TW201022625A - Magnetic position sensor by using digital and analogical sensing readers - Google Patents

Magnetic position sensor by using digital and analogical sensing readers Download PDF

Info

Publication number
TW201022625A
TW201022625A TW97146708A TW97146708A TW201022625A TW 201022625 A TW201022625 A TW 201022625A TW 97146708 A TW97146708 A TW 97146708A TW 97146708 A TW97146708 A TW 97146708A TW 201022625 A TW201022625 A TW 201022625A
Authority
TW
Taiwan
Prior art keywords
magnetic
digital
sensing
sensor
analog
Prior art date
Application number
TW97146708A
Other languages
Chinese (zh)
Other versions
TWI388800B (en
Inventor
Chih-Mao Shiao
Original Assignee
Hiwin Mikrosystem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiwin Mikrosystem Corp filed Critical Hiwin Mikrosystem Corp
Priority to TW97146708A priority Critical patent/TWI388800B/en
Publication of TW201022625A publication Critical patent/TW201022625A/en
Application granted granted Critical
Publication of TWI388800B publication Critical patent/TWI388800B/en

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

A magnetic position sensor by using digital and analogical sensing readers which utilizes a plurality of magnets and digital sensing readers to sense the positions. One of the magnets is provided with an analogical sensing reader. After processing the signals of the analogical sensing reader, the magnets can cooperate with the signals of the digital sensing readers to sense the positions, so as to enable the position sensor to have a high environment-adapting ability and a high resolution.

