TW201022159A - Paper sludge-geopolymer composite and fabrication method thereof - Google Patents

Paper sludge-geopolymer composite and fabrication method thereof Download PDF

Info

Publication number
TW201022159A
TW201022159A TW97148717A TW97148717A TW201022159A TW 201022159 A TW201022159 A TW 201022159A TW 97148717 A TW97148717 A TW 97148717A TW 97148717 A TW97148717 A TW 97148717A TW 201022159 A TW201022159 A TW 201022159A
Authority
TW
Taiwan
Prior art keywords
inorganic polymer
sludge
paper slag
slag sludge
paper
Prior art date
Application number
TW97148717A
Other languages
Chinese (zh)
Other versions
TWI385127B (en
Inventor
Ching-Chyi Chen
Ming-Jhu Lai
Yi-Fu Chen
Chia-Ching Chou
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97148717A priority Critical patent/TWI385127B/en
Publication of TW201022159A publication Critical patent/TW201022159A/en
Application granted granted Critical
Publication of TWI385127B publication Critical patent/TWI385127B/en

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

A paper sludge-geopolymer composite and fabrication method thereof. The composite comprises a paper sludge uniformly mixed with a geopolymer, wherein the paper sludge contains a plurality of fibers individually dispersed in the geopolymer. The fabrication method of the paper sludge-geopolymer composite comprises adding a base solution into a paper sludge to disperse a plurality of fibers of the paper sludge to form a slurry. A silicate solution is mixed with the slurry to form a paper sludge-geopolymer precursor composite slurry. Then, a calcined alumina-rich powder is added into the paper sludge-geopolymer precursor composite slurry to form the paper sludge-geopolymer composite by polymerization of a sol-gel process.

Description

201022159 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種複合材料,特別有關於一種紙渣 污泥與無機聚合物之複合材料及其製造方法。 【先前技術】 ' 紙渣污泥是造紙廠在製造過程中所產生的廢水,經濃 泥槽沉降與帶濾機(或壓濾機)脫水處理後產生的污泥,其 通常含有有機木纖維、黏土質及大量的水分,目前一般的 鲁 處理方式以掩埋為主’或者待紙渣污泥中的木纖維腐化後 應用於複合肥料中。 目前使用木纖維的複合材料通常是利用水泥結合紙漿 木纖維形成纖維水泥板,應用於建築材料_。首先將廢紙 與紙漿混合的纖雉材料或是紙渣污泥以盤磨式解纖機處 理,使得互相纏繞的木纖維磨開解離,接著放入具有水與 水泥混合的散漿機中,以刮刀式攪拌機分散成漿體,再經 ^ 過高壓成型、裁切與養護後,形成纖維水泥複合板材成品。 無機聚合物是一種以矽氧鋁結構為基礎之聚合材料, 可於常溫下固化成型,且強度與物性皆優於水泥,因此可 替代水泥作為膠結劑。然而,由於無機聚合物的形成方式 屬於溶膠凝膠製程(sol-gel process),而傳統纖維水泥板的 製造方法係利用高倍率的水與紙渣污泥混合攪拌製成漿 體’這種方法無法適用於無機聚合物,因為其會導致無機 聚合反應物的濃度過低,而無法固化形成複合基材。此外, 在習知無機聚合物的溶膠-凝膠製程中混入紙渣纖維,則會 5 201022159 . 因為有機纖維與無機聚合物的比重及表面張力等差異,以 及無機聚合物漿體的黏稠性太高,而使得纖維易互相纏繞 形成纖維團,無法均勻地單離分散在無機聚合物中,造成 複合材料中紙渣纖維的勤性功能無法發揮,並易導致複合 材料的内應力不均而龜裂。 ' 因此,業界亟需一種紙渣污泥-無機聚合物複合材料的 製法,其可以使紙渣污泥中的纖維單離分散在無機聚合物 中,以形成性能優異的紙渣污泥-無機聚合物複合材料。 ® 【發明内容】 本發明提供一種紙渣污泥與無機聚合物之複合材料的 製造方法,包括提供紙渣污泥,紙渣污泥是由木纖維互相 纏繞的纖維團所形成;將鹼液與紙渣污泥混合,以對纖維 團進行浸潤分散處理,使得纖維團中的纖維易於單離分 散,形成紙渣污泥之纖維單離漿體;將矽酸鹽溶液與紙渣 污泥之纖維單離漿體混合,形成紙渣污泥-無機聚合物前驅 康 物複合漿體;以及將高溫相富氧化鋁質粉體與紙渣污泥- 無機聚合物前驅物複合漿體混合反應,以形成紙渣污泥與 無機聚合物之複合材料。 此外,本發明還提供一種紙渣污泥與無機聚合物之複 合材料,包括無機聚合物,其係由矽酸鹽溶液與高溫相富 氧化鋁質粉體聚合而成;以及紙渣污泥與無機聚合物均勻 混合,以形成紙渣污泥與無機聚合物之複合材料,其中該 紙渣污泥中具有複數條纖維,且該些纖維係各自獨立地分 散於無機聚合物中。 6 201022159 . 為了讓本發明之上述目的、特徵、及優點能更明顯易 懂,以下配合所附圖式,作詳細說明如下: 【實施方式】 本發明係利用紙渣污泥的纖維特性與無機聚合物結合 形成複合材料,無機聚合物具有優異的物性與化性,包括 絕熱、耐熱、不燃、不發煙、耐震、耐候、抗浸蝕等,然 而無機聚合物屬於硬脆性材料,因此若能與紙渣污泥結 合,利用紙渣污泥之纖維的韌性補強,則可以產生性能更 • 佳的複合材料,並使其應用範圍更廣。 紙渣污泥是紙廠製造過程的含纖維廢水,經濃泥槽沉 降與壓濾機脫水處理後產生的污泥,紙渣污泥之主要成分 為有機木纖維、無機黏土及大量水分,其含水率約為30 至80重量%,紙渣污泥中的木纖維係以互相纏繞的纖維團 形式呈現。 本發明藉由改進無機聚合物的製程技術,以克服在無 機聚合反應之溶膠-凝膠製程(sol-gel process)中,互相纏繞 的紙渣纖維無法有效單離分散,以及有機木纖維與無機聚 合物之界面間不易完全複合的問題,使得紙渣污泥可以作 為再生的纖維原料,與無機聚合物形成複合材料。 請參閱第1圖,其係顯示依據本發明一實施例之紙渣 污泥與無機聚合物複合材料之製造方法的流程圖。首先, 在步驟S100中提供紙渣污泥,接著,針對紙渣污泥的纖維 容易交互纏繞形成纖維團,以及纖維不易單離分散的特 性,在步驟S102中使用苛性驗液處理紙潰污泥,由於紙潰 7 201022159 污泥的木纖維為_多孔f,㈣液财Μ 纖;:广_達到完全浸潤的效果省 纖維團易於單離分散。上述之苛性驗液可以是 氯氧化钟溶液,其濃度範圍可以為㈣〜 Γ^Ν〜5Ν。另外苛性鹼液與紙渣污泥混合的 f固㈣可以為1至1G’較佳為1至3。在步驟S搬 泥與苛性驗液混合後可置入高扭力的混拌機 完全解:3 = = ^:直_查污泥的木纖維團 均勻的漿體,亦即在此漿體中木纖維團均 單離分散,木纖維是以未纏繞的狀態存在浆體中。 目心t ’在步驟1G4 +,於木纖維單離分散襞體中添加 二 %♦酸鹽水溶液,以高扭力的混拌機進行混合分 装中形絲渣污泥與無機聚合物前驅物之複合聚體, 、,:機聚合物前驅物屬於氧化矽質活性化材料。由於木 ,維夕孔:内部的鹼液可引導矽酸鹽水溶液滲入木纖維的 艾=質内邻,因此在擴散混拌後,無機聚合物前驅物可充 刀~人木纖_多孔質内部’以促進I機聚合物與木纖維 膠結形成複合材料,並降低木纖_的有❹醣體素對複 合材料之強度的負面影響。 Θ述矽酸鹽水溶液可以是矽酸鈉或矽酸鉀水溶液,矽 2 4 、’液的矽氧/驗氧莫耳比,亦即水玻璃係數範圍可以為 ,r 較佳為2.5至3.0。矽酸鹽水溶液的液/固重量 比\圍可以為1至H),較佳為2至5。 然後,在步驟106卜將前述之纸渣污泥與無機聚合 8 201022159 . 物前驅物之複合漿體與高溫相富氧化鋁質粉體混合,在高 扭力的混拌機進行高速混拌處理,直到形成均勻的漿體, 此時產生無機聚合反應,以形成紙渣污泥與無機聚合物之 複合基材的漿體。上述紙渣污泥-無機聚合物前驅物複合漿 體與高溫相氧化鋁質粉體的漿/固混合重量比範圍可以為1 至10,較佳為2至4。 上述之高溫相富氧化鋁質粉體例如為經高溫焙燒處理 的高嶺土粉體,其高溫焙燒處理的溫度可以是500至800 ® °C。除了高溫焙燒處理的高嶺土之外,還可以添加活性添 加物、惰性添加物或前述之組合,活性添加物具有波索蘭 材料特性,其係經高溫處理產生之富含氧化鋁或氧化矽的 再生粉體材料,例如為爐石、飛灰、脫硫渣或前述之組合; 惰性添加物則是未經高溫處理的無機粉體材料,例如石材 污泥、廢矽藻土或前述之組合的無機粉體廢棄物。由於活 性添加物具有波索蘭材料特性,其對於無機聚合物的物性 _ 會產生影響,因此可依據複合材料特性之需求去改變活性 添加物的添加量。 接著,在步驟108中,將紙渣污泥與無機聚合物之複 合基材的漿體填充入模具中。在步驟110中,進行常溫或 高溫養護處理。在步驟112中,等待複合基材的漿體固化 成型,接著,在步驟112中,進行脫模處理。之後,在步 驟116中,得到符合模具形狀的紙渣污泥與無機聚合物複 合材料產品。 上述的模具可以是任意形狀,視最終產品所需形狀而 9 201022159 :養在10至。:c的室溫下靜置進行’而高 15。。⑽蒸汽室中⑽供乾溫度下’或是在4°至 77彳ΐΪί製程步驟中所使用的混拌機可以是錨狀式或刮 = 並結合高扭力馬達構成。 料且二述方法所得到的紙渣污泥與無機聚合物複合材 二二 !性、隔熱性、隔音性、調濕性及防火性等多重 U i騎合環麵求的、輯材產品。 #人队下歹】舉本發明各實施例與比較例之紙渣污泥與無機 複^材料的製造方式及其材料特性,其中實施例1 複合㈣係依據第1 ®之製造枝製作,而比較例1 材_是依據第2圖之製造方法製作。比較例之製 S206昔/施例之製造方法的差别在於步驟S200〜 請2中力H步驟2〇0、中提供石夕酸鹽溶液,接著,在步驟 ❿ 步驟8204 Φ⑨形成矽質的無機聚合物前驅物溶液。在 高溫相富氧化㈣粉體加人無機聚合物㊁ /液,形成無機聚合物漿體。接著,在步 將紙渣污泥加人無齡合物漿中’ ,合物複合基材。在比較例之複:二c 交互纏繞成纖維團的形式存在,纖維ct :::散在無機聚合物中’因此比較例之複合材;= 【實施例1】 取1.5公斤紙廠產生的紙奸泥(含水率約52重量%, 201022159 ,基木纖維佔總容積率約78%),加人3公斤峨氫氧化納 办液^拌至紙潰污泥均浸泡在驗液中,、經隔夜浸潤後’ 置入錨,式咼扭力混拌機中,以高扭力混拌分散1小時 後確疋、、、氏渣纖維已充分解離’無紙渣顆粒存在。之後再 加入j公斤水玻璃溶液,其比重為50波美度(Be'),再繼 續以间扭力分散混拌1小時,完成紙渣污泥•無機聚合物前 驅物複合漿體。 接著,取2公斤經高溫焙燒(800。(:,2小時)處理的高 嶺土,以及4公斤飛灰(燃煤火力電廠靜電除塵產出,比重 為0.92)’分別先後置入前述紙渣污泥_無機聚合物前驅物 複合漿體中,以高扭力分散混拌丨小時,形成均勻的漿狀 體後’直接將漿體充填到特定的板形或柱狀的測試樣品模 具中’進行常溫養護,經隔夜固化成型後脫模,放入烘箱 中進行90°C、12小時養護,得到紙渣污泥-矽鋁無機聚合 物複合材料產品。 經物性檢測結果,實施例1之複合材料測試樣品的比 重為1.1、吸水率為34%、抗壓強度為468kgf/cm2、抗彎強 度為 102kgf/cm2。另外使用檢測儀(Applied Precision,Ltd 公司的ISOMET 2104型)進行實施例1之複合材料測試樣 品的熱傳導性能檢測,其熱傳導係數為0.21kcal/mh°C,顯 然較一般無機聚合物(熱傳導係數約為0.9 kcal/mh,比重約 2·0)具有更佳的隔熱性與輕質化功能。 【實施例2】 在取2公斤紙廠產生的紙潰污泥(含水率約74重量%, 201022159 • 乾基木纖維佔總容積率約78%),加入2.5公斤5N氫氧化 納溶液’攪拌至紙渣污泥均浸泡在驗液中,經隔夜浸潤後, 置入錨狀式高扭力混拌機中,以高扭力分散混拌1小時 後’確定紙渣纖維已充分解離,無紙渣顆粒存在。之後加 入2.5公斤水玻璃溶液(比重5〇Be'),再持續高扭力分散混 掉1小時,完成紙渣污泥_無機聚合物前驅物複合漿體。 取2公斤飛灰(燃煤火力電廠產出)與1公斤爐石粉,分 φ 別置入前述紙渣污泥-無機聚合物前驅物複合漿體中,以高 扭力分散混拌1小時,行成均勻的漿體後,直接將漿體充 填到特定的板形或柱狀測試樣品模具中,進行常溫的養 護’經隔夜固化成型後脫模,在室溫下靜置一週完成常溫 養護後’再放入9〇t:烘箱中加溫與烘乾,得到紙渣污泥_ 無機聚合物複合材料產品。 經物性檢測結果’實施例2之複合材料測試樣品的比 重為1.05、吸水率為32%、抗壓強度為32〇kgf/cm2、抗彎 鲁強度為98kgf/cm2。另外使用檢測儀(Applied Precision,Ltd 公司的ISOMET 2104型)進行實施例2之複合材料測試樣 品的熱傳導性能檢測’其熱傳導係數為〇·23 kcal/mht3c。 【實施例3】 取2公斤紙廠產生的紙渣污泥(含水率約74 5重量%, 乾基木纖維佔總容積率約78 5%),加入3公斤in氫氧化 納洛液’擾摔至紙渣污泥均浸泡在鹼液中,經隔夜浸潤後, 置入錯狀式高扭力混拌機中,以高扭力分散混拌1小時 後’確疋紙產纖維已充分解離後,加入2公斤水玻璃溶液(比 12 201022159 .重50Be'),再持續高扭力分散混拌1小時,完成紙渣污泥_ 無機聚合物前驅物複合漿體。 將刚述紙渣污泥-無機聚合物前驅物複合漿體與2公斤 經尚溫焙燒處理(7〇(TC,2小時)的高嶺土置入高扭力分散 混拌機中,以高扭力分散混拌丨小時,形成均勻的漿體後, 直接將漿體充填到特定的板形或柱狀測試樣品模具中,進 行常溫的養護’經隔夜固化成型後脫模,放入9(rc烘箱中 ^ 加溫與供乾’得到紙渣污泥-無機聚合物複合材料產品。 經物性檢測結果,實施例3之複合材料測試樣品的比 重為丨.19、吸水率為24%、抗壓強度為576kgf/cm2、抗彎 強度為 112kgf/cm2。另外使用檢測儀(Applied Precision, Ltd 公司的ISOMET 2104型)進行實施例3之複合材料測試樣 品的熱傳導性能檢測,其熱傳導係數為0.26kcal/mh〇C。 【比較例1】 先將3公斤1N氫氧化納溶液與2公斤水玻璃溶液混201022159 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a composite material, and more particularly to a composite material of paper slag sludge and inorganic polymer and a method for producing the same. [Prior Art] 'Paper slag sludge is the waste water produced by the paper mill during the manufacturing process. It is sludge produced by the sedimentation of the thick mud tank and dewatering with a filter (or filter press), which usually contains organic wood fiber. Clay quality and a large amount of water. At present, the general treatment method of Lu is mainly based on landfilling or the wood fiber in the sludge of paper slag is used in compound fertilizer. At present, composite materials using wood fiber are usually formed by using cement combined with pulp wood fiber to form a fiber cement board for use in building materials. Firstly, the fiber material or the paper slag sludge mixed with the waste paper and the pulp is treated by a disc grinding type defibrating machine, so that the intertwined wood fibers are ground and dissociated, and then placed in a pulper with a mixture of water and cement. It is dispersed into a slurry by a doctor blade mixer, and then formed into a fiber cement composite sheet by high pressure molding, cutting and curing. Inorganic polymer is a kind of polymer based on bismuth aluminum oxide structure. It can be solidified at room temperature and has better strength and physical properties than cement. Therefore, it can replace cement as cement. However, since the formation method of the inorganic polymer belongs to the sol-gel process, the conventional fiber cement board manufacturing method utilizes high-magnification water and paper slag sludge to mix and form a slurry. It is not suitable for inorganic polymers because it causes the concentration of the inorganic polymerization reactant to be too low to form a composite substrate. In addition, in the sol-gel process of the conventional inorganic polymer, the paper slag fiber is mixed, which will be 5 201022159. Because of the difference in specific gravity and surface tension between the organic fiber and the inorganic polymer, and the viscosity of the inorganic polymer slurry is too High, so that the fibers are easily entangled to form a fiber mass, which cannot be uniformly dispersed in the inorganic polymer, resulting in the inability of the paper slag fiber in the composite material to function, and easily lead to uneven internal stress of the composite material. crack. Therefore, there is a need in the industry for a method for producing a paper slag sludge-inorganic polymer composite which can disperse fibers in a paper slag sludge in an inorganic polymer to form a paper slag sludge having excellent properties - inorganic Polymer composites. SUMMARY OF THE INVENTION The present invention provides a method for producing a composite material of paper slag sludge and an inorganic polymer, comprising providing paper slag sludge, which is formed by a fiber group in which wood fibers are intertwined; Mixing with paper slag sludge to infiltrate and disperse the fiber mass, so that the fibers in the fiber mass are easily separated and dispersed, and the fiber forming the paper slag sludge is separated from the slurry; the citrate solution and the paper slag sludge are The fiber is separated from the slurry to form a paper slag sludge-inorganic polymer precursor complex composite slurry; and the high temperature phase rich alumina powder is mixed with the paper slag sludge-inorganic polymer precursor composite slurry, To form a composite material of paper slag sludge and inorganic polymer. In addition, the present invention also provides a composite material of paper slag sludge and an inorganic polymer, comprising an inorganic polymer obtained by polymerizing a citrate solution and a high-temperature phase-rich alumina powder; and a paper slag sludge and The inorganic polymer is uniformly mixed to form a composite of paper slag sludge and an inorganic polymer, wherein the paper slag sludge has a plurality of fibers, and the fibers are each independently dispersed in the inorganic polymer. 6 201022159. In order to make the above objects, features, and advantages of the present invention more comprehensible, the following description will be described in detail with reference to the accompanying drawings. The polymer combines to form a composite material. The inorganic polymer has excellent physical properties and chemical properties, including heat insulation, heat resistance, non-combustibility, no smoke generation, shock resistance, weather resistance, corrosion resistance, etc. However, the inorganic polymer is a hard and brittle material, so if When the paper slag sludge is combined and the toughness of the fiber of the paper slag sludge is used, it is possible to produce a composite material with better performance and a wider application range. The paper slag sludge is the fiber-containing wastewater in the paper mill manufacturing process, and the sludge produced by the sedimentation of the thick sludge tank and the dewatering treatment of the filter press. The main components of the paper slag sludge are organic wood fiber, inorganic clay and a large amount of water. The water content is about 30 to 80% by weight, and the wood fibers in the paper slag sludge are present in the form of intertwined fiber mass. The present invention overcomes the problem that the intertwined paper slag fibers cannot be effectively separated and dispersed, and the organic wood fibers and inorganic materials in the sol-gel process of inorganic polymerization by improving the process technology of the inorganic polymer. The problem that the interface between the polymers is not easily recombined, so that the paper slag sludge can be used as a recycled fiber raw material to form a composite material with the inorganic polymer. Referring to Fig. 1, there is shown a flow chart showing a method of manufacturing a paper slag sludge and an inorganic polymer composite according to an embodiment of the present invention. First, the paper slag sludge is supplied in step S100, and then, the fibers of the paper slag sludge are easily entangled to form a fiber mass, and the fiber is not easily separated and dispersed. In step S102, the caustic liquid is used to treat the paper sludge. Because of the paper collapse 7 201022159 The wood fiber of the sludge is _ porous f, (four) liquid Μ ;;; wide _ to achieve the effect of complete wetting, the fiber group is easy to separate and disperse. The caustic test solution described above may be a chlorine oxidation clock solution, and the concentration may range from (4) to Γ^Ν~5Ν. Further, the f solid (four) of the caustic solution mixed with the paper sludge may be 1 to 1 G', preferably 1 to 3. In the step S, the mud can be placed in a high-torque mixer after mixing with the caustic test solution. Complete solution: 3 = = ^: Straight _ check the uniform slurry of the wood fiber mass of the sludge, that is, the wood in the slurry The fiber masses are individually dispersed, and the wood fibers are present in the slurry in an unwound state. In the step 1G4 +, adding a 2% aqueous acid salt solution to the wood fiber monodisperse dispersed carcass, mixing and mixing the medium-sized silk slag sludge and the inorganic polymer precursor with a high-torque mixer The composite polymer, ,,: polymer precursor is a cerium oxide activated material. Due to the wood, the Vichy hole: the internal lye can guide the aqueous solution of phthalate to penetrate into the inner and inner neighbors of the wood fiber, so after the diffusion and mixing, the inorganic polymer precursor can be filled with a knife~human wood fiber_porous interior 'To promote the formation of composites of I polymer and wood fiber cement, and reduce the negative impact of wood fiber ❹ glucoside voxel on the strength of the composite. The aqueous solution of citrate may be sodium citrate or potassium citrate aqueous solution, 矽 24, 矽 liquid oxime / oxygen oxime ratio, that is, the water glass coefficient may range, r is preferably 2.5 to 3.0. The liquid/solid weight ratio of the aqueous citrate solution may be from 1 to H, preferably from 2 to 5. Then, in step 106, the composite slurry of the paper pulp sludge and the inorganic polymer 8 201022159 precursor is mixed with the high-temperature phase-rich alumina powder, and the high-pressure mixing machine is subjected to high-speed mixing treatment. Until a uniform slurry is formed, an inorganic polymerization reaction is produced at this time to form a slurry of a composite substrate of paper slag sludge and inorganic polymer. The slurry-solid mixing weight ratio of the above paper slag sludge-inorganic polymer precursor composite slurry to the high temperature phase alumina powder may range from 1 to 10, preferably from 2 to 4. The above-mentioned high-temperature phase-rich alumina powder is, for example, a kaolin powder which is subjected to high-temperature calcination, and the high-temperature calcination treatment temperature may be 500 to 800 ° C. In addition to the high temperature calcined kaolin, an active additive, an inert additive or a combination of the foregoing may be added. The active additive has a Poisson material property, which is a regeneration of alumina or cerium oxide produced by high temperature treatment. The powder material is, for example, hearthstone, fly ash, desulfurized slag or a combination thereof; the inert additive is an inorganic powder material which is not subjected to high temperature treatment, such as stone sludge, waste diatomaceous earth or a combination of the foregoing Powder waste. Since the active additive has the properties of the Possolan material, it has an influence on the physical properties of the inorganic polymer, so that the amount of the active additive added can be changed depending on the characteristics of the composite material. Next, in step 108, a slurry of the composite substrate of the paper slag sludge and the inorganic polymer is filled into the mold. In step 110, a normal temperature or high temperature curing process is performed. In step 112, the slurry of the composite substrate is waited for solidification molding, and then, in step 112, a release treatment is performed. Thereafter, in step 116, a paper slag sludge and an inorganic polymer composite material conforming to the shape of the mold are obtained. The above mold may be of any shape, depending on the desired shape of the final product. 9 201022159: Raised at 10 to. :c is allowed to stand at room temperature and is 15 high. . (10) The mixer used in the steam chamber (10) for dry temperature or in the 4° to 77彳ΐΪ process step may be anchored or scraped = combined with a high torque motor. And the paper slag sludge and inorganic polymer composite material obtained by the two methods described above are two-dimensional, heat-insulating, sound-insulating, humidity-controlling and fire-resistant. . #人队下歹] The manufacturing method and material characteristics of the paper slag sludge and the inorganic composite material of the respective embodiments and comparative examples of the present invention, wherein the composite (4) of the first embodiment is made according to the manufacturing branch of the first ® Comparative Example 1 Material_ was produced according to the manufacturing method of Fig. 2. The manufacturing method of the comparative example S206/example is different in the steps S200 to 2 in the force H step 2〇0, in which the solution is provided, and then in step 820 Φ9, the inorganic polymerization of the enamel is formed. Precursor solution. The high temperature phase is rich in oxidation (4) powder and the inorganic polymer II / liquid is added to form an inorganic polymer slurry. Next, in the step, the paper slag sludge is added to the talc-free composite substrate. In the case of the comparative example: two c inter-entangled into the form of a fiber mass, the fiber ct ::: scattered in the inorganic polymer 'so the composite of the comparative example; = [Example 1] Take the paper scrap produced by the 1.5 kg paper mill Mud (water content of about 52% by weight, 201022159, base wood fiber accounted for about 78% of the total volume ratio), plus 3 kg of strontium hydroxide solution, mixed with paper and sludge, soaked in the test solution, overnight After infiltration, the anchor and the twisting force mixer were placed in a high-torque mixture for 1 hour, and the slag fiber was fully dissociated from the presence of the paperless slag particles. Then add j kg of water glass solution, the specific gravity is 50 Babe (Be'), and then continue to disperse and mix for 1 hour with inter-torque force to complete the paper slag sludge and inorganic polymer precursor composite slurry. Next, take 2 kg of kaolin treated by high temperature roasting (800. (:, 2 hours), and 4 kg of fly ash (produced by electrostatic dedusting of coal-fired power plant, specific gravity is 0.92). _Inorganic polymer precursor composite slurry, disperse and mix with high torque for a few hours to form a uniform slurry, and then directly fill the slurry into a specific plate-shaped or columnar test sample mold to carry out normal temperature curing After being solidified and molded overnight, the mold was released and placed in an oven for curing at 90 ° C for 12 hours to obtain a paper slag sludge-yttrium aluminum inorganic polymer composite product. The composite material test sample of Example 1 was obtained by physical property test results. The specific gravity was 1.1, the water absorption rate was 34%, the compressive strength was 468 kgf/cm2, and the flexural strength was 102 kgf/cm 2. The composite material test of Example 1 was additionally carried out using a detector (ISOMET 2104 type of Applied Precision, Ltd.). The thermal conductivity of the sample is 0.21kcal/mh °C, which is better than the general inorganic polymer (heat transfer coefficient is about 0.9 kcal/mh, specific gravity is about 2.0). It has better heat insulation and light weight. [Example 2] In the 2 kg paper mill, the paper sludge was generated (water content was about 74% by weight, 201022159 • dry wood fiber accounted for about 78% of the total volume ratio), and 2.5 kg of 5N sodium hydroxide solution was added. 'Stirring until the paper slag sludge is immersed in the test solution, after being infiltrated overnight, placed in an anchor-type high-torque mixer, and dispersed for 1 hour with high torque, 'determine that the paper slag fiber has been fully dissociated, no Paper slag particles are present. Then add 2.5 kg water glass solution (specific gravity 5 〇 Be'), and then continue to mix high-torque for 1 hour to complete the paper slag sludge _ inorganic polymer precursor composite slurry. Take 2 kg fly ash (produced by coal-fired thermal power plant) and 1 kilogram of calculus powder, divided into φ, into the above-mentioned paper slag sludge-inorganic polymer precursor composite slurry, dispersed and mixed for 1 hour with high torque, and formed into a uniform slurry. After that, the slurry is directly filled into a specific plate-shaped or column-shaped test sample mold, and subjected to normal temperature curing. After overnight curing, the mold is released, and it is allowed to stand at room temperature for one week to complete the normal temperature curing. t: Heating and drying in the oven to obtain paper sludge _ Organic polymer composite product. Physical property test results The composite material test sample of Example 2 had a specific gravity of 1.05, a water absorption of 32%, a compressive strength of 32 〇kgf/cm2, and a bending resistance of 98 kgf/cm2. Further, the thermal conductivity test of the composite material test sample of Example 2 was carried out using a detector (ISOMET Model 2104 of Applied Precision, Ltd.), and its heat transfer coefficient was 〇·23 kcal/mht3c. [Example 3] A 2 kg paper mill was taken. The resulting paper sludge (water content is about 74.5% by weight, dry wood fiber accounts for about 78% of the total volume ratio), and 3 kg of indium hydroxide solution is added to disturb the paper sludge. In the liquid, after being infiltrated overnight, put it into the wrong type high-torque mixer, and disperse it with high torque for 1 hour. After confirming that the paper fiber has been fully dissociated, add 2 kg of water glass solution (cf. 12 201022159). . Weight 50Be'), and then continue to mix high-torque mixing for 1 hour to complete the paper slag sludge _ inorganic polymer precursor composite slurry. The paper slag sludge-inorganic polymer precursor composite slurry was placed in a high-torque dispersion mixer with 2 kg of calcined (7 〇, TC, 2 hours) kaolin. After mixing for a small time to form a uniform slurry, the slurry is directly filled into a specific plate-shaped or column-shaped test sample mold, and subjected to normal temperature curing. After overnight curing, the mold is released and placed in a 9 (rc oven). Heating and drying 'to obtain paper slag sludge-inorganic polymer composite product. According to the physical property test results, the composite material of the sample of Example 3 has a specific gravity of 丨19, a water absorption rate of 24%, and a compressive strength of 576 kgf. /cm2, the flexural strength was 112 kgf/cm 2. In addition, the thermal conductivity test of the composite test sample of Example 3 was carried out using a detector (ISOMET 2104 type of Applied Precision, Ltd.), and the heat transfer coefficient was 0.26 kcal/mh 〇 C. [Comparative Example 1] First mix 3 kg of 1N sodium hydroxide solution with 2 kg of water glass solution.

A 合’形成氧化梦質之無機聚合物前驅物,再與2公斤紙廠 W 產生的紙渣污泥(含水率約74.5重量%,乾基木纖維佔總容 積率約78.5%)—起置入錨狀式高扭力混拌機中,以高扭力 分散混拌1小時後,完成紙渣污泥-無機聚合物前驅物複合 漿體,該漿體中紙渣纖維呈顆粒狀存在’即使再持續混拌 數小時亦無法改善。 將前述紙渣污泥-無機聚合物前驅物複合漿體與2公斤 經高溫焙燒處理(700。(:,2小時)的高嶺土置入高扭力分散 混拌機中,以高扭力分散混拌1小時,形成均勻的漿體後, 13 201022159 直接將榮體充填到特定的板形或柱狀測試樣品模具中,進 行常溫的養護,經隔夜固化成型後脫模,放入90¾烘箱中 加溫與烘乾’得到紙渣污泥_無機聚合物複合材料產品。 經物性檢測結果,比較例1之複合材料測試樣品的比 重為1.18、吸水率為28%、抗壓強度為324kgf/cm2、抗彎 強度為 79kgf/cm2。另外使用檢測儀(Applied Precision, Ltd 公司的ISOMET 2104型)進行比較例1之複合材料測試樣 品的熱傳導性能檢測,其熱傳導係數為0.39kcal/mh°C。 本發明各實施例與比較例之複合材料物性比較結果如 下表1所示: ^ 表1實施例 與比較例之複合材料物性比i 比重 吸水率 (%) 抗壓強度 (kgf/cm2) 抗彎強度 (kgf/cm2) 熱傳導係數 (kcal/mh°C) 實施例1 1.1 34 468 102 0.21 施例2 1.05 32 320 98 0.23 實施例3 1.19 24 576 112 0.26 _i^,j i 1.18 28 324 79 0.39 由表1可得知,本發明各實施例所製得之複合材料具 有輕質性、隔熱性、調濕性以及良好的抗壓及抗彎強度。 此外,由實施例3與比較例1之複合材料的物性比較結果 可得知,依據本發明實施例之製法所製得的複合材料具有 較佳的抗壓及抗彎強度’這表示本發明之紙渣污泥-無機聚 合物複合材料的製造方法對於複合材料的物性具有提昇效 果。 14 201022159 . 上述實施例3與比較例1所製得之複合材料的電子顯 微鏡照片分別如附件1、2所示,其中附件1顯示依據本發 明之製造方法所形成的紙渣污泥-無機聚合物複合材料斷 面中,紙渣污泥的木纖維已經被有效的單離分散,並且與 無機聚合物充分的複合,可以有效地將紙渣纖維的韌性補 強功能充分發揮。 反觀附件2,其顯示依據比較例之製造方法所形成的 紙渣污泥-無機聚合物複合材料斷面中,紙渣污泥的纖維團 ® 因無法有效地解離分散,因此在複合材料内有局部的纖維 團存在,此結果會導致紙渣纖維的韌性補強功能無法發 揮,並易導致複合材料因内應力不均而產生龜裂現象。 雖然本發明已揭露較佳實施例如上,然其並非用以限 定本發明,任何熟悉此項技藝者,在不脫離本發明之精神 和範圍内,當可做些許更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定為準。A combination of 'inorganic polymer precursors that form oxidized dreams, and then with paper pulp sludge produced by 2 kg paper mill W (water content of about 74.5 wt%, dry wood fiber accounted for about 78.5% of total volume ratio) In the anchor-type high-torque mixer, after mixing for 1 hour with high torque, the paper slag sludge-inorganic polymer precursor composite slurry is completed, and the paper slag fibers are in the form of granules. It can't be improved by mixing for several hours. The paper pulp sludge-inorganic polymer precursor composite slurry and 2 kg of high-temperature calcination treatment (700. (:, 2 hours) of kaolin are placed in a high-torque dispersion mixer, and the mixture is dispersed with high torque 1 After a uniform slurry is formed, 13 201022159 directly fills the fused body into a specific plate-shaped or column-shaped test sample mold, and is cured at room temperature. After overnight curing, it is demolded and placed in a 902⁄4 oven for heating and Drying 'to obtain paper slag sludge _ inorganic polymer composite product. According to the physical property test results, the composite material of Comparative Example 1 has a specific gravity of 1.18, a water absorption rate of 28%, a compressive strength of 324 kgf/cm2, and a bending resistance. The strength was 79 kgf/cm 2. Further, the thermal conductivity test of the composite test sample of Comparative Example 1 was carried out using a detector (ISOMET Model 2104 of Applied Precision, Ltd.), and the heat transfer coefficient was 0.39 kcal/mh ° C. The physical properties of the composites of the comparative examples and the comparative examples are shown in the following Table 1: ^ Table 1 Physical properties of composites of the examples and comparative examples i Specific gravity water absorption (%) Compressive strength (kgf/cm2) Bending strength (kgf/cm2) Heat transfer coefficient (kcal/mh°C) Example 1 1.1 34 468 102 0.21 Example 2 1.05 32 320 98 0.23 Example 3 1.19 24 576 112 0.26 _i^,ji 1.18 28 324 79 0.39 From Table 1 It can be seen that the composite materials prepared by the embodiments of the present invention have lightness, heat insulation, humidity control property, and good pressure resistance and bending strength. Further, the composite materials of Example 3 and Comparative Example 1 The physical property comparison result shows that the composite material obtained by the method of the embodiment of the present invention has better compression resistance and bending strength'. This indicates that the paper slag sludge-inorganic polymer composite material of the present invention is manufactured. The physical properties of the composite material have an improvement effect. 14 201022159 . The electron micrographs of the composite materials prepared in the above Example 3 and Comparative Example 1 are respectively shown in Annexes 1 and 2, wherein Annex 1 shows the manufacturing method according to the present invention. In the formed paper slag sludge-inorganic polymer composite section, the wood fiber of the paper slag sludge has been effectively separated and dispersed, and fully compounded with the inorganic polymer, which can effectively reinforce the toughness of the paper slag fiber. Work In contrast, in Annex 2, which shows that the fiber slag of the paper slag sludge cannot be effectively dissociated and dispersed in the section of the paper slag sludge-inorganic polymer composite formed by the manufacturing method of the comparative example, There are localized fiber clusters in the composite material. As a result, the toughness reinforcing function of the paper slag fiber cannot be exerted, and the composite material is liable to cause cracking due to uneven internal stress. Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

15 201022159 【圖式簡單說明】 第1圖為依據本發明一實施例之紙渣污泥與無機聚合 物複合材料之製造方法流程圖。 第2圖為依據本發明一比較例之紙渣污泥與無機聚合 物複合材料之製造方法流程圖。 附件1、2之照片為本發明實施例3與比較例1所製得 之複合材料的電子顯微鏡照片,其中附件1的放大倍率約 為170倍,附件2的放大倍率約為20倍。 【主要元件符號說明】 S100-S116〜實施例之紙渣污泥與無機聚合物複合材 料之製造方法的各製程步驟; S200-S216〜比較例之紙造污泥與無機聚合物複合材 料之製造方法的各製程步驟。 1615 201022159 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of manufacturing a paper slag sludge and an inorganic polymer composite according to an embodiment of the present invention. Fig. 2 is a flow chart showing a method of producing a paper slag sludge and an inorganic polymer composite according to a comparative example of the present invention. The photographs of the attachments 1 and 2 are electron micrographs of the composite material obtained in Example 3 of the present invention and Comparative Example 1, in which the magnification of the attachment 1 is about 170 times and the magnification of the attachment 2 is about 20 times. [Description of main component symbols] Process steps of the method for producing the paper slag sludge and the inorganic polymer composite material of S100-S116 to the embodiment; the manufacture of the paper sludge and the inorganic polymer composite material of S200-S216~Comparative example Process steps for the method. 16

Claims (1)

201022159 十、申請專利範圍: 1. 一種紙渣污泥與無機聚合物之複合材料的製造方 法,包括: 提供一紙渣污泥,該紙渣污泥中具有複數個纖維團, 該纖維團係由複數條纖維互相纏繞而形成; 將一鹼液與該紙渣污泥混合,以對該些纖維團進行一 浸潤分散處理,使得該些纖維團中的該些纖維各自獨立分 散,形成一紙渣污泥之纖維單離漿體; 提供一矽酸鹽溶液,與該紙渣污泥之纖維單離漿體混 合,形成一紙渣污泥與無機聚合物前驅物複合漿體;以及 提供一高溫相氧化鋁質粉體,與該紙渣污泥與無機聚 合物前驅物複合漿體混合反應,以形成該紙渣污泥與無機 聚合物之複合材料。 2. 如申請專利範圍第1項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該鹼液包括氫氧化鈉或氫 氧化鉀溶液。 3. 如申請專利範圍第2項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該鹼液的濃度範圍為0.1N 〜10N。 4·如申請專利範圍第3項所述之紙清污泥與無機聚合 物之複合材料的製造方法,其中該鹼液的濃度範圍為1N〜 5N。 5.如申請專利範圍第1項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該鹼液與該紙渣污泥之液/ 17 201022159 . 固混合重量比範圍為1至10。 6. 如申請專利範圍第5項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該鹼液與該紙渣污泥之液/ 固混合重量比範圍為1至3。 7. 如申請專利範圍第1項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該矽酸鹽溶液包括矽酸鈉 或石夕酸舒水溶液。 8. 如申請專利範圍第7項所述之紙渣污泥與無機聚合 m 物之複合材料的製造方法,其中該矽酸鹽溶液之矽氧/鹼氧 莫耳比範圍為2.4至3.6。 9. 如申請專利範圍第8項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該矽酸鹽溶液之矽氧/鹼氧 莫耳比範圍為2.5至3.0。 10. 如申請專利範圍第1項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該矽酸鹽溶液之液/固重量 ^ 比範圍為1至10。 11. 如申請專利範圍第10項所述之紙渣污泥與無機聚 合物之複合材料的製造方法,其中該矽酸鹽溶液之液/固重 量比範圍為2至5。 12. 如申請專利範圍第1項所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該紙渣污泥之纖維單離漿 體與該矽酸鹽溶液之混合重量比範圍為1至10。 13. 如申請專利範圍第12項所述之紙渣污泥與無機聚 合物之複合材料的製造方法,其中該紙渣污泥之纖維單離 18 201022159 • 漿體與該矽酸鹽溶液之混合重量比範圍為2至5。 14. 如申請專利範圍第1所述之紙渣污泥與無機聚合物 之複合材料的製造方法,其中該紙渣污泥與無機聚合物前 驅物複合漿體與該高溫相氧化鋁質粉體之漿/固混合重量 比範圍為1至10。 15. 如申請專利範圍第14所述之紙潰污泥與無機聚合 物之複合材料的製造方法,其中該舐渣污泥與無機聚合物 前驅物之複合漿體與該高溫相氧化鋁質粉體之漿/固混合 重量比範圍為2至4。 16. 如申請專利範圍第1所述之紙渣污泥與無機聚合物 之複合材料的製造方法,其中該高溫相氧化鋁質粉體包括 一經高溫焙燒處理的高嶺土粉體,且該高溫焙燒處理的溫 度包括500至800°C。 17. 如申請專利範圍第1所述之紙渣污泥與無機聚合物 之複合材料的製造方法,更包括添加一活性添加物、一惰 I 性添加物或前述之組合至該紙渣污泥與無機聚合物前驅物 響 複合漿體中,且該活性添加物係經高溫處理產生的一富含 氧化鋁或氧化矽之粉體材料,該惰性添加物係未經高溫處 理的一無機粉體材料。 18. 如申請專利範圍第17所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該活性添加物包括爐石、 飛灰、脫硫渣或前述之組合。 19. 如申請專利範圍第17所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該惰性添加物包括石材污 19 201022159 泥、廢石夕藻土或前述之組合。 20. 如申請專利範圍第1所述之紙渣污泥與無機聚合物 之複合材料的製造方法,其中於該鹼液與該紙渣污泥的混 合步驟、該矽酸鹽溶液與該紙渣污泥之纖維單離漿體的混 合步驟以及該高溫相氧化鋁質粉體與該紙渣污泥與無機聚 合物前驅物複合漿體的混合步驟中,包括以一混拌機進行 一混拌處理,形成一均勻混合的漿體。 21. 如申請專利範圍第20所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該混拌機包括一錨狀式或 一刮刀式混拌機。 22. 如申請專利範圍第1所述之紙渣污泥與無機聚合物 之複合材料的製造方法,更包括對該紙渣污泥與無機聚合 物之複合材料進行一加工處理程序,該加工處理程序包括: 提供一模具,將該紙渣污泥與無機聚合物之複合材料 填充入該模具中; 進行一養護處理,使得該紙渣污泥與無機聚合物之複 合材料固化成型;以及 進行一脫模處理,以形成一紙渣污泥與無機聚合物之 複合材料產品。 23. 如申請專利範圍第22所述之紙渣污泥與無機聚合 物之複合材料的製造方法,其中該養護處理包括一常溫養 護或一高溫養護,該常溫養護包括在10至40°C的温度下 進行,該高溫養護包括在40至150°C的溫度下進行。 24. 如申請專利範圍第1所述之紙渣污泥與無機聚合物 20 201022159 . 之複合材料的製造方法,其中該紙渣污泥包括一有機木纖 維、一無機黏土以及一水分,且該紙渣污泥的含水率包括 30至80重量%。 25. 如申請專利範圍第1所述之紙漬污泥與無機聚合物 之複合材料的製造方法,其中該纖維内具有複數個孔洞, 且於該鹼液與該紙渣污泥之混合步驟中,該鹼液滲透入該 纖維的該些孔洞中。 26. 如申請專利範圍第25所述之紙渣污泥與無機聚合 ® 物之複合材料的製造方法,其中於該矽酸鹽溶液與該紙渣 污泥之纖維單離漿體混合步驟中,該矽酸鹽溶液滲入該該 纖維的該些孔洞中。 27. —種紙渣污泥與無機聚合物之複合材料,包括: 一無機聚合物,該無機聚合物係由一梦酸鹽溶液與一 高溫相氧化鋁質粉體材料聚合而成;以及 一紙渣污泥,與該無機聚合物均勻混合,以形成該紙 渣污泥與無機聚合物之複合材料,其中該紙渣污泥中具有 複數條纖維,且該些纖維係各自獨立地分散於該無機聚合 物中。 28. 如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,其中該紙渣污泥包括一有機木纖維、一無 機黏土以及一水分,且該紙渣污泥的含水率包括30至80 重量%。 29. 如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,其中該纖維内具有複數個孔洞,且該矽酸 21 201022159 . 鹽溶液滲透入該些孔洞中。 30. 如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,其中該石夕酸鹽溶液包括石夕酸納或石夕酸鉀之 水溶液。 31. 如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,其中該矽酸鹽溶液之矽氧/鹼氧莫耳比範圍 為 2.4 至 3.6。 32. 如申請專利範圍第31所述之紙渣污泥與無機聚合 ® 物之複合材料,其中該矽酸鹽溶液之矽氧/鹼氧莫耳比範圍 為 2.5 至 3.0 。 33. 如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,其中該矽酸鹽溶液之液/固重量比範圍為1 至10。 34. 如申請專利範圍第33所述之紙渣污泥與無機聚合 物之複合材料,其中該矽酸鹽溶液之液/固重量比範圍為2 • 至5。 35.如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,其中該高溫相氧化鋁質粉體包括一經高溫 焙燒處理的高嶺土粉體,且該高溫焙燒處理的溫度包括 500 至 800°C。 36.如申請專利範圍第27所述之紙渣污泥與無機聚合 物之複合材料,更包括一活性添加物、一惰性添加物或前 述之組合,且該活性添加物係經高溫處理產生的一富含氧 化鋁或氧化矽之粉體材料,該惰性添加物係未經高溫處理 22 201022159 • 的一無機粉體材料。 37. 如申請專利範圍第36所述之紙渣污泥與無機聚合 物之複合材料,其中該活性添加物包括爐石、飛灰、脫硫 渣或前述之組合。 38. 如申請專利範圍第36所述之紙渣污泥與無機聚合 物之複合材料,其中該惰性添加物包括石材污泥、廢矽藻 土或前述之組合。201022159 X. Patent application scope: 1. A method for manufacturing a composite material of paper slag sludge and inorganic polymer, comprising: providing a paper slag sludge, the paper slag sludge having a plurality of fiber clusters, the fiber gangue Forming a plurality of fibers intertwined with each other; mixing a lye liquid with the paper slag sludge to perform a wetting and dispersing treatment on the fiber groups, so that the fibers in the fiber groups are independently dispersed to form a paper The fiber of the slag sludge is separated from the slurry; a citrate solution is provided, and the fiber of the paper slag sludge is mixed with the slurry to form a composite slurry of the paper slag sludge and the inorganic polymer precursor; and a The high-temperature phase alumina powder is mixed and reacted with the paper slag sludge and the inorganic polymer precursor composite slurry to form a composite material of the paper slag sludge and the inorganic polymer. 2. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to the first aspect of the invention, wherein the lye liquid comprises a sodium hydroxide or a potassium hydroxide solution. 3. The method for producing a composite material of paper pulp sludge and inorganic polymer according to claim 2, wherein the concentration of the alkali liquid ranges from 0.1 N to 10 N. 4. The method for producing a composite material of paper-sludge sludge and inorganic polymer according to claim 3, wherein the concentration of the alkali liquid ranges from 1 N to 5 N. 5. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, wherein the lye and the paper slag sludge liquid/17 201022159. The solid mixture weight ratio ranges from 1 To 10. 6. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 5, wherein the liquid/solid mixture weight ratio of the lye to the paper slag sludge ranges from 1 to 3. 7. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, wherein the bismuth citrate solution comprises sodium citrate or an aqueous solution of lycopene. 8. The method for producing a composite material of a paper slag sludge and an inorganic polymerized material according to claim 7, wherein the cerium salt solution has a cerium/oxygen molar ratio ranging from 2.4 to 3.6. 9. The method of producing a composite material of a paper slag sludge and an inorganic polymer according to claim 8, wherein the cerium salt solution has a enthalpy/alkali oxygen molar ratio ranging from 2.5 to 3.0. 10. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, wherein the silicate solution has a liquid/solid weight ratio ranging from 1 to 10. 11. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 10, wherein the silicate solution has a liquid/solid weight ratio ranging from 2 to 5. 12. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, wherein a mixture weight ratio of the fiber slag sludge to the silicate solution is It is from 1 to 10. 13. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 12, wherein the fiber slag sludge is separated from each other 18 201022159 • a mixture of a slurry and the citrate solution The weight ratio ranges from 2 to 5. 14. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to the first aspect of the invention, wherein the paper slag sludge and the inorganic polymer precursor composite slurry and the high temperature phase alumina powder The slurry/solid mixing weight ratio ranges from 1 to 10. 15. The method for producing a composite material of a paper sludge and an inorganic polymer according to claim 14, wherein the composite slurry of the sludge and the inorganic polymer precursor and the high temperature phase alumina powder The slurry/solid mixing weight ratio ranges from 2 to 4. 16. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, wherein the high temperature phase alumina powder comprises a high temperature calcined kaolin powder, and the high temperature baking treatment The temperature includes 500 to 800 °C. 17. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, further comprising adding an active additive, an inert I additive, or a combination thereof to the paper slag sludge. In combination with an inorganic polymer precursor, the active additive is an alumina or cerium oxide-rich powder material produced by high temperature treatment, and the inert additive is an inorganic powder which has not been subjected to high temperature treatment. material. 18. The method of producing a composite material of a paper slag sludge and an inorganic polymer according to claim 17, wherein the active additive comprises hearthstone, fly ash, desulfurized slag or a combination thereof. 19. The method of producing a composite material of a paper slag sludge and an inorganic polymer according to claim 17, wherein the inert additive comprises stone soil 19 201022159 mud, waste stone sulphate earth or a combination thereof. 20. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, wherein the lye and the paper slag sludge are mixed, the citrate solution and the paper slag a step of mixing the fibers of the sludge with the slurry and a step of mixing the high-temperature phase alumina powder with the paper slag sludge and the inorganic polymer precursor composite slurry, comprising mixing with a mixing machine Treatment to form a uniformly mixed slurry. 21. The method of producing a composite material of a paper slag sludge and an inorganic polymer according to claim 20, wherein the mixer comprises an anchor type or a blade type mixer. 22. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 1, further comprising a processing process for the composite material of the paper slag sludge and the inorganic polymer, the processing The program includes: providing a mold, filling the composite material of the paper slag sludge and the inorganic polymer into the mold; performing a curing treatment to solidify the composite material of the paper slag sludge and the inorganic polymer; Demolding treatment to form a composite product of paper sludge and inorganic polymer. 23. The method for producing a composite material of a paper slag sludge and an inorganic polymer according to claim 22, wherein the curing treatment comprises a room temperature curing or a high temperature curing, the room temperature curing comprising 10 to 40 ° C. The temperature is maintained at a temperature of 40 to 150 ° C. 24. The method for producing a composite material of a paper slag sludge and an inorganic polymer 20 201022159, wherein the paper slag sludge comprises an organic wood fiber, an inorganic clay, and a moisture, and The moisture content of the paper slag sludge includes 30 to 80% by weight. 25. The method for producing a composite of paper-sludged sludge and an inorganic polymer according to claim 1, wherein the fiber has a plurality of pores therein, and in the mixing step of the alkali liquor and the paper slag sludge The lye penetrates into the pores of the fiber. 26. The method for producing a composite material of a paper slag sludge and an inorganic polymerization product according to claim 25, wherein in the step of mixing the silicate solution and the fiber slag sludge, The citrate solution penetrates into the pores of the fiber. 27. A composite material of a paper slag sludge and an inorganic polymer, comprising: an inorganic polymer obtained by polymerizing a dream acid salt solution and a high temperature phase alumina powder material; a paper slag sludge uniformly mixed with the inorganic polymer to form a composite material of the paper slag sludge and an inorganic polymer, wherein the paper slag sludge has a plurality of fibers, and the fiber systems are independently dispersed In the inorganic polymer. 28. The composite material of a paper slag sludge and an inorganic polymer according to claim 27, wherein the paper slag sludge comprises an organic wood fiber, an inorganic clay, and a moisture, and the paper slag sludge contains water. The rate includes 30 to 80% by weight. 29. The composite of paper slag sludge and inorganic polymer of claim 27, wherein the fiber has a plurality of pores therein, and the ceric acid 21 201022159. The salt solution penetrates into the pores. 30. A composite material of a paper slag sludge and an inorganic polymer according to claim 27, wherein the oxalate solution comprises an aqueous solution of sodium alginate or potassium oxalate. 31. The composite of paper slag sludge and inorganic polymer of claim 27, wherein the cerium salt solution has a helium oxygen/alkali oxygen molar ratio ranging from 2.4 to 3.6. 32. The composite of paper slag sludge and inorganic polymerization product according to claim 31, wherein the cerium salt solution has a enthalpy/alkali oxygen molar ratio ranging from 2.5 to 3.0. 33. The composite of paper slag sludge and inorganic polymer according to claim 27, wherein the silicate solution has a liquid/solid weight ratio ranging from 1 to 10. 34. The composite of paper slag sludge and inorganic polymer according to claim 33, wherein the silicate solution has a liquid/solid weight ratio ranging from 2 to 5. 35. The composite material of the paper slag sludge and the inorganic polymer according to claim 27, wherein the high temperature phase alumina powder comprises a high temperature calcined kaolin powder, and the temperature of the high temperature baking treatment comprises 500 to 800 ° C. 36. The composite material of paper slag sludge and inorganic polymer according to claim 27, further comprising an active additive, an inert additive or a combination thereof, and the active additive is produced by high temperature treatment. A powder material rich in alumina or cerium oxide, which is an inorganic powder material that has not been subjected to high temperature treatment 22 201022159 •. 37. The composite of paper slag sludge and inorganic polymer of claim 36, wherein the active additive comprises hearthstone, fly ash, desulfurization slag, or a combination thereof. 38. The composite of paper slag sludge and inorganic polymer of claim 36, wherein the inert additive comprises stone sludge, waste diatomaceous earth or a combination thereof. 23twenty three
TW97148717A 2008-12-15 2008-12-15 Paper sludge-geopolymer composite and fabrication method thereof TWI385127B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97148717A TWI385127B (en) 2008-12-15 2008-12-15 Paper sludge-geopolymer composite and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97148717A TWI385127B (en) 2008-12-15 2008-12-15 Paper sludge-geopolymer composite and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201022159A true TW201022159A (en) 2010-06-16
TWI385127B TWI385127B (en) 2013-02-11

Family

ID=44832938

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97148717A TWI385127B (en) 2008-12-15 2008-12-15 Paper sludge-geopolymer composite and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI385127B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400218B (en) * 2010-10-29 2013-07-01 Ind Tech Res Inst Core-shell geopolymer composite and fabrication method thereof
TWI477327B (en) * 2012-12-07 2015-03-21 Ind Tech Res Inst Method for manufacturing humidity adjusting composite and humidity adjusting composite
TWI483916B (en) * 2010-10-29 2015-05-11 Production method of inorganic foamed polymer soundproof material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW499330B (en) * 2000-09-07 2002-08-21 Ind Tech Res Inst Method for preparing material for plasticized fiber board from pulp sludge and method for producing plasticized fiber board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400218B (en) * 2010-10-29 2013-07-01 Ind Tech Res Inst Core-shell geopolymer composite and fabrication method thereof
TWI483916B (en) * 2010-10-29 2015-05-11 Production method of inorganic foamed polymer soundproof material
TWI477327B (en) * 2012-12-07 2015-03-21 Ind Tech Res Inst Method for manufacturing humidity adjusting composite and humidity adjusting composite

Also Published As

Publication number Publication date
TWI385127B (en) 2013-02-11

Similar Documents

Publication Publication Date Title
JP5782462B2 (en) Phosphate bonded composites and methods
US9115025B2 (en) Aerogel compositions and methods of making and using them
CN1247487C (en) Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
CN108892414A (en) A kind of Mobyneb swelling fiber anti-crack water-proof agent and preparation method
WO2006025331A1 (en) Inorganic plate and process for production thereof
JP2006062883A (en) Wooden cement board and its manufacturing method
CN114230289A (en) Green high-strength and high-toughness concrete and preparation process thereof
JP2009500273A (en) Viscous composition and method for producing the same
JP6898926B2 (en) Fiber reinforced carbonated cement molded product and its manufacturing method
TW201022159A (en) Paper sludge-geopolymer composite and fabrication method thereof
JP2006069808A (en) Inorganic board and its manufacturing method
CN106830798A (en) A kind of alkali-activated carbonatite glue and its application in concrete strengthening
CN111548109A (en) Preparation method of natural brucite fiber modified lime-metakaolin composite mortar
CN108439878A (en) A kind of waterproof fibre cement pressure plate of nano-cellulose enhancing
JP2004360136A (en) Staple fiber for reinforcement having excellent loosening property
CN109608141B (en) Salt erosion resistant concrete and preparation method thereof
CN101745986B (en) Composite material of paper slag sludge and inorganic polymers and the preparation method thereof
AU734472C (en) A hydraulic hardened foamed product and a method of producing the same
TWI400218B (en) Core-shell geopolymer composite and fabrication method thereof
CN101890758B (en) Method for drying and dispersing carbon fibers in cement powder
TWI445871B (en) Light weight and thermal insulation composition aggregates and fabrication method thereof
CN102786278A (en) Non-asbestos fiber reinforced calcium silicate board and manufacturing method thereof
CN113735619A (en) Second-order stirring technology for concrete containing recycled brick aggregate
Fonseca et al. Influence of Different Types of Treatments on Amazonian Vegetable Fibers on the Performance of Mortars Based on Portland Cement, Metakaolin and Fly Ash
JP2010083698A (en) Method for producing hardened cement body, and hardened cement body