佳波束形成參數。使 用者設定倾存單元18躲儲存緒1G每—制者的波束形成資 訊,波束形成資訊錄據波束絲,且通細—輯形式儲存,以 具體指出每-傳送H天線及接收器天線之間的最佳增益和最佳相位 =向。空間映射矩陣單元40由單元18接收使用者設定資訊,且對 每-個單_㈣子紐實魏束_。乡重存取控鮮元2〇用來 辨識封包顺魏之目的地’峨單元18娜對應贱用者設定資 訊。如此-來’多重存取㈣單元2G可執行傳送絲職之授權、 11 201023543 使用者多重存取控制之定址、傳❹站以及正交相位成份更新之授 權。 模組24、36分顧來更正軸衰減及對位誤差Channel processor 16 is used to determine the optimal beamforming parameters for each sub-carrier. The user setting dump unit 18 hides the beamforming information of the 1G per-manager, the beamforming information recording beam, and stores it in the form of a fine-grained format to specifically indicate the transmission between the H antenna and the receiver antenna. The best gain and the best phase = direction. The spatial mapping matrix unit 40 receives the user setting information from the unit 18, and for each of the single _ (four) sub-news. The township heavy access control element 2 is used to identify the destination of the package and the Wei's destination. Thus, the 'multiple access (4) unit 2G can perform the authorization of the transmission line, and the authorization of the address, transmission station and orthogonal phase component update of the user multiple access control of 11 201023543. Modules 24 and 36 are used to correct axis attenuation and alignment error

Wgnment)。在系統ω中,射頻衰減及對位誤差分別由接收 器類比電路及傳送器類比電路所引起。 β 議細包 之一音圖明實施例一多輸入多輸出波束形成收發器ι〇 /、:圖。在第1A圖中,解碼器3〇_於一訊框檢查序列(F_ 二之循環冗餘碼電路43。電路43墟於處理 器16’處理态16包含一诵首 〜 元45,兩_於—起。電路=44及—傳送器波束形成矩陣單 入端,而單元45之-輸㈣μ —輸出端祕於單元45之一輸 體映射電路46。在電路49 _接於區域記憶 質上完全相同。應用Γ有上兩t/Z的區域記憶體映射電路46實 46可供選用。電路49包人 不同的區域記憶體映射電路Wgnment). In system ω, the RF attenuation and the alignment error are caused by the receiver analog circuit and the transmitter analog circuit, respectively. β 议 细 实施 实施 实施 实施 实施 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一In Fig. 1A, the decoder 3〇_ is in a frame check sequence (F_2 of the cyclic redundancy code circuit 43. The circuit 43 in the processor 16' processing state 16 contains a dagger ~ yuan 45, two _ The circuit = 44 and - the transmitter beam forming matrix single input terminal, and the -45 (trans) (output) terminal of the unit 45 is secreted to the one of the unit 45 mapping circuit 46. The circuit 49 _ is completely independent of the regional memory. The same applies to the application. The area memory mapping circuit 46 of the upper two t/Z is available for selection 46. The circuit 49 includes different area memory mapping circuits.

包含一矩陣,矩陣之垂直方而A 平方向為串流,如第u 垂直方向為子載體而水 20將訊號輸出至電路49 q、q2°多重存取控制單元 射矩陣單元4〇及魏49下数祕#。路讀^至空間映 12 201023543 在電路43上所執行之驗證能預防含有錯誤封包之通道資訊進 入儲存電路49 ’因此能減财重存取_單元π之功量,以提 升網路之效能。 在操作上’電路43驗證快速傅立葉轉換器%所接收之訊號(或 訊號中^⑻是Μ正交㈣k喊。如絲證成功,電路43 ⑩使用趣冗餘碼檢查去驗證所有接收到正交分頻多工封包之準確 性。如果任-驗證未通過,麟收之訊號將無法通過電路43。電路 46及49共同包含第1圖中之使用者設定儲存單元18。 ❹ 卩使電路43之驗證皆已通過,仍須透過多重存取控制單元如 —驗證,以檢查侧者是否屬於這個網路。為了達到這個目 〜取蝴單70 2G對照—彡重絲_表_之制者身份 二:使用者的身分。如果使用者屬於這個網路,系統10繼續 之程序且儲存此絲形成f訊;反之,轉換1126所接收之 不再被處理。根據傳輸或接㈣動作是碰生,多重存取控 早70 2G提供送件者和餅者之她至電路46。 格外地操作如G,儲存取波束形成資賴能力變得 由於鱗中每—個使__非常大,網路必須在 输。,峨娜㈣時性的區 斤有必須的檢查皆通過。這些檢查可驗證相對應之資料,以 13 201023543 利^存^中-種檢查方式係透過前述之訊號檢查及循環 檢查。如續述,所接收之封㈣通過所有的齡,但封包本身 並非要被_他_。鱗,乡重麵鋪單元2㈣工作就f 確認封包例竭W峨㈣,錢馳娜。對於ς ❹ 及36-42),以正確地儲存所欲傳 送之波束形成資料。更具體的說,對每—個封包’多重存取控制單 =20提供f路46—送件者纽(或稱域用者韻)魏,並接 著執行如第1B圖所示之流程。 第1B圖為第iA圖中電路46所執行步驟之流程圖。通道處理 器16啟用波束形成計算後,在步驟5〇〇中當電路43檢查所對應 封包之有效性的同時,波束形成資訊被儲存在-暫時性的位置(記 憶體電路49)。接著’在步驟5G2中,透過檢查使用者是否屬於這 鬱個網路,多重存取控制單元2〇判斷所接收封包是否有效。若步驟 502之驗證失敗,則進行步驟5()4。在步驟5()4中處理器π及步 驟500所做之設定將被重置。反之,若步驟—之驗證通過,則進 行步驟506。在步驟中,寄送封包的使用者被指派至一暫時性 的位置(其係視為使用者辨識資料的一部分)。以第18圖之表格為 例,步驟506中的使用者被指派至一標題為「TEMp」之直行中 暫時性位置。 接下來’步驟508會判斷使用者是否為一新使用者。如果使用 201023543 者是新使用者’則進行步驟训,以判斷出一最失效⑽應e) 的使用者位置,供後續賴。在第丨8 _例子中,最失效的使用者 位置即為標4「丨」之行。此外,—失效的使用者係指最近沒有送 封包至波束形絲統1G的使用者。另—方面,如果使用者非新使用 者’則進行步驟犯,以將使用者的前一個位置當作下一個暫時性 的位置。在典型_子中,單—使用者連續不斷地傳送多個封包, ❹ 造成使用者波束控㈣職交錯地儲存在記細巾的兩個位置(如 步驟512所述)。 —在步驟510及步驟512之後,流程進行至步驟514。在步驟514 中’每-使用者之-失效計數會被更新,聯到一最暫時性的位置, 亦即,最近使用者之失效計數為零,而其他使用者之失效計數漸增。 上述步驟的執行方法可有兩種:第一種方法是根據一系統時脈 定失效計數之增加触(轉雜);如此-來’失效計數依序漸 〇 增且在一段預設時間後停止增加(因為預設時間的靜止)。第二種 方法是每收到一有效的新封包’即增加失效計數,並在失效計數達 到-預設的臨界值後,重置失效計數。在第二種方法中,失效的判 斷係反應使用者間相對的活躍程度。不管使用哪一種失效計數漸增 方法,使用者逾時的情況會造成使用者所儲存之資訊成為無效,並 且須要在為一特定使用者重新啟動波束控制之前’透過一新封包重 新計算使用者所儲存之資訊。 第2圖為第1圖中系統10之一應用實施例之示意圖。在第2 15 201023543 圖中,一無線網路5〇包含有無線裝置%、S8、62、68及8〇,其與 -存取點74彼此間透過無線方式通信。存取點%之—例係基地台。、 無線裝置52、58、62、68及80皆包含一已校正的無線收發器模組,A matrix is included, the vertical direction of the matrix and the horizontal direction of the matrix is a stream, such as the u-th vertical direction is a sub-carrier and the water 20 outputs a signal to the circuit 49 q, q2° multiple access control unit shot matrix unit 4〇 and Wei 49 The next number secret #. The road read ^ to the space map 12 201023543 The verification performed on the circuit 43 can prevent the channel information containing the error packet from entering the storage circuit 49', thereby reducing the amount of work of the unit π to increase the performance of the network. In operation, 'circuit 43 verifies the signal received by the fast Fourier transformer % (or ^(8) in the signal is Μ orthogonal (four) k shout. If the silk certificate is successful, circuit 43 10 uses the interesting redundancy code check to verify all received orthogonalities. The accuracy of the frequency division multiplexing packet. If any-verification fails, the signal received by Lin will not pass through circuit 43. Circuits 46 and 49 together include user-defined storage unit 18 in Figure 1. 卩 电路 电路 43 Verification has been passed, still need to pass the multiple access control unit such as - verification to check whether the side belongs to this network. In order to achieve this goal ~ take the butterfly single 70 2G control - 彡 heavy wire _ table _ the identity of the two User's identity. If the user belongs to this network, the system 10 continues the process and stores the wire to form the f-message; otherwise, the conversion 1126 receives the no longer processed. According to the transmission or connection (four) action is the collision, multiple Access control early 70 2G provides the sender and the cake to her to the circuit 46. Specially operated as G, the storage beam forming ability becomes so due to each of the scales makes __ very large, the network must be Lose., 峨娜(四)时性The inspections of all the districts have passed. These inspections can verify the corresponding information, and the inspection method is based on the above-mentioned signal inspection and cycle inspection. For the continuation, the received seal (4) is passed. All ages, but the package itself is not to be _ he _. scale, township heavy noodle unit 2 (four) work on f to confirm the package is exhausted W峨 (four), Qian Chi Na. For ς ❹ and 36-42), to properly store Beamforming data to be transmitted. More specifically, for each packet 'multiple access control list = 20, the f path 46 - the sender's button (or the domain user's rhyme) is provided, and then the flow as shown in Fig. 1B is executed. Figure 1B is a flow chart showing the steps performed by circuit 46 in Figure iA. After the channel processor 16 enables the beamforming calculation, the beamforming information is stored in the -temporary position (memory circuit 49) while the circuit 43 checks the validity of the corresponding packet in step 5A. Then, in step 5G2, by checking whether the user belongs to the network, the multiple access control unit 2 determines whether the received packet is valid. If the verification of step 502 fails, then step 5 () 4 is performed. The settings made by processor π and step 500 in step 5() 4 will be reset. Conversely, if the verification of the step is passed, then step 506 is performed. In the step, the user who sent the packet is assigned to a temporary location (which is considered part of the user identification). Taking the table of Figure 18 as an example, the user in step 506 is assigned to a temporary position in the straight line titled "TEMp". Next step 508 will determine if the user is a new user. If 201023543 is used as a new user, then step training is performed to determine the location of the user who is the most ineffective (10) should be e). In the 丨8_example, the most invalid user location is the line 4 "丨". In addition, the user who has failed is the user who has not sent the packet to the beam-shaped wire 1G recently. On the other hand, if the user is not a new user, then the step is made to treat the user's previous position as the next temporary position. In a typical _ sub-user, the single-user continuously transmits multiple packets, causing the user to beam-and-control (four) jobs to be stored in two locations of the note (as described in step 512). - After steps 510 and 512, the flow proceeds to step 514. In step 514, the 'per-user's-failure count is updated to be linked to a most temporary location, i.e., the recent user's failure count is zero, while the other users' expiration counts are increasing. There are two ways to perform the above steps: the first method is to increase the touch count according to the increase of the failure count of a system clock; thus - the 'failure count' gradually increases and stops after a preset time. Increase (because the preset time is still). The second method is to increment the failure count every time a valid new packet is received, and reset the failure count after the failure count reaches a preset threshold. In the second method, the failure determination is a measure of the relative activity between the users. Regardless of which incremental count increment method is used, the user's time-out will cause the information stored by the user to become invalid, and the user must be recalculated through a new packet before restarting the beam control for a particular user. Information stored. 2 is a schematic diagram of an application embodiment of system 10 in FIG. In the second 15 201023543 diagram, a wireless network 5 includes wireless devices %, S8, 62, 68, and 8〇, which communicate with each other via the wireless access method. Access point % - example base station. The wireless devices 52, 58, 62, 68, and 80 each include a corrected wireless transceiver module.