Description

201022625 六、發明說明: 【發明所屬之技術領域】 本發明與應用磁性記錄載體的程序控制系統有關,特別 是指一種併用數位與類比感應的磁性式位置感測裝置。 【先前技術】 目前用來測量如馬達或線性馬達等旋轉或直線位移裝 置的位移距離或位置的感測裝置,大多數分為磁性式與光學 # 式兩種,其中光學式的精度高於磁性式,因此追求高精密度 的產業便採用光學式,而一般光學式的感測裝置如第1圖所 示,是由一個光學尺A配合一個感測器B所構成,該光學尺 A上具有並排的四個尺條Al、A2、A3、A4 (此處舉出使用四 個尺條的光學尺為例,實際上根據需求不同則有不同數量的 尺條),且該各尺條Al、A2、A3、A4上具有複數個透孔ah、 A21、A31、A41,該各尺條A卜A2、A3、A4的透孔All、A2卜 • A3卜A41長度與相鄰透孔A1卜A2卜A3卜A41的間距相等, 且如第2圖所示,該第一尺條A1的透孔All長度為該第二 尺條A2的透孔A21長度的兩倍,該第二尺條A2的透孔A21 長度為該第三尺條A3的透孔A31長度的兩倍,該第三尺條 A3的透孔A31長度為該第四尺條A4的透孔A41長度的兩 倍,而該感測器B上相對該光學尺A的該各尺條Al、A2、 A3、A4設置有四個數位感應讀頭Bl、B2、B3、B4,該各數 201022625 位感應讀頭扪、62、83、34藉由感應該各尺條4142、八3、 A4上透孔All、A21、A31、A41的有或無,而輸出高或低的 訊號,將該四數位感應讀頭Bl、B2、B3、B4輸出的訊號整 合後便如第3圖所示,因此只要根據當時該四數位感應讀頭 B卜B2、B3、B4的訊號,便能組成得知該感測器B相對該 光學尺A位移的距離; 由於該各尺條Al、A2、A3、A4的透孔All、A21、A31、 A41長度與相鄰透孔All、A21、A31、A41的間距決定了該 鲁 感測器B的解析度(解析度即為判斷該感測器B位移距離最 小值的程度),而光學式的是使用該光學尺A,以現今的微 米技術能將該各尺條Al、A2、A3、A4的透孔All、A21、A3卜 A41長度與相鄰透孔All、A21、A31、A41的間距成型在相 當微小的距離,因此精度相當的高,反之磁性式的是使用磁 性尺’而磁性尺是以N極與S極的交錯讓感應讀頭輸出高或 低的訊號’由於N極與S極的間距無法到達與光學式一般的 精度’因此高精密度的產業會選擇使用光學式的感測裝置; 不過光學式的感測裝置在越精密的情況下,就必須使用 在環境條件越好的場所(如無塵室,避免灰塵或微粒遮蔽該 尺條的透孔’而造成感應讀頭讀取與輸出上的錯誤),但一 般的產業無法提供環境條件優渥的場所,因此只能採用不受 環境條件影響的磁性式,而相對的精密度也大打折扣; 本創作人有鑑於此,便朝向提升磁性式感測裝置的方向 4 201022625 研究,進而開發出具有高度環境適應力以及高解析度的併用 數位與類比感應的磁性式位置感測裝置。 【發明内容】 本發明目的在提供一種併用數位與類比感應的磁性式 位置感測裝置,是利用複數個數位感應讀頭配合複數個磁 條’另以一個類比感應讀頭感測其中一個磁條,藉此由該些 感應讀頭輸出的數據便能得知位置與位移距離,而具有高度 的環境適應力以及高解析度的效能。 為達前述目的,該磁性式位置感測裝置包含一個磁性尺 及一個感測器’該磁性尺具有複數個磁條,該各磁條具有複 數個磁區,該各磁區由N極與S極等分構成,同一磁條上的 複數個磁區彼此長度相等,且任二磁條彼此的磁區長度相 ^ 異’該感測器位於該磁性尺上方,且該感測器相對該磁性尺 的礤條設置複數個數位感應讀頭,該感測器又相對其中一個 磲條設置一個類比感應讀頭,該些感應讀頭用以感應相對的 罐條的磁性; 當該感測器在該磁性尺上方位移時,該感測器的數位感 應讀頭會感應該磁條的磁區的N極或S極的磁性,該些數位 感應讀頭並根據所感應的磁性輪出高或低的訊號,另外該類 比感應讀頭也能感應該磁條的磁性而輸出呈弦波的訊號,將 5 201022625 該類比感應讀頭的m號切割細分後,再配合該些數位感應讀 頭的訊號彳得知該感測n與該磁性尺的相對位置或位移 距離,如此該磁性式位置感測裝置便能同時具有磁性式的高 環境適應力以及利用該類比感應讀頭所達成的高解析 度。 【實施方式】 本發明併用數位與類比感應的磁性式位置感測裝置,實 施例如第4及5圖所示,包含: 一個磁性尺10,具有四個磁條u、12、13、14,該各 磁條11、12、13、14具有複數個磁區11卜12卜131141, 該各磁區m、m、m、141等分為N極及s極兩部分, 同一磁條11、12、13、14上的複數個磁區121、131、 ⑷彼此長度相等,該第一磁條u的磁區ιη長度為該第 二磁條12的磁區121長度的兩倍,該第二磁條12的磁區 121長度為該第三磁條13的磁1 131 *度的兩倍該第三 磁條13的磁區131長度為該第四磁條ι4的磁區141長度的 兩倍,即任二磁條U、12、13、14彼此的磁區iu、丨^、 13卜141長度相異,且該四磁條11、12、13、14的磁區11卜 121 ' 131 ' 141長度呈二倍數差異;以及 —個感測器20,位於該磁性尺10上方,該感測器2〇 具四個數位感應讀帛2卜22、23、24,該第—數位感應讀 201022625 頭21與該磁性尺10的第一磁條π相對,該第二數位感應 讀頭22與該第一磁條12相對’該第三數位感應讀頭23與 該第三磁條13相對’該第四數位感應讀頭24與該第四磁條 14相對’即該各數位感應讀頭21、22、23、24與該各磁條 11、12、13、14相對,該各數位感應讀頭21、22、23、24 用以感應相對的該各磁條11、12、13、14的磁性,該感測 器20又相對該第四磁條14設置一個類比感應讀頭25,該 類比感應讀頭25用以感應該第四磁條14的磁性,該類比感 Φ 應讀頭25與該第四數位感應讀頭24相對於相鄰的磁區141 的相同磁極,例如該類比感應讀頭25相對於該第四磁條14 的一個磁區141的N極’該第四數位感應讀頭24則相對於 該磁區141的相鄰磁區141的N極。 當該感測器20在該磁性尺1〇的上方位移時,該各數位 感應讀頭21、22、23、24及該類比感應讀頭25會在相對的 磁條11、12、13、14上位移’且該各數位感應讀頭21、22、 23、24及該類比感應讀頭25也會改變所感應的磁條11、12、 13、14的磁區111、121、131、141,該各數位感應讀頭21、 22、23、24及該類比感應讀頭25感應呈現的磁性也會呈N 極與S極的交錯變化’例如該第一感應讀頭21相對該第一 磁條11位移時’首先該第一感應讀頭21相對該第一磁條 11的其中一磁區111的N極,位移後該第一感應讀頭21變 201022625 成相對該磁區111的s極,再次位移後該第一感應讀頭21 變成相對另一個磁區111的N極,由此可知該各數位感應讀 頭21、22、23、24及該類比感應讀頭25在位移時所感應的 磁性會呈現N極及S極的交錯變化,該各數位感應讀頭2卜 22、23、24並配合感應的N極或S極輸出高或低的訊號, 該類比感應讀頭25則配合感應的N極或S極輸出呈弦波的 訊號’將該各數位感應讀頭21、22、23、24及該類比感應 讀頭25所輸出的訊號整理後便如第6圖所示; 如此根據該各數位感應讀頭21、22、23、24輸出的訊 號便能概略得知該感應器1〇與該磁性尺20的相對位置與該 感應器10的位移距離,而該類比感應讀頭25輸出的訊號呈 弦波’每個弦波代表360度,因此能依據需求將弦波切割細 分,最小值根據需求不同可取1度、〇· 1度或〇. 01度,由 該些數位感應讀頭21、22、23、24的概略位置再搭配上該 類比感應讀頭25的弦波的位置,便能精確地得知該感應器 1〇與該磁性尺20的相對位置與該感應器1〇的位移距離, 例如得到的訊號中,該第一數位感應讀頭21的訊號為高, 該第二數位感應讀頭22的訊號為低,該第三數位感應讀頭 23·的訊號為高’該第四數位感應讀頭24的訊號為低,便能 得知位置位於該類比感應讀頭25的訊號的第六組個弦波内 (該類比感應讀頭25的一組弦波為兩個相位角相差9〇度的 弦波)’只要再配合該類比感應讀頭25的訊號為幾度,便能 201022625 如第6圖所示,精確地得知該感應器10與該磁性尺20的相 - 對位置a與該感應器10的位移距離; • 由此可知,該磁性式位置感測裝置使用該磁性尺10, 確實具有磁性式的高度環境適應力,再配合上該類比感應讀 頭25,而能達到高解析度的效果,且前述實施例中所使用 的磁條數量與數位感應讀頭數量,僅為一種較佳實施例,並 非限制本創的技術,使用與本創相同技術概念者當在本創保 護範圍内。201022625 VI. Description of the Invention: [Technical Field] The present invention relates to a program control system using a magnetic record carrier, and more particularly to a magnetic position sensing device in which digital and analog induction are used in combination. [Prior Art] Currently, sensing devices for measuring the displacement distance or position of a rotating or linear displacement device such as a motor or a linear motor are mostly classified into a magnetic type and an optical type, in which the optical precision is higher than that of the magnetic type. Therefore, an optical type is adopted in an industry that pursues high precision, and a general optical sensing device, as shown in FIG. 1, is composed of an optical scale A and a sensor B having an optical scale A thereon. Four slats Al, A2, A3, A4 side by side (here, an optical ruler using four rulers is taken as an example, in fact, there are different numbers of bars according to different needs), and the bars are Al, A2, A3, and A4 have a plurality of through holes ah, A21, A31, and A41, and the through holes All, A2, A3, and A4 of the respective strips A, A3, and A4 have a length and an adjacent through hole A1 and A2. The spacing of the A3 A41 is equal, and as shown in FIG. 2, the length of the through hole All of the first ruler A1 is twice the length of the through hole A21 of the second ruler A2, and the second ruler A2 The length of the through hole A21 is twice the length of the through hole A31 of the third ruler A3, and the length of the through hole A31 of the third ruler A3 is The through hole A41 of the four-foot strip A4 is twice the length, and the strips A1, A2, A3, and A4 on the sensor B relative to the optical scale A are provided with four digital sensing heads B1, B2, and B3. , B4, the number 201022625 inductive read heads 62, 62, 83, 34 by sensing the presence or absence of the through holes All4, A21, A31, A41 on the respective strips 4142, 8.3, A4, and the output is high or The low signal integrates the signals output by the four-digit inductive read heads B1, B2, B3, and B4 as shown in FIG. 3, so that the signals of the read heads B, B3, and B4 can be sensed according to the four digits at that time. The distance between the sensor B and the displacement of the optical scale A can be known. The lengths of the through holes All, A21, A31, and A41 of the strips A1, A2, A3, and A4 and the adjacent through holes All, The spacing of A21, A31, and A41 determines the resolution of the Lu sensor B (the resolution is the degree of determining the minimum displacement distance of the sensor B), and the optical type is to use the optical tape A to present The micron technology can form the distance between the through holes All, A21, A3 and A41 of the respective strips Al, A2, A3, and A4 and the adjacent through holes All, A21, A31, and A41. When the distance is small, the accuracy is quite high. On the contrary, the magnetic type uses the magnetic ruler' while the magnetic ruler interleaves the N pole and the S pole to make the inductive read head output high or low signal 'because of the N pole and the S pole The pitch cannot reach the optical precision. Therefore, the industry with high precision will choose to use optical sensing devices. However, the more precise the optical sensing device, the better the environmental conditions must be. (such as a clean room, to avoid dust or particles obscuring the through hole of the ruler, resulting in errors in the reading and output of the inductive read head), but the general industry cannot provide a place with excellent environmental conditions, so it can only be used without The magnetic condition affected by the environmental conditions, and the relative precision is also greatly reduced; in view of this, the creator has studied the direction of the magnetic sensing device 4 201022625, and developed a highly environmentally adaptable and high-resolution one. And digital position sensing device with digital and analog sensing. SUMMARY OF THE INVENTION The object of the present invention is to provide a magnetic position sensing device that uses digital and analog sensing in combination, which utilizes a plurality of digital sensing heads with a plurality of magnetic strips to sense one of the magnetic strips by an analog sensing head. Thereby, the position