201023501 uuu4-ua-U2〇 29990twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有種無刷激磁機’且特別是有關於 種無刷激磁機與其同步激磁方法。 、 【先前技術】 ^步馬達需利用激磁機來達到同步逮度。同步馬 ^曰將電祕換錢齡的同步電機。姆馬達的主 是-個感應馬達’而錢馬達的最高速度朗步速产了火 它還未進人同步速度的時候,稱為「感應馬連二 它進入穩定的同步速度的時候,才稱為 ,、百备 步馬達的「同步」是表示同步馬達與供 」。同 同步馬達供應功率給固定轉速的負载,主要二 動系統以保持在一定的速度。 要用於廠的驅 如果在不激磁的情況是永遠達不到同步速 二現達的同步激磁方式是以繁複的硬體線路來 j激磁的動作,但此作法需要使用相當多的電 =來偵測與判斷出激磁電流的頻率。此繁複 驗產“ r=::=缘 ::應兼顧經濟原則將製造成本降低,關於這 一-可解决,正是目前業界所要解決的課題。 【發明内容】 機具有微控 本發明提供—種無刷激磁機,此無刷激磁 201023501 υυυ4-υ»-υ20 29990twf.doc/n 制器,微控制器利用快逮傅利葉轉換(Fast F0urier Transform,FFT)將偵測信號作運算,並根據運算結果來 控制激磁磁場而決定是否使主體馬達進入同步速度。 本發明提供一種無刷激磁機之同步激磁方法’偵測流 經一電阻上的電流以獲得一偵測信號’其中此電阻耦接一 激磁線圈。接著依快速傅利葉轉換來計算此偵測信號,並 根據運算結果來控制激磁磁場,以決定是否使主體馬達進 入同步速度。 本發明提出一種無刷激磁機,此無刷激磁機包括電樞 電源、整流器、激磁線圈、微控制器電源、第一矽控整流 器、第二矽控整流器、電阻、電流偵測器、以及微控制器。 整流器用以將電樞電源轉換成直流電源。微控制器電源耦 接整流器’用以將整流器所輸出電源轉換成穩定的直流電 源。微控制器電源供電給微控制器來運作。第一矽控整流 器的陽極_整流器的第—輸出端。第—♦控整流器的陰 極,接激磁線圈的第—端。激磁線圈的第二端耦接整流器 參 ㈣了輸出端。電阻的第一端麵接激磁線圈的第一端。電 T的第—端峨電流偵測11的第—端。電流彳貞測器的第二 二矽控整流器的陽極。第二矽控整流器的陰極耦 ,盗的第二輸出端與激磁線圈的第二端。電流债測器 制^經電阻的電流而送出一债測信號。微控制器接收债 二二二1依了快速傅利葉轉換將债測信號做運算而獲得一 同’並判別此電流頻率是否低於進入同步速度的一 σ 、;ί門檻值來控制第一矽控整流器與第二矽控整流器 201023501 ϋυυ4-υ8-υ2〇 29990twf.doc/n 的接通或斷開狀態,其中,當微控制器斷開第一矽控整流 器並且接通第二矽控整流器時則使得激磁線圈不提供激磁 磁場’而當微控制器接通第一矽控整流器並且斷開第二石夕 控整流器時則使得激磁線圈提供激磁磁場來使主體馬達進 入同步速度。 在本發明之一實施例中,上述之無刷激磁機,其中微 控制器判別電流頻率低於同步頻率門檻值時’微控制器輪 φ 出邏輯高準位至第一矽控整流器的閘極,並且輸出邏輯低 準位至第二矽控整流器的閘極。 在本發明之一實施例中,上述之無刷激磁機,其中微 控制益判別電流頻率高於同步頻率門捏值時,微控制器輪 出邏輯低準位至第一矽控整流器的閘極’並且輸出邏輯^ 準位至第二矽控整流器的閘極。 在本發明之一實施例中,上述之無刷激磁機,其中同 步頻率門檻值為3赫茲(Hz)。 在本發明之一實施例中,上述之無刷激磁機,其中無 9 _磁機更包括一突波保護器,突波保護器輕接於整流器 的第一輸出端與第二輸出端之間。 ° 在本發明之一實施例中,上述之無刷激磁機,其中無 刷激磁機更包括-個二極體’此二極體的陽極搞接第二石; ^整流器的陰極,二極體的陰極耦接第二矽控整流器的陽 極〇 在本發明之一實施例中,上述之無刷激磁機,其中當 主體馬達進入同步速度後,電流_器持續偵測流經電二 5 201023501 UUU4-U6-U20 29990twf.doc/n ,,得麵號,並且微控制器依快速傅利苹轉換 零,若電流頻率大於零則斷開笛&二,半疋否大於 一^&各 斲開弟一矽控整流器並且接通第 :達::速Ϊ得激磁線圈不再提供激磁磁場而使主體 ❿ 本發明提出-種無刷激磁機之同步激磁方法,包括: ^則流經—電流,以獲得―_信號,其中電阻的 第接-激磁_;依—快速傅利葉轉換來計算偵測 4號’以獲仵-電'錢率;以及卿電流鮮是否低於進 入同^速度的同步頻率門植值,以控制—第控整流器 與rf 4控整流器的接通或斷開狀態,當斷開第一石夕控 正肌器並且接通第二②控整流科則使得激磁線圈不提供 激磁磁場,而當接通第—雜整流Ε並且斷開第二砍控整 流器時則使得激磁線圈提供激磁磁場來使主體馬達進入同 步速度,其中,第一矽控整流器的陰極耦接激磁線圈的第 一端,電_第—端’第二⑦控整流ϋ的陰極祕激磁線 圈的第二端,第二矽控整流器的陽極耦接電阻的第二端。 在本發明之一實施例中’上述之無刷激磁機之同步激 磁方法’其中判別電流頻率是否低於進入同步速度的同步 頻率門檻值的步驟,當判別電流頻率低於同步頻率門檻值 時’則輸出邏輯高準位至第一矽控整流器的閘極,並且輸 出邏輯低準位至第二矽控整流器的閘極。 在本發明之一實施例中,上述之無刷激磁機之同步激 磁方法’其中判別電流頻率是否低於進入同步速度的同步 6 20102350120 2999〇twf_ 頻率門檻值的步驟,當判別電流頻率高於同步頻率門樣值 時,則輸出邏輯低準位至第一矽控整流器的閘極,並且輪 出邏輯高準位至第二矽控整流器的閘極。 在本發明之一實施例中’上述之無刷激磁機之同步激 磁方法更包括輸出一指標信號,用以指示主體馬達是否進 入同步速度。201023501 uuu4-ua-U2〇 29990twf.doc/n VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a brushless exciter' and in particular to a brushless exciter and a synchronous excitation method therefor. [Prior Art] ^Step motor needs to use the exciter to achieve synchronous catch. Synchronous horses will change the electric secret to the synchronous motor of the age. The main motor of MMA is an induction motor, and the highest speed of the money motor is a fast-paced production. When it has not yet entered the synchronous speed, it is called "induction horse two. It is called when it enters a stable synchronous speed." The "synchronization" of the Hundreds of Step Motors means the synchronous motor and the supply. The same synchronous motor supplies power to a fixed speed load, primarily the secondary system to maintain a certain speed. If the drive is to be used in the factory, if it is not excited, it will never reach the synchronous speed. The synchronous excitation method is a complicated hardware circuit to excite the action. However, this method requires a considerable amount of electricity. The frequency of the excitation current is detected and determined. This complicated inspection “r=::=edge:: should take into account economic principles to reduce manufacturing costs, and this can be solved, which is the problem that the industry has to solve. [Inventive content] The machine has micro-controls provided by the present invention— A brushless excitation machine, this brushless excitation 201023501 υυυ4-υ»-υ20 29990twf.doc/n controller, the microcontroller uses the Fast F0urier Transform (FFT) to operate the detection signal, and according to the operation As a result, the excitation magnetic field is controlled to determine whether to cause the main motor to enter the synchronous speed. The present invention provides a synchronous excitation method for a brushless exciter 'detecting a current flowing through a resistor to obtain a detection signal', wherein the resistor is coupled to the resistor The excitation coil is then calculated according to the fast Fourier transform, and the excitation magnetic field is controlled according to the operation result to determine whether to make the main body motor enter the synchronous speed. The present invention provides a brushless exciter including the electric Pivot power supply, rectifier, excitation coil, microcontroller power supply, first controlled rectifier, second controlled rectifier, resistor, current detector, And a microcontroller. The rectifier is used to convert the armature power into a DC power source. The microcontroller power supply is coupled to the rectifier to convert the output power of the rectifier into a stable DC power supply. The microcontroller power supply is supplied to the microcontroller for operation. The first output terminal of the anode-rectifier of the first controlled rectifier. The cathode of the first-controlled rectifier is connected to the first end of the exciting coil. The second end of the exciting coil is coupled to the rectifier (4) of the output. One end is connected to the first end of the exciting coil. The first end of the electric T is the first end of the current detecting 11. The anode of the second two controlled rectifier of the current detector. The cathode coupling of the second controlled rectifier The second output end of the pirate and the second end of the excitation coil. The current debt detector generates a debt measurement signal by the current of the resistor. The microcontroller receives the debt 2222 according to the fast Fourier transform to measure the debt signal. Doing the operation and obtaining the same 'and determining whether the current frequency is lower than a σ value entering the synchronous speed; ί threshold value to control the first controlled rectifier and the second controlled rectifier 201023501 ϋυυ4-υ8-υ2〇299 The on or off state of 90twf.doc/n, wherein when the microcontroller turns off the first controlled rectifier and turns on the second controlled rectifier, the excitation coil does not provide an exciting magnetic field' while the microcontroller is connected Passing the first control rectifier and disconnecting the second rock rectifier causes the excitation coil to provide an excitation magnetic field to bring the main motor into a synchronous speed. In one embodiment of the invention, the above-described brushless exciter, wherein the micro control When the current frequency is lower than the synchronous frequency threshold, the microcontroller wheel φ outputs a logic high level to the gate of the first controlled rectifier, and outputs a logic low level to the gate of the second controlled rectifier. In an embodiment of the invention, in the above brushless exciter, wherein the micro control gain current frequency is higher than the synchronous frequency gate value, the microcontroller rotates the logic low level to the gate of the first controlled rectifier and The output logic is leveled to the gate of the second controlled rectifier. In one embodiment of the invention, the above-described brushless exciter has a synchronizing frequency threshold of 3 Hertz (Hz). In an embodiment of the invention, the above-mentioned brushless exciter, wherein the non-magnetic machine further comprises a surge protector, the surge protector is lightly connected between the first output end and the second output end of the rectifier . In an embodiment of the invention, the brushless exciter, wherein the brushless exciter further comprises a diode 'the anode of the diode is connected to the second stone; ^ the cathode of the rectifier, the diode The cathode is coupled to the anode of the second controlled rectifier. In an embodiment of the invention, the above-mentioned brushless exciter, wherein when the main body motor enters the synchronous speed, the current detector continuously detects the flow through the electricity 2 5 201023501 UUU4 -U6-U20 29990twf.doc/n ,, get the face number, and the microcontroller converts zero according to the fast Fouring, if the current frequency is greater than zero, then disconnect the flute & second, half or more than one ^ & A control rectifier is turned on and the first: the speed: the speed of the excitation coil no longer provides an excitation magnetic field to cause the main body ❿. The present invention proposes a synchronous excitation method for a brushless exciter, including: ^ then flows through the current to Obtain the _ signal, where the resistance of the first-excitation _; according to the - fast Fourier transform to calculate the detection of 'No. 4' to obtain the 仵-electric 'money rate; and whether the Qing current is lower than the synchronous frequency gate into the same ^ speed Planting value to control - controlled rectifier and rf 4 controlled rectifier Turning on or off state of the device, when the first stone control positive muscle device is turned off and the second 2 control rectifier is turned on, the excitation coil does not provide the excitation magnetic field, and when the first hybrid rectifier is turned on and disconnected When the second chopper is controlled, the excitation coil provides an excitation magnetic field to bring the main motor into a synchronous speed, wherein the cathode of the first controlled rectifier is coupled to the first end of the excitation coil, and the second 7-control rectification The second end of the second cathode-controlled rectifier is coupled to the second end of the resistor. In an embodiment of the present invention, the "synchronous excitation method of the above-described brushless exciter" wherein the step of determining whether the current frequency is lower than the synchronization frequency threshold value of the synchronization speed is determined when the current frequency is lower than the synchronization frequency threshold value. Then, the logic high level is output to the gate of the first controlled rectifier, and the logic low level is output to the gate of the second controlled rectifier. In an embodiment of the present invention, the synchronous excitation method of the brushless exciter described above, wherein the determination of whether the current frequency is lower than the synchronization 6 20102350120 2999 〇 twf_ frequency threshold value of the synchronization speed is determined when the current frequency is higher than the synchronization When the frequency gate is sampled, the logic low level is output to the gate of the first controlled rectifier, and the logic high level is turned to the gate of the second controlled rectifier. In an embodiment of the invention, the synchronous excitation method of the above-described brushless exciter further includes outputting an index signal for indicating whether the main body motor enters the synchronous speed.