亦即第1圖中之系統10。無線收發器係指一傳送器及一接收器之電 路。 B 在第2财’無線裝置52、58、62、68及8()都包含已校正的 參無線收發器模組。舉例來說,裝置52包含已校正的無線收發器模組 56,裝置62包含已校正的無線收發器模組的,裝置%包含已校正 的無線收發H触6〇,裝置8G包含已校正的無·發賴組82, 以及裝置68包含已校正的無線收發器模組72。 另外,透過耦接於無線裝置52、58、62、68及80上之天線, 無線裝置52、58、62、68及8〇可用來傳送及接收資訊。舉例來說, 〇 裝£ 52透過所配接之一天線54傳送及接收資訊,裝置62透過所配 接之一天線64傳送及接收資訊,裝置58透過所配接之一天線98 傳送及接收資訊,裝置80透過所配接之一天線84傳送及接收資訊, 以及裝置68透過所配接之一天線7〇傳送及接收資訊。 存取點74可包含一校正無線收發器模組76,且透過所配接之一 天線78傳送及接收資訊。存取點74 (透過無線的方式通信)亦可麵 接於一網路介面86,以從網際網路之一寬域網路(WideArea Network ’ WAN)或一區域網路(L〇calAreaNetw〇rk,LAN)接收 16 201023543 輸入訊號。另外,在第2圖中,如先前技術所述,天線54、64、7〇 78、84及98中的每—個天線可能是—個天線陣列或多個天線陣列, 用來同時地傳送及接收資料。 如第2圖所示,?個天線被顧在不同的無線裝置,因此,產 生-多輸入多輸出的環境。裝置52、62、58、68及8〇都配接了一 個區域校正池,可將波束形賴朗送至存取點74。第2圖所示 ❿之似各式各樣無_置的職姻贱明本伽之簡,實際上 之應用不祕在筆記型電職行練置上職行之贿,如^網 際網路、透過網路攝影機分享照片、透過無線相容認證 (Wireless elity WiFi) f雜讀話、透過高晝質數位電視(卿·臟础 Digltal TV ’ HDTV)及影片伺服器觀看影片或取得影片原始碼、網 路廣播節目之聲音串流功能等。 ❹ S ®為第1圖中各元件的細部架構示意圖。電路12用來^ 個射頻Λ號1〇〇所形成之群組。N個接收器射頻模組脱所 =祕於N個射頻訊號1〇0所形成之群組,用來接收射頻. 頻模组102固增益更正早^ 1〇8所組成之群組輕接於N健收器; n個增益更正mm相位更正單元m所組成之群組耗接方 所%^心70所組成之群組°N個群組延遲調整單元111 ^成^群、_接於正交相位更正單副 扠正之N個接收器基頻訊號142。 201023543 二電路12及電路14中’群組中的每—個模組或單元皆減於 另一群組中之模組或單元。舉例來說,模組1〇4所形成之寧且包含 接收咖員模組1〇2所組成之群組中之一接收器射頻模組,其係輕 接於增益更正單元⑽軌成之群組中之—增益更正單元1〇6, 益更正單元⑽祕於同相正交她更正單元出卿成之群^ =同相正交相位更正單元11G。_正交她更正單元_接 於群組延遲調整單元116所組成之群财之-群組延遲調整單元 114 ’用來產生彳父正後之接㈣基頻訊號丨。她地,在電路12中, 群組中其制單元或模組亦雛於所職之單元或模組。 在N個增益更正單元1〇6所形成之群組中,每一個增益更正單 凡用來更正所接收訊號之同相成分路徑及正交成分路徑之間之一辦 益偏移。此更正的功能通常是先透過校正偏移來完成,而校正偏^ 的實現係透過測量每-路徑上之功率(使用後敘之式ig及式⑴ ϋ和對_成分路徑和正交成分徑其中之—或兩者使用—乘法器, 以等化同械分訊號和正交成分訊號的神,如式12、式13及第 圖所示。 在第3圖中’電路U用來處理一 Μ個傳送器基頻訊號⑽所 形成之群組’並包含有Μ個群組延賴整單元124所形成之敎、 Μ個同相正交相位更正單元122所形成之群組側固同相正交增益 更正早元120所形成之群組及μ個傳送器射頻模組ιΐ8所形成之群 組。上述各群組連接於一序列,如第3圖所示。 18 201023543 Μ個群組賴嫌單元124卿叙雜包含—群組延遲調整 單元126 ’其係墟於同相正交相位更正單元122所形成之群組中 之Γ相位更正單元128。她更正單元128 _於_正交增益更 正早7L 120所形成之群組中之一增益更正單元13〇。增益更正單元 130搞接於傳送㈣麵組118 _成之群組中之—傳送器射麵 組⑶。相似地,在電路14中,群組中其餘的單元或模純接於所 ©對應之单το或模組。傳送器射賴組118所形成之群組用來產生已 校正之N個射頻訊號。 模組104所形成之群組實質上等於第1圖中之馳22,而傳送 器射,模組m所形成之群組實質上等於第1圖中之模組3心增益 更正單元108、同相正交相位更正單元m及群組延遲調整單元w 被包含於第〗圖中之模組24,關相正交增益更正單㈣g、同相 ©正交相位更正單元122及群組延遲調整單被包含於第i圖中 之模組36。 在同相正交相位更正單元112及同相正交相位更正單元122所 形成之群組中’ _正餘位更正單元可用來調整相位,以確保每 一同相成分通道及相對應的正交成分通道實質上正交(亦即同相成 刀。及正乂成分之間相差90度);除此之外,另可用來等化每一傳送 器及接收器之間的總相位。 19 201023543 在群組延遲調整單元114及群組延遲調整單元124所形成之群 組中,每-群__整單元可用來麵或更正電路佈局上的限 制’並分別為每-個接收路徑和傳送路徑,消除路徑延遲所造成的 不匹配現象(每-同相成分通道及相對應的正交成分通道之路徑延 遲不盡相同)。群組延遲調整單元1M所形成之群組用來更錢收 器通道中路棱延遲不相等的問題;同時’群組延遲調整單元以所 形成之群組用來更正跨越傳送器電路所造成群組延遲不相等的問 ❹ 題。 波束形成需要精確的校正步驟,以消除或減少錄人多輸出無 線收發器類比電路中非預期的作用。舉例來說,崎嚼不規則的天線 電路軌跡、功率放大器的變異、射頻電路跨接收器通道及傳送器通 道le成的不匹配問題都會減低系統的效能。如果在傳送器中不更正 ㈣缺陷’這些缺陷會造成的波束被傳送至一偏離預期接收器的 ❹點」,使得系統的效能降低。相似地,接收器射頻的缺陷會造成 進入基頻處理器的波束不匹配,及降低波束形成所帶來的好處。第 3圖中的實施例便是时減婦述缺陷造成的問題。 如第3圖所示,每一個更正模組皆需要一參數組,她且在一 校正模式的_就先被預設。在校正模式的_,—外接裝置被裝 崎供—已校增細_電路η。在 ‘接^下i藉由已校正的參考訊號在所接收之訊號串間猶環’為 母-接收峨鏈計算增益、相位及群_遲參數,如第4圖中之單 20 201023543 兀162所示。在此,一接收訊號鏈包含有一射頻電路,耦接於一對 類比數位轉換g (Anaiogu^gitai Converter·,ADC),係搞接於 基頻數位補償電路108、112及114。 ..... 第4圖為本發明實施例-校正系統15G之示意圖。校正系統150 〇 3权正模式裝置152及一外接校正裝置154。在第4圖中,外 接板正裝置154耦接於校正模式裝置152,用以提供N個校正訊號 ⑬串156至校正模式裝置152(N為整數)。在多輸入多輸出環境中, 校正模式裝置152之校正和波束職㈣,其為本發明實施例之電 路12、14。在外接校正裝置154中,一已校正之訊號源單元174用 來產生校正訊號串156。 校正模式裝置152包含N個接收射頻模組160所形成之群組及 -補償參數計算單元162。接收射麟組_絲接倾正訊 ❿156。補償參數計算單元162絲結N個增益、她及群組延遲 參數。 校正模式裝置152另包含N個傳送射頻模組168所形成之群 組,用以接收-校正訊號串產生器164之輸出訊號,並產生未校正 的Μ個傳送射頻訊號158所形成之群組至外接校正單元丨54中之一 補償參數計算單元172。為了傳送補償· 166之即時使用,補償 ^數計算單元172峰產生傳送顧增益、相減敎賴參數(補 償參數)。傳送補償模組166包含傳送補償單元12〇、η〗及。 21 201023543 及傳送器之組合或接收 在此’所指稱之無線收發器係一接收器 器及傳送器之電路。 在校正赋之_,校錢麟單元m触—觸存之訊號 串集合至射頻模組之群組16G。透過前述之方式,裝置152依序對That is, the system 10 in Fig. 1. A wireless transceiver refers to a transmitter and a receiver circuit. B In the second fiscal 'wireless devices' 52, 58, 62, 68, and 8 (), the corrected wireless transceiver module is included. For example, device 52 includes a calibrated wireless transceiver module 56, device 62 includes a calibrated wireless transceiver module, device % includes a corrected wireless transceiver H 〇 6 〇, and device 8G includes the corrected no The squad group 82, and the device 68 includes the calibrated wireless transceiver module 72. In addition, wireless devices 52, 58, 62, 68, and 8 can be used to transmit and receive information via antennas coupled to wireless devices 52, 58, 62, 68, and 80. For example, the device 58 transmits and receives information through one of the antennas 54 coupled thereto, and the device 62 transmits and receives information through the coupled antenna 64. The device 58 transmits and receives information through the coupled antenna 98. The device 80 transmits and receives information through one of the coupled antennas 84, and the device 68 transmits and receives information through the coupled antenna 7 . Access point 74 can include a calibrated wireless transceiver module 76 and transmit and receive information via one of the coupled antennas 78. The access point 74 (wireless communication) can also be interfaced to a network interface 86 to access a Wide Area Network (WAN) or a regional network (L〇calAreaNetw〇rk) , LAN) Receive 16 201023543 Input signal. In addition, in FIG. 2, as described in the prior art, each of the antennas 54, 64, 7〇78, 84, and 98 may be an antenna array or a plurality of antenna arrays for simultaneous transmission and Receive data. As shown in Figure 2,? The antennas are taken care of by different wireless devices, thus creating an environment with multiple inputs and multiple outputs. Devices 52, 62, 58, 68, and 8 are all coupled to an area correction cell that can be beamed to access point 74. Figure 2 shows the various types of 职 的 本 本 本 本 本 本 本 , , , , , , , , , , , , , , , , , , , , , , , , 本 本 本 本 本 本 笔记 笔记 笔记 笔记 笔记Share photos via webcam, wireless elity WiFi f-reading, watch videos or get movie source code through high-quality digital TV (Digltal TV 'HDTV) and video server , the voice stream function of network broadcast programs, and so on. ❹ S ® is a detailed schematic diagram of each component in Figure 1. The circuit 12 is used to group the RF Λ1〇〇. N receiver RF module off = secret group of N RF signals 1〇0, used to receive RF. Frequency module 102 fixed gain correction early ^ 1〇8 group is lightly connected N-healing device; n gain correction mm phase correction unit m consists of group consumption party%^heart 70 group of groups °N group delay adjustment unit 111 ^成^ group, _ connected to positive The phase correction corrects the N receiver baseband signals 142 of the single pair of forks. 201023543 Each module or unit in the group 'in circuit 12 and circuit 14' is reduced to a module or unit in another group. For example, the module 1〇4 is formed and includes a receiver RF module of the group of receiving café modules 1〇2, which is lightly connected to the group of the gain correction unit (10). In the group, the gain correction unit 1〇6, the benefit correction unit (10) is secreted in the same phase as the orthogonal correction unit, and the in-phase quadrature phase correction unit 11G. The Orthogonal Her Correction Unit_ group-delay adjustment unit 114' consisting of the group delay adjustment unit 116 is used to generate the (4) baseband signal 丨. She, in circuit 12, the units or modules in the group are also in the unit or module. In the group formed by the N gain correction units 1〇6, each gain correction is used to correct one of the in-phase component paths and the quadrature component paths of the received signal. This correction function is usually done by correcting the offset first, and the correction bias is achieved by measuring the power per path (using the following formula ig and equation (1) ϋ and the _ component path and the orthogonal component diameter The - or both - multipliers are used to equalize the gods of the mechanical and quadrature component signals, as shown in Equation 12, Equation 13, and Figure. In Figure 3, the circuit U is used to process one. The group formed by the transmitter baseband signal (10) includes a group formed by the unit 124, and the group of the in-phase quadrature phase correction unit 122 is formed by the same phase orthogonal The gain corrects the group formed by the early 120 and the group formed by the μ transmitter RF module 。 8. The above groups are connected in a sequence as shown in Fig. 3. 18 201023543 Groups The block delay adjustment unit 126' is the Γ phase correction unit 128 in the group formed by the in-phase quadrature phase correction unit 122. She corrects the unit 128 _ _ orthogonal gain correction 7L early One of the groups formed by 120 is a gain correction unit 13 〇. Gain is more The positive unit 130 engages with the transmitter face group (3) in the group of transmission (four) quilts 118. Similarly, in circuit 14, the remaining units or modules in the group are purely connected to the corresponding ones. Το or a module. The group formed by the transmitter squaring group 118 is used to generate the corrected N radio frequency signals. The group formed by the module 104 is substantially equal to the chic 22 in the first figure, and the transmitter shoots The group formed by the module m is substantially equal to the module 3 core gain correction unit 108, the in-phase quadrature phase correction unit m, and the group delay adjustment unit w in the first figure. 24, Off-phase quadrature gain correction single (four) g, in-phase © quadrature phase correction unit 122 and group delay adjustment list are included in module 36 in figure i. In-phase quadrature phase correction unit 112 and in-phase quadrature phase correction unit The '_positive residual correction unit' in the group formed by 122 can be used to adjust the phase to ensure that each in-phase component channel and the corresponding quadrature component channel are substantially orthogonal (ie, in-phase knives and positive enthalpy components) Between 90 degrees); in addition, it can be used to equalize each The total phase between the transmitter and the receiver. 19 201023543 In the group formed by the group delay adjustment unit 114 and the group delay adjustment unit 124, each group__unit can be used to face or correct the circuit layout. Limiting 'and each of the receive path and the transmit path separately, eliminating the mismatch caused by the path delay (the path delay of each-in-phase component channel and the corresponding orthogonal component channel is not the same). Group delay adjustment unit The group formed by 1M is used to solve the problem that the delay of the ridges in the receiver channel is not equal; at the same time, the group delay adjustment unit uses the formed group to correct the unequal group delay caused by the crossover transmitter circuit. Problem: Beamforming requires precise correction steps to eliminate or reduce the unintended effects of analog multi-output wireless transceiver analog circuits. For example, irregular antenna traces, variations in power amplifiers, mismatches in RF circuits across receiver channels, and transmitter channels can reduce system performance. If the transmitter does not correct (4) defects, these defects will cause the beam to be transmitted to a defect that deviates from the intended receiver, making the system less efficient. Similarly, a receiver RF defect can cause beam mismatch into the baseband processor and reduce the benefits of beamforming. The embodiment in Fig. 3 is to reduce the problems caused by the defects of the woman. As shown in Figure 3, each correction module requires a parameter set, and she is pre-set in a correction mode. In the correction mode _, - the external device is installed - the _ circuit η has been calibrated. Calculate the gain, phase, and group_delay parameters for the parent-receive chain between the received signal strings by the corrected reference signal, as shown in Figure 4, the single 20 201023543 兀162 Show. Here, a receiving signal chain includes a radio frequency circuit coupled to a pair of analog digital bit conversion g (Anaiogu^gitai Converter, ADC), which is coupled to the base frequency digital compensation circuits 108, 112, and 114. Fig. 4 is a schematic view of a correction system 15G according to an embodiment of the present invention. The calibration system 150 权 3 is a positive mode device 152 and an external calibration device 154. In Fig. 4, the external board positive unit 154 is coupled to the correction mode unit 152 for providing N sets of correction signals 13 to 156 to the correction mode unit 152 (N is an integer). In a multiple input multiple output environment, the correction mode device 152 is calibrated and beamed (4), which is the circuit 12, 14 of the embodiment of the invention. In the external correction device 154, a corrected signal source unit 174 is used to generate the correction signal string 156. The correction mode device 152 includes a group formed by the N receiving RF modules 160 and a compensation parameter calculation unit 162. Receive the shooting group _ wire connection positive news ❿ 156. The compensation parameter calculation unit 162 knots N gains, her and group delay parameters. The calibration mode device 152 further includes a group formed by the N transmission RF modules 168 for receiving the output signals of the correction signal string generator 164 and generating an uncorrected group of the transmission RF signals 158 to One of the external correction units 补偿 54 compensates the parameter calculation unit 172. In order to transmit the instantaneous use of the compensation 166, the compensation calculation unit 172 generates a transmission gain and a subtraction parameter (compensation parameter). The transmission compensation module 166 includes transmission compensation units 12, η and . 21 201023543 and Transmitter Combination or Reception The term "wireless transceiver" as used herein is a circuit of a receiver and transmitter. In the correction of the _, the school Qianlin unit m touch-touch signal string is assembled to the group 16G of the RF module. In the foregoing manner, the device 152 is sequentially

❿ 所接收之訊號串(N個校正訊號串⑼)計算每—接收鏈之增益、 相位及群組延遲參數。 曰皿 一部分的傳送類比電路(例如第3圖之電路14)為m個傳送 射頻模組168所形成之群組。傳送射頻模組168之校 ,串產生請制—參考職(參考訊號可料同於校正訊號源 174所產生之校正訊號串),以及透過將傳送模組⑸輸出訊 ,傳送至外接%c正裝置154。如第4圖所示,透過將補償參數計算 172輕接於補賴细166,傳送器補償參數可在裝置⑼被計 算、儲存及回送至裝置152。 杈正模式裝置⑸可以是實驗室設備,例如用來產生校正訊號 :的訊號產生ϋ。傳送器補償參數可透過—訊號分析器輪取及計 异。校正模絲置152村能是—配接(透珊麵線)在一未校 正震置上的-個已預先校正鱗區域網路卡。傳额校正模組「預 先校正」訊號,以消除傳送器射頻模組之影響。 22 201023543 計算校正訊號串及參數之流程如下所列·· =計算(由單元⑽執行):計算每—接⑽之平均功率。 叶异正規化常數(N_aliZingCGnstants),使得所接收之 在所有的接_之_成分/正絲分對中相等。 2. 由單元112執行):她更正參數的分成兩個 又來執仃。第-階段’每—對同相成分/正交成分之間的相 對相位係透過平均所接收_成分峨及正交成分訊號之間 的外積值來決定(使用一合適之寬頻帶參考訊號)。第二階段, 透過在每-接收路徑上使用—個或多個正弦波參考訊號⑽率 相對上較低),以及測量所接收峨之間_位,計算每一接 收路徑之間的相對相位。 3.最後,計算同相成分及正交成分之間的群組延遲(由單元ιΐ6 執行)及每-接收通道之間的群組延€。在此所指的通道可以 是通道i〜N中之任何一個通道或任一_。一適合測量正交分 頻多工減群組賴之方絲在數個解關量(較佳地涵蓋 了整個訊魏帶)參考正紐之她。糊來說,如標準 IEEE802.11I1所規定’在施Hz頻寬下,有_子載體(編 號從-28到28) ’參考訊號串由8個參考音調(T〇ne)所組成 (用7個子載體隔開)’分別使用子載體集合中編號-28、-2卜 _14、-7、7、14、21及28之子載體。每一子載體之相位被測 23 201023543 篁且儲存。按順序排列頻率之線性相位(或斜率)可用來測量 特义通道上的群組延遲。具有最大群組延遲之子通道決定了 其他通道所需要之補償量。換言之,其他通道將被延遲以配合 具有最大群組延遲的子通道。每一子通道之延遲從相位斜率被 換成取樣延遲之分數。如此一來,在時域中,可透過使用一 重新取樣器(Resampler)實現時間延遲的補償。 © 無線收抑(包含接㈣及舰II)前敵校正能讓接下來的 波束控制變得精確,城正的流程確保通道之互易性實質上成立。 通道之互紐係指上串流通道數學模型如為下串流通道數學模型 HDS之轉I :❿ The received signal string (N corrected signal strings (9)) calculates the gain, phase and group delay parameters for each receive chain. A portion of the transfer analog circuit (e.g., circuit 14 of FIG. 3) is a group of m transmit RF modules 168. The transmission of the RF module 168, the string generation request - the reference job (the reference signal can be the same as the correction signal string generated by the correction signal source 174), and the transmission of the transmission module (5) to the external %c positive Device 154. As shown in FIG. 4, by offsetting the compensation parameter calculation 172 to the complement 166, the transmitter compensation parameters can be calculated, stored, and returned to the device 152 at the device (9). The unitary mode device (5) may be a laboratory device, such as a signal generator for generating a correction signal:. The transmitter compensation parameters can be taken and counted by the signal analyzer. The calibration die set 152 can be a mated (transparent line) a pre-corrected scale area network card on an uncorrected vibration. The transmit correction module "pre-corrects" the signal to eliminate the effects of the transmitter RF module. 22 201023543 The procedure for calculating the correction signal string and parameters is as follows: · = Calculation (performed by unit (10)): Calculate the average power per connection (10). The leaf-normal normalization constant (N_aliZingCGnstants) is such that the received ones are equal in all the _component/positive filament pairs. 2. Executed by unit 112): She corrects the splitting of the parameters into two. The relative phase between the first phase and the inphase component/orthogonal component is determined by averaging the outer product value between the received component _ and the quadrature component signal (using a suitable wideband reference signal). In the second phase, the relative phase between each receiving path is calculated by using one or more sine wave reference signals (10) on each receive path to be relatively low, and measuring the _ bits between the received turns. 3. Finally, calculate the group delay between the in-phase component and the quadrature component (performed by cell ιΐ6) and the group delay between each-receiving channel. The channel referred to herein may be any one of channels i to N or any of _. A square wire suitable for measuring the orthogonal frequency division multiplexing subtraction group is in reference to a number of solutions (preferably covering the entire Weiwei belt). For the paste, as specified in the standard IEEE802.11I1, the _ subcarrier (numbered from -28 to 28) 'reference signal string is composed of 8 reference tones (T〇ne) under the Hz bandwidth. The sub-vectors are separated by 'sub-carriers numbered -28, -2, _14, -7, 7, 14, 21 and 28 in the set of sub-carriers, respectively. The phase of each subcarrier is measured 23 201023543 篁 and stored. The linear phase (or slope) of the frequencies in order can be used to measure the group delay on the esoteric channel. The subchannel with the largest group delay determines the amount of compensation required for other channels. In other words, other channels will be delayed to match the subchannel with the largest group delay. The delay of each subchannel is changed from the phase slope to the fraction of the sampling delay. In this way, in the time domain, time delay compensation can be achieved by using a resampler. © Wireless Induction (including (4) and Ship II) The predecessor correction can make the next beam control accurate, and the process of Chengzheng ensures that the reciprocity of the channel is essentially established. The mutual interface of the channel refers to the mathematical model of the upper stream channel, such as the mathematical model of the lower stream channel.

^(Xrec (Hds) T (式1) 其中為上串流通道之數學模型、办5為下串流通道之數學模型、 © 為互易性常數(可能為任一食數值)、〇『表示〇的轉置。 上串流通道及下串流通道之差異係指通道中資訊被傳輸的方向不 同。山條ΐ的細節討論可參考標準1EEE802.lln草案2.0。如果線路之 兩端按前述討論之方法被校正,紅易性得以成立。 波束控制參數被計算以供一正交分頻多工符號之每一子載體 使用般來說,計算過程分為兩個階段。第一階段用來對每一子 載體進^'通道估測。估測結絲-MxN之複數轉。M為矩陣列的 • 個數’等於天線之個數;N為矩陣行的健,等於資料串之個數(一 24 201023543^(Xrec (Hds) T (Formula 1) where is the mathematical model of the upper stream channel, 5 is the mathematical model of the lower stream channel, © is the reciprocity constant (possibly any food value), 〇 『 The difference between the upper stream channel and the lower stream channel means that the information in the channel is transmitted in different directions. For details of the mountain bar, refer to the standard 1EEE802.lln draft 2.0. If the two ends of the line are discussed above The method is corrected and redness is established. The beam control parameters are calculated for use by each subcarrier of an orthogonal frequency division multiplex symbol. The calculation process is divided into two phases. The first phase is used to Each sub-carrier is evaluated by the channel estimation. The complex number of the filament-MxN is estimated. M is the number of the matrix column 'equal to the number of antennas; N is the health of the matrix row, equal to the number of data strings ( One 24 201023543

般來說N<M)。在第二階段中’透過數值方法例如QR拆解(QR decomposition)或奇異值拆解(singUiar vaiueDecompositipn, SVD ) ’將估測結果之通道矩陣拆解。拆解後的矩陣為傳送器提供控 制資訊,以「預先等化」資料封包,對一單波數封包而言,將使得 接收端之sfl號具有最高的信號噪音比(Signal t〇 N〇ise Rati〇,SNR), 或者舉例來說’當傳送多個串流時’接收端之訊號已有效地「解耦」 (decouple)資料串流。 ^使用奇異值拆解時,一已知通道//之拆解可以寫成: Η^ϋΣν* (式2) 而使用QR拆解時’一已知通道好之拆解可以寫成: h=qr (式3) //表示通道矩陣、Σ係一對角奇異矩陣(Diagonal Singular Matrix )、 矩陣0、ί/及K為酉矩陣(UnitaryMatrices),酉矩陣係指特徵值 (eigenvalue)全為「1」之矩陣。因此,透過Hermitian轉置運算, 面矩陣可完美地達成反置運算。換言之,tA/ = /、2*0=/...等。重 要的是’這些從估計結果之通道矩陣拆解而來的矩陣可用來波束控 制每一子載體。透過此内隱式的波束控制方法及這些拆解而來的矩 陣’第17圖提供一些可供選擇的波束控制實現方法。在第17圖中, 圈起來的矩陣係原矩陣之共軛值。在實現内隱式的波束控制時,需 要這些共輛值。 25 201023543 波束控制矩陣被計算(根據接收_封包)、儲存及娜(為 了波束控制所傳送之封包),使得最終得以透過一令途存取控制 f Medium ACcess Contrd’ MAC)層模組來控制流程如第t圖所 不。當接收到封包時,通道之估測及拆解(使用QR拆解、奇異值 拆解等方法)即開始,如果發現封包具有一訊號有效的資訊,則繼 續循環冗餘碼檢查。辨識封包須要透過—有效且獨特的使用者中途 ©存取控制位址,使得一通道狀態資訊(❿福stateinf_at^, CSI)可被儲存在—適當之位置(為了稍後之擷取)。中途存取控制 層模組計算使用者位址,且將使用者位址映射至實體記憶體之一位 置。除此之外,中途存取控制層触會狄是否為—特定使用者授 權傳送波束控制。 前述之本發明實施例係用來減少時間消耗及消除複雜的校正 β交換程序,藉此改善網路的總處理效能。然而,無論通道狀況如何 改變,網路的總處理效能受-重複的時間消耗流程影響,重複的時 間消耗流程需要在網路間傳送大量的資料。另外,本發明藉由消除 不同供應商職_概的麵(料實軸爾料編排上的 微小差異),解決複雜度和内部操作能力的問題,同時 際上去實現校正交換流程。 Λ ^ ___償雜㈣前端衰減,例 如串流之同相成分及正交成分非正交。金 興之相較,本發明實施例可 26 201023543 補償非線性的前端衰減,且本發明實施例之波束形成可提升網路效 能。對-典型之通道狀況㈤EE模型B :小家庭/辦公室環境)而 言,-具有内隱式波束形成之如多輸入多輸出無線收發器(包含 兩端點之校正電路)的效能可改善4〜7(jB。 透過波束控制方法或「智慧型天線」,本發明實施例可最佳化 天線陣列之效能。在此情形下,透過最佳化天線效能,四個天線可 β被縮減至三個,三個天線可被賴至二個"依此類推。因此,前述 之波束控制系統可用來減輕多輸入多輸出無線區域網路(職^ L—AreaNetwork ’肌則的複雜度(成本)及高功率消耗之問 本發明實施例之優點包含料實現、無複雜的校正交齡驟、 低網路常駐性耗時(因為無線收發器間不須要傳送通道狀態資訊)、 籲無互用性的問題(因為此解決方案本質上係針對單邊)以及可改善 4〜7dB的效能。 ° 除此之外,透過波束形成所增加的效能可用來移除一個或多個 接收器/傳送魏道,崎低未來產品之雜功率及成本。 發月實施例校正方法及裝置之其他細節可參考附圖及對應 程式。在此,將先介紹這些方程式的由來。 27 201023543 …數學符號0、厦及肅係用來表示一無線裝置(工作站A) 之仃為,如第5圖所示。相似地’數學符號贈、必及财係用 來伽B之行為。騰表示接收器端之通道補表利專 送裔端之通道。如前所述,因為料個資料(或訊號)串,前述之 數學符號皆代表矩陣。理想上來說,矩陣删為轉·之轉置 矩陣,矩陣細為矩陣刪之轉置矩陣(下列的方程式皆假設這 兩個條件成立)。矩陣以及奶係校正矩陣,矩陣以及尬之值 © 在校正交換期間決定,以保證通道之互易性。 標準ΙΕΕΕ802.11 n之草案2.0重新規定内隱式波束形成之校 正。矩陣術、肌T、册及勝係無線收發器中類比/射頻部分 之衰減」或缺陷,須要被校正或更正。為了正交分頻多工頻譜中 (根據通道頻寬之大小,包含56或114個子載體)之每一子載體, 更正矩陣尤4及灯一般被實現在基頻。根據正EE8〇2他,更正矩 〇 陣在一「杈正交換」期間被決定,藉此將所測量之通道狀態資訊傳 送至工作站A及工作站B之間。因為在上串流通道及下串流通道之 通道狀態資訊係可得,通道互易性之條件可被用來計算更正矩陣: BrxHabAtxKa= {ArxHbaB txKb) t (式4) 其中’况汉表示工作站B之接收器衰減矩陣矩陣,表示從工作站 A至工作站B之通道,表示工作站入之傳送器衰減矩陣,尤^表示 工作站A之校正矩陣,乂狀表示工作站A之接收器衰減矩陣,//似表 示從工作站B至工作站a之通道,万7^表示工作站B之傳送器衰減矩 28 201023543 陣,以及表示工作站B之校正矩陣。 如才示準IEEE802.ilη所規定,通道之互易性隱含下列關係: 1 TxBTjix反 Kb=A-}txATrx (式5) 其中「]」表示反置運算,因此為知之反置矩陣。 ❹ 冑於每—子載體’衰減之資訊皆須要被廣播出去。標準 ffiEE802.11ri所產生的問題,例如大量的常駐性耗時、實現上的複 雜度以及可能咖部操作能力問題,皆可透過本發明實施例來解決。 第5圖為本發明實施例二無線裝置(工作站a及工作站⑴間 之-通信模型之示意圖。在第5圖中,為補償衰減之更正流程在無 線收發器之接收器端及傳送器端執行。傳送器電路在工作站A中被 珍模,、且化為單兀200,接收盗電路在工作站B中被模組化為單元2⑽。 工作站B之傳送器電路被模組化為單元2〇6,工作站A之接"電 路被模組化為單元。频來說,如第5騎示,在工作站a, 單兀⑽麵衰減鱗撕,單元_麵韻辦肅;同時, =工作站B單疋篇補償麵轉娜,單元贈補償衰減矩 ^歡。k個新的校正波束形成方法可以被視為-區域性的解決方 案5藉由·Generally speaking, N<M). In the second stage, the channel matrix of the estimation result is disassembled by a numerical method such as QR decomposition or singUiar vaiueDecompositipn (SVD). The disassembled matrix provides control information for the transmitter to "pre-equalize" the data packet. For a single wave packet, the sfl number of the receiving end has the highest signal-to-noise ratio (Signal t〇N〇ise Rati〇, SNR), or for example, 'when transmitting multiple streams' the signal at the receiving end has effectively "decoupled" the data stream. ^ When using singular value disassembly, the resolution of a known channel // can be written as: Η^ϋΣν* (Equation 2) When QR is used, the disassembly of a known channel can be written as: h=qr ( Equation 3) // represents the channel matrix, the Diagonal Singular Matrix, the matrix 0, ί/ and K are UnitaryMatrices, and the 酉 matrix means that the eigenvalues are all "1" Matrix. Therefore, through the Hermitian transposition operation, the face matrix can perfectly achieve the inverse operation. In other words, tA/ = /, 2*0=/...etc. It is important that these matrices, which are disassembled from the channel matrix of the estimation results, can be used to beam control each subcarrier. Through this implicit beam steering method and these disassembled matrices, Figure 17 provides some alternative beam steering implementations. In Fig. 17, the circled matrix is the conjugate value of the original matrix. These common vehicle values are required when implementing implicit beam steering. 25 201023543 The beam steering matrix is calculated (according to the receiving_packet), stored and Na (the packet transmitted for beam control), so that the f Medium ACcess Contrd' MAC layer layer module can be finally controlled by a one-way access control As shown in Figure t. When a packet is received, the channel estimation and disassembly (using QR disassembly, singular value disassembly, etc.) begins. If the packet is found to have a valid signal, the cyclic redundancy check is continued. The identification packet needs to be passed through - the effective and unique user midway access control address, so that a channel status information (❿福 stateinf_at^, CSI) can be stored in the appropriate location (for later retrieval). The midway access control layer module calculates the user address and maps the user address to one of the physical memory locations. In addition, the mid-way access control layer touches whether or not the user is authorized to transmit beam control. The foregoing embodiments of the present invention are used to reduce time consumption and eliminate complex correction beta exchange procedures, thereby improving the overall processing performance of the network. However, regardless of how the channel conditions change, the total processing power of the network is affected by the repeated time consumption process, and the repeated time consumption process requires a large amount of data to be transferred between the networks. In addition, the present invention solves the problem of complexity and internal operational capability by eliminating the problem of different suppliers' positions (small differences in the layout of the actual axis), and at the same time, realizing the calibration exchange process. Λ ^ ___compensation (4) Front-end attenuation, for example, the in-phase component of the stream and the quadrature component are non-orthogonal. In contrast, in the embodiment of the present invention, 26 201023543 compensates for nonlinear front-end attenuation, and beamforming in the embodiment of the present invention can improve network performance. For the typical channel condition (5) EE model B: small home/office environment), the performance of a multi-input multi-output wireless transceiver (including a correction circuit including both ends) with implicit beamforming can be improved 4~ 7 (jB. Through the beam control method or "smart antenna", the embodiment of the invention can optimize the performance of the antenna array. In this case, by optimizing the antenna performance, the four antennas can be reduced to three by three. The three antennas can be relied on two " and so on. Therefore, the aforementioned beam control system can be used to reduce the complexity (cost) of the multi-input and multi-output wireless local area network. High Power Consumption The advantages of the embodiments of the present invention include material implementation, no complicated correction, and low network resident time (because wireless channel transceivers do not need to transmit channel state information), and no interoperability is required. Problem (because this solution is essentially for one side) and can improve performance by 4 to 7 dB. ° In addition, the added performance through beamforming can be used to remove one or more receivers/passers. Wei Dao, Qi Qi low power and cost of future products. Other details of the calibration method and device of the monthly embodiment can be referred to the drawings and corresponding programs. Here, the origin of these equations will be introduced. 27 201023543 ... mathematical symbol 0, Xia and Su are used to indicate the behavior of a wireless device (Workstation A), as shown in Figure 5. Similarly, the 'mathematical symbol gift, the necessary financial system is used to gamma B. Teng represents the channel at the receiver end. In addition, because of the data (or signal) string, the aforementioned mathematical symbols represent the matrix. Ideally, the matrix is deleted as a transposed matrix, and the matrix is fine. The matrix is a transposed matrix (the following equations assume that these two conditions hold). The matrix and the milk matrix correction matrix, the matrix and the value of 尬 are determined during the calibration exchange to ensure the reciprocity of the channel. Standard ΙΕΕΕ 802.11 Draft 2.0 of n re-specifies the correction of implicit beamforming. The attenuation of the analog/RF portion of the matrix, muscle T, and the wireless transceivers, or defects, must be corrected or corrected. In the orthogonal frequency division multiplexing spectrum (including 56 or 114 subcarriers according to the channel bandwidth), the correction matrix 4 and the lamp are generally implemented at the fundamental frequency. According to the positive EE8〇2, the correction The matrix is determined during a "positive exchange", whereby the measured channel status information is transmitted between workstation A and workstation B. Because the channel status information in the upper stream channel and the lower stream channel can be Therefore, the condition of channel reciprocity can be used to calculate the correction matrix: BrxHabAtxKa= {ArxHbaB txKb) t (Formula 4) where 'State' represents the receiver attenuation matrix matrix of station B, indicating the channel from station A to station B , indicating the transmitter attenuation matrix of the workstation, especially the correction matrix of the workstation A, the representation of the receiver attenuation matrix of the workstation A, / / seems to represent the channel from the workstation B to the workstation a, Wan 7 ^ represents the workstation B Transmitter attenuation moment 28 201023543 array, and the correction matrix representing station B. As indicated by IEEE 802.ilη, the reciprocity of the channel implies the following relationship: 1 TxBTjix inverse Kb=A-}txATrx (Equation 5) where "]" indicates the inverse operation, so it is known as the inverse matrix.资讯 The information about the attenuation of each sub-carrier must be broadcast. Problems arising from the standard ffiEE 802.11 ri, such as a large amount of resident time consuming, implementation complexity, and possible coffee operation capability, can be solved by the embodiments of the present invention. 5 is a schematic diagram of a wireless device (a communication model between a workstation a and a workstation (1) according to Embodiment 2 of the present invention. In FIG. 5, a correction process for compensating for attenuation is performed at a receiver end and a transmitter end of the wireless transceiver. The transmitter circuit is stenciled in the workstation A, and is turned into a single 兀 200, and the receiving pirate circuit is modularized into the unit 2 (10) in the workstation B. The transmitter circuit of the workstation B is modularized into the unit 2 〇 6 The connection of the workstation A is modularized into a unit. In terms of frequency, as shown in the fifth riding, on the workstation a, the single 兀 (10) surface attenuates the scale tear, the unit _ surface rhyme; at the same time, = workstation B single The compensation surface is turned to Na, and the unit gives the compensation attenuation moment ^ Hua. The new correction beamforming method can be regarded as a - regional solution 5 by