and displacement distance can be known from the data output by the inductive read heads, and the environment adaptability and high resolution performance are high. To achieve the foregoing objective, the magnetic position sensing device comprises a magnetic ruler and a sensor. The magnetic tape has a plurality of magnetic strips, the magnetic strips having a plurality of magnetic regions, the magnetic regions being N poles and S The poles are formed by equal division, and the plurality of magnetic regions on the same magnetic strip are equal in length to each other, and the lengths of the magnetic regions of the two magnetic strips are different from each other. The sensor is located above the magnetic scale, and the sensor is opposite to the magnetic pole. The ruler of the ruler is provided with a plurality of digital sensing heads, and the sensor is further provided with an analog sensing head relative to one of the beams, the sensing heads for sensing the magnetic properties of the opposite cans; when the sensor is When the magnetic scale is displaced above, the digital sensing head of the sensor senses the magnetic properties of the N pole or the S pole of the magnetic strip of the magnetic strip, and the digital sensing heads are high or low according to the induced magnetic wheel. The signal, in addition to the inductive read head, can also sense the magnetic properties of the magnetic strip and output a sinusoidal signal, and subdivide the 5th dimension of the analog inductive read head of the 5 201022625, and then match the signals of the digital sensing heads.彳 know the sense n and the magnetic The relative position or displacement distance, so that a magnetic position sensing apparatus able to simultaneously formula magnetic force and high environmental adaptability of use of such a high-resolution inductive read head than reached. [Embodiment] The present invention combines digital and analog-sensing magnetic position sensing devices, as shown in Figs. 4 and 5, and includes: a magnetic rule 10 having four magnetic strips u, 12, 13, and 14. Each of the magnetic strips 11, 12, 13, 14 has a plurality of magnetic regions 11 12 12 131141, and the magnetic regions m, m, m, 141 are divided into two parts, an N pole and an s pole, and the same magnetic strip 11 , 12 , The plurality of magnetic regions 121, 131, (4) on 13, 14 are equal in length to each other, and the length of the magnetic region i of the first magnetic strip u is twice the length of the magnetic region 121 of the second magnetic strip 12, and the second magnetic strip The length of the magnetic region 121 of 12 is twice the magnetic 1 131 * degree of the third magnetic strip 13 . The length of the magnetic portion 131 of the third magnetic strip 13 is twice the length of the magnetic region 141 of the fourth magnetic strip ι 4 , that is, The magnetic regions iu, 丨^, 13 141 of any two magnetic strips U, 12, 13, 14 are different in length, and the magnetic regions 11 of the four magnetic strips 11, 12, 13, 14 are 121 '131 ' 141 length Divided by a factor of two; and a sensor 20, located above the magnetic ruler 10, the sensor 2 has four digital sense readings 2, 22, 23, 24, the first digital sense read 201022625 head 21 With the magnetic The first magnetic strip π of the rule 10 is opposite, the second digital sensing head 22 is opposite to the first magnetic strip 12. The third digital sensing head 23 is opposite to the third magnetic strip 13. 'The fourth digital sensing read The head 24 is opposite to the fourth magnetic strip 14, that is, the digital sensing heads 21, 22, 23, 24 are opposite to the magnetic strips 11, 12, 13, 14 for each of the digital sensing heads 21, 22, and 23 24 is used to sense the magnetic properties of the opposite magnetic strips 11, 12, 13, 14 . The sensor 20 is further provided with an analog sensing head 25 relative to the fourth magnetic strip 14 . The analog sensing head 25 is used for Sensing the magnetic properties of the fourth magnetic strip 14, the analog Φ should be the same magnetic pole of the read head 25 and the fourth digital sensing read head 24 with respect to the adjacent magnetic region 141, for example, the analog inductive read head 25 is opposite to the first The N-pole of one of the magnetic regions 141 of the four magnetic strips 14 is opposite to the N-pole of the adjacent magnetic regions 141 of the magnetic region 141. When the sensor 20 is displaced above the magnetic scale 1 ,, the digital sensing heads 21, 22, 23, 24 and the analog sensing head 25 will be on the opposite magnetic strips 11, 12, 13, 14 The upper displacement 'and the respective digital sensing heads 21, 22, 23, 24 and the analog sensing head 25 also change the magnetic regions 111, 121, 131, 141 of the induced magnetic strips 11, 12, 13, 14. The magnetic sensed by the digital inductive read heads 21, 22, 23, 24 and the analog inductive read head 25 also changes in an alternating manner between the N pole and the S pole. For example, the first inductive read head 21 is opposite to the first magnetic strip. When the displacement is 11, the first inductive read head 21 is opposite to the N pole of one of the magnetic regions 111 of the first magnetic strip 11. After the displacement, the first inductive read head 21 is changed to 201022625 to be opposite to the s pole of the magnetic region 111. After the displacement again, the first inductive read head 21 becomes opposite to the N pole of the other magnetic region 111, so that the digital inductive read heads 21, 22, 23, 24 and the analog inductive read head 25 are sensed when displaced. The magneticity will exhibit an alternating change of the N pole and the S pole, and the digital sense heads 22, 23, 24 and the sensed N pole or S pole output are high or low. No. The analog inductive read head 25 cooperates with the sensed N-pole or S-pole to output a sine wave signal. The signals output by the digital sensing heads 21, 22, 23, 24 and the analog sensing head 25 are arranged. After that, as shown in FIG. 6 , the relative position of the sensor 1 〇 and the magnetic scale 20 and the sensor 10 can be roughly obtained according to the signals output by the digital sensing heads 21 , 22 , 23 , and 24 . The displacement distance of the analog read head 25 is a sine wave 'each sine wave represents 360 degrees, so the chord wave can be cut and subdivided according to the demand, and the minimum value can be 1 degree, 〇 1 degree or according to the demand. 01. 01 degrees, the approximate position of the digital sensing heads 21, 22, 23, 24 and the position of the sine wave of the analog sensing head 25 can accurately know the sensor 1 and The relative position of the magnetic ruler 20 and the displacement distance of the sensor 1〇, for example, in the obtained signal, the signal of the first digital sensing head 21 is high, and the signal of the second digital sensing head 22 is low, the first The signal of the three-digit sensing read head 23· is high. The fourth digital sensing head 24 When the signal is low, the position is located in the sixth group of chords of the signal of the analog inductive read head 25 (the set of chords of the analog inductive head 25 is a sine wave with a phase angle difference of 9 degrees. As long as the signal of the analog inductive read head 25 is a few degrees, 201022625 can accurately know the phase-to-position a of the sensor 10 and the magnetic scale 20 and the inductor 10 as shown in FIG. Displacement distance; • It can be seen that the magnetic position sensing device uses the magnetic ruler 10, and has a magnetic high environmental adaptability, and the analog reading head 25 is matched with the analog sensing head 25 to achieve high resolution. The number of magnetic strips and the number of digital sensing heads used in the foregoing embodiments are only a preferred embodiment, and are not limited to the prior art. The same technical concept as the present invention is within the scope of the present invention.

9 201022625 【圖式簡單說明】 第1圖習知光學式感測裝置的示意圖。 第2圖習知感測裝置的光學尺的示意圖。 第3圖習知感測器輸出的訊號的示意圖。 第4圖本發明實施例的示意圖。 第5圖本發明實施例磁性尺的示意圖。 第6圖本發明實施例感測器輸出的訊號的示意圖。 【主要元件符號說明】 《習知》9 201022625 [Simplified description of the drawings] Fig. 1 is a schematic view of a conventional optical sensing device. Figure 2 is a schematic view of an optical scale of a conventional sensing device. Figure 3 is a schematic diagram of the signal output by the sensor. Figure 4 is a schematic illustration of an embodiment of the invention. Figure 5 is a schematic view of a magnetic ruler of an embodiment of the present invention. Figure 6 is a schematic diagram of signals output by the sensor of the embodiment of the present invention. [Main component symbol description] "Knowledge"

光學尺A 第一尺條A1 第二尺條A2 第三尺條A3 第四尺條A4Optical ruler A first ruler A1 second ruler A2 third ruler A3 fourth ruler A4

透孔 All、A21、A31、A41 感測器B ® 數位感應讀頭B卜B2、B3、B4 第二磁條12 第四磁條14 《本發明》 磁性尺10 第一磁條11 第三磁條13 磁區 111、121、13 卜 141 201022625 感測器20 第二數位感應讀頭22 第四數位感應讀頭24 • 第一數位感應讀頭21 • 第三數位感應讀頭23 類比感應讀頭25 相對位置a 11Through Hole All, A21, A31, A41 Sensor B ® Digital Inductive Read B B B2, B3, B4 Second Magnetic Strip 12 Fourth Magnetic Strip 14 "The Invention" Magnetic Ruler 10 First Magnetic Strip 11 Third Magnetic Strip 13 Magnetic area 111, 121, 13 Bu 141 201022625 Sensor 20 Second digital sensing head 22 Fourth digital sensing head 24 • First digital sensing head 21 • Third digital sensing head 23 Analog sensing head 25 relative position a 11

Claims (1)

201022625 七、申請專利範圍·· κ -種併用數位與㈣感應的磁性式位置感測裝置包 含: -個磁性尺’具有複數麵條,該各磁條具有複數個磁 區’該各磁區由N極與S極等分構成,同—磁條上的複數個 磁區彼此長度相等,且任二磁條彼此的磁區長度相異;以及 一個感測器,位於該磁性尺上方,且該感測器相對該磁 癱f生尺的磁條δ又置複數個數位感應讀頭’該感測器又相對其中 個磁條汉置-個類比感應讀頭,該些數位感應讀頭及該類 比感應4頭皆用以感測相對的磁條的磁性,利用該感測器在 該磁性尺上綠移,使缝數位錢讀頭分雜據感應的磁 生輸出间或低的訊號,該類比感應讀頭輸出弦波的訊號,比 對所有訊號便能得知該感測器與該磁性尺的相對位置或位 移距離。 2·如申請專利範圍第1項所述併用數位與類比感應的磁 &式磁性式位置感測裝置,其中,該磁性尺的該些磁條的磁 區長度呈二倍數差異。 如申S青專利範圍第1項所述併用數位與類比感應的磁 式磁改式位置感測裝置,其中,該感測器的類比感應讀頭 與相對於相同磁條的數位感應讀頭,兩者相對於該磁條相鄰 12 201022625 的磁區的相同磁極。 - 4. 如申請專利範圍第1項所述併用數位與類比感應的磁 性式磁性式位置感測裝置,其中,該感測器的類比感應讀頭 感測的磁條的磁區長度最短。201022625 VII. Patent application scope·· κ-type combined digital and (4) magnetic position sensing device includes: - a magnetic ruler having a plurality of noodles, the magnetic strips having a plurality of magnetic regions 'the magnetic regions are N The pole and the S pole are equally divided, the plurality of magnetic regions on the same magnetic strip are equal in length, and the magnetic lengths of the two magnetic strips are different from each other; and a sensor is located above the magnetic scale, and the sense The magnetic strip δ of the measuring device relative to the magnetic 瘫f is further provided with a plurality of digital sensing heads. The sensor is opposite to one of the magnetic strips and the analog sensing head, and the digital sensing heads and the analogy The sensing four heads are used to sense the magnetic properties of the opposite magnetic strips, and the sensor is used to move green on the magnetic scale, so that the slit digital reading head divides the magnetic output between the magnetic sensors or the low signal, the analog sensing The read head outputs the signal of the sine wave, and the relative position or displacement distance of the sensor and the magnetic ruler can be known by comparing all the signals. 2. The magnetic & magnetic position sensing device according to the first aspect of the patent application, wherein the magnetic strip length of the magnetic strip is doubled. A magnetic magnetically modified position sensing device using digital and analog sensing as described in claim 1 of the patent application, wherein the analog inductive read head of the sensor and the digital inductive read head relative to the same magnetic strip, The two are adjacent to the same magnetic pole of the magnetic zone of the 12 201022625. - 4. A magnetic magnetic position sensing device as described in claim 1 and using digital and analog sensing, wherein the analog inductive read head of the sensor has the shortest magnetic zone length. 1313
TW97146708A 2008-12-02 2008-12-02 Magnetic position sensor by using digital and analogical sensing readers TWI388800B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146708A TWI388800B (en) 2008-12-02 2008-12-02 Magnetic position sensor by using digital and analogical sensing readers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146708A TWI388800B (en) 2008-12-02 2008-12-02 Magnetic position sensor by using digital and analogical sensing readers

Publications (2)

Publication Number Publication Date
TW201022625A true TW201022625A (en) 2010-06-16
TWI388800B TWI388800B (en) 2013-03-11

Family

ID=44833051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146708A TWI388800B (en) 2008-12-02 2008-12-02 Magnetic position sensor by using digital and analogical sensing readers

Country Status (1)

Country Link
TW (1) TWI388800B (en)

Also Published As

Publication number Publication date
TWI388800B (en) 2013-03-11

Similar Documents

Publication Publication Date Title
US10495485B2 (en) Magnetic field sensors and output signal formats for a magnetic field sensor
US10845219B2 (en) Linear encoder for a linear position measurement device having a stationary part and a moving part
US9222804B2 (en) System and method for position sensing
JP6926209B2 (en) Distance sensor
WO2010124580A1 (en) Position detecting device and signal processing device and method thereof
JP6192855B2 (en) Magnetic position detecting device and magnetic position detecting method
TWI601939B (en) Absolute position detecting device and method
JP6015776B2 (en) Displacement sensor and displacement detection method
Lin et al. Novel method for determining absolute position information from magnetic patterns
JP3047099B2 (en) Position detection device
JP6276074B2 (en) Position detection device
JP4783698B2 (en) Electromagnetic induction encoder
CN104515496B (en) A kind of new angular measurement sensor
TW201022625A (en) Magnetic position sensor by using digital and analogical sensing readers
CN115930753A (en) Position sensor system, optical lens system and display
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
US7948230B2 (en) Magnetic type digital-analogic position-sensing device
US9177581B2 (en) Head position demodulation method and magnetic disk device
JP4919177B2 (en) Linear scale
US10816362B2 (en) Linear position detecting device
JP4420652B2 (en) Position detection device
JP2005195367A (en) Linear scale
JP2016206012A (en) Magnetism detection device
JP4989919B2 (en) Inductive position detector
JP2021076503A (en) Magnetic rotation position detection device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees