TW201022085A - Method and system for turning trial of ships - Google Patents

Method and system for turning trial of ships Download PDF

Info

Publication number
TW201022085A
TW201022085A TW97146818A TW97146818A TW201022085A TW 201022085 A TW201022085 A TW 201022085A TW 97146818 A TW97146818 A TW 97146818A TW 97146818 A TW97146818 A TW 97146818A TW 201022085 A TW201022085 A TW 201022085A
Authority
TW
Taiwan
Prior art keywords
ship
initial
swing
degrees
maneuver
Prior art date
Application number
TW97146818A
Other languages
Chinese (zh)
Inventor
Feng-Yeang Chung
Original Assignee
United Ship Design & Dev Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Ship Design & Dev Ct filed Critical United Ship Design & Dev Ct
Priority to TW97146818A priority Critical patent/TW201022085A/en
Publication of TW201022085A publication Critical patent/TW201022085A/en

Links

Abstract

A method for turning trial of ships is disclosed. The method for turning trial of ships includes: an initial position of a ship is obtained; an initial bow direction of the ship is obtained through a compass; after the initial position and the initial bow direction is obtained, a turning trial of the ship is started; a present bow direction of the ship is obtained periodically; a turning angle is determined according to the initial bow direction and the present bow direction; a first position is obtained when the turning angle is 180 DEG; a turning diameter of the ship is generated according to the initial position, the initial bow direction and the first position.

Description

201022085 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種船舶試驗方法及其系統,且特別 是有關於一種船舶迴旋試驗方法及其系統。 【先前技術】 一般來說,船舶會藉由許多試驗,如船舶迴旋試驗或 船速試驗,來測試船舶之操縱性能。其中,船舶迴旋試驗 9 隸船舶在合乎試驗的海況下全速前進,顧下令右滿航 (或左滿舵)’以測試船舶迴旋時所需之前進距離、迴旋橫 距、迴旋直徑等值。 傳統船舶迴旋試驗係使船舶在進行迴旋過程中,在船 尾處定時丢下木板或其他物品,以記錄船拍迴旋時所行經 之點。然後’自空中拍攝自船尾所丢下之木板或其他物品, 以記錄船舶進行迴旋時之迴旋軌跡。於是,便可對迴旋軌 跡做分析,以取得船舶迴旋時所需之前進距離迴旋橫距、 ® 迴旋直徑等值》 然而,木板或其他物品被自船尾丟下後,便會受到海 流之影響而漂移’使得其位置不能精確的代表船拍迴旋時 所行經之點。此外,傳統船艇迴旋試驗需要另外藉由空中 拍攝之方式記錄船舶迴旋時所行經之位置,不但費工而且 花錢。 【發明内容】 因此本發明之-目的為一種船舶迴旋試驗及其系統, 5 201022085 利用船艏向判斷船始之迴旋角度,並根據船舶在各迴旋角 度所在之位置,計算出船舶迴旋試驗所需要之數據。 根據本發明一實施例,一種船舶迴旋試驗方法包含以 下步驟: 取得一船舶之位置,作為一初始位置,並藉由一羅經, 取得船舶之一初始船艏向;在取得初始位201022085 IX. Description of the Invention: [Technical Field] The present invention relates to a ship test method and system thereof, and more particularly to a ship swing test method and system therefor. [Prior Art] In general, ships are tested for maneuverability by a number of tests, such as ship maneuvers or ship speed tests. Among them, the ship's maneuver test 9 is carried out at full speed under the sea conditions in accordance with the test, and the right full flight (or left full rudder) is ordered to test the required forward distance, gyroscopic distance and diameter of the ship. The traditional ship whirl test system allows the ship to drop wooden planks or other items at the tail of the ship during the spin process to record the point of travel of the ship. Then, the wooden planks or other items dropped from the stern were taken from the air to record the trajectory of the ship when it was swirling. Therefore, the gyroscopic trajectory can be analyzed to obtain the traverse distance of the forward distance and the diameter of the gyrotron required for the ship to revolve. However, after the plank or other items are dropped from the stern, they will be affected by the current. Drift' makes its position inaccurate to represent the point of travel of the ship. In addition, the traditional boat maneuver test needs to record the position of the ship in the air by means of aerial shooting, which not only costs labor but also costs money. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a ship convolution test and system thereof, 5 201022085 using a bow to determine the angle of rotation of the ship, and calculating the ship's maneuver test according to the position of the ship at each of the swing angles. Data. According to an embodiment of the present invention, a ship swing test method comprises the steps of: obtaining a position of a ship as an initial position, and obtaining an initial ship's head by one compass; obtaining an initial position;

向後,使船舶迴旋;藉由羅經,間隔一預定二:= 之一目前船艏向;根據初始船艏向以及目前船艏向,判斷 船舶之一迴旋角度;在迴旋角度為180度時,取得船舶之 一迴旋180度位置;根據初始位置、初始船艏向以及迴旋 180度位置’計算船舶之一迴旋直徑。 根據本發明另一實施例,一種船舶迴旋試驗系統包含 一定位裝置、一電子羅經以及一處理裝置。處理裝置包含 一初始模組以及一測量模組。初始模組用以執行以下步 驟.利用定位裝置取得船舶之一初始位置,並利用電子羅 經取得船舶之一初始船艏向,其中在初始模組取得初始位 置以及初始船艏向後,使船舶開始迴旋。測量模組用以執 行以下步驟:利用電子羅經間隔一預定時間取得船舶之一 目前船艏向;根據初始船艏向以及目前船艏向,判斷船舶 之一迴旋角度;在迴旋角度為180度時,利用定位裝置取 得船舶之一迴旋180度位置;根據初始位置、初始船艏向 以及迴旋180度位置,計算船舶之一迴旋直徑。 【實施方式】 第1圖係依照本發明一實施例的一種船舶迴旋試驗方 6 201022085 法之流程圖。船舶迴旋試驗方法藉由船舶之位置以及船艏 向(bow)資訊,來計算進行船舶迴旋試驗所需要之數值。 第2圖係一船舶進行船舶迴旋試驗方法之一實施例。 其中’船舶在初始位置200時,以初始船艏向21 〇開始迴 旋。然後’船舶在第一位置220時,其第一船艏向230與 初始船艏向210之夾角為90度《船舶在第二位置260時, 其第二船艏向270與初始船艏向210之夾角為180度。其 中’初始位置200、第一位置220以及第二位置260之資訊 係藉由全球定位系統(Global Positioning System,GPS )、 差分式全球定位系統(Differential Global Positioning System ’ DGPS )或其他定位方式所取得。初始化船艏向 210、第一船艏向230以及第二船艏向270係藉由羅經 (compass)所取得。 同時參照第1圖以及第2圖,船舶迴旋試驗方法1 〇〇 包含以下步驟: 在步驟110中,取得一船舶之一初始位置2〇〇以及一 初始船翁向210。在取得船舶之初始位置2〇〇以及初始船艏 向210後,使船舶進行迴旋(步驟12〇八詳細來說,可令 船舶打右滿航或左滿舵以進行迴旋。 然後’間隔一預定時間取得船舶之一目前船艏向(步 驟130),並根據初始船艏向以及目前船艏向,判斷船舶之 一迴旋角度(步驟140)。其中,船舶之迴旋角度為初始船 艏向以及目前船贈向之夾角,也就是船翁已經迴旋之角度。 在船舶之迴旋角度為90度時,根據一定位訊號,取得 船舶之一迴旋90度位置(步驟150)。換言之,在船舶之迴 201022085 旋角度為90度時,觸發一定位裝置,以藉由定位訊號取得 船舶之迴旋90度位置,也就是船艏已經迴旋9〇度時所在 之位置。其中,由於初始船艏向21〇以及第一船艏向 之夾角為90度,因此第一位置22〇為船舶之迴旋9〇度位 置。 接下來,根據初始位置200、初始船艏向210以及迴旋 90度位置,計算船舶之一前進距離以及一迴旋橫距(步驟 160 ),並繼續間隔預定時間取得船舶之目前船艏向(步驟 130)。其中,前進距離為船舶迴旋角度為9〇度時,船舶在 初始船艏向210上前進之距離。因此,在步驟16〇中,前 進距離為第一位置220 (船舶之迴旋90度位置)投影在初 始船艏向210之投影點220’與初始位置200之一第一距離 240。此外,迴旋橫距為船舶迴旋角度為9〇度時,船舶所 在位置與初始船藉向210之距離。因此,在步驟16〇中, 迴旋橫距為第一位置220與初始船艏向210之一第二距離 250。 在迴旋角度為180度時,根據定位訊號,取得船舶之 一迴旋180度位置(步驟17〇>換言之,在船舶之迴旋角 度為180度時,觸發定位裝置,以藉由定位訊號取得船舶 之迴旋180度位置,也就是船艏已經迴旋18〇度時所在之 位置。其中’由於初始船艏向210以及第二船艏向270之 夾角為180度,因此第二位置260為船舶之迴旋180度位 置。 接下來,根據初始位置200、初始船贈向210以及迴旋 180度位置’計算船舶之一迴旋直徑(步驟ι80>其中, 201022085 迴旋直徑為船舶迴旋角度為180度時,船舶所在之位置與 初始船贈向210之距離。因此,在步驟丨8〇中,迴旋直徑 為第一位置260與初始船翁向210之一第三距離280。 此外,在迴旋角度不是90度或180度時,則可判斷迴 旋角度是否大於360度(步驟190)。在迴旋角度大於36〇 度時,則可結束船舶迴旋試驗(步驟191)。然而,在迴旋 角度不大於360度時,則繼續間隔預定時間取得船舶之目 前船艏向(步驟130)。 ® 第3圖係依照本發明另一實施例的一種船舶迴旋試驗 系統之功能方塊圖。船舶迴旋試驗系統用以放置在受測船 舶上,藉由定位裝置所取得之船舶位置以及電子羅^ (electrical compass)所取得之船艏向資訊,來計算船舶迴 旋試驗所需要之數值》 船舶迴旋試驗系統300包含一定位裝置31〇、一電子羅 經320以及一處理裝置330 其中,定位裝置31〇與處理裝 置330藉由RS_232、通用序列匯流排(Universal Serial ® Bus’ USB)或其他連結方式建立連結。此外,電子羅經32〇 與處理装置330亦可藉由RS_232、通用序列匯流排或其他 連結方式建立連結。 定位裝置310藉由一天線34〇接收一定位訊號並根 據定位訊號計算出船舶所在之位置。詳細來說,定位裝置 310藉由全球定位系統、差分式全球定位系統或其他定位方 式計算出船舶所在之位置。 處理裝置330可為電腦、個人數位助理(pers〇nal出以⑷ assistant ’ PDA)或其他具數位處理能力之裝置。處理裝置 9 201022085 330包含一初始模組33丨以及一測量模組332。初始模組33 i 利用疋位裝置310取得船舶之一初始位置,並利用電子羅 經320取得船舶之一初始船艏向。然後,在初始模組 取得初始位置以及初始船艏向後,使船舶開始迴旋。 測量模組332利用電子羅經32〇間隔一預定時間取得 船舶之一目前船艏向,並根據初始船贈向以及目前船艏 向’判斷船舶之一迴旋角度。 在船勘之迴旋角度為90度時,測量模組332利用定位 裝置310取得船舶之一迴旋9〇度位置,並根據初始位置、 初始船艏向以及迴旋90度位置,計算船舶之一前進距離。 此外,測量模組332亦可根據初始位置、初始船艏向以及 迴旋90度位置’計算船舶之一迴旋橫距。 然而,在船舶之迴旋角度為180度時,測量模組332 利用定位裝置310取得船舶之一迴旋180度位置。然後, 測量模組332根據初始位置、初始船艏向以及迴旋丨8〇度 位置’計算船舶之一迴旋直徑。 由上述本發明較佳實施例可知,應用本發明具有下列 優點。先前技術利用丟下木板或其他物品以及空拍之方式 來完成船舶迴旋試驗《而本發明則是利用船艏向判斷船舶 之迴旋角度,並根據船舶在各迴旋角度所在之位置,計算 出船舶迴旋試驗所需要之數據。因此,利用本發明即可省 下空拍所需之花費,並能更精確取得船舶在各迴旋角度之 位置。因而使船舶迴旋試驗所計算出之數據更精確。 雖然本發明已以數個實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 201022085 和範圍内’當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附切請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易僅,所附圖式之詳細說明如下: 第1圖係依照本發明一實施例的一種船舶迴旋試驗方 法之流程圖。 第2圖係一船舶進行船舶迴旋試驗方法之一實施例。 第3圖係依照本發明另一實施例的一種船舶迴 系統之功能方塊圖。 