V尤為,V及V 29 201023543 其中,心、喻、、及v表報意常數,其在執行校正程序期間 被定義(和下列方程式所討論之方法類似)。除此之外,在每一 收器及傳送器通道執行之校正係操作在時域;反之,在每一單獨子 載體所執行之式6校正方法係操作在頻域。在本發明實施例中,透 過一内建驗正㈣及麵崎-外接參相麟於鱗收發器的 方法,校正模組可在無線收發器被校正。如此一來,不須在空氣中 估計通道資訊’使得沒有衰減的校正流程可以被實現。 如第51所不,下串流通道為上側的訊號串(從工作站a至工 作站B之魏)。換言之,以矩陣的形式來表示,下串流通道可以 表示成:V, especially V, V 29 201023543 where the heart, the meta, and the v table report constants are defined during the execution of the calibration procedure (similar to the method discussed in the equation below). In addition to this, the corrections performed at each of the receiver and transmitter channels operate in the time domain; conversely, the correction method performed on each of the individual subcarriers operates in the frequency domain. In the embodiment of the present invention, the correction module can be corrected in the wireless transceiver through a method of built-in verification (4) and face-slice-external symmetry. In this way, it is not necessary to estimate the channel information in the air so that the correction process without attenuation can be realized. As in the 51st, the lower stream channel is the signal string on the upper side (from station a to station B). In other words, represented in the form of a matrix, the lower stream channel can be expressed as:

Hds=KbrBrxHabA τχΚΑΤ (式 6Α) ❹ 相似地帛5圖中之上串流通道為下側的訊號串(從工作站β 至工作站Α之箭頭)。以矩陣的形式來表示,上串流通道可以表示 成:Hds=KbrBrxHabA τχΚΑΤ (Formula 6Α) ❹ Similarly, the above-mentioned stream channel is the signal string on the lower side (arrow from workstation β to workstation). Expressed in the form of a matrix, the upper stream channel can be expressed as:

Hus=KarArxHBaBtxKBt (式 6B) 若使用式6所定義的校正_,則下㈣通道及上串流通道分Hus=KarArxHBaBtxKBt (Equation 6B) If the correction _ defined by Equation 6 is used, the lower (four) channel and the upper stream channel are divided into

HDs=dBRaATHAB 30 201023543 (式 7Α) 及 ^us^bARbBTHBA (式 7B) 因為理想的通道滿足(迅5) 7的性質 代換,式7A及式7B可合併成: 遷過之 ΟHDs=dBRaATHAB 30 201023543 (Formula 7Α) and ^us^bARbBTHBA (Formula 7B) Because the ideal channel satisfies (Xun 5) 7 The nature of substitutions, Equations 7A and 7B can be combined into: Moved over Ο

Hus ^AR^BlHus ^AR^Bl

’ HDS、T aBRaAT (式 8A) 重新安排式8A,可得 hus=^i.(Hdj aBRaAT (式 8B ) 式纽係式1之互易性條件,其中式i' HDS, T aBRaAT (Equation 8A) Re-arrangement 8A, can obtain hus=^i. (Hdj aBRaAT (Equation 8B) type reciprocity condition, where i

a RECa REC

之互易性常數可寫成: (式9) 本發明實施例之校正方法及裝置(在時域中 _ 讲々认、*知+ , 做勒*仃)能用一種二階 ^式的〜程來描述。第-階段包含對於每—串流的校正而第二階 段包含跨串流的校正。上述的串流包含接收串流及傳送串流,接收 串流(或接收器鏈)係指接收器射頻電路、類比數位轉換器及相關 的基頻校正、遽波模組所形成之硬體,而傳送串流(或傳送器鍵) 係和基頻;fccJL/遽賴組、触類比轉翻、傳送電路及相 關的傳送ϋ天線。在购上,「串流」及「鏈」實質上相等。對於 31 201023543 校正流程的接收部分 流程之傳送部份使用 而言,此二階段式流程的描述建立在 和接收部分相同的校正過程。 了解校正 如第5A圖所示 型’用來將經過第3 ,二階段式流程係根據-射頻/類比衰減模 圖校正流程之串流的衰減過程模組化。 1000勺人一私圓中’ 一射頻天線及分波器(demixer)電路衰減模型 ^ _天線1002,射頻天線1〇_接於 減模型1004。模们u電路衣 示之纤H數學翻或歡102用數學表 如比:。、型聰巾,為了執行前述之波束形成,衰減被分成 兩I5白段,使得擷取之缺陷能被校正及補償。 认圖所不’第—階段電路包含天線臓及相關射頻電路 “顯TF) ’第二階段電路(亦即模組腦)包含「分波器」 ❹又般來5兒,分波器階段將射頻訊號轉換至基頻。射頻/天線 電路包含-時間延遲(或群組延遲)電路麵,每一天線之時間延 遲電路1006皆不同,並且可被模組化為产的形式,其中Γ為一 延遲常數,7b表示Ν個串流中第一個串流電路之延遲常數Γ,Ν為 一整數而ω表示頻率。 、相位延遲(或偏移)電路_和頻率ω呈線性關係,並且可 被模組化為e ,其中Ρ表示相位,❼表示Ν個串流中第一個串 流電路之她。另外’每—天線電料有其相對狀相位广 32 201023543 如第5A圖所示,分波器電路被模級化為—非正交性參數(用 Φ表不),時間U群組)延遲差異及增益差異被 基頻訊號之同相成分及正交成分。/為同相成分通道之增益,# 正交齡通道之增益。絲紐參數0絲—絲正交關相成分 及正父成分(相差90度)之外的偏移。 校正/更域程之第―階段舞除分波^雜效應。對於 每-接收H電路,皆須執行第1段之移除步驟。為了改善訊號品 質及第二階段校正之精確度,移除分波^之非線性效應變的非常重 在第5A圖中,非線性效應或衰減被模組化為電路ι〇ι〇〜ι〇22。 -混波器1012將電路麵之子賴之同相成分和電路聰之輸出 混合(或相乘)。-混波器祕將電路刪之子載體之正交成分 和電路1008之輸出被混合(或相乘)。混波器祕之輸出經過一 同相成分/正交成分時間延遲差異電路麵,並產生—段同相成分 /正交成分時間延遲差異。電路1018將輸出提供至第一串流電路之 一正交成分增益偏移電路1〇22。混波器1〇12將輸出提供至一 同相成分增益為7偏移電路1020,//de表示同相成分及正交成分 之間的增益不匹配。電路1〇2〇及1〇22分別將輸出提供至類比數位 轉換模組1024中之二類比數位轉換器,如第5A圖所示。一般來說, 類比數位轉換模組1024之位置介於模組1〇2及單元1〇6之間。模組 33 201023543 1024將輸出提供至一分波器同相成分/正交成分非線性校正電路 1026 ’電路1〇26實際上為單元106、單元110及單元114之組合。 在第5A圖中,具有群組延遲及相位效應之一射頻電路1〇4〇包含天 線1002、時間延遲電路1〇〇6及相位偏移電路1〇〇卜電路ι〇4〇將輸 出提供至一射頻分波器電路1042,電路1042包含電路1〇12、1016、 1018、1020 及 1022。 ❹ 如第5B圖所示,校正流程之第二階段包含有測量及更正天線 電路(或串流)之相位及延遲變異,以利於解出互易性條件。 為了解第二階段之流程如何解出互易性條件(如式4至式9所 列),以第5B圖所對應之實施例為例,n等於三,接收器n個串 流(每一串流負責一射頻訊號)中之第二接收器電路被發現具有最 大的延遲參數η。概念上來說,其他的接收器電路(〇和2)可被補 〇 償,以達到匹配的目的。尤指射頻訊號〇及1分別被具有妁-Ρο 及Pi 口2相位之讯號混合,以等化相位。相似地,射頻訊號〇及i 分別經過71 -Τ〇&Τι -η之時間偏移,以等化時間延遲,如第5B圖 戶斤示。 在此須注意的是,第5B圖中之天線1〇5〇、1〇52及1〇54分別 用來接收射頻訊號0、1及2。所接收之訊號經由串流校正電路觀 處理’電路1056實際上為一訊號鏈354之模型。更具體的說,三個 串抓中之任-串流皆包含一時間延遲(或群組延遲)電路、一相位 34 201023543 偏移電路及-已校正_械分/正域分對。如先前所述, 三個串流中的第二辦流具有最長的延遲。因此,在經過電路刪 處理之後’第-串流及第三串流之輸出被提供至—她更正電路 1058,電路刪實際上為一谷電路群组358之模型。電路刪之The reciprocity constant can be written as: (Equation 9) The calibration method and device of the embodiment of the present invention (in the time domain _ 々 々 、, * know +, do Le 仃 仃) can use a second-order ^-type description. The first stage contains corrections for each-stream and the second stage contains corrections for cross-streams. The above-mentioned stream includes a receiving stream and a transmitting stream, and the receiving stream (or receiver chain) refers to a hardware formed by a receiver RF circuit, an analog digital converter, and an associated fundamental frequency correction and chopper module. The transport stream (or transmitter key) is the base frequency; the fccJL/relying group, the analog analogy, the transmission circuit, and the associated transmission antenna. In the purchase, "streaming" and "chain" are essentially equal. For the transmission part of the process of the receiving part of the process of 31 201023543 calibration process, the description of this two-stage process is based on the same calibration process as the receiving part. Understanding Correction The model shown in Figure 5A is used to modularize the attenuation process of the stream through the 3rd and 2nd stage processes according to the RF/Analog attenuation mode correction process. 1000 scoops in a private circle' RF antenna and demixer circuit attenuation model ^ _ antenna 1002, RF antenna 1 〇 _ connected to the subtraction model 1004. Model u circuit clothing shows the fiber H math or Huan 102 with a mathematical table. In order to perform the aforementioned beamforming, the attenuation is divided into two I5 white segments so that the captured defects can be corrected and compensated. The picture is not the 'stage-stage circuit contains the antenna 臓 and the related RF circuit "display TF" 'The second stage circuit (that is, the module brain) contains the "split filter" ❹ and the other 5, the splitter stage will The RF signal is converted to the fundamental frequency. The RF/antenna circuit includes a time delay (or group delay) circuit surface, and each antenna time delay circuit 1006 is different and can be modularized into a production form, where Γ is a delay constant and 7b represents Ν The delay constant Γ of the first stream circuit in the stream, Ν is an integer and ω represents the frequency. The phase delay (or offset) circuit _ and the frequency ω are linear and can be modularized as e, where Ρ represents the phase and ❼ represents the first of the streams in the stream. In addition, 'each antenna material has its relative phase wide 32 201023543 As shown in Figure 5A, the splitter circuit is modularized to - non-orthogonal parameters (with Φ table), time U group) delay The difference and gain difference are the in-phase component and the quadrature component of the fundamental frequency signal. / is the gain of the in-phase component channel, # Orthogonal age channel gain. The wire-to-wire parameter 0 is the offset of the wire-wire orthogonal phase component and the positive component (90 degrees difference). The first stage of the correction/more domain is divided into the splitting effect. For each-receive H circuit, the removal step of the first paragraph must be performed. In order to improve the signal quality and the accuracy of the second-stage correction, the nonlinear effect of removing the splitting wave is very heavy. In Figure 5A, the nonlinear effect or attenuation is modularized into a circuit ι〇ι〇~ι〇 twenty two. The mixer 1012 mixes (or multiplies) the in-phase component of the circuit surface and the output of the circuit. - The mixer combines the quadrature components of the subcarriers with the output of the circuit and the output of the circuit 1008 is mixed (or multiplied). The output of the mixer is passed through a phase difference component/orthogonal component time delay difference circuit surface, and the time difference of the segment in-phase component/orthogonal component is generated. Circuitry 1018 provides an output to an orthogonal component gain offset circuit 1〇22 of the first stream circuit. The mixer 1 〇 12 supplies the output to a phase shift component gain circuit 1020, and /de represents a gain mismatch between the in-phase component and the quadrature component. The circuits 1〇2〇 and 1〇22 respectively provide the outputs to the analog-to-digital converters of the analog-to-digital conversion module 1024, as shown in Fig. 5A. Generally, the position of the analog digital conversion module 1024 is between the module 1〇2 and the unit 1〇6. Module 33 201023543 1024 provides an output to a demultiplexer in-phase component/orthogonal component nonlinearity correction circuit 1026' circuit 1〇26 is actually a combination of cell 106, cell 110, and cell 114. In FIG. 5A, the RF circuit 1〇4〇 having the group delay and the phase effect includes the antenna 1002, the time delay circuit 1〇〇6, and the phase offset circuit 1〇〇 circuit 〇4〇 providing the output to An RF demultiplexer circuit 1042, the circuit 1042 includes circuits 1〇12, 1016, 1018, 1020, and 1022. ❹ As shown in Figure 5B, the second phase of the calibration process involves measuring and correcting the phase and delay variations of the antenna circuit (or stream) to facilitate resolving the reciprocity conditions. In order to understand how the process of the second stage solves the reciprocity condition (as listed in Equations 4 to 9), the embodiment corresponding to Figure 5B is taken as an example, n is equal to three, and the receiver has n streams (each The second receiver circuit in the stream responsible for an RF signal is found to have the largest delay parameter η. Conceptually, other receiver circuits (〇 and 2) can be compensated for matching purposes. In particular, the RF signals 1 and 1 are respectively mixed by signals having 妁-Ρο and Pi port 2 phases to equalize the phase. Similarly, the RF signals 〇 and i are time-shifted by 71 - Τ〇 & Τι -η, respectively, to equalize the time delay, as shown in Figure 5B. It should be noted here that the antennas 1〇5〇, 1〇52 and 1〇54 in Fig. 5B are used to receive RF signals 0, 1 and 2, respectively. The received signal is processed via a stream correction circuit. Circuit 1056 is actually a model of a signal chain 354. More specifically, the three-string-to-stream includes a time delay (or group delay) circuit, a phase 34 201023543 offset circuit, and a - corrected _ mechanical/positive pair. As mentioned previously, the second of the three streams has the longest delay. Therefore, after the circuit deletion process, the outputs of the 'streaming' and the third stream are supplied to - she corrects the circuit 1058, and the circuit is actually a model of the valley circuit group 358. Circuit deletion

處理包含將電路職帽應串流電路之輸出與—相位混合,並將混 合後之訊號輸出至-群組更正電路觸,電路獅係用來更正第 -串流及第三串流之延遲。電路1060實際上為一重新取樣器泥 之模型。電路1060將輸出訊號傳送至一多輸入多輸出 電路,以解調及解碼所接收之訊號。 之解調及解碼 …得出二階段式的校正流程串後,式6之要件即獲得滿足。舉例 來說’若將二階段式的校正流程應用至第5圖中之工作站A,產生 的互易性條件可以表示成: f^AB4RX=ciAR^~^Tl ω + ^1)/ ❽ (式9Α) 使得 αΑΚ=^τλω+^ (式 9Β) 其中/為- 3x3的單位矩陣(iden% )。 式來之傳送器校正流程係透過—類似的方 :凡 ^ 5 ’权正參考訊號在傳送器中產生,唑迥射 頻電路,雜由—外縣置(例如娜錄計料元172)接^射 35 201023543 =數=估計方式和減,料後尋數伽靖送器補償模 、、且(模組118〜124之群組)。舉例來說,假設第三麵電路具有最 長的延遲,互易性常數可寫成: e/(72w+^2) (式 9C) 在此須注意的是,對傳送器及接收器電路而言,校正流程可在 ❺作站A及工作站B區域内完成。如此-來,式9便可獲得滿足(每 係數以式9B之喊呈現)。目此,傳送器射頻及混波器電路和 接收器射頻及分波器電路皆同等重要。 第6圖及第10圖之電路為實施二階段式校正流程之實施例, 但亦存在有變異性,例如,透過改變電路元件的順序可產生不同的 實施例。 第6圖為本發明實施例一第一階段校正模組300。模組300包 含—射頻校正參考訊號源25〇(或校正訊號串156),耦接於一接收 态類比電路252。按順序地,電路252耦接於一第一階段校正電路 254。 接收器類比電路252包含一射頻模組256 (或模組1〇2)、一 同相成分之類比數位轉換器258及一正交成分之類比數位轉換器 26〇°第一階段校正電路254包含一同相成分之jS電路266,其耦接 36 201023543 於一同相成分之γ電路270及一同相成分之加總器274,而加總器 274耦接於一同相成分之重新取樣器278。第一階段校正電路254 另包含一正交成分之α電路264,耦接於一正交成分加總器276,而 加總器276耦接於一正交成分之重新取樣器280。第一階段校正電 路254另包含一增益更正計算單元262,用來接收一數位同相成分 號290及一數位正父成分訊號292。同時,數位同相成分訊號290 亦作為0電路266之輸入,而數位正交成分訊號292亦作為^電路 〇 264之輸入。第一階段校正電路254另包含一正交更正計算電路 268 ’用來接收電路266及電路264之輸出訊號,並在二輸出端298 產生一訊號γ。在卢電路266及電路264分別將輸出訊號傳送至 加總器274及276之前’輸出端298同時被操作在電路说66及α 電路264之輸出端,操作之方式係按方程式所列。 在接收器類比電路252中,射頻模組256用來接收射頻校正參 ⑩考源250之輸出訊號,並產生一類比同相成分訊號294及一類比正 交成分汛號296。射頻模組256將一射頻訊號(射頻校正參考源25〇 之輸出訊號)轉換至基頻。類比數位轉換器258可將類比同相成分 訊號294轉換成數位形式,同樣地,類比數位轉換器26〇則將類比 正交成分訊號296轉換成數位形式。 重新取樣器278及280之輸出係已校正的同相成分正交成分訊 號鏈1,其被供應至一第二階段校正電路。增益更正計算單元262 和第3圖之增益更正單元1〇6相似,用來更正所接收基頻訊號同相 37 201023543 成分及正交成分之間的增益偏移。 ,校正測量及補償之訊號串依序排列,使得同相成分正交成分增 益偏移可先被·及補償。對增益偏移測量而言,麵校正 250注入一寬頻帶射頻訊號,作為射頻模組256之輸入。射頻模組' 256將該注入的訊號轉換至一基頻訊號(或依實際需求,轉換成一 等效之中頻訊號),基頻訊號之同相成分及正交成分分別等於訊號 ® 294及296。理想上來§兒,訊號290及292 (分別從訊號294及296 轉換而來)之功率相同,但由於類比數位轉換器、射頻放大器及電 路增益不匹配等非理想效應’訊號290及292之功率可能不同。透 過平均類比數位轉換器之同相成分及正交成分之取樣點所形成之資 料串(資料串必須夠長),訊號290及292之功率可被估計:The processing includes mixing the output of the circuit capped stream circuit with the phase, and outputting the mixed signal to the -group correction circuit, and the circuit lion is used to correct the delay of the first stream and the third stream. Circuit 1060 is actually a model of a resampler mud. Circuitry 1060 transmits the output signal to a multiple input multiple output circuit to demodulate and decode the received signal. Demodulation and Decoding... After the two-stage calibration process string is obtained, the requirements of Equation 6 are satisfied. For example, if a two-stage calibration process is applied to workstation A in Figure 5, the resulting reciprocity condition can be expressed as: f^AB4RX=ciAR^~^Tl ω + ^1)/ ❽ 9Α) Let αΑΚ=^τλω+^ (Equation 9Β) where / is the unit matrix of 3x3 (iden%). The transmitter calibration process is transmitted through a similar method: where the ^ 5 'right positive reference signal is generated in the transmitter, the azole radio frequency circuit, the miscellaneous - the external county (such as the Nalu meter element 172) is connected ^ Shoot 35 201023543 = number = estimation mode and subtraction, after the material is found, the number of gamma receiver compensation modes, and (groups of modules 118 ~ 124). For example, assuming that the third-sided circuit has the longest delay, the reciprocity constant can be written as: e/(72w+^2) (Equation 9C) It should be noted here that for the transmitter and receiver circuits, the correction The process can be completed in the Station A and Workstation B areas. In this way, Equation 9 can be satisfied (each coefficient is represented by the shout of Equation 9B). For this reason, the transmitter RF and mixer circuits are equally important to the receiver RF and splitter circuits. The circuits of Figures 6 and 10 are embodiments for implementing a two-stage calibration process, but there are also variability, for example, by changing the order of circuit elements to produce different embodiments. FIG. 6 is a first stage calibration module 300 according to the first embodiment of the present invention. The module 300 includes a radio frequency correction reference signal source 25 (or a correction signal string 156) coupled to a receive state analog circuit 252. In sequence, circuit 252 is coupled to a first stage correction circuit 254. The receiver analog circuit 252 includes a radio frequency module 256 (or module 1〇2), an analog converter of the in-phase component 258, and an analog component of the quadrature component. The first stage correction circuit 254 includes The phase component of the jS circuit 266 is coupled to 36 201023543 to a gamma circuit 270 of a non-inverting component and an adder 274 of an in-phase component, and the adder 274 is coupled to a resampler 278 of an in-phase component. The first stage correction circuit 254 further includes an orthogonal component alpha circuit 264 coupled to an orthogonal component adder 276, and the adder 276 is coupled to an orthogonal component resampler 280. The first stage correction circuit 254 further includes a gain correction calculation unit 262 for receiving a digital in-phase component number 290 and a digital positive parent component signal 292. At the same time, the digital in-phase component signal 290 is also input to the 0 circuit 266, and the digital quadrature component signal 292 is also used as the input of the circuit 264. The first stage correction circuit 254 further includes an orthogonal correction calculation circuit 268' for receiving the output signals of the circuits 266 and 264, and generating a signal γ at the second output 298. Before the output of the output signal to the adders 274 and 276, the output circuit 298 is simultaneously operated at the output of the circuit 66 and the alpha circuit 264, the manner of operation being listed by equation. In the receiver analog circuit 252, the RF module 256 is configured to receive the output signal of the RF calibration source 250 and generate an analog component signal 294 and an analog component 296. The RF module 256 converts an RF signal (the output signal of the RF correction reference source 25A) to the base frequency. The analog to digital converter 258 can convert the analog in-phase component signal 294 into a digital form. Similarly, the analog to digital converter 26 turns the analog quadrature component signal 296 into a digital form. The outputs of the resamplers 278 and 280 are calibrated in-phase component quadrature component signal chains 1, which are supplied to a second stage correction circuit. The gain correction calculation unit 262 is similar to the gain correction unit 1〇6 of FIG. 3 for correcting the gain offset between the received fundamental frequency signal and the quadrature component. The signal series for correcting measurement and compensation is arranged in order, so that the quadrature component gain offset of the in-phase component can be compensated first. For gain offset measurements, face correction 250 injects a wideband RF signal as an input to RF module 256. The RF module '256 converts the injected signal to a fundamental frequency signal (or converts it into an equivalent intermediate frequency signal according to actual requirements), and the in-phase component and the quadrature component of the fundamental frequency signal are equal to the signals ® 294 and 296, respectively. Ideally, the power of signals 290 and 292 (converted from signals 294 and 296, respectively) is the same, but the power of signals 290 and 292 may be due to non-ideal effects such as analog-to-digital converters, RF amplifiers, and circuit gain mismatches. different. The data formed by the in-phase component of the average analog-to-digital converter and the sampling points of the quadrature component (the data string must be long enough), the power of signals 290 and 292 can be estimated:

lPOW ^ /1=1 (式 10) ® QP〇,=j±Ql (式 11) 在式10及式11中’/pew為在同相成分訊號290路捏上估計之功率等 級,為在正交成分訊號292路徑上估計之功率等級。士/〗表示從 n=\ N-1至L取樣點對同相成分/連加之總合,|;么2表示從N-1至L取樣點 對正交成分δ連加之總合。另外,L為一整數’其值必須大到足以確 - 保功率測量之準確性足夠,k為訊號290及訊號292在測量期間之索 38 201023543 引。增益調整值之計算係透過比較所測量之功率與一目標功率等級 p : (式 12) yQpow (式 13) ❹ 式12中之《表示電路264所執行之功能,式13中之尽表示電路266 所執行之功能。如第6圖所示,增益調整之實現係透過增益單元。/ 代表平方根運算。 在增益偏移更正完成後,單元268在同相成分及正交成分訊號 上執行一非正交性更正。非正交性更正之執行係根據下列方程式: ^ Λ=Ι ❹ (式μ) 理想上來說,若同相成分訊號290及正交成分訊號292正交, 同相成分訊號290及正交成分訊號292之平均内積為零。任何 正交性會造成二分枝之_更正以及產生—非料平均内積。所量 測到之7值和#正紐成正比,可被絲耻_成分及正交成分 之間的=又相關性’如第6圖所示。在式13中,根據校正期間所呈 現之^ ’雜戒’整數L必須夠大以確保非正交性之測量準確产足 夠。非正交性之更正係透過將增益更正乘法器、電路266及264之 39 201023543 輸出訊號乘以所量測到非正交性常數g的二分之一(使用在乘法器 電路270及272)。透過減法器274,正交成分乘法 器電路272之輸 出被減去同相成分訊號。相似地,透過減法器276,同相成分乘法 器電路270之輸出被減去正交成分訊號。 在訊號290及292經過為了非線性計算之增益等化步驟及更正 步驟後,單元282測量及更正同相成分訊號及正交成分訊號之間的 群組延遲。在本發明之一實施例中,單元282之測量及更正功能係 使用-快賴立葉轉賴組,傅立雜賴組為正交分頻多工無線 收發器中常見之硬體單元。一測試訊號串被餵入訊號29〇及29f,lPOW ^ /1=1 (Equation 10) ® QP〇,=j±Ql (Equation 11) In Equations 10 and 11, '/pew is the estimated power level on the in-phase component signal 290, which is orthogonal. The estimated power level on the component signal 292 path.士/〗 indicates the sum of the in-phase components/continuous sums from n=\ N-1 to L, and the value of |; 2 represents the sum of the orthogonal components δ from the N-1 to L sampling points. In addition, L is an integer 'the value must be large enough to ensure that the accuracy of the power measurement is sufficient, k is the signal 290 and the signal 292 is measured during the measurement period 38 201023543. The gain adjustment value is calculated by comparing the measured power with a target power level p: (Expression 12) yQpow (Equation 13) 《 The function performed by the representation circuit 264 in Equation 12, the circuit 266 is represented in Equation 13 The function performed. As shown in Figure 6, the gain adjustment is achieved by the gain unit. / represents the square root operation. After gain offset correction is complete, unit 268 performs a non-orthogonal correction on the in-phase component and the quadrature component signal. The non-orthogonal correction is performed according to the following equation: ^ Λ = Ι ❹ (式 μ) Ideally, if the in-phase component signal 290 and the quadrature component signal 292 are orthogonal, the in-phase component signal 290 and the quadrature component signal 292 are The average inner product is zero. Any orthogonality will result in a two-branch correction and an unintended average inner product. The measured value of 7 is proportional to #正纽, which can be ashamed_the correlation between the component and the orthogonal component is as shown in Fig. 6. In Equation 13, the integer L, which is represented according to the correction period, must be large enough to ensure that the measurement of non-orthogonality is accurately produced. The non-orthogonal correction is obtained by multiplying the gain correction correct multiplier, circuit 266 and 264 39 201023543 output signals by one-half of the measured non-orthogonality constant g (used in multiplier circuits 270 and 272). . The output of the quadrature component multiplier circuit 272 is subtracted from the in-phase component signal by the subtractor 274. Similarly, the output of the in-phase component multiplier circuit 270 is subtracted from the quadrature component signal by a subtractor 276. After signals 290 and 292 have undergone gain equalization steps and correction steps for non-linear calculations, unit 282 measures and corrects the group delay between the in-phase component signals and the quadrature component signals. In one embodiment of the invention, the measurement and correction function of unit 282 is the use of a fast-rising group, which is a hardware unit commonly found in orthogonal frequency division multiplexing wireless transceivers. A test signal string is fed into signals 29〇 and 29f,

汛唬290及292在每一快速傅立葉轉換音調上皆包含一參考訊號。 如第7圖所示’快速傅域轉換之同相成分及正交成分輸出^相位 在每-音調上被測量、紀錄及儲存。骑出相位對應子載體數目之 關係圖’無論在同減分分枝或正城分分枝,她轉之斜率和 群組延遲係成正比。如第8圖和第9騎示,若群組延遲不匹配, 則同相成分她轉和正找分她轉之斜特會不同。 麵的群_物轉親δθ斜率駐比,如第$ 不0 弟7圖為本發明實施例一群組延遲計1_ Τ异早70 304之示意圖。君 、,遲什异早70 304包含-同相成分快速傅立葉轉換電路3 正父成分快速傅立葉轉換電路312。在第7圖中,一掸〆 一 正模紕302用來產生一同相成分訊號3%及一正交成父更 201023543 ❹汛唬290 and 292 each include a reference signal on each of the fast Fourier transform tones. As shown in Fig. 7, the in-phase component of the fast Fourier transform and the quadrature component output phase are measured, recorded, and stored on each-tone. The relationship between the number of riding sub-carriers and the number of sub-carriers is proportional to the branch delay and the group delay. As shown in Figure 8 and the ninth riding, if the group delay does not match, the in-phase component will be different from the slanting that she is looking for. The face group _ thing turn pro δ θ slope ratio, such as the $ 不 0 brother 7 diagram is a schematic diagram of the group delay meter 1_ Τ 早 70 70 304 of the embodiment of the present invention.君 , 迟 早 70 70 304 includes - in-phase component fast Fourier transform circuit 3 positive parent component fast Fourier transform circuit 312. In Fig. 7, a positive mode 302 is used to generate an in-phase component signal of 3% and an orthogonal component into the parent. 201023543 ❹

分別傳輸麵減錄稍立葉轉麵路 Μ 葉轉換電路312。增益及正交更正模組302之電路和第6圖中之電 路254相似(除了電路282、重新取樣器278及之外)。辦益 及正交更正模組302所執行之增益及正交更正在時域中完成。= NFFT個用來測制相成分和正交成分路徑之間群組延遲的頻率二 時’電路刑及電路犯皆用來執行—贿點快速傅立葉轉換。 在第7圖之實施例t ’群組延遲之計算在頻域執行。在另—可供 擇的實施财,群崎遲之計算在時域執行,如彳賴之圖所示P 第8圖為同相成分和正交成分訊號之間相位的關係圖^轴代 相位心或%’相位心和分別和同相成分路徑及正交成分路徑 2群組賴成正^ x減表k,k為子領之约用綠親 測量群組延遲。在測量期間,在時域中之同—訊號經過増益及正六 _二=3()2之處理,並且為加總器電路274及276之輸出“ ©第ϋ校正流程的—部分)。對第—階段群組延遲校 第9圖為同相成分及正交成分訊號相位差異之關係 y 對相位,如下式所列: 7釉代表相 (式 15) 而x軸代表子栽體之索引k。 因此,在經過第一階段校正流程之同相成分正交成分增益校正 校正後,仍存在—隨子載體數目線性變化之相位偏移, 41 201023543 相,2同相成分及正交成分訊號之間的群組延遲不匹配成正 齡处齡增献錢麵紐拉之後,本發明接 校正_ ’聽_同相齡衫成分群祕遲偏移, 如後續之簡述。 群、’且I遲谢貞之估#γ絲透過產生—針對第9圖之相位差異曲 1、’友f生近似。產生線性近似的方法中其中之一即最小平方曲線擬 ❹° & %aSt squ_ curve fitting method )’其可用來減少測量雜訊之 效應。最小平方曲線擬合法假設一線性模型,如下所列: y^mx+b (式 16) 為了群組延遲補償,最小平方曲線擬合法須要決定斜率m。m及6之 聯立解如下所列: b =(κΤ^ΥκΓδθ ❿(式17) 其中δθ為所測量之相位差異向量,如第$圖所示。子載體索引 ^-%,-7%+1’,..,欠-1,而尤為一他2的矩陣:The transfer surface is subtracted from the transfer surface Μ leaf conversion circuit 312. The circuitry of gain and quadrature correction module 302 is similar to circuit 254 of Figure 6 (except circuit 282, resampler 278, and others). The benefits and orthogonal correction module 302 perform the gain and orthogonal correction in the time domain. = NFFT is used to measure the frequency of the group delay between the phase component and the quadrature component path. The circuit and circuit crimes are used to perform the bribery fast Fourier transform. The calculation of the group t' group delay in the embodiment of Fig. 7 is performed in the frequency domain. In another alternative implementation, the calculation of the group is late in the time domain, as shown in the diagram of P. Figure 8 is the relationship between the phase of the in-phase component and the quadrature component signal. Or the %' phase heart and the respectively in-phase component path and the quadrature component path 2 group are determined to be positively reduced by k, k is the sub-collar, and the group delay is measured by the green parent. During the measurement period, the same signal in the time domain is processed by the benefit and positive _2 = 3 () 2, and is the output of the adder circuits 274 and 276 "© part of the calibration process". - Stage group delay correction Fig. 9 is the relationship between the in-phase component and the quadrature component signal phase difference y vs. phase, as shown in the following equation: 7 glaze represents the phase (Equation 15) and the x-axis represents the index k of the sub-carrier. After the quadrature component gain correction correction of the in-phase component of the first-stage correction process, there is still a phase shift that varies linearly with the number of sub-carriers, 41 201023543 phase, 2 group between the in-phase component and the quadrature component signal After the delay mismatches into the age-old age-added money face Nyula, the invention is corrected _ 'listening to the same phase of the age group's secret group, such as the following brief description. Group, 'and I thank you 贞 estimate#γ The filament is generated by the phase difference 1 and the 'family approximation for Fig. 9. One of the methods for generating a linear approximation is the least square curve ❹ ° & %aSt squ_ curve fitting method ) 'which can be used to reduce Measuring the effect of noise. Least square The curve fitting method assumes a linear model, as listed below: y^mx+b (Equation 16) For group delay compensation, the least square curve fitting method needs to determine the slope m. The simultaneous solutions of m and 6 are listed below: b = (κΤ^ΥκΓδθ ❿ (Equation 17) where δθ is the measured phase difference vector, as shown in Fig. $. Subcarrier index ^-%, -7%+1', .., under-1, and especially one His 2 matrix:

(式 18) 42 201023543 在弋中矩陣(尤幻夂預先被儲存,以方便後續計算。讲之估 核和同相成分和正交成分之間的群組延遲差異成正比,且所之估 ^在取樣財被轉換成·的分數延遲,而分數延遲被應用在延 …短的分枝。換言之,最主要的分枝被延遲,使得同相成分及正 交成分上之群組延遲鱗。延遲最主要分枝的步驟-般是透過重新 取樣器來執行。 ❹ 舉例來說,-典型的計算過程會產生…5。/子载波。因為所 為負數,表示同相成分通道中的延遲比正交成分通道中的延遲更 長。因此,-部分的延賴要被加人正交成分通道巾。這個步驟的 問題係需要將多少的延遲加人正交成分通道中。舉例來說,假設有 64個子載體,亦即在最外側的子載體5χ32 = 16〇。,16〇。轉換成取樣 點則需要漂=_個延遲取樣點。在此情況下,當第6圖之重新取樣 器278被旁通,重新取樣器278提供所需之延遲。加入取樣延遲之 ® 分數係透過一標準數位重新取樣電路。 前述之校正方法使用外接訊號源,以校正同相成分/正交成分 通道。在本發明另一實施例中,透過一迴路校正亦可達到等效的補 償功能,而不須要透過外接訊號源。 以下將透過一相關的第二階段校正電路來說明第二階段的校 • 正流程。在接收器及傳送器串流經過第一階段的校正流程後,第二 _ 階段的校正流程將補償或調準接收器及傳送器串流。儘管單一串流 43 201023543 已經被校正完成,仍無法保證串流間之校正已完成,因此,第二階 段的权正流程仍屬必要。具體的說,串流間的她及群組延遲變異 必須被校正。校正串流間相位及群組延遲變異方法之其中一種如第 10圖所示。 在第10圖中,一第二階段校正電路35〇耦接於一校正後^個 同相成分正交成份訊號鏈之群組354,群組354用來接收一射頻校 ⑩正參考訊號源352之輸出。群組3M巾之每-鏈結係一校正後的同 相成分正交成分鏈。舉例來說,群組354中之校正後的同相成分正 父成分鏈1用來接收重新取樣!! 278及28()所產生之訊號。因此, 第阳攸校正流程之輸出被供應至第二階段校正流程。群組354之 輸=被提供至電路350 ’電路350包含一第二階段群組延遲及相位 計算電路3的及-㈣路之群組现。電路娜用來接收群組354 之輸出訊號’群組358中之每一包電路用來接收群組说中對應校 ⑩正後之同相成分正交成分鏈的輸出訊號。群組358之輸出被傳送至 -重新取樣器群組362,群組362提供全部校正完成之多輸入多輸 出訊號。 電路366執行同相成分訊號及對應正交成分訊號之間的相位更 正以及執行另一群組延遲操作。在此所執行之相位更正和電路 所執行之相位更正相似。 在同相成分訊號及正交成分訊號被校正後,快速傅立葉轉換單 44 201023543 儿測量及更正N個接收/傳送鏈分枝之_群組延遲及相位差異, 测置及更正之方法和第一階段校正電路相同。在接收器之測量及更 正方法被提出後,-相似的測量及更正方法被應用至傳送器。 才父正參數纟1、纟2、…、〖N及延遲參數之計算係透過電路366, 如第11圖所不。在第u圖中,電路366包含N個快速傅立葉轉換 電路,例如電路370和37;1。電路370及371之輸入由校正後的同 ❹相成分正交成分鏈之群組354提供。當有N舒健時,每一快速 傅立葉轉換電路皆執行—N點快速傅立葉轉換。 〇十算串流間的相位及延遲參數所使用之電路和計算和同相成 为/正交成分校正之電路相同。此處之測量亦使用快速傅立葉轉換 電路’但校正後訊號模組之輸出為複數。快速傅立葉轉換模組之複 數輸出被轉換成相位,且經常被用來計算斜率历及零點頻率(DC) 戴取點b(過去常使用線性估計器): mb -[κτκ)'κτδθ 在此情況下’因為輸人為複數’财原點處之相位不須穿過原點。 她之下n段巾,錄人為實數的軌下(分卿同相成分 及正父成分而言),圖中原點處之相位會穿過原點。在原點、bl、 b2、…、1^估計相位須要在串流間被補償(或移除)。此補償(或 移除)的步驟可透過相子(phasor)來完成:(Equation 18) 42 201023543 In the middle of the matrix (the illusion is stored in advance to facilitate subsequent calculations. The evaluation is proportional to the difference in group delay between the in-phase component and the quadrature component, and the estimate is The sampled wealth is converted into a fractional delay, and the fractional delay is applied to the extension of the short branch. In other words, the most dominant branch is delayed, causing the in-phase component and the group on the orthogonal component to delay the scale. The branching step is generally performed by a resampler. ❹ For example, a typical calculation process produces ... 5. subcarriers. Because it is a negative number, the delay in the in-phase component channel is greater than in the quadrature component channel. The delay is longer. Therefore, the partial extension is to be added to the orthogonal component channel. The problem with this step is how much delay is required to be added to the orthogonal component channel. For example, suppose there are 64 subcarriers. That is, at the outermost subcarrier 5χ32 = 16〇., 16〇. Conversion to a sampling point requires drift = _ delayed sampling points. In this case, when the resampler 278 of Fig. 6 is bypassed, re Sampler 278 provides The required delay is added to the sample delay by a standard number resampling circuit. The above calibration method uses an external signal source to correct the in-phase component/orthogonal component channel. In another embodiment of the invention, The loop correction can also achieve an equivalent compensation function without the need to pass an external signal source. The following is a description of the second phase of the calibration process through a related second stage correction circuit. The receiver and transmitter are streamed through After the calibration process of the first phase, the calibration process of the second phase will compensate or align the receiver and transmitter streams. Although the single stream 43 201023543 has been corrected, there is no guarantee that the calibration between the streams is completed. Therefore, the second phase of the positive process is still necessary. Specifically, her and group delay variation between streams must be corrected. One of the methods for correcting the phase between the streams and the group delay variation is shown in Figure 10. In Fig. 10, a second stage correction circuit 35 is coupled to a group 354 of corrected in-phase component orthogonal component signal chains, and group 354 is used. Receiving an output of a radio frequency 10 positive reference signal source 352. Each link of the group 3M towel is a corrected in-phase component orthogonal component chain. For example, the corrected in-phase component of the group 354 is the parent. Component Chain 1 is used to receive the signals generated by resampling!! 278 and 28(). Therefore, the output of the Yangshuo correction process is supplied to the second phase calibration process. The output of group 354 is provided to circuit 350' The circuit 350 includes a second-stage group delay and phase calculation circuit 3 and a group of - (four) paths. The circuit is used to receive the output signal of the group 354. Each of the packet circuits 358 is used to receive the group. The output of the group of orthogonal components of the in-phase component of the group 10 is transmitted to the -resampler group 362, which provides all of the corrected input multiple input signals. Circuit 366 performs phase correction between the in-phase component signal and the corresponding quadrature component signal and performs another group of delay operations. The phase correction performed here is similar to the phase correction performed by the circuit. After the in-phase component signal and the quadrature component signal are corrected, the fast Fourier transform unit 44 201023543 measures and corrects the _ group delay and phase difference of the N receiving/transport chain branches, and the method and the first stage of the measurement and correction The correction circuit is the same. After the receiver measurement and correction method is proposed, a similar measurement and correction method is applied to the transmitter. The calculation of the parental parameters 纟1, 纟2, ..., 〖N and the delay parameter is transmitted through circuit 366, as shown in Fig. 11. In Figure u, circuit 366 includes N fast Fourier transform circuits, such as circuits 370 and 37; The inputs to circuits 370 and 371 are provided by a group 354 of orthogonal component chains of the corrected syndiotactic components. When there is N-Shenjian, each fast Fourier transform circuit performs - N-point fast Fourier transform. The circuit and calculation used for the phase and delay parameters between the streams are the same as those for the in-phase correction. The measurement here also uses the fast Fourier transform circuit' but the output of the calibrated signal module is complex. The complex output of the fast Fourier transform module is converted to phase and is often used to calculate the slope history and the zero frequency (DC) wear point b (the linear estimator used in the past): mb -[κτκ)'κτδθ in this case Under the 'because the input is the plural', the phase of the fiscal origin does not have to pass through the origin. Under the n-segment, she recorded the actual number of tracks (in terms of the in-phase component and the positive component), and the phase at the origin of the figure would pass through the origin. At the origin, bl, b2, ..., 1^ the estimated phase needs to be compensated (or removed) between streams. This step of compensating (or removing) can be done through a phasor:

Wb2 45 201023543Wb2 45 201023543

WN 如第10圖所示,相子被實現為複數乘法器。對每一第二階段校正流 程之接收鏈而言’第12圖為複數訊號之相位關係圖。對第二階段校 正流程而言,第13圖為不同訊號鏈之間相位差之關係圖。 串流或訊號鏈之間的群組延遲之補償方式和同相成分正交成 〇 分群組延遲之補償方式相同。換言之,透過比較所有測量到的斜率 所1、爪2、…、mN (如式18所列),可以找出延遲最長的分枝。剩 下分枝(延遲較短)之間的差異亦被計算出來。剩下分枝之間的差 異並且被轉換成一取樣點之分數,且透過重新取樣器來實現,如第 10圖所示,使得每一串流間的群組延遲相同。 ♦若發現延遲差超過一完整的取樣點,則使用一完整的取樣點延 遲連接分數延遲,以補足延遲差。 ❹ ♦電路366之快速傅立葉轉換電路係用來估計群組延遲但不須 要用來執行此校正機制,確切的說,電路366為非必須之電路。 反之,在離散頻率點上的純音調可被用來増進相位測量向量。 此方法可全部在時域中實現,且有簡單容易實現的優點。另一 可供選擇的方法詳述如下。 .•在另—實施财,二個校正階段㈣賴取樣電路可被合併成 ’ —個重新取樣器’合併後的姨取樣·結合了全部所測量的 46 201023543 延遲,以簡化電路。舉例來說,重新取樣器π:及電路254之 重新取樣器可被合併成一個重新取樣器。 第-階段及第二階段校正流程之參數皆被估計完舰,校正電 路之整體結構如第14圖所示。 在第14圖中,一校正系統侧皮應用在多輸入多輸出系統中, ❹其包含一_天線之群組402,鋪於一第一階段校正電路之群組 404 ’以將輸出錢傳送至群組彻。依序,群組彻將輸出訊號傳 送至第一P以又校正電路之群組4〇6,群組4〇6用來產生校正完畢 之串流,以供-多輸入多輸出接收器訊號處理器單元—處理。第 14圖中之每-群組皆包含N個裝置,其中N為接收器的數目。另 外,Μ表示傳送器或傳送裝置的數目,小寫k表示快速傅立葉轉換 輸出中的索引。群組404包含電路類似第6圖之電路254,而群組 _ 406包含電路類似第10圖之電路35〇。 對-傳送器而言,第Μ圖中箭頭的方向將相反,且上述的校 正流程在-獨立的單元中完成,獨立單元可能是一射頻資料收集 系統或-校正後的射頻/基頻模組。如第4圖中模組172及166之 間的交互影響所描述’為了賴校正傳找波絲成的絲,參數 從遠端處理器被載入。 在不範應用中’此處所展示及討論的實施例被應用在使用正交 47 201023543 刀頻夕工的系統令。各式各樣實施例展示用於波束形成之校正流 程,在此波束形成特別是指内隱式的波束形成。 第15圖展示用於接收II子載體電路之間相位及群組^遲的時 域权正。在第15圖巾,—時域相位及群組延遲校正系統5〇〇 耦接於一外接射頻訊號源501,外接射頻訊號源5〇1提供一射頻訊 號至系統500,以校正系統5〇〇。 系統500包含一射頻/類比數位轉換器單元之群組5〇4,群組 504柄接於一同相成分正交成分校正模組之群組506,群組5〇4、5〇6 包含三個單元(或模組),但實際應用上不限於三個。模組5〇6耦 接於一父互關聯電路508及510。更具體的說,群組506中之第一 模組及第《一模組輛接於電路508,群組50ό中之第二模組及第三模 組耦接於電路510。電路508將訊號輸出至一累加器電路512,電路 510將訊號輸出至一累加器電路514。電路512耦接於一對照表 (look-up-table,LUT)電路516’電路514耦接於一對照表電路518。 對照表電路516及518將輸出訊號傳送至一估計參數電路wo。本 發明實施例系統500包含群組504、506、電路5〇8、510、512、514、 對照表電路516、518及電路520。 系統500操作於時域,以在時域決定群組延遲及相位補償參 數。為了達到這個目的,訊號源501提供一類比的正弦波參考訊號 源,而群組504將正弦波參考訊號源轉換成數位形式。如前所述, 48 201023543 7y((wr+wcV+(?0) =::=:==一 & = γ_((«Ά)ι+0丨) ^ _ eJ{{K+^c)t+02) ββ、中4正弦波參考頻率,We為任—龍偏移,Θ。及Θ4 早一訊號之相位。群組之輸出係以兩兩成對的方式交互關聯, ©使得電謂可以產生交互_之_成分及正交成分減,以供 電路512及514使用。電路5〇8所產生的交互關聯訊號可以寫成: 5〇 X 51 = ^ SQ^WN As shown in Figure 10, the phase is implemented as a complex multiplier. For the receive chain of each second stage correction process, Fig. 12 is a phase diagram of the complex signal. For the second phase of the calibration process, Figure 13 is a plot of the phase difference between the different signal chains. The group delay between the stream or the signal chain is compensated in the same way as the in-phase component is orthogonal to the group delay. In other words, by comparing all measured slopes 1, 2, ..., mN (as listed in Equation 18), the longest delay branch can be found. The difference between the remaining branches (shorter delay) is also calculated. The difference between the remaining branches is converted to a fraction of a sample point and is achieved by a resampler, as shown in Figure 10, such that the group delay between each stream is the same. ♦ If the delay difference is found to exceed a full sample point, a complete sample point delay link delay is used to compensate for the delay difference. ♦ ♦ The fast Fourier transform circuit of circuit 366 is used to estimate the group delay but is not required to perform this correction mechanism. Specifically, circuit 366 is a non-essential circuit. Conversely, pure tones at discrete frequency points can be used to break into the phase measurement vector. This method can be implemented all in the time domain and has the advantage of being simple and easy to implement. Another alternative method is detailed below. • In another implementation, the two calibration stages (4) the sampling circuit can be combined into a 'resampler' combined 姨 sampling. Combined with all measured 46 201023543 delays to simplify the circuit. For example, the resampler π: and the resampler of circuit 254 can be combined into one resampler. The parameters of the first-stage and second-stage calibration procedures are estimated to be completed, and the overall structure of the calibration circuit is shown in Figure 14. In Fig. 14, a correction system side is applied in a multiple input multiple output system, which includes a group 402 of antennas, which is grouped in a group 404' of a first stage correction circuit to transmit the output money to The group is thorough. In sequence, the group transmits the output signal to the first P to the correction circuit group 4〇6, and the group 4〇6 is used to generate the corrected stream for the multi-input multi-output receiver signal processing. Unit - processing. Each of the groups in Figure 14 contains N devices, where N is the number of receivers. In addition, Μ denotes the number of transmitters or transmissions, and lowercase k denotes an index in the fast Fourier transform output. Group 404 contains circuitry 254 similar to that of Figure 6, and group _406 contains circuitry similar to circuit 35 of Figure 10. For the transmitter, the direction of the arrow in the figure will be reversed, and the above calibration process is done in a separate unit, which may be a radio frequency data collection system or a calibrated RF/baseband module. . As described in the interaction between modules 172 and 166 in Figure 4, the parameters are loaded from the remote processor for the correction of the traced filaments. In an exemplary application, the embodiments shown and discussed herein are applied to system commands using orthogonal 47 201023543. Various embodiments show a calibration process for beamforming, where beamforming refers in particular to implicit beamforming. Figure 15 shows the time domain weights used to receive the phase and group delays between the II subcarrier circuits. In the 15th, the time domain phase and group delay correction system 5 is coupled to an external RF signal source 501, and the external RF signal source 5〇1 provides an RF signal to the system 500 to correct the system 5〇〇. . The system 500 includes a group 5〇4 of RF/analog digit converter units, the group 504 is connected to a group 506 of an in-phase component orthogonal component correction module, and the group 5〇4, 5〇6 includes three Unit (or module), but the actual application is not limited to three. Modules 5〇6 are coupled to a parent inter-correlation circuit 508 and 510. More specifically, the first module and the first module in the group 506 are connected to the circuit 508, and the second module and the third module in the group 50 are coupled to the circuit 510. Circuit 508 outputs the signal to an accumulator circuit 512 which outputs the signal to an accumulator circuit 514. The circuit 512 is coupled to a look-up-table (LUT) circuit 516'. The circuit 514 is coupled to a look-up table circuit 518. The look-up table circuits 516 and 518 transmit the output signals to an estimated parameter circuit wo. System 500 of the present invention includes groups 504, 506, circuits 5〇8, 510, 512, 514, look-up table circuits 516, 518, and circuitry 520. System 500 operates in the time domain to determine group delay and phase compensation parameters in the time domain. To achieve this, signal source 501 provides an analog sine wave reference signal source and group 504 converts the sine wave reference signal source to digital form. As mentioned earlier, 48 201023543 7y((wr+wcV+(?0) =::=:==一& = γ_((«Ά)ι+0丨) ^ _ eJ{{K+^c)t+ 02) ββ, medium 4 sine wave reference frequency, We is any-long offset, Θ. And Θ4 the phase of the early morning signal. The output of the group is interactively paired in pairs, such that the electrical predicate can generate an interaction _ component and an orthogonal component subtraction for use by circuits 512 and 514. The cross-correlation signal generated by circuit 5〇8 can be written as: 5〇 X 51 = ^ SQ^

SlXS2~0i-02= δθη 電路512將電路508之輸出I累加,電路514將電路之 輸出机2累加。每-累加訊號之角度和相位(在訊號源備提供之 參考訊號之頻率下)成正比。電路512及514累加訊號之時間必須 ®足夠久,以減低任何在測量角度上之雜訊效應。對照表電路516及 518用來決定累加訊號、及祕一對應之實數角度。相似地,一 m ( Coordinate Rotation Digital Computer > CORDIC)模組(或一數值反正切函數)用來計算對應累加複數之 相位。 角度在間距相等之頻率(在訊號頻寬範圍内)上被計算,例如 •對一頻寬為20MHZ之正交分頻多工訊號而言,角度在頻率_6MHz、 49 201023543 -臟、職及嶋上被計算,並將計算結果儲存成向量的形 式。透過第15圖之實關,相對她只須要透過二簡單設SlXS2~0i-02 = δθη circuit 512 accumulates the output I of circuit 508, which adds the output 2 of the circuit. The angle and phase of each-accumulated signal is proportional to the frequency of the reference signal provided by the source. Circuits 512 and 514 must accumulate the signal for a sufficient time to reduce any noise effects at the measurement angle. The look-up table circuits 516 and 518 are used to determine the real angle of the accumulated signal and the secret one. Similarly, a m (Coordinate Rotation Digital Computer > CORDIC) module (or a numerical arctangent function) is used to calculate the phase of the corresponding accumulated complex number. The angle is calculated at equal frequency (in the signal bandwidth), for example, for a quadrature frequency division multiplex signal with a bandwidth of 20 MHz, the angle is at frequency _6 MHz, 49 201023543 - dirty, duty It is calculated and stored in the form of a vector. Through the actual situation in Figure 15, she only has to go through two simple designs.

聯器(亦即電㈣8及51G)就可直接被計算。她之下,在頻域 的方法中’杯相對相位須要透過三侧立的快速傅立葉轉換電 路。將累加訊號祕01及州2對頻率作圖,如第16圖所示,喊祕〇1 曲線之斜率_和〇訊賴及丨峨鏈之間的群組延遲駐比' 同〇1 時’訊號‘之相位和鮮鱗之相位偏移&成正比。相似地, 訊號机2之測量結果亦可找出所對應之相位及群組延遲。按前述之 方法,相位及群組延遲參數亦可透過估計器來估計: 「θ / . vi . I mmT' — ~ 1 *__T*__ b (式 20) 其中 κ = + 2 1 + 6 1_ (式 21) 第崎之數字_6、.2、+2及+6表示角度被計算時的頻率點,如先前 所述。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵紐圍。 【圖式簡單說明】 50 201023543 入多輪出波束形成無線收發 圖為本發明實卜多輸人多輸㈣束形成無線收發器 圖為第1A圖中區域記憶體崎電路所執行步驟之流The coupler (ie, electricity (4) 8 and 51G) can be directly calculated. Underneath, in the frequency domain approach, the cup's relative phase needs to pass through a three-sided fast Fourier transform circuit. The accumulated signal secret 01 and the state 2 are plotted against the frequency. As shown in Figure 16, the slope of the secret 1 curve is _ and the group delay between the 〇 赖 and the 丨峨 chain is the same as '1'. The phase of the signal ' is proportional to the phase shift of the fresh scale & Similarly, the measurement result of the signal machine 2 can also find the corresponding phase and group delay. According to the foregoing method, the phase and group delay parameters can also be estimated by the estimator: "θ / . vi . I mmT' - ~ 1 *__T*__ b (Equation 20) where κ = + 2 1 + 6 1_ ( Equation 21) The number of akisaki_6, .2, +2, and +6 indicates the frequency point at which the angle is calculated, as previously described. The above is only a preferred embodiment of the present invention, and is applied according to the present invention. The equal changes and modifications made in the scope of patents should belong to the circumstance of the present invention. [Simple description of the diagram] 50 201023543 Into the multi-round beamforming wireless transceiver diagram is the invention of the multi-input and multi-input (four) beam formation The wireless transceiver diagram is the flow of steps performed by the area memory system circuit in Figure 1A.

第1圖 器之示意圖 第1A 之示意圖。 第1B 程圖。 為本發明實施例一通用多輸 第2圖為第1圖中系統之示範應用示意圖。 第3圖為第1圖中元件的細部架構示意圖。 第4圖為本發明實施例一校正系統之示意圖。 第5圖為二無線通信裝置之模組示意圖。 第5A圖及第5B圖為衰減模組之示意圖。Schematic diagram of the first diagram Figure 1A. 1B diagram. For the first embodiment of the present invention, FIG. 2 is a schematic diagram of an exemplary application of the system in FIG. Figure 3 is a detailed schematic diagram of the components of Figure 1. 4 is a schematic diagram of a calibration system according to an embodiment of the present invention. Figure 5 is a schematic diagram of a module of a second wireless communication device. Figures 5A and 5B are schematic views of the attenuation module.

第6圖為本發明實施例一第一階段校正模組之示意圖 第7圖為本發明實施例一群組延遲計算單元。 第8圖為群組延遲對應子载體數目之關係圖 第9圖為同相成分訊號及正交成分訊號 目之關係圖。 之相位差對應子載體數 第10圖為一第二階段校正電路之示意圖。 第11圖為透過_快速傅立葉轉換實現第1G巾 組延遲及相位計算電路之示意圖。 一又辦 科庙第120為第二階段校赠射_成分她及正交成分相位 對應子載體數目之關係圖。 之相位差 第13圖為第二階段校正流程悄相成分及正交成分 對應子載體數目之關係圖。 51 201023543 第14圖為本發明實施例一校正系統。 ,15圖為在時域校正她及接㈣子健之畴組延遲之流 第16圖為累加訊號對頻率關係圖。 必要之内隱式波束形成實現方 第17圖為本發明實施例部分非 式及拆解矩陣。 第18圖為區域記憶體映射電路儲存内容之範例。FIG. 6 is a schematic diagram of a first stage correction module according to an embodiment of the present invention. FIG. 7 is a group delay calculation unit according to an embodiment of the present invention. Fig. 8 is a diagram showing the relationship between the number of sub-carriers corresponding to the group delay and Fig. 9 is a diagram showing the relationship between the in-phase component signal and the quadrature component signal. The phase difference corresponds to the number of sub-carriers. FIG. 10 is a schematic diagram of a second-stage correction circuit. Figure 11 is a schematic diagram of the delay and phase calculation circuit of the 1G towel set through the fast Fourier transform. The first step is to set up the relationship between the number of sub-carriers and the number of orthogonal components. The phase difference is shown in Fig. 13 as a relationship between the quiet phase component of the second-stage correction process and the number of orthogonal components corresponding to the number of sub-carriers. 51 201023543 Figure 14 is a calibration system according to an embodiment of the present invention. Figure 15 shows the delay in the time domain correction and the (4) sub-domain group delay. Figure 16 is the cumulative signal versus frequency diagram. Necessary Implicit Beamforming Implementations Figure 17 is a partial non-disassembly and disassembly matrix of an embodiment of the present invention. Figure 18 is an example of the contents stored in the area memory mapping circuit.

通道 點 、Ατχ、KBR、KBT、jj、V、Η、Q、r 矩陣 相位 【主要元件符號說明】Channel point, Ατχ, KBR, KBT, jj, V, Η, Q, r matrix phase [Main component symbol description]

Hab、ΗβαHab, Ηβα

b】、bN、bQl、bu Kar、KAT、KBR、KBT 0、、δ〜、外2、Θ,、、I、〜 a、β、Y2 kb], bN, bQl, bu Kar, KAT, KBR, KBT 0, δ~, outer 2, Θ, ,, I, ~ a, β, Y2 k

m〇i ' mn N STAA、STAB TEMP 10 12、202、204 增益 子載體數目 斜率 資料串個數 工作站 標題 多輸入多輪出無線收發器波束 形成系統 接收器 52 201023543 14、200、206 16 408 18 49 20 © 22 、 102 24 26 28 30 32 34 ' 132 ❿ 36 38 40 41 42 43 44 45 傳送器 通道處理器 多輸入多輸出接收器訊號處理 器單元 使用者設定檔儲存單元 子載體矩陣儲存電路 多重存取控制單元 接收器射頻模組 接收器校正模組 快速傅立葉轉換器 頻域等化器通道估計電路 解碼器 循環冗餘碼檢查器 傳送器射頻模組 傳送器校正模組 逆快速傅立葉轉換器 空間映射矩陣單元 編碼器 星狀圖映射器 訊框檢查序列之循環冗餘碼電 路 通道估計器 傳送器波束形成矩陣單元 53 201023543 e 46 50 52、58、62、68、74、80 54、64、70、78、84、98、352 56、60、66、72、76、82 86 88 100、104、108、112、116、118 158、160、168、354、358、354 506 區域記憶體映射電路 無線網路 無線裝置 、1002、1050、1052、1054 天線 已校正的無線收發器模組 網路介面處理器 網際網路之寬域網路或區域網 路連結 、120、122、124、140、142、156、 358、362、402、404、406、504、 106、130M〇i ' mn N STAA, STAB TEMP 10 12, 202, 204 Gain sub-carrier number slope data string number station header multi-input multi-round wireless transceiver beamforming system receiver 52 201023543 14,200,206 16 408 18 49 20 © 22 , 102 24 26 28 30 32 34 ' 132 ❿ 36 38 40 41 42 43 44 45 Transmitter channel processor multi-input multi-output receiver signal processor unit user profile storage unit sub-carrier matrix storage circuit multiple Access control unit receiver RF module receiver correction module fast Fourier converter frequency domain equalizer channel estimation circuit decoder cyclic redundancy code checker transmitter RF module transmitter correction module inverse fast Fourier converter space Mapping matrix unit encoder star map mapper frame check sequence cyclic redundancy code circuit channel estimator transmitter beamforming matrix unit 53 201023543 e 46 50 52, 58, 62, 68, 74, 80 54, 64, 70 , 78, 84, 98, 352 56, 60, 66, 72, 76, 82 86 88 100, 104, 108, 112, 116, 118 158, 160, 168, 354, 358, 354 506 Memory mapping circuit wireless network wireless device, 1002, 1050, 1052, 1054 antenna corrected wireless transceiver module network interface processor network wide area network or regional network connection, 120, 122, 124 , 140, 142, 156, 358, 362, 402, 404, 406, 504, 106, 130

110、128 114、126 150、400 152 154 162 、 172 164 166 群組 同相正交增益更正單元 同相正交相位更正單元 群組延遲調整單元 校正系統 校正模式裝置 外接校正裝置 補償參數計算單元 校正訊號串產生器 傳送補償模組 校正訊號源單元 54 174 201023543 250 射頻校正參考訊號源 252 接收器類比電路 254 第一階段校正電路 256 射頻模組 258、260 類比數位轉換器 262 增益更正計算單元 264、266、270、272 乘法器電路 φ 274、276 加總器 278、280、364 重新取樣器 282 群組延遲計算單元 290 數位同相成分訊號 292 數位正交成分訊號 294 類比同相成分訊號 296 類比正交成分訊號 φ 300 第一階段校正模組 302 更正模組 306 同相成分訊號 308 正交成分訊號 310、312、370、371 快速傅立葉轉換電路 350 第二階段校正電路 356、372 已校正的同相成分正交成分訊 號鏈 360 0電路 55 201023543110, 128 114, 126 150, 400 152 154 162 , 172 164 166 Group in-phase quadrature gain correction unit in-phase quadrature phase correction unit group delay adjustment unit correction system correction mode device external correction device compensation parameter calculation unit correction signal string Generator Transmit Compensation Module Correction Signal Source Unit 54 174 201023543 250 RF Correction Reference Signal Source 252 Receiver Analog Circuit 254 First Stage Correction Circuit 256 RF Module 258, 260 Analog Digit Converter 262 Gain Correction Calculation Unit 264, 266, 270, 272 multiplier circuit φ 274, 276 adder 278, 280, 364 resampler 282 group delay calculation unit 290 digital in-phase component signal 292 digital quadrature component signal 294 analog in-phase component signal 296 analog quadrature component signal φ 300 first stage correction module 302 correction module 306 in-phase component signal 308 orthogonal component signal 310, 312, 370, 371 fast Fourier transform circuit 350 second phase correction circuit 356, 372 corrected in-phase component orthogonal component signal chain 360 0 circuit 55 201023543

366 第二階段群組延遲及相位計算 電路 368 訊號 500 時域相位及群組延遲校正系統 501 外接射頻訊號源 508 ' 510 交互關聯電路 512、514 累加器電路 516、518 對照表電路 520 估計參數電路 1000 射頻天線及分波器電路衰減模 型 1004 分波器電路衰減模型 1006 群組延遲延遲電路 1008 相位延遲電路 1010、1014 電路 1012 、 1016 混波器 1018 同相成分/正交成分時間延遲 差異電路 1020 同相成分增益偏移電路 1022 正交成分增益偏移電路 1024 類比數位轉換模組 1026 分波器同相/正交非線性校正 電路 56 201023543 1040 射頻電路 1042 射頻分波器電路 1056 串流校正電路 1058 相位更正電路 1060 群組更正電路 ❹ 57366 second stage group delay and phase calculation circuit 368 signal 500 time domain phase and group delay correction system 501 external RF signal source 508 ' 510 cross-correlation circuit 512, 514 accumulator circuit 516, 518 comparison table circuit 520 estimation parameter circuit 1000 RF antenna and demultiplexer circuit attenuation model 1004 Splitter circuit attenuation model 1006 Group delay delay circuit 1008 Phase delay circuit 1010, 1014 Circuit 1012, 1016 Mixer 1018 In-phase component / quadrature component time delay difference circuit 1020 In phase Component Gain Offset Circuit 1022 Quadrature Component Gain Shift Circuit 1024 Analog Digital Converter Module 1026 Splitter In-Phase/Orthogonal Nonlinearity Correction Circuit 56 201023543 1040 RF Circuit 1042 RF Splitter Circuit 1056 Stream Correction Circuit 1058 Phase Correction Circuit 1060 Group Correction Circuit ❹ 57

Claims (1)

201023543 七、申請專利範圍: 1. 一種用於一通用多輸入多輪出波束形成系統(Universal Multi-Input-Multi-OutputBeamforming System)之校正系統, 包含有: -第-校正電路,對應於-串流之同相(1叩hase)齡及正交 (Quadrature)成分,用來校正每一串流之同相成分及正^ ® 成分; -第二校正電路,對應於所有串流校正後之同相成分及正交成 分; 其中’該第-校正電路及該第二校正電路係用來在時域上執行 校正。 2. ❹ 3. 如請求項1所述之校正祕’其巾鮮—校正電路另包含有^ 個增益更正單元’每―增益更正單元用來接收—串流對,以及 更正與該串流對相關之一增益偏移。 如請求項2 之校正系統,射該第—校正f料包含有N 個相位更正早①,每-她更正單元雛於前㈣益更 元中一對紅增益紅單元,料補她,使得每—核之 同相成分及正交成分本質上正 J 收器通道之間之整體相位。並用來等化母一傳送器與接 58 201023543 4.如請求項3所述之校正系統,其中該N個相位更正單元係用來 根據一合適之寬頻帶參考訊號,平均所接收之同相成分及正交 成分之外積’以決定每—串流之同相成分及正交成分之間的相 對相位。 5. 如請求項4所述之校正系統,其中該N個增益更正單元另用來 透過在每一接枚路徑使用-個或多個正弦波參考訊號,以及測 量所接收訊號之間的相位,紋每_接收路徑之間的相對相 位。 6. 如凊求項3所述之校正系統,其中該第二校正電路另包含則固 延遲調整單元’純於該N個她更正單元,时產生則固 校正後之基頻訊號。 .2凊求項6所述之校正系統,其中該第二校正電路另用來使用 K速傅立葉轉換(FastF〇urierTransf〇rm,Fpp),以執行一 時域至頻域之轉換。 時 6所述之校正系統,其中該第二校正電路另用 域上執行群組延遲調整。 ^睛求項1所述之校正系統,錢峰接㈣複數個封包 成之一正交分頻多工(OrthogonalF: 所組 frequency Division 59 9. 201023543 Multiplexing,OFDM)訊號,以及確認所接收之訊號係為正交 分頻多工訊號,且被正確地接收。 10.如請求項1所述之校正系統,其另包含有一多重存取控制 (Multiple Access ControL· MAC)單元,用來透過該校正系統 確認使用者之身份。 八、圖式:201023543 VII. Patent application scope: 1. A calibration system for a Universal Multi-Input-Multi-Output Beamforming System, comprising: - a first-correction circuit corresponding to - string The in-phase (1叩hase) age and quadrature components are used to correct the in-phase component and the positive component of each stream; a second correction circuit corresponding to all the stream-corrected in-phase components and Orthogonal component; wherein 'the first correction circuit and the second correction circuit are used to perform correction in the time domain. 2. ❹ 3. The correction secret described in claim 1 'there is a correction correction circuit that includes ^ gain correction unit' per gain correction unit for receiving - streaming pairs, and correcting the pair with the stream A correlation gain offset. For example, in the correction system of claim 2, the first-correction f material contains N phase corrections as early as 1, and each-she corrects the unit in the first (four) benefiting element in a pair of red gain red units, which is to make up for her, so that each - The in-phase component of the core and the quadrature component are essentially the overall phase between the J-receiver channels. And a calibration system as claimed in claim 3, wherein the N phase correction units are used to average the received in-phase components and according to a suitable wideband reference signal. The orthogonal component is 'product' to determine the relative phase between the in-phase component and the quadrature component of each stream. 5. The calibration system of claim 4, wherein the N gain correction units are further configured to use one or more sinusoidal reference signals in each of the multiple paths, and to measure a phase between the received signals, The relative phase between the lines per _receiver path. 6. The calibration system of claim 3, wherein the second correction circuit further comprises a solid delay adjustment unit ' pure to the N her correction units, the base corrected signal is generated. The correction system of claim 6, wherein the second correction circuit is further configured to perform a time domain to frequency domain conversion using a K-speed Fourier transform (FastF〇urierTransf〇rm, Fpp). The calibration system of claim 6, wherein the second correction circuit additionally performs group delay adjustment on the domain. ^The correction system described in Item 1, Qian Feng (4) a plurality of packets into one of the orthogonal frequency division multiplexing (OrthogonalF: the group frequency frequency 59 9. 201023543 Multiplexing, OFDM) signal, and confirm the received signal It is an orthogonal frequency division multiplexing signal and is received correctly. 10. The calibration system of claim 1, further comprising a multiple access control (Multiple Access Contro L. MAC) unit for confirming the identity of the user through the calibration system. Eight, the pattern:
TW97148762A 2008-12-15 2008-12-15 Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers TWI382695B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97148762A TWI382695B (en) 2008-12-15 2008-12-15 Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97148762A TWI382695B (en) 2008-12-15 2008-12-15 Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers

Publications (2)

Publication Number Publication Date
TW201023543A true TW201023543A (en) 2010-06-16
TWI382695B TWI382695B (en) 2013-01-11

Family

ID=44833427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97148762A TWI382695B (en) 2008-12-15 2008-12-15 Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers

Country Status (1)

Country Link
TW (1) TWI382695B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979495B2 (en) 2015-06-25 2018-05-22 Industrial Technology Research Institute Apparatus, system and method for wireless batch calibration
TWI775667B (en) * 2021-11-04 2022-08-21 大陸商北京集創北方科技股份有限公司 Digital demodulation circuit, touch display device and information processing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355998B2 (en) * 2004-09-01 2008-04-08 Interdigital Technology Corporation Support for multiple access point switched beam antennas
US7522883B2 (en) * 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979495B2 (en) 2015-06-25 2018-05-22 Industrial Technology Research Institute Apparatus, system and method for wireless batch calibration
TWI775667B (en) * 2021-11-04 2022-08-21 大陸商北京集創北方科技股份有限公司 Digital demodulation circuit, touch display device and information processing device

Also Published As

Publication number Publication date
TWI382695B (en) 2013-01-11

Similar Documents

Publication Publication Date Title
US8559571B2 (en) Method and apparatus for beamforming of multi-input-multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) transceivers
US10141997B2 (en) Power amplifier adjustment for transmit beamforming in multi-antenna wireless systems
US7986755B2 (en) Method and apparatus for calibration for beamforming of multi-input-multi-output (MIMO) orthogonol frequency division multiplexing (OFDM) transceivers
TW564604B (en) Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
JP3631698B2 (en) OFDM signal transmission system, OFDM signal transmitter and OFDM signal receiver
US8064502B2 (en) Wireless communication apparatus, wireless communication method, and computer program
TWI273786B (en) IQ imbalance compensation
TWI431990B (en) Method and apparatus for implementing space time processing with unequal modulation and coding schemes
JP5475068B2 (en) Noise estimation for wireless communication
US7672410B2 (en) Diversity receiver
TWI358194B (en) I/q imbalance estimation and correction in a commu
TW586274B (en) Soft decision gain compensation for receive filter attenuation
US20110053646A1 (en) Scalable self-calibrating and configuring radio frequency head for a wireless communication system
US8462879B2 (en) Systems and methods for increasing communications bandwidth using non-orthogonal polarizations
KR20070107073A (en) Channel calibration for a time division duplexed communication system
TW200926637A (en) Calibration and beamforming in a wireless communication system
TW200525930A (en) Apparatus and method of multiple antenna receiver combining of high data rate wideband packetized wireless communication signals
JP2011509596A5 (en)
US8498669B2 (en) Antenna array calibration for wireless communication systems
TWI410096B (en) Quadrature imbalance estimation using unbiased training sequences
TW201023543A (en) Method and apparatus for calibration for beamforming of multi-input-multi-output orthogonal frequency division multiplexing transceivers
EP1875632A1 (en) Antenna array calibration for wireless communication systems
Chung et al. Prototype implementation of adaptive beamforming‐MIMO OFDMA system based on IEEE 802.16 e WMAN standard and its experimental results
RU2386223C2 (en) Calibration of antenna array for systems of wireless communication
US10009123B2 (en) Phase alignment among multiple transmitters

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees