201022159 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種複合材料,特別有關於一種紙渣 污泥與無機聚合物之複合材料及其製造方法。 【先前技術】 ' 紙渣污泥是造紙廠在製造過程中所產生的廢水,經濃 泥槽沉降與帶濾機(或壓濾機)脫水處理後產生的污泥,其 通常含有有機木纖維、黏土質及大量的水分,目前一般的 鲁 處理方式以掩埋為主’或者待紙渣污泥中的木纖維腐化後 應用於複合肥料中。 目前使用木纖維的複合材料通常是利用水泥結合紙漿 木纖維形成纖維水泥板,應用於建築材料_。首先將廢紙 與紙漿混合的纖雉材料或是紙渣污泥以盤磨式解纖機處 理,使得互相纏繞的木纖維磨開解離,接著放入具有水與 水泥混合的散漿機中,以刮刀式攪拌機分散成漿體,再經 ^ 過高壓成型、裁切與養護後,形成纖維水泥複合板材成品。 無機聚合物是一種以矽氧鋁結構為基礎之聚合材料, 可於常溫下固化成型,且強度與物性皆優於水泥,因此可 替代水泥作為膠結劑。然而,由於無機聚合物的形成方式 屬於溶膠凝膠製程(sol-gel process),而傳統纖維水泥板的 製造方法係利用高倍率的水與紙渣污泥混合攪拌製成漿 體’這種方法無法適用於無機聚合物,因為其會導致無機 聚合反應物的濃度過低,而無法固化形成複合基材。此外, 在習知無機聚合物的溶膠-凝膠製程中混入紙渣纖維,則會 5 201022159 . 因為有機纖維與無機聚合物的比重及表面張力等差異,以 及無機聚合物漿體的黏稠性太高,而使得纖維易互相纏繞 形成纖維團,無法均勻地單離分散在無機聚合物中,造成 複合材料中紙渣纖維的勤性功能無法發揮,並易導致複合 材料的内應力不均而龜裂。 ' 因此,業界亟需一種紙渣污泥-無機聚合物複合材料的 製法,其可以使紙渣污泥中的纖維單離分散在無機聚合物 中,以形成性能優異的紙渣污泥-無機聚合物複合材料。 ® 【發明内容】 本發明提供一種紙渣污泥與無機聚合物之複合材料的 製造方法,包括提供紙渣污泥,紙渣污泥是由木纖維互相 纏繞的纖維團所形成;將鹼液與紙渣污泥混合,以對纖維 團進行浸潤分散處理,使得纖維團中的纖維易於單離分 散,形成紙渣污泥之纖維單離漿體;將矽酸鹽溶液與紙渣 污泥之纖維單離漿體混合,形成紙渣污泥-無機聚合物前驅 康 物複合漿體;以及將高溫相富氧化鋁質粉體與紙渣污泥- 無機聚合物前驅物複合漿體混合反應,以形成紙渣污泥與 無機聚合物之複合材料。 此外,本發明還提供一種紙渣污泥與無機聚合物之複 合材料,包括無機聚合物,其係由矽酸鹽溶液與高溫相富 氧化鋁質粉體聚合而成;以及紙渣污泥與無機聚合物均勻 混合,以形成紙渣污泥與無機聚合物之複合材料,其中該 紙渣污泥中具有複數條纖維,且該些纖維係各自獨立地分 散於無機聚合物中。 6 201022159 . 為了讓本發明之上述目的、特徵、及優點能更明顯易 懂,以下配合所附圖式,作詳細說明如下: 【實施方式】 本發明係利用紙渣污泥的纖維特性與無機聚合物結合 形成複合材料,無機聚合物具有優異的物性與化性,包括 絕熱、耐熱、不燃、不發煙、耐震、耐候、抗浸蝕等,然 而無機聚合物屬於硬脆性材料,因此若能與紙渣污泥結 合,利用紙渣污泥之纖維的韌性補強,則可以產生性能更 • 佳的複合材料,並使其應用範圍更廣。 紙渣污泥是紙廠製造過程的含纖維廢水,經濃泥槽沉 降與壓濾機脫水處理後產生的污泥,紙渣污泥之主要成分 為有機木纖維、無機黏土及大量水分,其含水率約為30 至80重量%,紙渣污泥中的木纖維係以互相纏繞的纖維團 形式呈現。 本發明藉由改進無機聚合物的製程技術,以克服在無 機聚合反應之溶膠-凝膠製程(sol-gel process)中,互相纏繞 的紙渣纖維無法有效單離分散,以及有機木纖維與無機聚 合物之界面間不易完全複合的問題,使得紙渣污泥可以作 為再生的纖維原料,與無機聚合物形成複合材料。 請參閱第1圖,其係顯示依據本發明一實施例之紙渣 污泥與無機聚合物複合材料之製造方法的流程圖。首先, 在步驟S100中提供紙渣污泥,接著,針對紙渣污泥的纖維 容易交互纏繞形成纖維團,以及纖維不易單離分散的特 性,在步驟S102中使用苛性驗液處理紙潰污泥,由於紙潰 7 201022159 污泥的木纖維為_多孔f,㈣液财Μ 纖;:广_達到完全浸潤的效果省 纖維團易於單離分散。上述之苛性驗液可以是 氯氧化钟溶液,其濃度範圍可以為㈣〜 Γ^Ν〜5Ν。另外苛性鹼液與紙渣污泥混合的 f固㈣可以為1至1G’較佳為1至3。在步驟S搬 泥與苛性驗液混合後可置入高扭力的混拌機 完全解:3 = = ^:直_查污泥的木纖維團 均勻的漿體,亦即在此漿體中木纖維團均 單離分散,木纖維是以未纏繞的狀態存在浆體中。 目心t ’在步驟1G4 +,於木纖維單離分散襞體中添加 二 %♦酸鹽水溶液,以高扭力的混拌機進行混合分 装中形絲渣污泥與無機聚合物前驅物之複合聚體, 、,:機聚合物前驅物屬於氧化矽質活性化材料。由於木 ,維夕孔:内部的鹼液可引導矽酸鹽水溶液滲入木纖維的 艾=質内邻,因此在擴散混拌後,無機聚合物前驅物可充 刀~人木纖_多孔質内部’以促進I機聚合物與木纖維 膠結形成複合材料,並降低木纖_的有❹醣體素對複 合材料之強度的負面影響。 Θ述矽酸鹽水溶液可以是矽酸鈉或矽酸鉀水溶液,矽 2 4 、’液的矽氧/驗氧莫耳比,亦即水玻璃係數範圍可以為 ,r 較佳為2.5至3.0。矽酸鹽水溶液的液/固重量 比\圍可以為1至H),較佳為2至5。 然後,在步驟106卜將前述之纸渣污泥與無機聚合 8 201022159 . 物前驅物之複合漿體與高溫相富氧化鋁質粉體混合,在高 扭力的混拌機進行高速混拌處理,直到形成均勻的漿體, 此時產生無機聚合反應,以形成紙渣污泥與無機聚合物之 複合基材的漿體。上述紙渣污泥-無機聚合物前驅物複合漿 體與高溫相氧化鋁質粉體的漿/固混合重量比範圍可以為1 至10,較佳為2至4。 上述之高溫相富氧化鋁質粉體例如為經高溫焙燒處理 的高嶺土粉體,其高溫焙燒處理的溫度可以是500至800 ® °C。除了高溫焙燒處理的高嶺土之外,還可以添加活性添 加物、惰性添加物或前述之組合,活性添加物具有波索蘭 材料特性,其係經高溫處理產生之富含氧化鋁或氧化矽的 再生粉體材料,例如為爐石、飛灰、脫硫渣或前述之組合; 惰性添加物則是未經高溫處理的無機粉體材料,例如石材 污泥、廢矽藻土或前述之組合的無機粉體廢棄物。由於活 性添加物具有波索蘭材料特性,其對於無機聚合物的物性 _ 會產生影響,因此可依據複合材料特性之需求去改變活性 添加物的添加量。 接著,在步驟108中,將紙渣污泥與無機聚合物之複 合基材的漿體填充入模具中。在步驟110中,進行常溫或 高溫養護處理。在步驟112中,等待複合基材的漿體固化 成型,接著,在步驟112中,進行脫模處理。之後,在步 驟116中,得到符合模具形狀的紙渣污泥與無機聚合物複 合材料產品。 上述的模具可以是任意形狀,視最終產品所需形狀而 9 201022159 :養在10至。:c的室溫下靜置進行’而高 15。。⑽蒸汽室中⑽供乾溫度下’或是在4°至 77彳ΐΪί製程步驟中所使用的混拌機可以是錨狀式或刮 = 並結合高扭力馬達構成。 料且二述方法所得到的紙渣污泥與無機聚合物複合材 二二 !性、隔熱性、隔音性、調濕性及防火性等多重 U i騎合環麵求的、輯材產品。 #人队下歹】舉本發明各實施例與比較例之紙渣污泥與無機 複^材料的製造方式及其材料特性,其中實施例1 複合㈣係依據第1 ®之製造枝製作,而比較例1 材_是依據第2圖之製造方法製作。比較例之製 S206昔/施例之製造方法的差别在於步驟S200〜 請2中力H步驟2〇0、中提供石夕酸鹽溶液,接著,在步驟 ❿ 步驟8204 Φ⑨形成矽質的無機聚合物前驅物溶液。在 高溫相富氧化㈣粉體加人無機聚合物㊁ /液,形成無機聚合物漿體。接著,在步 將紙渣污泥加人無齡合物漿中’ ,合物複合基材。在比較例之複:二c 交互纏繞成纖維團的形式存在,纖維ct :::散在無機聚合物中’因此比較例之複合材;= 【實施例1】 取1.5公斤紙廠產生的紙奸泥(含水率約52重量%, 201022159 ,基木纖維佔總容積率約78%),加人3公斤峨氫氧化納 办液^拌至紙潰污泥均浸泡在驗液中,、經隔夜浸潤後’ 置入錨,式咼扭力混拌機中,以高扭力混拌分散1小時 後確疋、、、氏渣纖維已充分解離’無紙渣顆粒存在。之後再 加入j公斤水玻璃溶液,其比重為50波美度(Be'),再繼 續以间扭力分散混拌1小時,完成紙渣污泥•無機聚合物前 驅物複合漿體。 接著,取2公斤經高溫焙燒(800。(:,2小時)處理的高 嶺土,以及4公斤飛灰(燃煤火力電廠靜電除塵產出,比重 為0.92)’分別先後置入前述紙渣污泥_無機聚合物前驅物 複合漿體中,以高扭力分散混拌丨小時,形成均勻的漿狀 體後’直接將漿體充填到特定的板形或柱狀的測試樣品模 具中’進行常溫養護,經隔夜固化成型後脫模,放入烘箱 中進行90°C、12小時養護,得到紙渣污泥-矽鋁無機聚合 物複合材料產品。 經物性檢測結果,實施例1之複合材料測試樣品的比 重為1.1、吸水率為34%、抗壓強度為468kgf/cm2、抗彎強 度為 102kgf/cm2。另外使用檢測儀(Applied Precision,Ltd 公司的ISOMET 2104型)進行實施例1之複合材料測試樣 品的熱傳導性能檢測,其熱傳導係數為0.21kcal/mh°C,顯 然較一般無機聚合物(熱傳導係數約為0.9 kcal/mh,比重約 2·0)具有更佳的隔熱性與輕質化功能。 【實施例2】 在取2公斤紙廠產生的紙潰污泥(含水率約74重量%, 201022159 • 乾基木纖維佔總容積率約78%),加入2.5公斤5N氫氧化 納溶液’攪拌至紙渣污泥均浸泡在驗液中,經隔夜浸潤後, 置入錨狀式高扭力混拌機中,以高扭力分散混拌1小時 後’確定紙渣纖維已充分解離,無紙渣顆粒存在。之後加 入2.5公斤水玻璃溶液(比重5〇Be'),再持續高扭力分散混 掉1小時,完成紙渣污泥_無機聚合物前驅物複合漿體。 取2公斤飛灰(燃煤火力電廠產出)與1公斤爐石粉,分 φ 別置入前述紙渣污泥-無機聚合物前驅物複合漿體中,以高 扭力分散混拌1小時,行成均勻的漿體後,直接將漿體充 填到特定的板形或柱狀測試樣品模具中,進行常溫的養 護’經隔夜固化成型後脫模,在室溫下靜置一週完成常溫 養護後’再放入9〇t:烘箱中加溫與烘乾,得到紙渣污泥_ 無機聚合物複合材料產品。 經物性檢測結果’實施例2之複合材料測試樣品的比 重為1.05、吸水率為32%、抗壓強度為32〇kgf/cm2、抗彎 鲁強度為98kgf/cm2。另外使用檢測儀(Applied Precision,Ltd 公司的ISOMET 2104型)進行實施例2之複合材料測試樣 品的熱傳導性能檢測’其熱傳導係數為〇·23 kcal/mht3c。 【實施例3】 取2公斤紙廠產生的紙渣污泥(含水率約74 5重量%, 乾基木纖維佔總容積率約78 5%),加入3公斤in氫氧化 納洛液’擾摔至紙渣污泥均浸泡在鹼液中,經隔夜浸潤後, 置入錯狀式高扭力混拌機中,以高扭力分散混拌1小時 後’確疋紙產纖維已充分解離後,加入2公斤水玻璃溶液(比 12 201022159 .重50Be'),再持續高扭力分散混拌1小時,完成紙渣污泥_ 無機聚合物前驅物複合漿體。 將刚述紙渣污泥-無機聚合物前驅物複合漿體與2公斤 經尚溫焙燒處理(7〇(TC,2小時)的高嶺土置入高扭力分散 混拌機中,以高扭力分散混拌丨小時,形成均勻的漿體後, 直接將漿體充填到特定的板形或柱狀測試樣品模具中,進 行常溫的養護’經隔夜固化成型後脫模,放入9(rc烘箱中 ^ 加溫與供乾’得到紙渣污泥-無機聚合物複合材料產品。 經物性檢測結果,實施例3之複合材料測試樣品的比 重為丨.19、吸水率為24%、抗壓強度為576kgf/cm2、抗彎 強度為 112kgf/cm2。另外使用檢測儀(Applied Precision, Ltd 公司的ISOMET 2104型)進行實施例3之複合材料測試樣 品的熱傳導性能檢測,其熱傳導係數為0.26kcal/mh〇C。 【比較例1】 先將3公斤1N氫氧化納溶液與2公斤水玻璃溶液混201022159 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a composite material, and more particularly to a composite material of paper slag sludge and inorganic polymer and a method for producing the same. [Prior Art] 'Paper slag sludge is the waste water produced by the paper mill during the manufacturing process. It is sludge produced by the sedimentation of the thick mud tank and dewatering with a filter (or filter press), which usually contains organic wood fiber. Clay quality and a large amount of water. At present, the general treatment method of Lu is mainly based on landfilling or the wood fiber in the sludge of paper slag is used in compound fertilizer. At present, composite materials using wood fiber are usually formed by using cement combined with pulp wood fiber to form a fiber cement board for use in building materials. Firstly, the fiber material or the paper slag sludge mixed with the waste paper and the pulp is treated by a disc grinding type defibrating machine, so that the intertwined wood fibers are ground and dissociated, and then placed in a pulper with a mixture of water and cement. It is dispersed into a slurry by a doctor blade mixer, and then formed into a fiber cement composite sheet by high pressure molding, cutting and curing. Inorganic polymer is a kind of polymer based on bismuth aluminum oxide structure. It can be solidified at room temperature and has better strength and physical properties than cement. Therefore, it can replace cement as cement. However, since the formation method of the inorganic polymer belongs to the sol-gel process, the conventional fiber cement board manufacturing method utilizes high-magnification water and paper slag sludge to mix and form a slurry. It is not suitable for inorganic polymers because it causes the concentration of the inorganic polymerization reactant to be too low to form a composite substrate. In addition, in the sol-gel process of the conventional inorganic polymer, the paper slag fiber is mixed, which will be 5 201022159. Because of the difference in specific gravity and surface tension between the organic fiber and the inorganic polymer, and the viscosity of the inorganic polymer slurry is too High, so that the fibers are easily entangled to form a fiber mass, which cannot be uniformly dispersed in the inorganic polymer, resulting in the inability of the paper slag fiber in the composite material to function, and easily lead to uneven internal stress of the composite material. crack. Therefore, there is a need in the industry for a method for producing a paper slag sludge-inorganic polymer composite which can disperse fibers in a paper slag sludge in an inorganic polymer to form a paper slag sludge having excellent properties - inorganic Polymer composites. SUMMARY OF THE INVENTION The present invention provides a method for producing a composite material of paper slag sludge and an inorganic polymer, comprising providing paper slag sludge, which is formed by a fiber group in which wood fibers are intertwined; Mixing with paper slag sludge to infiltrate and disperse the fiber mass, so that the fibers in the fiber mass are easily separated and dispersed, and the fiber forming the paper slag sludge is separated from the slurry; the citrate solution and the paper slag sludge are The fiber is separated from the slurry to form a paper slag sludge-inorganic polymer precursor complex composite slurry; and the high temperature phase rich alumina powder is mixed with the paper slag sludge-inorganic polymer precursor composite slurry, To form a composite material of paper slag sludge and inorganic polymer. In addition, the present invention also provides a composite material of paper slag sludge and an inorganic polymer, comprising an inorganic polymer obtained by polymerizing a citrate solution and a high-temperature phase-rich alumina powder; and a paper slag sludge and The inorganic polymer is uniformly mixed to form a composite of paper slag sludge and an inorganic polymer, wherein the paper slag sludge has a plurality of fibers, and the fibers are each independently dispersed in the inorganic polymer. 6 201022159. In order to make the above objects, features, and advantages of the present invention more comprehensible, the following description will be described in detail with reference to the accompanying drawings. The polymer combines to form a composite material. The inorganic polymer has excellent physical properties and chemical properties, including heat insulation, heat resistance, non-combustibility, no smoke generation, shock resistance, weather resistance, corrosion resistance, etc. However, the inorganic polymer is a hard and brittle material, so if When the paper slag sludge is combined and the toughness of the fiber of the paper slag sludge is used, it is possible to produce a composite material with better performance and a wider application range. The paper slag sludge is the fiber-containing wastewater in the paper mill manufacturing process, and the sludge produced by the sedimentation of the thick sludge tank and the dewatering treatment of the filter press. The main components of the paper slag sludge are organic wood fiber, inorganic clay and a large amount of water. The water content is about 30 to 80% by weight, and the wood fibers in the paper slag sludge are present in the form of intertwined fiber mass. The present invention overcomes the problem that the intertwined paper slag fibers cannot be effectively separated and dispersed, and the organic wood fibers and inorganic materials in the sol-gel process of inorganic polymerization by improving the process technology of the inorganic polymer. The problem that the interface between the polymers is not easily recombined, so that the paper slag sludge can be used as a recycled fiber raw material to form a composite material with the inorganic polymer. Referring to Fig. 1, there is shown a flow chart showing a method of manufacturing a paper slag sludge and an inorganic polymer composite according to an embodiment of the present invention. First, the paper slag sludge is supplied in step S100, and then, the fibers of the paper slag sludge are easily entangled to form a fiber mass, and the fiber is not easily separated and dispersed. In step S102, the caustic liquid is used to treat the paper sludge. Because of the paper collapse 7 201022159 The wood fiber of the sludge is _ porous f, (four) liquid Μ ;;; wide _ to achieve the effect of complete wetting, the fiber group is easy to separate and disperse. The caustic test solution described above may be a chlorine oxidation clock solution, and the concentration may range from (4) to Γ^Ν~5Ν. Further, the f solid (four) of the caustic solution mixed with the paper sludge may be 1 to 1 G', preferably 1 to 3. In the step S, the mud can be placed in a high-torque mixer after mixing with the caustic test solution. Complete solution: 3 = = ^: Straight _ check the uniform slurry of the wood fiber mass of the sludge, that is, the wood in the slurry The fiber masses are individually dispersed, and the wood fibers are present in the slurry in an unwound state. In the step 1G4 +, adding a 2% aqueous acid salt solution to the wood fiber monodisperse dispersed carcass, mixing and mixing the medium-sized silk slag sludge and the inorganic polymer precursor with a high-torque mixer The composite polymer, ,,: polymer precursor is a cerium oxide activated material. Due to the wood, the Vichy hole: the internal lye can guide the aqueous solution of phthalate to penetrate into the inner and inner neighbors of the wood fiber, so after the diffusion and mixing, the inorganic polymer precursor can be filled with a knife~human wood fiber_porous interior 'To promote the formation of composites of I polymer and wood fiber cement, and reduce the negative impact of wood fiber ❹ glucoside voxel on the strength of the composite. The aqueous solution of citrate may be sodium citrate or potassium citrate aqueous solution, 矽 24, 矽 liquid oxime / oxygen oxime ratio, that is, the water glass coefficient may range, r is preferably 2.5 to 3.0. The liquid/solid weight ratio of the aqueous citrate solution may be from 1 to H, preferably from 2 to 5. Then, in step 106, the composite slurry of the paper pulp sludge and the inorganic polymer 8 201022159 precursor is mixed with the high-temperature phase-rich alumina powder, and the high-pressure mixing machine is subjected to high-speed mixing treatment. Until a uniform slurry is formed, an inorganic polymerization reaction is produced at this time to form a slurry of a composite substrate of paper slag sludge and inorganic polymer. The slurry-solid mixing weight ratio of the above paper slag sludge-inorganic polymer precursor composite slurry to the high temperature phase alumina powder may range from 1 to 10, preferably from 2 to 4. The above-mentioned high-temperature phase-rich alumina powder is, for example, a kaolin powder which is subjected to high-temperature calcination, and the high-temperature calcination treatment temperature may be 500 to 800 ° C. In addition to the high temperature calcined kaolin, an active additive, an inert additive or a combination of the foregoing may be added. The active additive has a Poisson material property, which is a regeneration of alumina or cerium oxide produced by high temperature treatment. The powder material is, for example, hearthstone, fly ash, desulfurized slag or a combination thereof; the inert additive is an inorganic powder material which is not subjected to high temperature treatment, such as stone sludge, waste diatomaceous earth or a combination of the foregoing Powder waste. Since the active additive has the properties of the Possolan material, it has an influence on the physical properties of the inorganic polymer, so that the amount of the active additive added can be changed depending on the characteristics of the composite material. Next, in step 108, a slurry of the composite substrate of the paper slag sludge and the inorganic polymer is filled into the mold. In step 110, a normal temperature or high temperature curing process is performed. In step 112, the slurry of the composite substrate is waited for solidification molding, and then, in step 112, a release treatment is performed. Thereafter, in step 116, a paper slag sludge and an inorganic polymer composite material conforming to the shape of the mold are obtained. The above mold may be of any shape, depending on the desired shape of the final product. 9 201022159: Raised at 10 to. :c is allowed to stand at room temperature and is 15 high. . (10) The mixer used in the steam chamber (10) for dry temperature or in the 4° to 77彳ΐΪ process step may be anchored or scraped = combined with a high torque motor. And the paper slag sludge and inorganic polymer composite material obtained by the two methods described above are two-dimensional, heat-insulating, sound-insulating, humidity-controlling and fire-resistant. . #人队下歹] The manufacturing method and material characteristics of the paper slag sludge and the inorganic composite material of the respective embodiments and comparative examples of the present invention, wherein the composite (4) of the first embodiment is made according to the manufacturing branch of the first ® Comparative Example 1 Material_ was produced according to the manufacturing method of Fig. 2. The manufacturing method of the comparative example S206/example is different in the steps S200 to 2 in the force H step 2〇0, in which the solution is provided, and then in step 820 Φ9, the inorganic polymerization of the enamel is formed. Precursor solution. The high temperature phase is rich in oxidation (4) powder and the inorganic polymer II / liquid is added to form an inorganic polymer slurry. Next, in the step, the paper slag sludge is added to the talc-free composite substrate. In the case of the comparative example: two c inter-entangled into the form of a fiber mass, the fiber ct ::: scattered in the inorganic polymer 'so the composite of the comparative example; = [Example 1] Take the paper scrap produced by the 1.5 kg paper mill Mud (water content of about 52% by weight, 201022159, base wood fiber accounted for about 78% of the total volume ratio), plus 3 kg of strontium hydroxide solution, mixed with paper and sludge, soaked in the test solution, overnight After infiltration, the anchor and the twisting force mixer were placed in a high-torque mixture for 1 hour, and the slag fiber was fully dissociated from the presence of the paperless slag particles. Then add j kg of water glass solution, the specific gravity is 50 Babe (Be'), and then continue to disperse and mix for 1 hour with inter-torque force to complete the paper slag sludge and inorganic polymer precursor composite slurry. Next, take 2 kg of kaolin treated by high temperature roasting (800. (:, 2 hours), and 4 kg of fly ash (produced by electrostatic dedusting of coal-fired power plant, specific gravity is 0.92). _Inorganic polymer precursor composite slurry, disperse and mix with high torque for a few hours to form a uniform slurry, and then directly fill the slurry into a specific plate-shaped or columnar test sample mold to carry out normal temperature curing After being solidified and molded overnight, the mold was released and placed in an oven for curing at 90 ° C for 12 hours to obtain a paper slag sludge-yttrium aluminum inorganic polymer composite product. The composite material test sample of Example 1 was obtained by physical property test results. The specific gravity was 1.1, the water absorption rate was 34%, the compressive strength was 468 kgf/cm2, and the flexural strength was 102 kgf/cm 2. The composite material test of Example 1 was additionally carried out using a detector (ISOMET 2104 type of Applied Precision, Ltd.). The thermal conductivity of the sample is 0.21kcal/mh °C, which is better than the general inorganic polymer (heat transfer coefficient is about 0.9 kcal/mh, specific gravity is about 2.0). It has better heat insulation and light weight. [Example 2] In the 2 kg paper mill, the paper sludge was generated (water content was about 74% by weight, 201022159 • dry wood fiber accounted for about 78% of the total volume ratio), and 2.5 kg of 5N sodium hydroxide solution was added. 'Stirring until the paper slag sludge is immersed in the test solution, after being infiltrated overnight, placed in an anchor-type high-torque mixer, and dispersed for 1 hour with high torque, 'determine that the paper slag fiber has been fully dissociated, no Paper slag particles are present. Then add 2.5 kg water glass solution (specific gravity 5 〇 Be'), and then continue to mix high-torque for 1 hour to complete the paper slag sludge _ inorganic polymer precursor composite slurry. Take 2 kg fly ash (produced by coal-fired thermal power plant) and 1 kilogram of calculus powder, divided into φ, into the above-mentioned paper slag sludge-inorganic polymer precursor composite slurry, dispersed and mixed for 1 hour with high torque, and formed into a uniform slurry. After that, the slurry is directly filled into a specific plate-shaped or column-shaped test sample mold, and subjected to normal temperature curing. After overnight curing, the mold is released, and it is allowed to stand at room temperature for one week to complete the normal temperature curing. t: Heating and drying in the oven to obtain paper sludge _ Organic polymer composite product. Physical property test results The composite material test sample of Example 2 had a specific gravity of 1.05, a water absorption of 32%, a compressive strength of 32 〇kgf/cm2, and a bending resistance of 98 kgf/cm2. Further, the thermal conductivity test of the composite material test sample of Example 2 was carried out using a detector (ISOMET Model 2104 of Applied Precision, Ltd.), and its heat transfer coefficient was 〇·23 kcal/mht3c. [Example 3] A 2 kg paper mill was taken. The resulting paper sludge (water content is about 74.5% by weight, dry wood fiber accounts for about 78% of the total volume ratio), and 3 kg of indium hydroxide solution is added to disturb the paper sludge. In the liquid, after being infiltrated overnight, put it into the wrong type high-torque mixer, and disperse it with high torque for 1 hour. After confirming that the paper fiber has been fully dissociated, add 2 kg of water glass solution (cf. 12 201022159). . Weight 50Be'), and then continue to mix high-torque mixing for 1 hour to complete the paper slag sludge _ inorganic polymer precursor composite slurry. The paper slag sludge-inorganic polymer precursor composite slurry was placed in a high-torque dispersion mixer with 2 kg of calcined (7 〇, TC, 2 hours) kaolin. After mixing for a small time to form a uniform slurry, the slurry is directly filled into a specific plate-shaped or column-shaped test sample mold, and subjected to normal temperature curing. After overnight curing, the mold is released and placed in a 9 (rc oven). Heating and drying 'to obtain paper slag sludge-inorganic polymer composite product. According to the physical property test results, the composite material of the sample of Example 3 has a specific gravity of 丨19, a water absorption rate of 24%, and a compressive strength of 576 kgf. /cm2, the flexural strength was 112 kgf/cm 2. In addition, the thermal conductivity test of the composite test sample of Example 3 was carried out using a detector (ISOMET 2104 type of Applied Precision, Ltd.), and the heat transfer coefficient was 0.26 kcal/mh 〇 C. [Comparative Example 1] First mix 3 kg of 1N sodium hydroxide solution with 2 kg of water glass solution.
A 合’形成氧化梦質之無機聚合物前驅物,再與2公斤紙廠 W 產生的紙渣污泥(含水率約74.5重量%,乾基木纖維佔總容 積率約78.5%)—起置入錨狀式高扭力混拌機中,以高扭力 分散混拌1小時後,完成紙渣污泥-無機聚合物前驅物複合 漿體,該漿體中紙渣纖維呈顆粒狀存在’即使再持續混拌 數小時亦無法改善。 將前述紙渣污泥-無機聚合物前驅物複合漿體與2公斤 經高溫焙燒處理(700。(:,2小時)的高嶺土置入高扭力分散 混拌機中,以高扭力分散混拌1小時,形成均勻的漿體後, 13 201022159 直接將榮體充填到特定的板形或柱狀測試樣品模具中,進 行常溫的養護,經隔夜固化成型後脫模,放入90¾烘箱中 加溫與烘乾’得到紙渣污泥_無機聚合物複合材料產品。 經物性檢測結果,比較例1之複合材料測試樣品的比 重為1.18、吸水率為28%、抗壓強度為324kgf/cm2、抗彎 強度為 79kgf/cm2。另外使用檢測儀(Applied Precision, Ltd 公司的ISOMET 2104型)進行比較例1之複合材料測試樣 品的熱傳導性能檢測,其熱傳導係數為0.39kcal/mh°C。 本發明各實施例與比較例之複合材料物性比較結果如 下表1所示: ^ 表1實施例 與比較例之複合材料物性比i 比重 吸水率 (%) 抗壓強度 (kgf/cm2) 抗彎強度 (kgf/cm2) 熱傳導係數 (kcal/mh°C) 實施例1 1.1 34 468 102 0.21 施例2 1.05 32 320 98 0.23 實施例3 1.19 24 576 112 0.26 _i^,j i 1.18 28 324 79 0.39 由表1可得知,本發明各實施例所製得之複合材料具 有輕質性、隔熱性、調濕性以及良好的抗壓及抗彎強度。 此外,由實施例3與比較例1之複合材料的物性比較結果 可得知,依據本發明實施例之製法所製得的複合材料具有 較佳的抗壓及抗彎強度’這表示本發明之紙渣污泥-無機聚 合物複合材料的製造方法對於複合材料的物性具有提昇效 果。 14 201022159 . 上述實施例3與比較例1所製得之複合材料的電子顯 微鏡照片分別如附件1、2所示,其中附件1顯示依據本發 明之製造方法所形成的紙渣污泥-無機聚合物複合材料斷 面中,紙渣污泥的木纖維已經被有效的單離分散,並且與 無機聚合物充分的複合,可以有效地將紙渣纖維的韌性補 強功能充分發揮。 反觀附件2,其顯示依據比較例之製造方法所形成的 紙渣污泥-無機聚合物複合材料斷面中,紙渣污泥的纖維團 ® 因無法有效地解離分散,因此在複合材料内有局部的纖維 團存在,此結果會導致紙渣纖維的韌性補強功能無法發 揮,並易導致複合材料因内應力不均而產生龜裂現象。 雖然本發明已揭露較佳實施例如上,然其並非用以限 定本發明,任何熟悉此項技藝者,在不脫離本發明之精神 和範圍内,當可做些許更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定為準。A combination of 'inorganic polymer precursors that form oxidized dreams, and then with paper pulp sludge produced by 2 kg paper mill W (water content of about 74.5 wt%, dry wood fiber accounted for about 78.5% of total volume ratio) In the anchor-type high-torque mixer, after mixing for 1 hour with high torque, the paper slag sludge-inorganic polymer precursor composite slurry is completed, and the paper slag fibers are in the form of granules. It can't be improved by mixing for several hours. The paper pulp sludge-inorganic polymer precursor composite slurry and 2 kg of high-temperature calcination treatment (700. (:, 2 hours) of kaolin are placed in a high-torque dispersion mixer, and the mixture is dispersed with high torque 1 After a uniform slurry is formed, 13 201022159 directly fills the fused body into a specific plate-shaped or column-shaped test sample mold, and is cured at room temperature. After overnight curing, it is demolded and placed in a 902⁄4 oven for heating and Drying 'to obtain paper slag sludge _ inorganic polymer composite product. According to the physical property test results, the composite material of Comparative Example 1 has a specific gravity of 1.18, a water absorption rate of 28%, a compressive strength of 324 kgf/cm2, and a bending resistance. The strength was 79 kgf/cm 2. Further, the thermal conductivity test of the composite test sample of Comparative Example 1 was carried out using a detector (ISOMET Model 2104 of Applied Precision, Ltd.), and the heat transfer coefficient was 0.39 kcal/mh ° C. The physical properties of the composites of the comparative examples and the comparative examples are shown in the following Table 1: ^ Table 1 Physical properties of composites of the examples and comparative examples i Specific gravity water absorption (%) Compressive strength (kgf/cm2) Bending strength (kgf/cm2) Heat transfer coefficient (kcal/mh°C) Example 1 1.1 34 468 102 0.21 Example 2 1.05 32 320 98 0.23 Example 3 1.19 24 576 112 0.26 _i^,ji 1.18 28 324 79 0.39 From Table 1 It can be seen that the composite materials prepared by the embodiments of the present invention have lightness, heat insulation, humidity control property, and good pressure resistance and bending strength. Further, the composite materials of Example 3 and Comparative Example 1 The physical property comparison result shows that the composite material obtained by the method of the embodiment of the present invention has better compression resistance and bending strength'. This indicates that the paper slag sludge-inorganic polymer composite material of the present invention is manufactured. The physical properties of the composite material have an improvement effect. 14 201022159 . The electron micrographs of the composite materials prepared in the above Example 3 and Comparative Example 1 are respectively shown in Annexes 1 and 2, wherein Annex 1 shows the manufacturing method according to the present invention. In the formed paper slag sludge-inorganic polymer composite section, the wood fiber of the paper slag sludge has been effectively separated and dispersed, and fully compounded with the inorganic polymer, which can effectively reinforce the toughness of the paper slag fiber. Work In contrast, in Annex 2, which shows that the fiber slag of the paper slag sludge cannot be effectively dissociated and dispersed in the section of the paper slag sludge-inorganic polymer composite formed by the manufacturing method of the comparative example, There are localized fiber clusters in the composite material. As a result, the toughness reinforcing function of the paper slag fiber cannot be exerted, and the composite material is liable to cause cracking due to uneven internal stress. Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.
15 201022159 【圖式簡單說明】 第1圖為依據本發明一實施例之紙渣污泥與無機聚合 物複合材料之製造方法流程圖。 第2圖為依據本發明一比較例之紙渣污泥與無機聚合 物複合材料之製造方法流程圖。 附件1、2之照片為本發明實施例3與比較例1所製得 之複合材料的電子顯微鏡照片,其中附件1的放大倍率約 為170倍,附件2的放大倍率約為20倍。 【主要元件符號說明】 S100-S116〜實施例之紙渣污泥與無機聚合物複合材 料之製造方法的各製程步驟; S200-S216〜比較例之紙造污泥與無機聚合物複合材 料之製造方法的各製程步驟。 1615 201022159 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of manufacturing a paper slag sludge and an inorganic polymer composite according to an embodiment of the present invention. Fig. 2 is a flow chart showing a method of producing a paper slag sludge and an inorganic polymer composite according to a comparative example of the present invention. The photographs of the attachments 1 and 2 are electron micrographs of the composite material obtained in Example 3 of the present invention and Comparative Example 1, in which the magnification of the attachment 1 is about 170 times and the magnification of the attachment 2 is about 20 times. [Description of main component symbols] Process steps of the method for producing the paper slag sludge and the inorganic polymer composite material of S100-S116 to the embodiment; the manufacture of the paper sludge and the inorganic polymer composite material of S200-S216~Comparative example Process steps for the method. 16