第二船贈向 第三距離 船舶迴旋試驗系統 定位裝置 電子羅經 處理裝置 初始模乡且 測量模組 天線 270 : 280 : 300 : 310 : 320 : 330 : 331 : 332 : 340 :Backward, make the ship maneuver; by the compass, the interval is a predetermined two: = one of the current ship's direction; according to the initial ship's direction and the current ship's direction, one of the ship's turning angle is judged; when the swing angle is 180 degrees, One of the ships is rotated 180 degrees; one of the ship's diameters is calculated based on the initial position, the initial bow direction, and the 180 degree position of the swing. In accordance with another embodiment of the present invention, a ship swing test system includes a positioning device, an electronic compass, and a processing device. The processing device includes an initial module and a measurement module. The initial module is configured to perform the following steps: using the positioning device to obtain an initial position of the ship, and using the electronic compass to obtain an initial ship's direction of the ship, wherein the initial position of the initial module and the initial bow backwards cause the ship to begin to maneuver . The measuring module is configured to perform the following steps: obtaining the current ship's heading direction by using the electronic compass interval for a predetermined time; determining one of the ship's turning angles according to the initial bowing direction and the current bowing direction; when the swing angle is 180 degrees The positioning device is used to obtain a 180 degree position of the ship; the diameter of one of the ships is calculated according to the initial position, the initial bow direction and the 180 degree position of the swing. [Embodiment] FIG. 1 is a flow chart of a ship swing test method 6 201022085 according to an embodiment of the present invention. The ship's maneuver test method calculates the value required for the ship's maneuver test by means of the position of the ship and the bow information. Figure 2 is an example of a method of ship maneuvering test. Where the ship is at the initial position of 200, it begins to revolve at 21 〇 with the initial bow. Then, when the ship is in the first position 220, its first bow angle 230 is at an angle of 90 degrees to the initial bow angle 210. When the ship is at the second position 260, its second bow direction 270 and the initial bow direction 210 The angle is 180 degrees. The information of the initial position 200, the first position 220, and the second position 260 is obtained by a Global Positioning System (GPS), a Differential Global Positioning System (DGPS), or other positioning methods. . The initialization bow 210, the first bow 230 and the second bow 270 are obtained by compass. Referring also to Figures 1 and 2, the ship swing test method 1 包含 includes the following steps: In step 110, an initial position of a ship 2 〇〇 and an initial ship direction 210 are obtained. After obtaining the initial position of the ship 2〇〇 and the initial ship's direction 210, the ship is caused to swing (Step 12:8, in detail, the ship can make the right full flight or the left full rudder to make a roundabout. Then 'interval one scheduled Obtaining the current ship's current direction of the ship (step 130), and judging one of the ship's swing angles according to the initial ship's direction and the current bow direction (step 140). The ship's swing angle is the initial ship's direction and current The angle between the ship's gift, that is, the angle at which the ship has been swirled. When the ship's swing angle is 90 degrees, according to a positioning signal, one of the ships is rotated 90 degrees (step 150). In other words, in the ship back 201022085 When the rotation angle is 90 degrees, a positioning device is triggered to obtain the position of the ship's 90-degree rotation by the positioning signal, that is, the position where the ship has been rotated 9 degrees, wherein the initial ship is 21 degrees and the first The angle between a ship and a ship is 90 degrees, so the first position 22 is the position of the ship's maneuver 9 degrees. Next, according to the initial position 200, the initial bow direction 210 and the 90 degree position Calculating one of the ship's forward distance and a convolutional distance (step 160), and continuing to obtain the current ship's heading direction (step 130) at a predetermined time interval, wherein the forward distance is when the ship's swing angle is 9 degrees, the ship is The distance that the initial bow advances toward 210. Therefore, in step 16〇, the forward distance is the first position 220 (the 90 degree position of the ship's swing) is projected at the projection point 220' of the initial bow direction 210 and the initial position 200. a first distance 240. In addition, the swinging lateral distance is the distance between the position of the ship and the initial ship borrowing direction 210 when the ship's turning angle is 9 degrees. Therefore, in step 16〇, the turning lateral distance is the first position 220 and The first ship's direction 210 is a second distance 250. When the swing angle is 180 degrees, according to the positioning signal, one of the ships is rotated 180 degrees (step 17〇> in other words, when the ship's swing angle is 180 degrees, Triggering the positioning device to obtain the 180 degree position of the ship by means of the positioning signal, that is, the position where the bow has been rotated by 18 degrees. [Because the initial bow is 210 and the second bow is 27 The angle between 0 is 180 degrees, so the second position 260 is the 180 degree position of the ship's maneuver. Next, one of the ship's convoluted diameters is calculated based on the initial position 200, the initial ship's direction 210, and the convoluted 180 degree position (step ι 80 > , 201022085 The diameter of the maneuver is the distance between the ship's position and the initial ship's gift to the ship when the ship's angle of rotation is 180 degrees. Therefore, in step 〇8〇, the diameter of the ship is the first position 260 and one of the initial ship's direction 210 The third distance 280. Further, when the swing angle is not 90 degrees or 180 degrees, it can be determined whether the swing angle is greater than 360 degrees (step 190). When the swing angle is greater than 36 degrees, the ship's maneuver test can be ended (step 191). However, when the swing angle is not more than 360 degrees, the ship's current ship's heading is continued (step 130). ® Fig. 3 is a functional block diagram of a ship swing test system in accordance with another embodiment of the present invention. The ship's maneuver test system is used to place the ship's position on the ship under test, and the ship's position information obtained by the electrical compass is used to calculate the value required for the ship's maneuver test. The test system 300 includes a positioning device 31, an electronic compass 320, and a processing device 330. The positioning device 31 and the processing device 330 are established by RS_232, Universal Serial Bus (USB) or other connection methods. link. In addition, the electronic compass 32 〇 and the processing device 330 can also be connected by RS_232, a universal serial bus or other connection method. The positioning device 310 receives a positioning signal by an antenna 34 and calculates the position of the ship based on the positioning signal. In detail, the positioning device 310 calculates the position of the vessel by means of a global positioning system, a differential global positioning system or other positioning method. The processing device 330 can be a computer, a personal digital assistant (or a (4) assistant' PDA) or other device with digital processing capabilities. Processing Device 9 201022085 330 includes an initial module 33A and a measurement module 332. The initial module 33 i acquires an initial position of the vessel by means of the clamping device 310 and uses the electronic compass 320 to obtain an initial bowing direction of the vessel. Then, after the initial module takes the initial position and the initial bow backwards, the ship begins to spin. The measuring module 332 uses the electronic compass 32 to obtain a current ship's heading interval for a predetermined time interval, and judges one of the ship's turning angles according to the initial ship's direction and the current ship's direction. When the swing angle of the ship survey is 90 degrees, the measuring module 332 obtains one of the ship's 9-turn position by using the positioning device 310, and calculates a forward distance of the ship according to the initial position, the initial bow direction and the 90-degree position of the swing. . In addition, the measurement module 332 can also calculate one of the ship's gyroscopic spans based on the initial position, the initial bow direction, and the 90 degree position. However, when the ship's swing angle is 180 degrees, the measurement module 332 uses the positioning device 310 to obtain a 180 degree position of the ship. Then, the measurement module 332 calculates one of the ship's convoluted diameters based on the initial position, the initial bow direction, and the swing 丨 8 位置 position. It will be apparent from the above-described preferred embodiments of the present invention that the application of the present invention has the following advantages. The prior art uses the method of dropping wooden boards or other items and taking an aerial shot to complete the ship's maneuver test. The present invention uses the bow to determine the angle of rotation of the ship, and calculates the ship's maneuver according to the position of the ship at each angle of rotation. The data required for the test. Therefore, with the present invention, the cost of the aerial photography can be saved, and the position of the ship at each of the turning angles can be obtained more accurately. Therefore, the data calculated by the ship's cyclotron test is more accurate. The present invention has been disclosed in several embodiments, and is not intended to limit the present invention. Any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more apparent. Flow chart of the cyclotron test method. Figure 2 is an example of a method of ship maneuvering test. Figure 3 is a functional block diagram of a ship return system in accordance with another embodiment of the present invention. Second ship gift to the third distance Ship gyro test system Positioning device Electronic compass treatment device Initial model and measurement module Antenna 270 : 280 : 300 : 310 : 320 : 330 : 331 : 332 : 340 :

【主要元件符號說明】 100 :船舶迴旋試驗方法 110〜191 :步称 200 :初始位置 210 :初始船艏向 220 :第一位置 220’ :投影點 230 :第一船艏向 240 :第一距離 250 :第二距離 260 :第二位置[Main component symbol description] 100: Ship cyclotron test method 110 to 191: Step 200: Initial position 210: Initial ship direction 220: First position 220': Projection point 230: First ship direction 240: First distance 250: second distance 260: second position

Claims (1)

201022085 十、申請專利範園: 1·一種船舶迴旋試驗方法,包含: 取得一船舶之之位置,作為一初始位置,並藉由—羅 經’取传該船翻之一初始船艏向; 在取得該初始位置以及該初始船艏向後,使該船舶迴 旋; 藉由該羅經,間隔一預定時間取得該船舶之一目前船 贈向; 根據該初始船艏向以及該目前船艏向,判斷該船舶之 一迴旋角度; 在該迴旋角度為180度時,取得該船舶之位置,作為 一迴旋180度位置;以及 根據該初始位置、該初始船艏向以及該迴旋18〇度位 置,計算該船舶之一迴旋直徑。 2. 如請求項丨所述之船舶迴旋試驗方法,更包含: 在該迴旋角度為90度時’取得該船舶之位置,作為一 迴旋90度位置;以及 根據該初始位置、該初始船艏向以及該迴旋9〇度位 置’計算該船舶之一前進距離。 3. 如請求項1所述之船舶迴旋試驗方法,更包含. 在該迴旋角度為90度時,取得該船舶之位置,作為一 12 201022085 迴旋90度位置;以及 根據該初始位置、該初始船艏向以及該迴旋90度位 置’计算該船舶之一迴旋橫距。 4·如請求項1所述之船舶迴旋試驗方法,其中取得該 船舶之位置係藉由全球定位系統或差分式全球定位系統。 5_如請求項1所述之船舶迴旋試驗方法,其中該迴旋 β 肖度為該初始船艏向以及該目前船贈向之爽角。 6.種船舶迴旋試驗系統,用於一船舶,包含: 一定位裝置; 一電子羅經;以及 一處理裝置,包含: 初始模組,用以執行以下步驟: 利用該定位裝置取得該船舶之一初始位置,並利 ^肖該電子羅經取得該船舶之—初始船艇向,其中在該初始 模組取得該初始位置以及該初始船贈向後,使該船舶開始 迴旋;以及 一測量模組,用以執行以下步驟: 利用該電子羅經間隔一預定時間取得該船舶之一 目前船贈向; 根據該初始船艏向以及該目前船艏向,判斷該船 舶之一迴旋角度; 在該迴旋角度為180度時’利用該定位裝置取得 13 201022085 該船舶之一迴旋180度位置;以及 根據該初始位置、該初始船艏向以及該迴旋180 度位置,計算該船舶之一迴旋直徑。 7. 如請求項6所述之船舶迴旋試驗系統,其中在該迴 旋角度為90度時,該測量模組利用該定位裝置取得該船舶 之一迴旋90度位置,並根據該初始位置、該初始船艏向以 及該迴旋90度位置,計算該船舶之一前進距離。 8. 如請求項6所述之船舶迴旋試驗系統,其中在該迴 旋角度為90度時,該測量模組利用該定位裝置取得該船舶 之一迴旋90度位置,並根據該初始位置、該初始船艏向以 及該迴旋90度位置,計算該船舶之一迴旋橫距。 9. 如請求項6所述之船舶迴旋試驗系統,其中該定位 裝置藉由全球定位系統或差分式全球定位系統取得該船舶 © 之位置。 10. 如請求項6所述之船舶迴旋試驗系統,其中該定 位裝置與該處理裝置藉由RS-232或通用序列匯流排 (Universal Serial Bus,USB)建立連結。 11. 如請求項6所述之船舶迴旋試驗系統,其中該電 子羅經與該處理裝置藉由RS -232或通用序列匯流排建立連 結。201022085 X. Application for Patent Park: 1. A method of ship maneuver test, comprising: obtaining the position of a ship as an initial position, and by taking the compass to pass the initial ship's direction of the ship; The initial position and the initial bow backwards, causing the ship to swing; by the compass, obtaining a current ship's gift of the ship at a predetermined time interval; determining the ship according to the initial ship's direction and the current ship's direction a swing angle; when the swing angle is 180 degrees, the position of the ship is obtained as a 180 degree position; and the ship is calculated based on the initial position, the initial bow direction, and the swing position of 18 degrees A diameter of a convolution. 2. The ship maneuver test method as claimed in claim 1, further comprising: obtaining the position of the ship as a 90 degree position when the angle of rotation is 90 degrees; and according to the initial position, the initial bow direction And the maneuver 9 degree position 'calculates the forward distance of one of the ships. 3. The ship's maneuver test method as claimed in claim 1, further comprising: obtaining the position of the ship as a 12: 201022085 swing 90 degree position when the swing angle is 90 degrees; and according to the initial position, the initial ship The yaw direction and the 90 degree position of the maneuver 'calculate one of the ship's gyroscopic distances. 4. The ship maneuver test method of claim 1, wherein the position of the ship is obtained by a global positioning system or a differential global positioning system. 5) The ship convolution test method according to claim 1, wherein the convoluted β radiance is the initial ship bow direction and the current ship's free direction. 6. A ship swing test system for a ship comprising: a positioning device; an electronic compass; and a processing device comprising: an initial module for performing the following steps: using the positioning device to obtain an initial of the ship Position, and the electronic compass obtains the initial ship direction of the ship, wherein the ship starts to swing after the initial module obtains the initial position and the initial ship gift; and a measuring module is used Performing the following steps: obtaining the current ship's gift direction of the ship by using the electronic compass interval for a predetermined time; determining a swing angle of the ship according to the initial ship's direction and the current ship's direction; the angle of rotation is 180 degrees [Using the positioning device to obtain 13 201022085 one of the ships is rotated by 180 degrees; and based on the initial position, the initial bow direction and the 180 degree position of the swing, one of the ship's swing diameters is calculated. 7. The ship convolution test system of claim 6, wherein the measuring module uses the positioning device to obtain a 90 degree position of the ship, and according to the initial position, the initial position, when the swing angle is 90 degrees. The ship's heading and the 90 degree position of the maneuver are calculated to calculate the forward distance of one of the ships. 8. The ship convolution test system of claim 6, wherein the measuring module uses the positioning device to obtain a 90 degree position of the ship, and according to the initial position, the initial position, when the swing angle is 90 degrees. The ship's yaw direction and the 90 degree position of the maneuver are calculated, and one of the ship's gyroscopic lateral distances is calculated. 9. The ship convolution test system of claim 6, wherein the positioning device obtains the position of the ship © by a global positioning system or a differential global positioning system. 10. The ship convolution test system of claim 6, wherein the positioning device is coupled to the processing device by an RS-232 or a Universal Serial Bus (USB). 11. The ship convolution test system of claim 6, wherein the electronic compass is coupled to the processing device by an RS-232 or universal sequence bus.
TW97146818A 2008-12-02 2008-12-02 Method and system for turning trial of ships TW201022085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146818A TW201022085A (en) 2008-12-02 2008-12-02 Method and system for turning trial of ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146818A TW201022085A (en) 2008-12-02 2008-12-02 Method and system for turning trial of ships

Publications (1)

Publication Number Publication Date
TW201022085A true TW201022085A (en) 2010-06-16

Family

ID=44832916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146818A TW201022085A (en) 2008-12-02 2008-12-02 Method and system for turning trial of ships

Country Status (1)

Country Link
TW (1) TW201022085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108189980A (en) * 2018-02-05 2018-06-22 南京科远自动化集团股份有限公司 The position and attitude method for real-time measurement and measuring system of a kind of landing pier ship
CN108759874A (en) * 2018-07-30 2018-11-06 武汉华之源网络科技有限公司 Detecting devices angle of turning relative error measurement method peculiar to vessel
CN114485776A (en) * 2021-12-20 2022-05-13 广船国际有限公司 Ship test information integrated acquisition and analysis system and test method based on Internet of things

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108189980A (en) * 2018-02-05 2018-06-22 南京科远自动化集团股份有限公司 The position and attitude method for real-time measurement and measuring system of a kind of landing pier ship
CN108759874A (en) * 2018-07-30 2018-11-06 武汉华之源网络科技有限公司 Detecting devices angle of turning relative error measurement method peculiar to vessel
CN114485776A (en) * 2021-12-20 2022-05-13 广船国际有限公司 Ship test information integrated acquisition and analysis system and test method based on Internet of things

Similar Documents

Publication Publication Date Title
US9377780B1 (en) Systems and methods for determining a heading value of a marine vessel
US9342075B2 (en) Apparatus, method and computer readable media for calculating status, and movable body
US9594375B2 (en) Heading control using multiple autopilots
CN107831515B (en) Underwater Navigation method and system
US9625262B2 (en) Smoothed navigation solution using filtered resets
JP6275202B2 (en) Unmanned aerial vehicle, unmanned aircraft control method, and unmanned aircraft control program
WO2016198009A1 (en) Heading checking method and apparatus
CN109581391A (en) A kind of the determination method and parking stall position determining means of parking position
CN107110979A (en) Attitude angle computing device, attitude angle computational methods and attitude angle calculation procedure
TW201022085A (en) Method and system for turning trial of ships
WO2018113078A1 (en) Flight control method for unmanned aerial vehicle in headless mode, and unmanned aerial vehicle
CN105241319B (en) A kind of guided cartridge of spin at a high speed real-time alignment methods in the air
JP2008064555A (en) Mobile-unit attitude measuring apparatus
CN112747770B (en) Speed measurement-based initial alignment method in carrier maneuvering
CN112445230B (en) High-dynamic aircraft multi-mode guidance system and guidance method under large-span complex environment
CN107491084A (en) Control unmanned plane lock oar method, apparatus, storage medium and unmanned plane
CN104713571B (en) A kind of submarine inertial navigation system navigates by water emergency starting method
CN115683170A (en) Calibration method based on radar point cloud data fusion error
CN111044053A (en) Navigation method and device of single-steering-wheel unmanned vehicle and single-steering-wheel unmanned vehicle
JP5180447B2 (en) Carrier phase relative positioning apparatus and method
JP2002277527A (en) Gps receiver
CN113075653B (en) Navigation method and system of aircraft
CN113175936B (en) Vehicle track calculation method and device based on neural network model
RU2331890C2 (en) Method of autonomous velocity and acceleration vector measurement
CN114383603A (en) Guided projectile air attitude identification method based on rotation modulation method