在本發明之一實施例中,上述之無刷激磁機之同步數 磁方法更包括一非同步保護步驟,當主體馬達進入同步速 度後’持續偵測流經電阻的電流來獲得偵測信號,並依快 速傅利葉轉換5十异偵測彳§说來獲得電流頻率,進而判別電 流頻率是否大於零,若電流頻率大於零則斷開第一矽控整 裔並且接通第二石夕控整流器,使得激磁線圈不再提供 磁磁場而脫離同步速度。 在本發明之一實施例中,上述之無刷激磁機之同步激 磁方法,其中同步頻率門檻值為3赫茲。 在本發明之一實施例中,上述之無刷激磁機之同步激 磁方法,其中無刷激磁機包括一突波保護器,突波保護器 麵接於第;^控的陽極與第二%控整流器的陰極之 間。 在本發明之一實施例中, 磁方法,其中無刷激磁機包括 搞接第二矽控整流器的陰極, 整流盗的陽極。 上述之無刷激磁機之同步激 一個二極體,二極體的陽極 二極體的陰極_接第二石夕控 本發明實齡!之無概磁機與制步激磁方法,運用 7 201023501 29990twf.doc/n 微=制ϋ結合快速制$轉換的演算機制,㈣算出激磁 電抓的頻率’進^控制激磁磁場來使主體馬達進入同步速 度。因=本發明實施例可以省去習知技術中的許多電子元 件使得無刷激磁機的激磁電路較為精簡、並能降低製造 成本® 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 現將參見附圖更全面地描述本發明之實施例,在附圖 中,不了本發明之實施例。然而本發明能夠以許多不同形 式貫施且不應被理解爲侷限於本案所述的實施例。而是, 提供此等實施例僅是為了使本揭露内容更透徹且完整並且 向本領域热知此項技術者全面地傳達本發明之範嘴。 應該理解’當一元件被稱為“位於”、“連接於,,或“麵接 於”另一元件上時,它可以直接位於、連接於或者耦接於直 ^ 侃件上或者可以存在中間元件。相反,當-元件被稱為 直接位於,,、“直接連接於,,或“直接麵接於,,另一元件時, 不存在中間元件。 圖1繪不依據本發明實施例的無刷激磁機的電路方塊 圖。請參照圖1,此無刷激磁機100可以包含電樞電源1〇、 整流器20、激磁電路30、以及激磁線圈4〇。激磁電路如 可以包含微控制器電源32、矽控整流器(siHc〇n⑺付印丨丨^ rectifle) SOU、石夕控整流器SCR2、電阻FDR、以及偵測 ❹ ❹ 201023501 υυυΗ-υο-uiO 29990twf.doc/n 暨控制電路34。偵測暨控制電路34可以包含電流侦測器 38 及被控制盗(Micro-controller Unit,MCU) 36。 整流器20用以將電樞電源1〇的三相交流電整流成直 流電。微控制器電源32耦接整流器2〇,用以將整流器2〇 所整流後的直流電轉換成穩定的直流電源,再將此穩定的 直流電源提供給微控㈣36運_所需. 謂的陽_接整流器20的輸出端 ; 陰極祕激磁_ 4G㈣—㈣。激磁線圈仙 一鈿B2輕接整流器的輸出端A2。電阻的第一 2接激磁線圈40的第-端B1。電阻舰的第二端輛接 ❹⑹測器38㈣一端。電流偵測器%㈣二端 =流器SCR2的陽極。⑪控整流器SCR2的陰極搞接整 流器20的輸出端A2與激磁線圈4〇的第二端扣 偵測流經電阻FDR的電流而送出一侧信號. :侧盜36接收偵測信號If,依快速傅利葉轉換(㈣ F:erTransfGrm’FFT)的演算法將侧信號的故運算, 電流頻率(未綠示),接著微控制器36判別此電 =頻率疋純錢人时速度的—同步辭門檻值。接 的接通(或稱為導通,t聰。η)或斷開(to off)狀態。 整流器2G可以運用6個二極體⑴,來组成一個三 相,波整流ϋ。同步頻率門檻值的設計可以為3赫兹 Ζ),或是設計成2赫茲。微控制器36根據卯丁演算 9 201023501 wv-t-uu-«j20 29990twf.doc/n 法所計算出的電流頻率,接著判斷電流頻率是否低於同步 頻率門捏值來進一步控制矽控整流器SCR1、SCR2的作動。 當電流頻率高於同步頻率門檻值時,微控制器36輸出 邏輯低準位至矽控整流器SCR1的閘極,並且輸出邏輯高 準位至矽控整流器SCR2的閘極,因此能夠斷開矽控整流 器SCR1並且接通矽控整流器SCR2,而使得電樞電源1〇 不會供電給馬達的激磁線圈4〇做激磁。 m 實際啟動的過程中,激磁線圈4〇不應開路,因為這將 在激磁線圈4〇的兩端m、產生很高的電壓。 無刷激磁機100的主體架構是一個感應馬達,當它還未進 入同步速度的時候,還只是一個感應馬達,只有當它進入 同ν速度的%候,才成為同步馬達。雖然激磁線圈切離 直机電源,但激磁線圈4〇仍會被馬達主體的電氣所影響, 也就是感應馬達旋轉時會產生一個感應電場。因此前述的 電阻FDR、電流侧器38、以及石夕控整流器聊2可以構 & —放電路徑。級彳讀激磁_ 4G形成短路,並將 、’文磁線圈4G切離直流電源,可以避免激磁線圈⑼的損害。 。。電流债測器38可以谓測出放電路徑上的電流。微控制 益+36^依快速傅利葉轉換的演算將偵測信號If做運算,當 $计真出的電流頻率低於同步解門檻值時,微控制器% =出邏輯高準位至雜整流器SCR1的閘極,並且輸出邏 位鱗控整流器SCR2的閘極,因此能夠接通石夕控 SCR1並且斷開石夕控整流器SCR2,激磁線圈4〇盥 電接通形成起動的瞒,使紐磁線圈40提供激磁磁 201023501 v/w-t-v〇-w20 29990twf.doc/n 場來使主體馬達進入同步速度。 無刷激磁機100還可以包含有突波保護器ZR1,用以 對付突波的電路保護。可以將突波保護器ZR1耦接於整流 器20的第一輸出端A1與第二輸出端A2之間。 在另一實施例中,無刷激磁機100還可以包含二極體 07 ’此二極體D7的陽極搞接石夕控整流器SCR2的陰極, 一極體D7的陰極輛接珍控整流盗SCR2的陽極。當主體 φ 馬達進入同步速度後,可能會因某些外在因素(例如負載 太重)而失步。為了避免失步情況而可以如下設置一保護 機制。當主體馬達進入同步速度後,電流偵測器38持續偵 測流經電阻FDR的電流來獲得偵測信號If,並且微控制器 36依快速傅利葉轉換計算偵測信號If來獲得電流頻率,^ 別電流頻率是否大於零。若電流頻率大於零為非同步,則 斷開矽控整流器SCR1並且接通矽控整流器SCR2,使得激 磁線圈40不再提供激磁磁場而使主體馬達脫離同步速 度。當微控制器36判斷出非同步時,還可以進一步發出用 ❹轉告的㈣訊號,來^知I魏的㈣者為非同步狀態。 習知技術是以硬體電路去處理與判斷類比信號。本發 明實施例的微控制器36具有演算、判斷的機制,此演算、 判斷的機制可以運肋财絲實現。微控織%内 利葉轉換的演算法,可以節省過去繁複的硬體電路 的,本,使得微控制器36的靈活度报高。因為微控制器 声^用Ϊ是數位資料’ #微控繼36執辟體的運算速 度夠快,更可以在微控制器36内安置傳統控制理論中的控 11 201023501 一 20 29990twf.doc/n 制法則(比如pid控制)’使得整個系統更為安全、更穩 定。In an embodiment of the present invention, the synchronous digital magnetic method of the brushless exciter further includes an asynchronous protection step of continuously detecting a current flowing through the resistor to obtain a detection signal when the main body motor enters the synchronous speed. And according to the fast Fourier transform 5 tens of different detection 彳 § to obtain the current frequency, and then determine whether the current frequency is greater than zero, if the current frequency is greater than zero, then disconnect the first control and complete the second stone control rectifier, This causes the exciting coil to no longer provide a magnetic field away from the synchronous speed. In an embodiment of the invention, the synchronous magnetization method of the above-described brushless exciter, wherein the synchronous frequency threshold is 3 Hz. In an embodiment of the present invention, the synchronous excitation method of the brushless exciter, wherein the brushless exciter comprises a surge protector, the surge protector is connected to the first; the controlled anode and the second % control Between the cathodes of the rectifier. In an embodiment of the invention, a magnetic method, wherein the brushless exciter comprises a cathode connected to the second controlled rectifier, and the anode of the thief is rectified. The above-mentioned brushless exciter synchronizes a diode, the cathode of the anode of the diode is connected to the second magnet, and the second magnet is controlled by the present invention. The non-magnetic method and the step-exciting method are applied, 7 201023501 29990twf.doc/n micro=Calculation combined with the calculation mechanism of the rapid conversion $ conversion, (4) Calculate the frequency of the excitation of the excitation electric current to control the excitation magnetic field to make the main motor enter the synchronous speed. Because the embodiment of the present invention can eliminate many electronic components in the prior art, the excitation circuit of the brushless exciter is relatively simple, and the manufacturing cost can be reduced. In order to make the above features and advantages of the present invention more obvious, the following The embodiments are described in detail with reference to the accompanying drawings. [Embodiment] Embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which FIG. However, the invention can be embodied in many different forms and should not be construed as limited to the embodiments described herein. Rather, these embodiments are provided only to provide a thorough and complete disclosure of the present disclosure and the disclosure of the present invention. It should be understood that when an element is referred to as being "located," "connected to, or "connected to" another element, it can be In contrast, when an element is referred to as being "directly connected to", "directly connected to," or "directly connected to" another element, there is no intermediate element. Figure 1 depicts none in accordance with an embodiment of the present invention. A circuit block diagram of a brush exciter. Referring to Figure 1, the brushless exciter 100 can include an armature power supply, a rectifier 20, an excitation circuit 30, and an excitation coil 4. The excitation circuit can include a microcontroller power supply 32, for example. , controllable rectifier (siHc〇n (7) printing 丨丨 ^ rectifle) SOU, Shi Xi control rectifier SCR2, resistance FDR, and detection ❹ ❹ 201023501 υυυΗ-υο-uiO 29990twf.doc / n and control circuit 34. Detection and control The circuit 34 can include a current detector 38 and a Micro-controller Unit (MCU) 36. The rectifier 20 is configured to rectify the three-phase alternating current of the armature power supply 1〇 into a direct current. The microcontroller power supply 32 is coupled to the rectifier 2 For converting the DC power rectified by the rectifier 2 成 into a stable DC power supply, and then supplying the stable DC power to the micro-control (4) 36 _ required. The output of the positive-connected rectifier 20; _ 4G (4) - (4). The excitation coil is connected to the output terminal A2 of the rectifier. The first 2 of the resistor is connected to the first end B1 of the excitation coil 40. The second end of the resistance ship is connected to the end of the detector (6) 38 (4). Current detection The % (four) two-end = the anode of the current device SCR2. The cathode of the 11-controlled rectifier SCR2 is connected to the output terminal A2 of the rectifier 20 and the second end of the excitation coil 4 is detected by the current flowing through the resistor FDR to send a signal on one side. The side thief 36 receives the detection signal If, according to the algorithm of the fast Fourier transform ((4) F: erTransfGrm' FFT), the side signal is calculated, the current frequency (not green), and then the microcontroller 36 discriminates the power = frequency The speed of the pure money person - synchronous slogan threshold. Connected (or called conduction, t Cong. η) or off (to off) state. Rectifier 2G can use 6 diodes (1) to form A three-phase, wave rectification ϋ. Synchronous frequency threshold setting It can be 3 Hz or 2 Hz. The microcontroller 36 calculates the current frequency according to the Kenting calculation 9 201023501 wv-t-uu-«j20 29990twf.doc/n method, and then determines whether the current frequency is Lower than the synchronous frequency gate pinch value to further control the operation of the step-controlled rectifiers SCR1, SCR2. When the current frequency is higher than the synchronous frequency threshold, the microcontroller 36 outputs a logic low level to the gate of the step-controlled rectifier SCR1, and outputs The logic high level is connected to the gate of the rectifier rectifier SCR2, so that the step-controlled rectifier SCR1 can be turned off and the step-controlled rectifier SCR2 can be turned on, so that the armature power supply 1〇 does not supply power to the excitation coil 4 of the motor for excitation. m During the actual start-up process, the excitation coil 4〇 should not be opened because this will generate a high voltage at both ends of the excitation coil 4〇. The main structure of the brushless exciter 100 is an induction motor. When it has not entered the synchronous speed, it is only an induction motor, and it becomes a synchronous motor only when it enters the same ν speed. Although the excitation coil is cut away from the straight-line power supply, the excitation coil 4〇 is still affected by the electrical power of the motor body, that is, an induced electric field is generated when the induction motor rotates. Therefore, the aforementioned resistor FDR, current side device 38, and stone-controlled rectifier can construct a discharge path. The level 彳 excitation _ 4G forms a short circuit, and the magnetic coil 4G is cut away from the DC power supply to avoid damage to the excitation coil (9). . . The current debt detector 38 can be said to measure the current on the discharge path. Micro-control benefit +36^ According to the calculation of fast Fourier transform, the detection signal If is calculated. When the current frequency of the meter is lower than the synchronous solution threshold, the microcontroller % = out of the logic high level to the hybrid rectifier SCR1 The gate is connected, and the gate of the logic scale-controlled rectifier SCR2 is output, so that the Shixi control SCR1 can be turned on and the Shixi-controlled rectifier SCR2 is turned off, and the exciting coil 4 is electrically turned on to form a starting turn, so that the magnetic coil is turned on. 40 provides the excitation magnetic 201023501 v/wtv〇-w20 29990twf.doc/n field to bring the main motor into the synchronous speed. The brushless exciter 100 may also include a surge protector ZR1 for circuit protection against surges. The surge protector ZR1 can be coupled between the first output terminal A1 and the second output terminal A2 of the rectifier 20. In another embodiment, the brushless exciter 100 may further include a diode 07 'the anode of the diode D7 is connected to the cathode of the SQ2 rectifier, and the cathode of the pole D7 is connected to the SCR2. The anode. When the main body φ motor enters the synchronous speed, it may be out of step due to some external factors (such as the load is too heavy). To avoid out-of-synchronization conditions, a protection mechanism can be set as follows. After the main body motor enters the synchronous speed, the current detector 38 continuously detects the current flowing through the resistor FDR to obtain the detection signal If, and the microcontroller 36 calculates the detection signal If by the fast Fourier transform to obtain the current frequency. Whether the current frequency is greater than zero. If the current frequency is greater than zero for non-synchronization, the step-controlled rectifier SCR1 is turned off and the step-controlled rectifier SCR2 is turned on, so that the exciting coil 40 no longer supplies the exciting magnetic field to disengage the main body motor from the synchronous speed. When the microcontroller 36 determines that the synchronization is not synchronized, the (four) signal transmitted by the ❹ can be further sent to know that the (four) of the Wei is in an asynchronous state. Conventional techniques use hardware circuits to process and judge analog signals. The microcontroller 36 of the embodiment of the present invention has a mechanism for calculating and judging, and the mechanism for calculating and judging can be realized by the rib. The algorithm of micro-control woven inner-leaf conversion can save the complicated hardware circuit in the past, and the flexibility of the microcontroller 36 is high. Because the microcontroller sound is used for digital data' #微控, the operation speed of the 36 implementation is fast enough, and the control in the traditional control theory can be placed in the microcontroller 36. 201023501 - 20 29990twf.doc/n The rules of the law (such as pid control) make the whole system safer and more stable.
圖2繪示依據本發明實施例的無概磁機同步激磁方 法的流程圖。請圖1和圖2 一起參照。首先,步驟㈣, 债測流經-電阻服的電流,峨得„_錢if,其中 此電阻FDR的第-輪接—激磁線圈4()。接著進行步驟 S220 ’依-快速傅利葉轉換(FFT)來計算债測信號,以 獲得-電流鮮。接著進行步驟咖,朗電流頻率是否 低於進人同步速度的同步醉n檻值,以控财控整流哭 SCR1與雜整流器SCR2的接通或斷開狀態 整流器SCR1並且接通雜整流器SCR2 _使得激磁線 圈40不提供激磁磁場’而當接通矽控整流器scri並且斷 開矽控整流器SCR2時則使得激磁線圈4〇提供激磁磁場來 使主體馬達進入同步速度。其中,矽控整流器scri的陰 極耦接激磁線圈40的第一端B1與電阻FDR的第一端, 矽控整流器SCR2的陰極耦接激磁線圈4〇的第二端B2, 石夕控整流器SCR2的陽極通過電流偵測器38而耦接電阻 FDR的第二端。 其中判別電流頻率是否低於進入同步速度的同步頻率 門檻值的步驟S230:當判別電流頻率低於同步頻率門檻值 時,則輸出邏輯高準位至矽控整流器SCR1的閘極,並且 輪出邏輯低準位至矽控整流器SCR2的閘極;當判別電流 $率高於同步頻率門檻值(例如同步頻率門檻值為3赫茲) 吩,則輸出邏輯低準位至矽控整流器SCR1的閘椏,並且 12 201023501 Ί —._ _ J!Z〇 29990twf.doc/n 輸出邏輯高準位至矽控整流器SCR2的閘極。因此,β、 控制矽控整流器SCR1與矽控整流器SCR2的接通戋 狀態。 當控制矽控整流器SCR1與矽控整流器SCR2的接甬 或斷開狀態之後,還可以進一步輸出一指標信號,用來= 示主體馬達是否進入同步速度。 曰 當主體馬達進入同步速度後,還可以進行非同步保蠖 步驟。此步驟以持續偵測流經電阻FDR的電流來獲&偵嘣 ,If,並依快速傅利葉轉換(Μ)計算仙彳信號來獲 得電流頻率,進而判別電流頻率是否大於零,若電流頻^ 大於零則表示同步馬達轉轴上的轉矩超過最大轉矩(戋稱 拖出轉矩,pullout torque) ’馬達將失去同步,因此斷開 矽控整流器SCR1並且接通矽控整流器SCR2,使得激磁線 圈40不再提供激磁磁場而脫離同步速度。 ' 圖3繪示依據本發明另一實施例的無刷激磁機同步激 磁方法的流程圖。請圖1和圖3 —起參照。圖〗,有矽控 • 整流器SCIU、SCR2 ’石夕控整流器SCR1與SCR2的接通 (^通)或斷開由控制彳§號G1與G2來做控制。;g夕控整流 斋SCR1、SCR2的作動控制如下。開始時,前面整流器 内的6個二極體D1〜D6將三相交流電轉成直流電。步驟 S310 ’在矽控整流器SCR1未接通時,電樞電源1〇不會供 電給馬達的激磁線圈40做激磁,此時控制信號gi設定為 邏輯低準位(Low),因此矽控整流器SCR1不接通。需 主意的是將控制信號G2設為邏輯高準位(High),使矽 13 201023501 υυυπ-υ〇-υ20 29990twf.doc/n 控整流器SCR2接通。當接通石夕控整流器時的電壓趨近於 0伏’而狀態信號ία、K2的電壓變化根據⑦控整流器時 的電壓β的Μ化,可以進-步絲判斷出⑪控整流器SCR卜 SCR2是否真的為接通的狀態。例如石夕控整流器scri接通 時狀態信號κι的電壓趨近於〇伏,或者雜整流器scR2 接通時狀態信號K2的電壓趨近於〇伏。在矽控整流器 SCR1不接通時,設定一指標信號(办加―此⑹,將指標 信號設定為0 (Sync—State = 〇),用以指示主體馬達尚未 進入同步速度。 步驟S320,微控制器32内可以具有類比數位轉換器 (Analog to Digital Converter ’ ADC),ADC 的取樣數可 以為64。電流偵測器38所輸出的偵測信號If經ADC轉換 為數位資料。接著步驟S33〇,微控制器32依一快速傅利 葉轉換將偵測信號的數位資料做運算,而計算出電流頻率 (If—Freq)。接著步驟S340 ’依據電流頻率(If_Freq)來 判斷是否該切入同步速度。判別電流頻率(If_Freq)是否 ® 低於進入同步速度的一同步頻率門檻值(Freq^th)。若判 斷為「是」則進入步驟S350,若判斷為「否」則回到步驟 S320。 步驟S350,控制信號G1設定為邏輯高準位(High), 使矽控整流器SCR1接通。將控制信號G2設為邏輯低準 位(Low) ’使矽控整流器SCR2不接通。因此電柩電源 10會供電給馬達的激磁線圈4〇做激磁。因此可以將指標 信號設定為1 (Sync_State= 1),用以指示主體馬達進入 14 201023501 20 29990twf.doc/i 同步速度。 接著步驟S360至步驟S38〇為主體馬達進入同步速度 後的一個保護機制。步驟S36〇,當主體焉達進入同步速度 後’電流偵測器38持續偵測流經電阻fdr的電流來獲得 偵^凡號If’並且微控制器%依快速傅利葉轉換計算债測 信號if來獲得電流頻率。接著步绳S37g,判別電流頻率是 否大於零。#電流頻率大於零為非同步則進入下一步驟 S380,否則回到步驟S36〇。 藝步驟S380,控制信號〇1設定為邏輯低準位(L〇w), 使石夕控整流H SCR1不接通。將㈣信號G2設為邏輯高 ,位(High) ’使石夕控整流器SCR2接通。因此將放電路 徑接通’激磁路徑斷開。接著電樞電源1〇不再供電給激磁 線圈40做激磁。此時將指標信號設定為〇⑼加—s她= 〇)。§微控制盗36判斷出此非同步情形時,可以進一步 發出用來警告的指示訊號’來告知此系統的使用者:主體 馬達脫離同步速度,進入非同步狀態。後續的使用者從指 ❿ 標信號得知系統已經非同步,可以決定是否重新開機。或 者以自動化方式,使系統直接重新開機。 綜上所述,本發明實施例之無刷激磁機與其同步激磁 方法’至少有如下的優點: 1·運用微控制器並結合快速傅利葉轉換的演算機 制’以_體方式計算出激磁電流的頻率,進而控制 激磁磁場來使主體馬達進入同步速度; 2.節省習知用硬體方式來判斷激磁頻率的許多電子 15 201023501 v/wV~r v20 29990twf.doc/n2 is a flow chart showing a method of synchronous excitation of a non-magnetic machine according to an embodiment of the invention. Please refer to Figure 1 and Figure 2 together. First, in step (4), the current flowing through the resistance-resistance device is obtained by „_钱if, where the first-wheel of the resistor FDR is connected to the excitation coil 4(). Then, step S220 is performed, and the fast Fourier transform (FFT) is performed. ) to calculate the debt measurement signal to obtain - current fresh. Then proceed to the step coffee, whether the current frequency is lower than the synchronization speed of the incoming synchronous speed, to control the financial control rectification crying SCR1 and the hybrid rectifier SCR2 or Disconnecting the state rectifier SCR1 and turning on the hybrid rectifier SCR2 _ such that the excitation coil 40 does not provide the excitation magnetic field'. When the pilot rectifier scri is turned on and the pilot rectifier SCR2 is turned off, the excitation coil 4 〇 is supplied with an excitation magnetic field to cause the main body motor Entering the synchronous speed, wherein the cathode of the controlled rectifier scri is coupled to the first end B1 of the exciting coil 40 and the first end of the resistor FDR, and the cathode of the controlled rectifier SCR2 is coupled to the second end B2 of the exciting coil 4〇, Shi Xi The anode of the control rectifier SCR2 is coupled to the second end of the resistor FDR through the current detector 38. The step S230 of determining whether the current frequency is lower than the synchronization frequency threshold value of entering the synchronous speed: when determining the current frequency When the rate is lower than the synchronous frequency threshold, the logic high level is output to the gate of the step-controlled rectifier SCR1, and the logic low level is turned to the gate of the step-controlled rectifier SCR2; when the current rate is higher than the synchronous frequency threshold The value (for example, the synchronous frequency threshold is 3 Hz), the logic low level is output to the gate of the controlled rectifier SCR1, and 12 201023501 Ί —._ _ J!Z〇29990twf.doc/n output logic high level To the gate of the rectifier rectifier SCR2. Therefore, β, control the rectifier rectifier SCR1 and the rectifier rectifier SCR2 in the on state. After controlling the switching rectifier SCR1 and the rectifier rectifier SCR2 connected or disconnected state, An indicator signal can be further outputted to indicate whether the main motor has entered the synchronous speed. 曰 When the main motor enters the synchronous speed, an asynchronous protection step can also be performed. This step is to continuously detect the current flowing through the resistor FDR. & Detect, If, and calculate the current frequency according to the fast Fourier transform (Μ) to determine the current frequency, and then determine whether the current frequency is greater than zero. If the current frequency is greater than zero, it means synchronous horse. The torque on the shaft exceeds the maximum torque (戋 拖 pullout torque, pullout torque) 'The motor will lose synchronization, so the step-up rectifier SCR1 is turned off and the step-controlled rectifier SCR2 is turned on, so that the excitation coil 40 no longer provides excitation. The magnetic field is separated from the synchronous speed. Figure 3 is a flow chart of a method for synchronous excitation of a brushless exciter according to another embodiment of the present invention. Please refer to Fig. 1 and Fig. 3 for reference. Fig. 1 has a control and rectifier SCIU. SCR2 'Shi Xi control rectifier SCR1 and SCR2 are connected (^通) or disconnected by control 彳§ G1 and G2 for control. ;g Xi control rectification ZS1, SCR2 actuation control is as follows. Initially, the six diodes D1 to D6 in the front rectifier convert the three-phase alternating current into direct current. Step S310 'When the controlled rectifier SCR1 is not turned on, the armature power supply 1〇 does not supply power to the excitation coil 40 of the motor for excitation. At this time, the control signal gi is set to a logic low level (Low), so the rectifier rectifier SCR1 is controlled. Not connected. It is desirable to set the control signal G2 to a logic high level (High) so that 矽 13 201023501 υυυπ-υ〇-υ20 29990twf.doc/n controlled rectifier SCR2 is turned on. When the voltage of the state-controlled rectifier is turned on, the voltage of the state signal ία, K2 changes according to the voltage β of the 7-control rectifier, and the 11-controlled rectifier SCR SCR2 can be determined by the step-by-step wire. Is it really the state of being on? For example, when the stone-controlled rectifier scri is turned on, the voltage of the state signal κι approaches the stagnation, or the voltage of the state signal K2 approaches the stagnation when the hybrid rectifier scR2 is turned on. When the voltage controlled rectifier SCR1 is not turned on, an index signal is set (add this (6), and the index signal is set to 0 (Sync_State = 〇) to indicate that the main motor has not entered the synchronous speed. Step S320, micro control The device 32 can have an analog to digital converter (ADC), and the number of samples of the ADC can be 64. The detection signal If output by the current detector 38 is converted into digital data by the ADC. Then, step S33, The microcontroller 32 calculates the current frequency (If-Freq) by calculating the digital data of the detection signal according to a fast Fourier transform. Then, step S340' determines whether the synchronous speed is cut according to the current frequency (If_Freq). Whether the frequency (If_Freq) is lower than a synchronization frequency threshold value (Freq^th) entering the synchronization speed. If the determination is YES, the process proceeds to step S350, and if the determination is NO, the process returns to step S320. Step S350, control The signal G1 is set to a logic high level (High), and the step-up rectifier SCR1 is turned on. The control signal G2 is set to a logic low level (Low) to make the step-controlled rectifier SCR2 not turned on. The power supply 10 supplies power to the excitation coil 4 of the motor for excitation. Therefore, the index signal can be set to 1 (Sync_State = 1) to indicate that the main motor enters the synchronization speed of 14 201023501 20 29990twf.doc/i. Then step S360 Go to step S38〇 as a protection mechanism after the main motor enters the synchronous speed. Step S36〇, after the main body reaches the synchronous speed, the current detector 38 continuously detects the current flowing through the resistor fdr to obtain the detective number If 'And the microcontroller % calculates the current frequency according to the fast Fourier transform calculation debt signal if. Then the step line S37g, determines whether the current frequency is greater than zero. # Current frequency greater than zero is asynchronous, then proceeds to the next step S380, otherwise returns Step S36: In step S380, the control signal 〇1 is set to a logic low level (L〇w), so that the stone control rectifier H SCR1 is not turned on. The (four) signal G2 is set to logic high, and the bit (High) is made. The Shixi control rectifier SCR2 is turned on. Therefore, the discharge path is turned on, and the excitation path is disconnected. Then the armature power supply 1〇 no longer supplies power to the excitation coil 40 for excitation. At this time, the index signal is set to 〇(9). Plus—s she = 〇). § When the micro-control thief 36 determines the non-synchronization situation, the indication signal for warning can be further issued to inform the user of the system that the main motor is out of the synchronous speed and enters the asynchronous state. Subsequent users know from the index signal that the system is out of sync and can decide whether to reboot. Or, in an automated manner, the system can be rebooted directly. In summary, the brushless exciter and its synchronous excitation method of the embodiment of the present invention have at least the following advantages: 1. Using a microcontroller and combining the calculation mechanism of fast Fourier transform to calculate the frequency of the excitation current in a _ body manner And controlling the excitation magnetic field to bring the main motor into the synchronous speed; 2. saving many electrons that are conventionally used to determine the excitation frequency in a hard manner 15 201023501 v/wV~r v20 29990twf.doc/n
元件,使得無刷激磁機的激磁電路較為精 降低製造成本; ' 3.具ί微控制器的無刷激磁機,因為微控制器内具有 决异與判斷機制,錢雜電機正常運轉而可 糸統更為安全、更穩定。The components make the excitation circuit of the brushless exciter more precise to reduce the manufacturing cost; ' 3. The brushless exciter with the microcontroller, because the microcontroller has a decision and judgment mechanism, the hybrid motor can run normally. The system is safer and more stable.
雖財發明已以實闕揭露如上,然其並_以 2明’任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範_,#可作些許之更動與潤飾,故本 發明之保護_當視後附之申料利範_界定者為準。 【圖式簡單說明】 圖1緣示依據本發明實施例的無刷激磁機的電路方塊 圖。 、圖2繪示依據本發明實施例的無刷激磁機同步激磁方 法的流程圖。 圖3繪示依據本發明另一實施例的無刷激磁機同步激 磁方法的流程圖。 【主要元件符號說明】 10 電樞電源 20 整流器 30 激磁電路 32 微控制器電源 34 偵測暨控制電路 16 29990twf.doc/n 201023501Although the invention has been disclosed above in detail, it can be modified and retouched without departing from the spirit and scope of the present invention. The protection _ is subject to the definition of the attached product _ _ defined. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the circuit of a brushless exciter according to an embodiment of the present invention. FIG. 2 is a flow chart showing a method of synchronous excitation of a brushless exciter according to an embodiment of the invention. 3 is a flow chart showing a method of synchronous excitation of a brushless exciter according to another embodiment of the present invention. [Main component symbol description] 10 Armature power supply 20 Rectifier 30 Excitation circuit 32 Microcontroller power supply 34 Detection and control circuit 16 29990twf.doc/n 201023501
一…JO 36 :微控制器 40,激磁線圈 100 :無刷激磁機 Al、A2 :整流器的輸出端 B1 :激磁線圈的第一端 B2 :激磁線圈的第二端 D1〜D0 :整流器内的二極體 D7 :二極體 • G卜G2:控制信號One...JO 36: Microcontroller 40, excitation coil 100: Brushless exciter Al, A2: Output terminal B1 of the rectifier: First end B2 of the excitation coil: Second end D1 to D0 of the excitation coil: Two in the rectifier Polar body D7: diode • G Bu G2: control signal
If :偵測信號 ία、K2 :狀態信號 FDR :電阻 SCR1、SCR2 :矽控整流器 S210〜S230 :流程圖的步驟 S310〜S380 :流程圖的步驟 ZR1 :突波保護器If : Detection signal ία, K2 : Status signal FDR : Resistance SCR1, SCR2 : Voltage controlled rectifier S210 ~ S230 : Flow chart steps S310 ~ S380 : Flow chart steps ZR1 : Surge protector
1717