TW201021144A - Light soaking system and test method for solar cells - Google Patents
Light soaking system and test method for solar cells Download PDFInfo
- Publication number
- TW201021144A TW201021144A TW98132131A TW98132131A TW201021144A TW 201021144 A TW201021144 A TW 201021144A TW 98132131 A TW98132131 A TW 98132131A TW 98132131 A TW98132131 A TW 98132131A TW 201021144 A TW201021144 A TW 201021144A
- Authority
- TW
- Taiwan
- Prior art keywords
- platform
- chamber
- temperature
- solar
- substrate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
201021144 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大體上是關於測試及v或鑑定太陽能 裝置的設備和製程、 【先前技術】 光電(PV)裝置或太陽能電池為將太陽光轉換成直流 參 (DC)電能的裝置。典型的薄膜PV裝置或薄膜太陽能電 池具有一或多個p-i-n接合區》p_i_n接合區包含p型層、 本質型層和η型層。當太陽能電池的ρ4_η接合區曝照太 陽光(由光子的能量組成)時,太陽光將藉由PV效應轉換 成電能。太陽能電池可鋪彻成大型太陽能陣列。藉由連 接一些太陽能電池及利用特定框架與連接器將其結合成 面板,可製造太陽能陣列。 ❺一般來說,薄膜太陽能電池包括主動區或光電轉換單 元、和透明導電氧化物(TCO)膜設置做為正面電極及/或 背部電極。光電轉換單元包括Ρ型矽層、η型矽層和夾 .. .... . . . ............ ..... .. ....... 設在Ρ型與η型矽層間的本質型(i型)梦層/包括單晶矽 bc-Si)膜、無定形矽(a_Si)膜、多晶矽(p〇ly si)膜等數種 梦膜可用來形成光..電轉換單元的.ρ型.、η型.及/或:丨型層.'。 背側.電極含有一.或:多個導電層。_ 隨著傳統能源偺格的飆高,急需利用廉價太陽能電池 裝置產生電能的低價方式。傳統太暢能電池製造製程乃 201021144 高度勞力密集且有許多可能影響產量、太陽能電池成本 和裝置產率的干擾:隨著對大基板的需求不斷増加測 試及鑑定太陽能電池的方法也變得越來越重要,以確保 太陽能電池正常使用。 因此,需要模擬環境條件的裝置和在模擬條件下測試 太陽能電池性能的方法。 ❹ 【發明内容】 在此描述讓太陽能裝置曝照以模擬環境條件的方法和 設備。在-實施例中,描述腔室。腔室包括框架其定 義具内部艘積的局部封閉區,框架包含選擇性密封框架 之開π的Η、姻開放壁面之封閉内部空間的複數個照 明裝置’照明裝置之各者設置引導光線朝向設在内部區 域的平臺上表面、以及設於框架側壁之開口的複數個風 • 扇單70 ’複數風扇單元之各者設置引導周遭空氣從封閉 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Μ ^ ^ ^ s ^ 開。 的封㈣域’將區具有複數個連接周遭大氣 的開放區域、設置引導周遭空氣從封閉區外部流細 區的複數個風扇翠元、科苗 /、 、叹置電性連接測試區中太陽能模 組之一或多個終端的輕n’掛太 阻 > 探針巢套,以及設置光源朝實質垂 直太陽能模组卜矣左u 、表面的方向發射模擬太陽光光譜的光 201021144 能。 在又-實施例中,描述讓太陽能裝置曝照模擬環境條 件的方法。方法包括提供太暢能裝置至腔室内,腔室的 環境包括模擬太陽m的光源和用以維持太陽能聚置 之内部空間呈第:溫度的第—溫度,且第:溫度低於第 一溫度、且在測試期間維持第一溫度。 ^ 【實施方式】 本發明大體上提出模擬太陽能裝置運作之環境條件的 設備和方法。所述太陽能裝置包括太陽能電池或具一或 多個太陽能電池的太陽能模組,以下範例稱為光電(pv) 裝置。設備和方法模擬太陽能強度及/或溫度條件以模擬 PV裝置運作時遭受之條件。在一實施例中設備在控制 度下’讓PV裝置曝照模擬太陽光的控制照光。在一 態樣中,控制照光及/或控制溫度用來在pv裝置内產生 ® 缺陷,以判斷PV裝置的耐久性。可在模擬期間或之後, 監測及/或決定PV裝置的電氣特性 '在一或多個實施例 中,設備和測試方法可做為大型Pv裝置製造系統的一 β卩刀’例如設於叢集工具或線性生產線(如取自美國加州 聖克拉拉之應用材料公司的SUNFABTM太陽能模組生產 線)。在一態樣中,在原地監測觀察測試中之PV裝置的 電氣特性及/或耐久性,以於上游製程調整後續pv裝置 的製造參數。 201021144 第1A及1B圖為光浸潤腔室1〇〇之一實施例的等角視 圖。光浸潤腔室100包括框架1〇5,其界定封閉區11〇。 封閉區110包括至少部分覆蓋框架1〇5的侧壁U5和提 供進出封閉區110内部空間的一或多傭門12〇 1在第1A 圖中,門120為關閉;在第1B圖中,門12〇為打開而露 出封閉區11 〇内部空間的處理區128。 腔室100還包括複數個空氣調節裝置,例如一或多個 0 風扇單元I25,其設於框架1〇5周圍附近。在此實施例 中,四個風扇單元125設在腔室100的第一側,四個風 扇單元125則設在腔室100的第二相反側。複數個照明 裝置130設在鄰接框架1〇5之開放壁面135的封閉區 11〇。照明裝置130之各者耦接至耦接框架1〇5的支撐構 件140«照明裝置130之各者為可動地耦接支標構件 140’使得各照明裝置13〇彼此至少在橫向及/或縱向上 可個別移動。照明裝置130和風扇單元125之各者耦接 & 控制器’以控制施加至腔室1〇〇内各裝置的功率。 參照第1Β圖,腔室100包括可動支撐面或平臺145, 用以支撐待測>V裝置(未繪示在一實施例中,平臺 丨45為懸臂式及/或滾動式脫離封閉區丨丨心以裝載/卸載 基板並將基板放到處理區128内讓照明裝置13〇照射及/ 或風扇單元125之空氣吹拂的位置。在其他實施例中(未 繪不),諸如末端執行器或輸送器系統之機器設備將一或 夕個PV裝置傳送到平臺丨45且放置於處理區128。在第 1B圖所示之實施例中,平臺145藉由可動地支撐該平臺 201021144 ⑷的線性滑動機構15〇輕接框架1〇5。線性滑動機構 ΐ5α包括轴承及/或通道’用以耦接平臺145相對兩側的 狹縫155。-或多個滾動構件16G_接平臺145,以㈣ 支撐平臺145及移動平臺145進出封閉區11G…或多 個滾動構件160設在自平臺⑷底下之框架結構158延 伸的支腳156上。在-態樣中,框架結構158提供平臺 145機械穩定度,韓持平臺145的平面i在一實施 例中,手動移動平臺145進出封㈣⑽,但致動器或 驅動器(未繪示)可麵接腔冑⑽來移動平臺145。一或多 個滾動構件16〇可為輪子、腳輪等。 光浸调腔室100尚包括-或多個光學感測器m設於 封閉區110»光學感測器132為指向平臺145的光學裝 置’且具視線觀察平臺145的上表面及/或放置其上的pv 裝置(未繪示)。在一實施例中,至少一光學感測器IK 為溫度感測裝置、光測量裝置或其組合物。在一實施例 至少一光學感測器132為溫度感測裝置用以提供 平臺145的溫度及/或Pv裴置或其局部溫度之量度。光 學感測器132的實例包括雷射感測器、紅外線感測器、 攝影機和其組合物。 . ... . . - ...... . 配置腔室100提供控制之光強度,其實質上模擬地球 的太陽光光譜。在一實施例中,照明裝置130傳遞強度 約1千瓦/平方公尺(大概等於i個太陽)的光能指向平臺 145的表面。在一態樣中,源自照明裝置13〇的光能空 間均勻性為約20%。例如,在丨5平方公尺之平臺145 201021144 表面區域測量的光能空間均勻性為約0.8個太陽至約1.2 個太陽。照明裝置130為金屢鹵化物燈、發光二極體 • - . . . .. . .- (LED)、射頻電漿燈(如取自美國加州森尼維耳市之 • LUXIM®公司的LIFIw照明裝置)和其組合物。各照明裝 置130可依需求個別控制調暗或調亮。201021144 VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention generally relate to apparatus and processes for testing and v or identifying solar devices, [Prior Art] Photovoltaic (PV) devices or solar cells for sunlight A device that converts to DC power (DC) power. A typical thin film PV device or thin film solar cell has one or more p-i-n junction regions. The p_i_n junction region comprises a p-type layer, an intrinsic layer, and an n-type layer. When the ρ4_η junction of the solar cell is exposed to sunlight (composed of photon energy), sunlight is converted into electrical energy by the PV effect. Solar cells can be laid out into large solar arrays. Solar arrays can be fabricated by connecting some solar cells and combining them into panels using specific frames and connectors. In general, a thin film solar cell includes an active region or a photoelectric conversion unit, and a transparent conductive oxide (TCO) film is provided as a front electrode and/or a back electrode. The photoelectric conversion unit includes a 矽-type 矽 layer, an η-type 矽 layer, and a clip.. . . . . . . . . . . . . . . The essential type (i type) dream layer/including single crystal 矽bc-Si) film, amorphous 矽(a_Si) film, polycrystalline 矽(p〇ly si) film, etc. It can be used to form a .p type, an η type, and/or a 丨 type layer. Back side. The electrode contains one or more conductive layers. _ With the high price of traditional energy, there is an urgent need to use low-cost solar cell devices to generate electricity in a low-cost way. The traditional Taichang battery manufacturing process is 201021144. It is highly labor intensive and has many interferences that may affect the output, solar cell cost and device yield: the method of continuously testing and identifying solar cells with the demand for large substrates has become more and more The more important it is to ensure the normal use of solar cells. Therefore, there is a need for a device that simulates environmental conditions and a method of testing the performance of a solar cell under simulated conditions. ❹ SUMMARY OF THE INVENTION Methods and apparatus for exposing solar devices to simulate environmental conditions are described herein. In an embodiment, a chamber is described. The chamber includes a frame defining a partial enclosed area having an internal volume, the frame comprising a plurality of illuminating devices of the π opening of the selective sealing frame and the closed interior of the open wall surface. Each of the upper surface of the platform in the inner area and the plurality of winds and fan sheets 70' complex fan units provided in the opening of the side wall of the frame are arranged to guide the surrounding air from the closed ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Μ ^ ^ ^ s ^ On. The enclosed (four) domain's area has a plurality of open areas connecting the surrounding atmosphere, and a plurality of fan-like elements, such as a fan-shaped electrical connection test area, are provided to guide the surrounding air from the outside of the closed area. One or more of the terminals of the light n'hanging damper> probe nest, and set the light source to the solid vertical solar module dip left u, the surface of the surface to emit the simulated solar spectrum of light 201021144 can. In yet another embodiment, a method of exposing a solar device to simulate environmental conditions is described. The method includes providing a solar energy device into the chamber, the environment of the chamber including a light source simulating the sun m and a temperature at which the internal space for maintaining the solar energy is at a temperature: and the temperature is lower than the first temperature, And maintaining the first temperature during the test. [Embodiment] The present invention generally proposes an apparatus and method for simulating environmental conditions in which a solar device operates. The solar device comprises a solar cell or a solar module with one or more solar cells, the following example being referred to as a photovoltaic (pv) device. Equipment and methods simulate solar intensity and/or temperature conditions to simulate the conditions under which the PV device operates. In one embodiment, the device, under control, exposes the PV device to a controlled illumination that simulates sunlight. In one aspect, the control illumination and/or control temperature is used to generate a ® defect in the pv device to determine the durability of the PV device. The electrical characteristics of the PV device can be monitored and/or determined during or after the simulation. In one or more embodiments, the device and test method can be used as a beta file for a large Pv device manufacturing system, such as in a cluster tool. Or a linear production line (such as the SUNFABTM solar module production line from Applied Materials, Inc., Santa Clara, Calif.). In one aspect, the electrical characteristics and/or durability of the PV device in the in-situ monitoring observation test is used to adjust the manufacturing parameters of the subsequent pv device in the upstream process. 201021144 Figures 1A and 1B are isometric views of one embodiment of a light infiltration chamber. The light infiltration chamber 100 includes a frame 1〇5 that defines an enclosed area 11〇. The enclosed area 110 includes a side wall U5 that at least partially covers the frame 1〇5 and one or more doors 12〇1 that provide access to the interior of the enclosed area 110. In Figure 1A, the door 120 is closed; in Figure 1B, the door 12〇 is a processing area 128 that opens to expose the closed space 11 〇 internal space. The chamber 100 also includes a plurality of air conditioning devices, such as one or more 0 fan units I25 disposed adjacent the perimeter of the frame 1〇5. In this embodiment, four fan units 125 are provided on the first side of the chamber 100, and four fan units 125 are provided on the second opposite side of the chamber 100. A plurality of illumination devices 130 are disposed in the enclosed area 11A adjacent the open wall surface 135 of the frame 1〇5. Each of the illumination devices 130 is coupled to the support member 140 of the coupling frame 1〇5. Each of the illumination devices 130 is movably coupled to the support member 140' such that the illumination devices 13 are at least lateral and/or longitudinal to each other. It can be moved individually. Each of the illumination device 130 and the fan unit 125 is coupled to &controller' to control the power applied to each device within the chamber 1〇〇. Referring to Figure 1, the chamber 100 includes a movable support surface or platform 145 for supporting the device to be tested (not shown in the embodiment, the platform 丨 45 is cantilevered and/or rolled away from the enclosed area. The centering is to load/unload the substrate and place the substrate into the processing zone 128 to illuminate the illumination device 13 and/or the position of the air blowing of the fan unit 125. In other embodiments (not shown), such as an end effector or The machine of the conveyor system transfers one or the next PV device to the platform 45 and is placed in the processing zone 128. In the embodiment illustrated in Figure 1B, the platform 145 is linearly slidably supported by the platform 201021144 (4) The mechanism 15 〇 lightly connects the frame 1 〇 5. The linear sliding mechanism ΐ 5α includes bearings and/or passages ' s 155 for coupling opposite sides of the platform 145. - or a plurality of rolling members 16G_ are connected to the platform 145 to (4) support The platform 145 and the mobile platform 145 enter and exit the enclosed area 11G... or the plurality of rolling members 160 are disposed on the legs 156 extending from the frame structure 158 under the platform (4). In the aspect, the frame structure 158 provides the platform 145 mechanical stability, Han holding platform 145 flat In one embodiment, the manual movement platform 145 is moved in and out of the seal (4) (10), but an actuator or driver (not shown) may be attached to the chamber (10) to move the platform 145. The one or more rolling members 16 may be wheels, casters, etc. The light immersion chamber 100 further includes - or a plurality of optical sensors m disposed in the enclosed region 110 » the optical sensor 132 is an optical device directed toward the platform 145 and has an upper surface and/or placement of the line of sight viewing platform 145 A pv device (not shown) thereon. In one embodiment, the at least one optical sensor IK is a temperature sensing device, a light measuring device, or a combination thereof. In an embodiment, at least one optical sensor 132 is The temperature sensing device is used to provide a measure of the temperature and/or Pv of the platform 145 or its local temperature. Examples of the optical sensor 132 include a laser sensor, an infrared sensor, a camera, and combinations thereof. .... - -. The configuration chamber 100 provides a controlled intensity of light that substantially mimics the solar spectrum of the Earth. In one embodiment, the illumination device 130 transmits an intensity of about 1 kW/square. The light energy of the ruler (probably equal to i sun) points to the platform 145 In one aspect, the spatial uniformity of light energy originating from the illumination device 13A is about 20%. For example, the spatial uniformity of light energy measured at the surface area of the platform 145 201021144 of 丨 5 square meters is about 0.8. The sun is about 1.2 suns. The lighting device 130 is a gold halide lamp, a light-emitting diode. - - . . . . . . (-), RF plasma light (such as taken from Sunnyvale, California, USA) • LUXIM® LIFIw lighting fixtures and combinations thereof. Each lighting fixture 130 can individually control dimming or brightening as desired.
腔室100在周遭或大氣條件下的無塵室或其他製造設 施環境中運作。來自照明褒置j 3 〇的光能經設置以照射 φ 平臺145的上表面及/或照射放在平臺145上的PV裝置 (未繪示)’並至少部分照射處理區128。在一實施例中, 平臺145由導熱材料組成,故來自照明裝置的吸收 光能了均勻刀散整個平臺..145表面.。用於平臺μ5.的導 熱材料實例包括鋁、銅和其他導熱材料。在一實施例中, 平臺145包括可拆區段17〇,其露出貫穿平臺的通 道或開口(均未繪示p可拆區段17〇露出的開口或通道 大小經調整而容納部分Pv裝置沐繪示卜框架丨^可由 © 任何輕結構材料組成。風扇單元125可W ^ 〇 t 125jf 4151 導空氣從腔室100外部流向處理區l28的中心。 第2A-2D圖為第^及1B圖腔室1〇〇的各種視圖。第 2A ®為腔至1〇〇的平面俯視圖,其顯示前側挪a、背 ^ 205C M 205B^ 205B ^ t 205A ^ # Π 120〇 i〇5 j 其以相對封閉區110的預定位向支撐風扇單元125。在 -^ ^ ^ t , ^ ^ 125 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 201021144 145上表面的平面法線約〇度至約2〇度。如此,來自各 風扇單元125的氣流將被引導往下流向平臺145的上表 面涊明裝置130之各者以容許照明裝置13〇相對框架 ⑻往側向(X及/或飞方向试/或垂直^方向询立務動 的方式耦接框架1 〇 5 ^在一實施例中,照明裝置13 〇之 各者藉由調整裝置215耦接支撐構件14〇。或者或此外, 支撐構件140之各者藉由調整裝置215耦接框架1〇5。 參 鲁 調整裝置215用來協助側向及/或垂直調整一或多個照明 裝置130及/或支撐構件14(^調整裝置215可為手動調 整裝置或自動調整裝置。調整裝置215的實例包括螺紋 裝置、緊固件 '旋紐、固㈣釘、槓桿或虎鉗型機構、 致動器等。 照明裝置13〇的數量視PV|置的尺寸及/或照明裝置 130之各者的光強度而定。亦可考量諸如各照明裝置13〇 產生的熱量及/或空間均勻性等因子〆在所示實施例中, 腔室100包括9個照明裝置130排成3><3圖案。9個昭 PV ^ £ ,, ^1.! xl.3 ^ ^ ^ ^ 6 ^ 置13〇。或者’腔室100設置9個照明裂置13〇 ,但測試 PV ^ χ 130^^^〇 Α ^ ^ f 130 〇 , 2.2 6 A尺的pV裝置時,腔室i〇〇設置μ個照明裝置 在實細•例中’腔室1〇〇包括2S個照明裝置i3〇 排成5x5圖案 '此外,測試小於2 2公尺χ2.6公尺的pv .. : · 昏 . . - 201021144 裝置時,可調暗或關閉25個照明裝置i3〇的其中之一或 '多個。 . . . .... 在實施例中’從腔室100外部引導氣流來調節封閉 , 區110的皿度。在此實施例中,腔室1〇〇至少部分敵開 於周遭環境,以排出處理區128的空氣。在一實施例中, 風扇單70 125的氣流大多來自腔室1〇〇外部並經由框架 1〇5一的開放壁面135排出。如第2B圖腔室100的側視周 • 所不,框架1 〇5還包括部分側壁22〇。例如’側邊2〇5B、 2〇5D(此視角看不到2〇5D)包括開放區域225讓空氣進入 或離開封閉區11 〇。在其他實施例中,腔室i 〇〇外部的 巧經引導流過開放壁面135及/或開放區域225並由風 扇單元125排出。從框架1〇5的開放區域可看到一 —複數照明裝置130。在一實施例中複數照明裝置 包括反射鏡230 ’例如拋物面反射鏡,其至少部分容納 照燈23 5。 .. . . . ... ..... ...... 第2C圖為第2A及2B圖腔室1〇〇的正視圖,其移開 門而露出處理區128。依此視角,附加的空氣調節單元(指 稱風扇單元240)設在處理區128對面的平臺145 一側。 風扇單元240设於框架245,其以相對平臺145的預定 位向支撐風扇單元24〇。照明裝置n〇和風扇單元MS、 1/ΙΛ....... 之各者耗接控制器,藉以控制供給各照明裝置13〇 和風扇軍儿丨25、24〇的功率。又如第2〇圖所示,擴散 構件238置於照燈235與平臺145之間。擴散構件238 之各者可為遷明或半透明材料,用以均勻分散或過濾照 11 201021144 燈235的光。在一實施例中,擴散構件238至少部分阻 擔或過濾一或多個照燈235的光。在一態樣中,擴散構 件238用來調整處理區128的光強度。 在光浸潤腔室100之一實施例中,至少部分遮蔽均勻 分散或過濾的光’以模擬太陽能電池使用時的遮光,而 於PV裝置產生,,熱點”。一般來說,pv裝置的遮光太陽 能電池產生最小或降低電流,且未遮光太陽能電池產生 參 電流時’將於PV裝置形成熱點。若PV裝置的太陽能電 池為串聯連接,則未遮光太陽能電池產生的電流必須通 過遮光電池。通常,遮光太陽能電池會產生逆向偏壓, 以致在遮光太陽能電池中產生熱。產生的熱會破壞PV 裝置或太陽能電池各層,故_需.不斷地減少.在_PV裝置内. 產生熱點和其他缺陷,並且利用光浸潤腔室〗00做為分 析工具來解決這些問題。 第2D圖為第2A-2C圖腔室100的底部視圖,顯示4 β 個風扇單元240設置引導空氣流向平臺145的主要側邊 或下表面250。又如圖所示’可移開平臺145的可拆區 ... . . - . . . . ...... . 段170而露出貫穿平臺145的開口。 第2Ε圖繪示沿著第1Β圖Α_Α剖面截切的平臺145截 面。PV裝置255亦顯示設於平臺145的上表面26〇。ρν . . . . - ' 昏 裝置255包括面對如太陽或照明裝置ΐ3〇(未顯示)之光源 的上侧270Α、和下表面或背側270Β。平臺145的上表 " ...... . ......... 面260包括平坦表面使平臺145的上表面260緊密接觸 PV裝置的背側270Β。 201021144 在此實施例中,移開平臺145的可拆區段17〇(第1B 圖)而露出平臺145的開口 265。在一實施例中,開口 265 經配置以提供進出接線盒275中輕接pv裝置255之終 • 端272的出入口,其中接線盒275為pV裝置255的一 -部刀。在一態樣中,’腔室 1〇〇包括探針·或電引..線274., 其附接PV裝置255的終端272 〇在一實施例中,接線盒 275突出PV裝置255的背側27〇b,且開口 265大小經 • 調整而容納背側27〇B的突出部分。依此方式調整開口 265大小來容納接線盒之乃可使卩^^裝置之“的背側以⑽ 大多緊密接觸平臺145的上表面260。開口 265亦容許 電引線274耦接終端272。電引線274编接電腦295,用 以儲存PV裝置255的資料。以第1Α·2Ε圖光浸潤腔室 100測試的PV裝置255實例繪示於第3 Α-3Ε圖。 腔室100進行測試時’控制PV裝置255和平臺145 的溫度。在環境模擬及/或測試製程之一實施例中,加熱 ❿ PV裝置255且保持呈約4代至約6〇<t之溫度,且平臺 145上表面260各處的最大偏差為約1〇%。在另一實施 • 例中,平臺145及/或PV裝置255的溫度控制在每」$ 平方公尺約±3°C以内。利用一或多個感測器278控制照 明裝置130的輸出和風扇單元125、24〇,可控制平臺145 及/或PV裝置255的溫度。一或多個感測器之各者可為 熱躺裝置、南溫計、光譜儀和其組合物。 在一實施例中’一或多個感測器278設置測定^裝 置255周圍和PV裝置255中心或靠近中心的溫度。雖 201021144 然一或多個感測器278顯示位於平臺145的主體,但感 測器278也可叙接平臺145外部的PV裝置255表面。 例如’感測器278手動定位及/或透過開口 265耦接PV 裝置255的周圍和1^裝置255的中心。在其他實施例 中,使用用來觀察PV裝置255的感測器132來感測溫 度。在一實施例中,感測器132為紅外線攝影機,用以 觀察PV裝置255的上側270八。在此實施例中,感測器 ❹ 132提供Pv裝置255的組件溫度。 在實施例中’藉由風扇單元125及/或240冷卻平臺 145及/或PV裝置255 ’進而在測試期間控制及維持太陽 能電池呈預定溫度。在另一實施例中,平臺丨45包括溫 度控制通道.280.,其設於平臺..145内或上。:通道.280 麵 接溫度控制流趙源,例如水、乙二醇、氮氣或其他溫度 控制流體,用以加熱或冷卻平臺145。在一實施例中, 通道280供加熱流體(如水)流動。流體可由一或多個加 藝 熱裝置(未緣示)加熱(例如壓縮機),當流體引入通道28〇 時,該一或多個加熱裝置控制流體溫度。在一態樣中, 監測離開通道280之流體的溫度及調整供給加熱裝置的 功率’以調整進入通道280之流體的溫度。在又一實施 例中,平臺145包括埋置加熱元件(未繪示)。雖然一也 實施例採用重力、沿水平位向(X或Y方向)支撐PV裝置 255於平臺145上,但平臺145也可經修正而包括支揮 構件290讓PV裝置255搞接平臺145。在一實施例中, 平.臺_. 145_經垂直定向(Z.方向)或移向垂直位.向,..以..沿.垂直 201021144 位向測試PV裝置255、 第3Λ圖為單一接合面無定形或微晶矽太陽能電池 300A的簡化示意圖’其形成於第2E圖之pv裝置255 • 且經腔室100光浸潤及/或分析。單一接合面無定形或微 • 晶矽太陽能電池300A定位朝向光源或太陽輻射3〇1。測 試時’照明裝置130提供太陽輻射3〇1。太陽能電池3〇〇a 一般包含基板302,例如玻璃基板、聚合物基板、金屬 ❹ 基板或其他適合基板,且具薄膜形成其上。在一實施例 中’基板302為玻璃基板,其尺寸為約22〇〇毫米 (mm)x2600mmx3mm。太陽能電池3〇〇A更包含第一透明 導電氧化物(TCO)層31〇(如氧化辞(Zn〇)、氧化錫(Sn〇)) 形成於基板302上、第一 p_i_n接合區32〇形成於第一 TCO層310上、第二TCO層34〇形成於第一 p i n接合 區320上和背部接觸層35〇形成於第二tc〇層34〇上。 為加強光捕捉來增進光吸收,可利用溼式、電漿、離子 參 及/或機械製程,選擇性織構基板及/或一或多個形成其上 的薄膜。例如,在第3 A圖所示之實施例中,第一 • 層3 10經織構’且後續沉積其上之薄膜大致依循底下表 .面的形貌。 .. ...... . ......... .- ... .. . \ ' . ' · . -. .. -. --. ....- ....- - ..... 在一配置中,第一 p_i_n接合區^⑽包含卩型無定形矽 層322、本質型無定形矽層324形成於p型無定形矽層 322上和n型微晶矽層326形成於本質型無定形矽層324 上。在一實施例中,ρ型無定形矽層322的形威厚度為 約60埃(Α)至約30〇α,本質型無定形矽層324的形成厚 201021144 度為約1500A至約3500A,η型微晶矽層326的形成厚 度為約100Α至約400Α。背部接觸層350包括選自由鋁 (A1)、銀(Ag)、鈦(Ti)、鉻(Cr)、金(Au )、銅(Cu)、鉑(pt)、 ' .... . ...... ............ 其合金和其組合物組成群組之材料,但不以此為限。 第3B圖為太陽能電池300B之一實施例的示意圖,其 為多重接合面太陽能電池且定位朝向光源或太陽輻射 3〇1。太陽能電池300B包含基板302,例如玻璃基板、 ❹ 聚合物基板、金屬基板或其他適合基板,且具薄膜形成 其上。太陽能電池300B更包含第一透明導電氧化物(Tc〇) 層3 10形成於基板302上、第一 p-i-n接合區320形成於 第一 TCO層310上、第二p-i_n接合區330形成於第一 Ρ·ί-η接合區320上、第二TCO層340形成於第二p_i_n 接合區330上和背部接觸層350形成於第二tc〇層340 上。 在第3B圖所示之實施例中,第一 TC〇層31〇經織構, ® 且後績沉積其上之薄膜大致依循底下表面的形貌。第一 P-i-n接合區320包含p型無定形石夕層322、本質型無定 形矽層324形成於p型無定形矽層322上和n型微晶矽 層326形成於本質型無定形矽層324上。在一實施例中, p型無定形矽層322的形成厚度為約60A至約30oA,本 質型無疋形矽層324的形成厚度為約15〇〇人至約 35〇〇A,n型微晶矽層326的形成厚庋為約入至約 400A。 ... . . . . .. . . . - . _ 第二p-i-n接合區330包含p型微晶矽層332、本質型 201021144 微晶梦層3 34形成於p型微晶夕層.332上和.η型無定形 石夕層336形成於本質型微晶矽層334上。在—實施例中, ' . . Ρ型徵晶矽層332的形成厚度為約100Α至約4〇〇人,本 . 質型微晶矽層334的形成厚度為約1〇〇〇〇α至約 30000Α,η型無定形矽層336的形戍厚度為約1〇〇Α至約 500Α。背部接觸廣350包括選自由鋁(Α1)、銀(Ag)、欽 (Ti)、鉻(Cr)、銅(Cu)、金(Cu )、鉑(Pt)、其合金和其組 φ 合物組成群組之材料,但不以此為限? 第3C圖為PV裝置225之背側...270B實施例的平面視 圖。第3D囷鳍示第3C圖PV裝置225的局部截面(參見 A-A剖面)。雖然第3D圖繪示類似第3A圖配置的單一接 合面太陽能電池截面,但其並不限定本發明所述範圍。 如第3C及3D圖所示,PV裝置225含有基板302、太 陽能電池裝置元件(如元件符號310-350)、一或多個内部 電連接(如單侧匯流排355、交又匯流排356)、一層接合 ❹ 材料360、背面玻璃基板361和接線盒275。接線盒275 一般包括至少一終端272 ’其電性連接背部接觸層350 和PV裝置255的主動區。在一些實施例中,接線盒275 . . ... . ... 一般含有二接線盒終端371、372,其藉由單側匯流排355 .. ........... . . . ... . 與交叉匯流排3 5 6電性連接部分Pv裝置2 5 5,單側匯流 排355與交叉匯流棑356電性連接背部接觸層350和太 . . ..... ............. .... ' . 陽能電池300A、300B的主動區·》為避免混淆以下處理 基板302的相關動作,具一或多個沉積層(如元件符號 3 10·350)及/或一或多個内部電連接(如單側匯流排355、 · · . . . . . · . . . . . · . . . . . . . ...... .. ....... · ..... ... 17 201021144 交叉匯流排356)配置其上的基板302通常稱為裝置基板 303。同樣地,已使用接合材料360結合背面玻璃基板 36 1的裝置基板303稱為複合太陽能電池結構3〇4。 第3E圖為PV裝置255的截面圖,顯示各種用來在pvThe chamber 100 operates in a clean room or other manufacturing environment under ambient or atmospheric conditions. Light energy from the illumination device j 3 经 is configured to illuminate the upper surface of the φ platform 145 and/or illuminate a PV device (not shown) disposed on the platform 145 and at least partially illuminate the processing region 128. In one embodiment, the platform 145 is comprised of a thermally conductive material so that the absorbed light from the illumination device is evenly dissipated throughout the platform.. 145 surface. Examples of heat transfer materials for the platform μ5. include aluminum, copper, and other thermally conductive materials. In an embodiment, the platform 145 includes a detachable section 17 露出 that exposes a passage or opening through the platform (all of which are not shown by the p detachable section 17 〇 exposed or the passage size is adjusted to accommodate a portion of the Pv device The drawing frame can be composed of any light structural material. The fan unit 125 can flow from the outside of the chamber 100 to the center of the processing area l28. The 2A-2D is the first and the 1B. Various views of the chamber 1。. 2A ® is a plan view of the cavity to 1〇〇, which shows the front side a, back ^ 205C M 205B^ 205B ^ t 205A ^ # Π 120〇i〇5 j which is relatively closed The predetermined position of the region 110 is directed to support the fan unit 125. The plane normal of the upper surface of the surface of -^^^t , ^^125^^^^^^^^^^^^201021144 is about 2 degrees. As such, airflow from each fan unit 125 will be directed downwardly to each of the upper surface illuminating devices 130 of the platform 145 to allow the illuminating device 13 to be laterally opposed to the frame (8) (X and/or fly direction//vertical) ^ Directional communication mode coupling frame 1 〇 5 ^ In an embodiment, the lighting device 13 The support member 14 is coupled by the adjustment device 215. Alternatively, or in addition, each of the support members 140 is coupled to the frame 1〇5 by the adjustment device 215. The reference adjustment device 215 is used to assist lateral and/or vertical adjustment. Or a plurality of illumination devices 130 and/or support members 14 (the adjustment device 215 can be a manual adjustment device or an automatic adjustment device. Examples of the adjustment device 215 include a threaded device, a fastener 'coil knob, a solid (four) nail, a lever or a vice Type of mechanism, actuator, etc. The number of illumination devices 13A depends on the size of the PV| and/or the light intensity of each of the illumination devices 130. It is also possible to consider the amount of heat generated by each illumination device 13 and/or Spatial uniformity and the like. In the illustrated embodiment, the chamber 100 includes nine illumination devices 130 arranged in a 3<3 pattern. 9 Zhao PV ^ £ , , ^1.! xl.3 ^ ^ ^ ^ 6 ^ Set 13〇. Or 'Case 100 set 9 illumination split 13〇, but test PV ^ χ 130^^^^ ^ ^ f 130 〇, 2.2 6 A ruler pV device, chamber i〇 〇Set μ illuminators in the actual case • The case 1 chamber includes 2S illuminators i3 〇 arranged in a 5x5 pattern' Try pv less than 2 2 meters χ 2.6 meters.. : · 昏 . . - 201021144 When the device is installed, dim or turn off one of the 25 lighting devices i3〇 or 'multiple. . . . .. . . . in the embodiment 'the airflow is directed from outside the chamber 100 to adjust the degree of closure, zone 110. In this embodiment, the chamber 1 is at least partially entrapped in the surrounding environment to vent air from the treatment zone 128. In one embodiment, the airflow of the fan unit 70 125 is mostly from the outside of the chamber 1 and is discharged through the open wall 135 of the frame 1〇5. As in the side view of the chamber 100 of Figure 2B, the frame 1 〇5 also includes a portion of the side wall 22〇. For example, 'sides 2〇5B, 2〇5D (this view does not see 2〇5D) include open area 225 for air to enter or exit the enclosed area 11〇. In other embodiments, the exterior of the chamber i 引导 is directed to flow through the open wall 135 and/or the open region 225 and is exhausted by the fan unit 125. A plurality of illumination devices 130 can be seen from the open area of the frame 1〇5. In one embodiment the plurality of illumination devices includes a mirror 230', such as a parabolic mirror, that at least partially houses the illumination lamp 235. . . . . . . . . . . . 2C is a front view of the chamber 1A of FIGS. 2A and 2B, which removes the door to expose the treatment zone 128. From this perspective, an additional air conditioning unit (referred to as fan unit 240) is located on the side of the platform 145 opposite the processing zone 128. The fan unit 240 is disposed in the frame 245 to support the fan unit 24 at a predetermined position relative to the platform 145. Each of the lighting device n〇 and the fan unit MS, 1/ΙΛ.. . . is connected to the controller to control the power supplied to each of the lighting devices 13 〇 and the fan 丨 25, 24 。. As also shown in Figure 2, the diffusing member 238 is placed between the light 235 and the platform 145. Each of the diffusing members 238 can be a living or translucent material for uniformly dispersing or filtering the light of the lamp 235. In one embodiment, the diffusing member 238 at least partially blocks or filters the light of the one or more illumination lamps 235. In one aspect, the diffusing member 238 is used to adjust the light intensity of the processing region 128. In one embodiment of the light infiltration chamber 100, at least partially shields the uniformly dispersed or filtered light 'to simulate the shading of the solar cell when used, and the PV device generates, a hot spot." In general, the pv device's shading solar energy When the battery generates a minimum or current, and does not block the solar cell to generate a current, it will form a hot spot in the PV device. If the solar cells of the PV device are connected in series, the current generated by the non-shielding solar cell must pass through the light-shielded battery. The solar cell generates a reverse bias so that heat is generated in the shading solar cell. The heat generated can damage the PV device or the solar cell layers, so it is continuously reduced. In the _PV device, hot spots and other defects are generated, and The problem is solved by using the light infiltration chamber 00 as an analysis tool. Figure 2D is a bottom view of the chamber 2A-2C, showing that 4 β fan units 240 are arranged to direct air to the main side of the platform 145 or The lower surface 250. As shown in the figure, the detachable area of the platform 145 can be removed. . . . . . . . . . . The opening of the table 145. The second drawing shows the section of the platform 145 cut along the first Α Α Α section. The PV device 255 also shows the upper surface 26 设 provided on the platform 145. ρν . . . - ' 昏 255 includes The upper side 270Α, and the lower surface or the back side 270Β of the light source such as the sun or the illumination device 未3〇 (not shown). The upper table of the platform 145".................. The face 260 includes a flat surface such that the upper surface 260 of the platform 145 closely contacts the back side 270A of the PV device. 201021144 In this embodiment, the detachable section 17A of the platform 145 is removed (FIG. 1B) to expose the platform 145. Opening 265. In one embodiment, opening 265 is configured to provide access to the terminal end 272 of the pv device 255 in the junction box 275, wherein the junction box 275 is a one-part knife of the pV device 255. In the example, 'chamber 1' includes probes or electrical leads.. line 274., which attaches terminal 272 of PV device 255. In one embodiment, junction box 275 protrudes from the back side 27 of PV device 255. b, and the opening 265 is sized to accommodate the protruding portion of the back side 27〇B. The opening 265 is sized to accommodate the wiring in this manner. Jie ^^ is the back side of the apparatus can, "the most intimate contact with the upper ⑽ to surface 260 of the platform 145. Opening 265 also allows electrical leads 274 to be coupled to terminal 272. Electrical leads 274 are coupled to computer 295 for storing data from PV device 255. An example of a PV device 255 tested with a 1⁄2 Ε light infiltration chamber 100 is shown in Figure 3-3. The temperature of the PV device 255 and the platform 145 is controlled when the chamber 100 is tested. In one embodiment of the environmental simulation and/or testing process, the ❿PV device 255 is heated and maintained at a temperature of from about 4 to about 6 Torr, and the maximum deviation across the upper surface 260 of the platform 145 is about 1 〇. %. In another embodiment, the temperature of the platform 145 and/or PV device 255 is controlled within about ± 3 ° C per "$2". The temperature of the platform 145 and/or the PV device 255 can be controlled by controlling the output of the illumination device 130 and the fan units 125, 24A using one or more sensors 278. Each of the one or more sensors can be a thermal lying device, an amniometer, a spectrometer, and combinations thereof. In one embodiment, one or more of the sensors 278 set the temperature around the center of the device 255 and the center of the PV device 255. Although 201021144, one or more of the sensors 278 are shown on the body of the platform 145, the sensor 278 can also be associated with the surface of the PV device 255 outside of the platform 145. For example, the sensor 278 is manually positioned and/or coupled through the opening 265 to the periphery of the PV device 255 and to the center of the device 255. In other embodiments, the sensor 132 used to view the PV device 255 is used to sense temperature. In one embodiment, sensor 132 is an infrared camera for viewing the upper side 270 of PV device 255. In this embodiment, sensor ❹ 132 provides the component temperature of Pv device 255. In an embodiment, the cooling unit 145 and/or the PV device 255' are cooled by the fan unit 125 and/or 240 to further control and maintain the solar cell at a predetermined temperature during testing. In another embodiment, the platform 丨 45 includes a temperature control channel 280. which is disposed in or on the platform .. 145. : Channel .280 is connected to a temperature control flow source such as water, glycol, nitrogen or other temperature control fluid to heat or cool the platform 145. In an embodiment, the passage 280 is for heating a fluid such as water. The fluid may be heated by one or more thermal devices (not shown) (e.g., a compressor) that controls the temperature of the fluid as it is introduced into passage 28〇. In one aspect, the temperature of the fluid exiting channel 280 is monitored and the power supplied to the heating device is adjusted to adjust the temperature of the fluid entering channel 280. In yet another embodiment, the platform 145 includes a buried heating element (not shown). While the embodiment uses gravity to support the PV device 255 on the platform 145 in a horizontal (X or Y direction), the platform 145 can also be modified to include the struts 290 for the PV device 255 to engage the platform 145. In one embodiment, the flat _. 145_ is vertically oriented (Z. direction) or moved to the vertical position. The direction is .. along the vertical 201021144 position to the test PV device 255, the third diagram is a single A simplified schematic of a bonded surface amorphous or microcrystalline solar cell 300A that is formed in the pv device 255 of Figure 2E and is light infiltrated and/or analyzed by the chamber 100. A single joint amorphous or micro • wafer solar cell 300A is positioned towards the source or solar radiation 3〇1. The illumination device 130 provides solar radiation 3〇1 during the test. The solar cell 3A typically comprises a substrate 302, such as a glass substrate, a polymer substrate, a metal germanium substrate or other suitable substrate, with a thin film formed thereon. In one embodiment, the substrate 302 is a glass substrate having a size of about 22 mm (mm) x 2600 mm x 3 mm. The solar cell 3A further comprises a first transparent conductive oxide (TCO) layer 31 (such as ytterbium (Zn), tin oxide (Sn〇)) formed on the substrate 302, and the first p_i_n junction 32 is formed. On the first TCO layer 310, a second TCO layer 34 is formed on the first pin bonding region 320 and a back contact layer 35 is formed on the second tc layer 34A. To enhance light absorption to enhance light absorption, the substrate and/or one or more of the films formed thereon may be selectively textured using wet, plasma, ionic and/or mechanical processes. For example, in the embodiment illustrated in Figure 3A, the first layer 3 10 is textured' and the film deposited thereon is substantially in accordance with the bottom surface. .. ...... . ....... .- ... .. . \ ' . ' . . -. .. -. --. ....- .... - In a configuration, the first p_i_n junction region (10) comprises a 卩-type amorphous 矽 layer 322, and the intrinsic amorphous ruthenium layer 324 is formed on the p-type amorphous ruthenium layer 322 and the n-type microcrystals A germanium layer 326 is formed on the intrinsic amorphous germanium layer 324. In one embodiment, the p-type amorphous ruthenium layer 322 has a chevron thickness of about 60 angstroms (Å) to about 30 Å, and the intrinsic amorphous ruthenium layer 324 has a thickness of about 1500 Å to about 3500 Å. The type microcrystalline germanium layer 326 is formed to a thickness of from about 100 Å to about 400 Å. The back contact layer 350 comprises a layer selected from the group consisting of aluminum (A1), silver (Ag), titanium (Ti), chromium (Cr), gold (Au), copper (Cu), platinum (pt), '..... ................ The alloy and its composition form a group of materials, but not limited to this. Figure 3B is a schematic illustration of one embodiment of a solar cell 300B that is a multi-junction solar cell and positioned toward a source or solar radiation. The solar cell 300B includes a substrate 302 such as a glass substrate, a ruthenium polymer substrate, a metal substrate or other suitable substrate, and has a thin film formed thereon. The solar cell 300B further includes a first transparent conductive oxide (Tc〇) layer 3 10 formed on the substrate 302, a first pin bonding region 320 formed on the first TCO layer 310, and a second p-i_n bonding region 330 formed on the first On the Ρ·ί-η junction region 320, a second TCO layer 340 is formed on the second p_i_n junction region 330 and a back contact layer 350 is formed on the second tc layer 340. In the embodiment shown in Fig. 3B, the first TC layer 31 is textured, and the film deposited thereon is substantially in accordance with the morphology of the underlying surface. The first Pin junction region 320 includes a p-type amorphous layer 322, an intrinsic amorphous layer 324 is formed on the p-type amorphous layer 322, and an n-type microcrystalline layer 326 is formed on the intrinsic amorphous layer 324. on. In one embodiment, the p-type amorphous germanium layer 322 is formed to a thickness of from about 60 A to about 30 oA, and the intrinsic non-ruthenium-shaped tantalum layer 324 is formed to a thickness of from about 15 Å to about 35 Å, n-type micro. The formation of the germanium layer 326 is about 400 about 400A. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The .n type amorphous amorphous layer 336 is formed on the intrinsic microcrystalline layer 334. In the embodiment, the thickness of the germanium-type germanium layer 332 is from about 100 Å to about 4 Å, and the thickness of the lenticular layer 334 is about 1 〇〇〇〇 α to About 30,000 Å, the n-type amorphous ruthenium layer 336 has a shape thickness of about 1 〇〇Α to about 500 。. The back contact wide 350 includes a material selected from the group consisting of aluminum (Α1), silver (Ag), chin (Ti), chromium (Cr), copper (Cu), gold (Cu), platinum (Pt), alloys thereof, and combinations thereof. The materials that make up the group, but not limited to this? Figure 3C is a plan view of an embodiment of the back side 270B of the PV device 225. The 3D 囷 fin shows a partial cross section of the 3C PV device 225 (see section A-A). Although FIG. 3D illustrates a single joint solar cell cross section similar to the configuration of FIG. 3A, it does not limit the scope of the present invention. As shown in Figures 3C and 3D, PV device 225 includes substrate 302, solar cell device components (e.g., component symbols 310-350), and one or more internal electrical connections (e.g., single-sided busbar 355, cross-connect busbar 356). A layer of bonding material 360, a back glass substrate 361 and a junction box 275. Junction box 275 generally includes at least one terminal 272' electrically coupled to the active area of back contact layer 350 and PV device 255. In some embodiments, the junction box 275 . . . ... generally includes two junction box terminals 371, 372 that are provided by a single-sided busbar 355 . . . . . . . . . . with the crossbar 3 5 6 electrically connected to the Pv device 2 5 5, the one-side bus bar 355 and the cross bus bar 356 are electrically connected to the back contact layer 350 and too. . . . .................. The active area of the solar cells 300A, 300B has one or more deposited layers (such as components) to avoid confusion with the following actions related to the processing substrate 302. Symbol 3 10·350) and/or one or more internal electrical connections (eg, one-sided busbars 355, ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 201021144 Crossbar 356) The substrate 302 disposed thereon is generally referred to as a device substrate 303. Similarly, the device substrate 303 which has been bonded to the back glass substrate 36 1 using the bonding material 360 is referred to as a composite solar cell structure 3〇4. Figure 3E is a cross-sectional view of the PV device 255 showing various uses in the pv
裝置255内形成單獨電池382A_382B的切割區。如第3E 圖所示,PV裝置255包括透朋基板302、第一 TCO層 310、第一 p-i-n接合區320和背部接觸層35〇。施行三 參 個雷射切割步驟製造溝槽381A、381B、381C,通常需此 才能形成高效率太陽能電池裝置。雖然顯示單獨電池 382A、3 82B是一起形成在基板3〇2上,但其彼此被形成 於背部接觸層350和第一 p — i — n接合區32〇的絕緣溝槽 381C隔開。此外,溝槽381B形成於第一 p_i_n接合區 320,使背部接觸層350電性接觸第一 TC〇層3 1〇。在一 實施例中,絕緣溝槽381A是在沉積第一 p_i n接合區32〇 和背部接觸層350前,藉由雷射切割移徐部分第一 tc〇 層3 10而形成。同樣地,在一實施例中,溝槽3818是在 沉積背部接觸層350前,藉由雷射切割移除部分第一 p-i-n接合區320而形成於第一 p_i_n接合區32〇。雖然第 3 E圖繪示單-接合面型太陽能電池,但本發明所述範圍 不限於此構造。 第4A圖為光浸潤腔室1〇〇的俯視圖其顯示甩於光浸 潤製程的溫度控制迴路4〇〇實施钭。溫度控制迴路4〇〇 可單獨或合併用於安裝腔室1〇〇、模擬腔室1〇〇的環境 。環境模擬及/或測 及/或測试腔室1 〇〇..内.的.p.V_裝置255 18 201021144 試期間’如圖所示,Pv裝置255支撐在平臺145的上表 面260。環境模擬或測試時,必須提高pv裝置255的溫 度及/或維持模擬PV裝置255遭遇運作環境的溫度, 故腔室100的環境須保持在預定溫度。在此圖中,PV裝 置255位於平臺145的上表面26〇。然在安裝程序期間, 為達預定溫度,使用虛擬(dummy)基板代替真實pv裝 置’以測定腔室1〇〇的初始溫度。因此,pv裝置255用 ❹ 於此圖僅當作參考之用,以協助讀者了解本發明。或者, 可於安裝過程,使用真實PV裝置255來測定初始溫度。 又或者’可單獨使用參考電池420(如感光裝置或吸光裝 置)或配合使用虛擬基板或真實PV裝置,以助於監測及 控制照明裝置130的光能。 利用PV裝置.255_周圍的至少一溫度指示點405和pv 裝置255中心的至少一溫度指示點410,密切監測腔室 1 〇〇的溫度。此外,可於安裝、環境模擬及測試PV裝置 參 255期間,監測複數個溫度指示點415。在一實施例中, 溫度指示點405、410、415代表使用一或多個感測器 132(第1B及2E圖)和感測器278(第2E圖)測量溫度的參 . ..... . . ..... ...... 考點。在另一實施例中’溫度指示點4〇5、410、415代 . . . ........ . . 表與分離的溫度感測器(如感測器278)的位置。在一實施 例中,在安裝、環境模擬及測試PV裝置255期間,監 ...... . : : : …...... 測包括溫度指示點405、410、415的圖案。在一態樣中, .. _ . . . ....... ..... ..... . 在安裝、環境模教及測試PV裝置255期間,監測溫度 ... . .. .. . ... 措示點的網格圖案。例如’使用約25個感測器監測部分 201021144 PV裝置255 ’例如PV裝置255的中心和至少一邊緣。 或者或此外’參考電池420放置在平臺145的上表面 260。在一實施例中,參考電池42〇為獨立的裝置、 光感測器或其他光電裝置。參考電池420還包括溫度指 示點415 ’其可為上述溫度感測器的參考點。 在一實施例中,風扇單元125分成第一組風扇單元 425 A和第二組風扇單元425b ’用以分別提供氣流越過 魯 裝置255的邊緣和中心。溫度指示點4〇5、41 〇各自 連接一或多個控制器430A、430B。在一實施例中,控制 器430A、430B為速度控制器,用以個別控制複數風扇 單元125的氣流。在另一實施例中’控制器430A、430B 分別控制第一組風扇單元43〇A和第二組風扇單元 430B。在一態樣中,控制器43〇A、43〇B為控制迴路回 饋控制器,例如比例·積分_微分(PID)控制器。在又一實 施例中,控制器430A、43ΌΒ搞接主要pid控制器440。 第4B圖為光浸潤腔室1〇〇之處理區128的局部側視 圖。此圖顯示設有反射鏡230的複數照明裝置13〇中兩 者之截面。雖然照明裝置130提供熱給處理區128,但 藉由調整照明裝置130亦可控制處理區丨28的溫度。例 如’調整反射鏡230及/或照燈235相對平臺145上表面 26〇的高度。在一實施例中,藉由轉動反射鏡23〇,可調 整反射鏡230相對照燈235的高度(距離A卜在一態樣 中,反射鏡230耦接調整裝置45〇,例如螺帽,其相對 具螺紋之轴455旋轉。或者或此外,科用調整裝置215, 201021144 調整反射鏡230和照燈235相對平臺145上表面26〇的 距離(距離B),其可為相對轴455旋轉的螺帽^此外利 用調整裝置2Π ’調整照燈攻及/或反射鏡⑽間的距 離(距離C)。在另一實施例中,配置照燈235用來調整相 對平臺145上表面26〇的角度。在一態樣中,軸π包 括旋轉裝置460,用以轉動照燈235及將照燈235固定 在相對軸455之長轴的角度α。故利用一或多個線性調整 ❹(距離A、B、C)和角度調整(角度〇〇,可控制照明裴置13〇 的光及/或熱強度。 照明裝置130之各者連接主要piD控制器44〇,用以 開/關及控制供給各照明裝置13〇的功率。獨立控制器 470耦接致動器(未繪示),以依據主要piD控制器 的指令調整距離A、B、〇及/或角度α。或者,依據主要 PID控制器^如的反饋來手動調整距離八^乂及/或角 度0C。 . . . . .. . . - - .... ... ... 象.. 第4C圖為腔室100的底部視圖,其顯示光浸潤電性測 試程序490之一態樣。為更清楚描繪腔室1〇〇與μ裝 置255間的介面,此圖未繪示平臺。利用至少一連接ρν 裝置255周圍的感測器278和另一連接ρν裝置中 心的感測器278,監測PV裝置255的溫度。電引隸274 耦接PV裝置255,用以監測出自pv裝置255的訊號。 電腦295收集來自感測器278的溫度資料和耒自pv裝 置255的電性資料^在—實施例中’參考電池^^如溫 差電池)用來監測處理區128的條件。在此實施例中,電 201021144 腦295收集溫度資料及/或光強度資料βA cutting zone of individual cells 382A-382B is formed within device 255. As shown in Fig. 3E, the PV device 255 includes a transparent substrate 302, a first TCO layer 310, a first p-i-n junction 320, and a back contact layer 35A. Grooves 381A, 381B, and 381C are fabricated by performing three laser cutting steps, which are usually required to form a high efficiency solar cell device. Although the individual cells 382A, 382B are shown to be formed together on the substrate 3A2, they are spaced apart from each other by the insulating trenches 381C formed in the back contact layer 350 and the first p-i-n junction region 32A. Further, the trench 381B is formed in the first p_i_n junction region 320 such that the back contact layer 350 electrically contacts the first TC layer 3 1 〇. In one embodiment, the insulating trench 381A is formed by laser cutting a portion of the first tc layer 3 10 before depositing the first p-i n junction region 32 and the back contact layer 350. Similarly, in one embodiment, the trench 3818 is formed in the first p_i_n junction region 32 by laser cutting to remove portions of the first p-i-n junction region 320 prior to deposition of the back contact layer 350. Although Fig. 3E illustrates a single-junction type solar cell, the scope of the present invention is not limited to this configuration. Figure 4A is a top plan view of the light infiltration chamber 1 其 showing the temperature control loop of the light immersion process. The temperature control circuit 4〇〇 can be used alone or in combination to install the chamber 1〇〇, simulate the chamber 1〇〇 environment. Environment Simulation and/or Test and/or Test Chamber 1 〇〇.. inside.p.V_Device 255 18 201021144 Test Period As shown, the Pv device 255 is supported on the upper surface 260 of the platform 145. During environmental simulation or testing, the temperature of the pv device 255 must be increased and/or the temperature at which the simulated PV device 255 encounters the operating environment must be maintained so that the environment of the chamber 100 must be maintained at a predetermined temperature. In this figure, the PV device 255 is located on the upper surface 26 of the platform 145. However, during the installation process, in order to reach the predetermined temperature, a dummy substrate is used instead of the real pv device' to determine the initial temperature of the chamber 1〇〇. Accordingly, the pv device 255 is used herein for reference only to assist the reader in understanding the present invention. Alternatively, the actual temperature can be determined using a real PV device 255 during the installation process. Alternatively, a reference battery 420 (e.g., a photosensitive device or a light absorbing device) may be used alone or in conjunction with a virtual substrate or a real PV device to assist in monitoring and controlling the light energy of the illumination device 130. The temperature of the chamber 1 密切 is closely monitored using at least one temperature indicating point 405 around the PV device .255_ and at least one temperature indicating point 410 at the center of the pv device 255. In addition, a plurality of temperature indicating points 415 can be monitored during installation, environmental simulation, and testing of the PV device reference 255. In one embodiment, the temperature indicating points 405, 410, 415 represent parameters for measuring temperature using one or more of the sensors 132 (1B and 2E) and the sensor 278 (Fig. 2E). . . . ..... ...... Test sites. In another embodiment, the temperature indicating points 4〇5, 410, 415 are . . . . . . . . . . and the position of the separated temperature sensor (eg, sensor 278). In one embodiment, during installation, environmental simulation, and testing of the PV device 255, the test includes a pattern of temperature indicating points 405, 410, 415. In one aspect, .. _ . . . . . . . . . . . . . . . . During installation, environmental modeling and testing of PV unit 255, the temperature is monitored... . . . . ... Grid pattern that points the point. For example, 'approximately 25 sensors are used to monitor the portion of the 201021144 PV device 255', such as the center and at least one edge of the PV device 255. Alternatively or additionally, the reference cell 420 is placed on the upper surface 260 of the platform 145. In one embodiment, the reference battery 42 is a separate device, photosensor, or other optoelectronic device. Reference battery 420 also includes a temperature indicating point 415' which may be the reference point for the temperature sensor described above. In one embodiment, the fan unit 125 is divided into a first set of fan units 425 A and a second set of fan units 425b' for providing airflow across the edges and center of the device 255, respectively. The temperature indicating points 4〇5, 41〇 are each connected to one or more controllers 430A, 430B. In one embodiment, the controllers 430A, 430B are speed controllers for individually controlling the airflow of the plurality of fan units 125. In another embodiment, the controllers 430A, 430B control the first set of fan units 43A and the second set of fan units 430B, respectively. In one aspect, controllers 43A, 43A are control loop feedback controllers, such as proportional-integral-derivative (PID) controllers. In yet another embodiment, the controllers 430A, 43 engage the primary pid controller 440. Figure 4B is a partial side elevational view of the processing zone 128 of the light infiltration chamber 1〇〇. This figure shows a cross section of both of the plurality of illumination devices 13 that are provided with mirrors 230. Although the illumination device 130 provides heat to the processing zone 128, the temperature of the processing zone 28 can also be controlled by adjusting the illumination device 130. For example, the height of the mirror 230 and/or the light 235 relative to the upper surface 26 of the platform 145 is adjusted. In one embodiment, by rotating the mirror 23A, the height of the mirror 230 relative to the lamp 235 can be adjusted (distance A is in an aspect, the mirror 230 is coupled to the adjustment device 45, such as a nut, Rotating relative to the threaded shaft 455. Alternatively or additionally, the adjustment device 215, 201021144 adjusts the distance between the mirror 230 and the illumination lamp 235 relative to the upper surface 26 of the platform 145 (distance B), which may be a snail that rotates relative to the shaft 455. The cap is further adjusted by the adjustment device 2'' to adjust the distance between the illumination and/or the mirror (10). In another embodiment, the illumination lamp 235 is used to adjust the angle of the upper surface 26 of the platform 145. In one aspect, the axis π includes a rotating device 460 for rotating the light 235 and fixing the light 235 at an angle a relative to the long axis of the axis 455. Therefore, one or more linear adjustments are used (distance A, B) , C) and angle adjustment (angle 〇〇, can control the light and/or thermal intensity of the illumination device 13 。. Each of the illumination devices 130 is connected to the main piD controller 44 〇 for opening/closing and controlling the supply of illumination The power of the device 13 。. The independent controller 470 is coupled to the actuator ( The distances A, B, 〇 and/or the angle α are adjusted according to the instructions of the main piD controller. Alternatively, the distance 八乂 and/or the angle 0C are manually adjusted according to the feedback of the main PID controller. . . . . . . . . . . . . . . . FIG. 4C is a bottom view of the chamber 100 showing one aspect of the light infiltration electrical test procedure 490. The interface between the chamber 1〇〇 and the μ device 255 is depicted, which is not shown. The PV device is monitored by at least one sensor 278 connected to the ρν device 255 and another sensor 278 connected to the center of the device. The temperature of 255 is coupled to the PV device 255 for monitoring the signal from the pv device 255. The computer 295 collects the temperature data from the sensor 278 and the electrical data from the pv device 255. The 'reference battery ^^ such as a temperature difference battery) is used to monitor the condition of the processing zone 128. In this embodiment, the electricity 201021144 brain 295 collects temperature data and/or light intensity data β
在一實施例中’電腦295包括電性輸出記錄程式472, 其分析及記錄PV裝置255的原始電流/電壓(ν)資料。電 腦295還包括溫度記錄程式474,其監測及/或收集ρν 裝置255的溫度資料。在採用參考電池420的實施例中, 電腦295尚包括用於參考電池42〇的參考電池記錄程式 476。參考電池記錄程式476監測及/或記錄諸如參考電 池420所遭受的溫度及/或光強度等資料。故電腦295能 監測及/或記錄PV裝置255的溫度和電性供使用者或電 腦295未來使用。在採用參考電池42〇的實施例中電 腦295監測及/或記錄參考電池420的資料,其表示處理 區128及/或PV裝置255周圍環境的條件。 在一實施例中’測試程序49〇包括利用電腦295記錄 的資料來調整處理區128的條件及/或決定ρν裝置255 的電性特徵。在一些實施例中,PV裝置255的資料用來 調整上游製程的製程配方,以製造更穩健的ρν裝置。 在一實施例中,如指示492所示,電腦295能即時監測 PV裝置255及/或調整處理區!28的條件。例如,監測 及控制PV裝置255的溫度複償(人)。在__態樣中,監測 級度對照IV曲線。在另―實施例中,監測及控制光強度 補償(Β)。在一態樣中,比較參考電池420的資料和PV 裝置255的電性輸出。在又一實施例中,利用電腦 的資料監測PV裝置的電性特徵。在一態樣中,決定最 後iv曲線計算(c)。在另一態樣中,利用電腦295獲得 22 201021144 依據電性輸出In one embodiment, computer 295 includes an electrical output recording program 472 that analyzes and records raw current/voltage (ν) data for PV device 255. The computer 295 also includes a temperature recording program 474 that monitors and/or collects temperature data for the ρν device 255. In the embodiment employing reference battery 420, computer 295 also includes a reference battery recording program 476 for reference battery 42A. The reference battery recorder 476 monitors and/or records information such as temperature and/or light intensity experienced by the reference battery 420. The computer 295 can then monitor and/or record the temperature and electrical properties of the PV device 255 for future use by the user or computer 295. In an embodiment employing a reference battery 42A, the computer 295 monitors and/or records the data of the reference battery 420, which indicates the conditions of the environment surrounding the processing area 128 and/or the PV device 255. In one embodiment, the 'test procedure 49' includes the use of data recorded by the computer 295 to adjust the conditions of the processing region 128 and/or to determine the electrical characteristics of the ρν device 255. In some embodiments, the data of the PV device 255 is used to adjust the process recipe of the upstream process to produce a more robust ρν device. In one embodiment, as indicated by the indication 492, the computer 295 can instantly monitor the PV device 255 and/or adjust the processing area! 28 conditions. For example, the temperature compensation (person) of the PV device 255 is monitored and controlled. In the __ aspect, the monitoring level is compared to the IV curve. In another embodiment, the light intensity compensation (Β) is monitored and controlled. In one aspect, the data of reference battery 420 and the electrical output of PV device 255 are compared. In yet another embodiment, the electrical characteristics of the PV device are monitored using data from a computer. In one aspect, the final iv curve is calculated (c). In another aspect, using the computer 295 to obtain 22 201021144 based on electrical output
最大功率(pmax)測定(D) 在此實施例中 來分類及評估PV裝置255 V 在一實施例中,測試程序49〇包括決定494 ,其勺括Maximum power (pmax) measurement (D) In this embodiment to classify and evaluate the PV device 255 V. In one embodiment, the test procedure 49 includes a decision 494, which includes
程之決定+態樣中,決定494是:據 處"128的條件及/或^裝置⑸遭受的溫度及/或光 強度。例如,若Pv裝置255的溫度不穩定,則決定為 正而繼續光浸潤製程’以試圖穩定pv裝置255。電腦 295連接主要pm控制胃44〇,因而可修改處理區⑶ 的溫度及/或光強度。若決定為負,表示pv裝置255為 穩定’故如指示496所示,PID控制器44〇可關閉照明 裝置U〇。決定494還包括繼續光浸潤製程,以在不同 環境條件下㈣PV裝置25卜例如,以第—溫度測試(即 監測、記錄及/或評估)PV裝置255的電性特徵並以低 於或高於第一溫度的第二溫度再行測試。 第5圖為太陽能模組生產線5〇〇之一實施例的平面視 圖,其具有光浸潤腔室做為組件。在一示例處理程序中, 將基板302裝載至太陽能模組生產線500的裝載模組 502。基板302沿著輸送器581及/或以其他裝置或手段 (如手動或使用機器設備)傳送到太陽能模組生產線5〇〇 的各種組伴。在一實施例中,接收之基板3〇2處於,,原始,, 狀態’即基板302的邊緣、整體尺寸及/或潔淨度尚未良 好控制。但一般來說,接收基板3〇2表面已沉積有第一In the decision + aspect of the process, the decision 494 is based on the temperature and/or light intensity suffered by the condition &/or device (5). For example, if the temperature of the Pv device 255 is unstable, it is determined to be positive and the light infiltration process is continued to attempt to stabilize the pv device 255. The computer 295 is connected to the main pm to control the stomach 44 〇 so that the temperature and/or light intensity of the treatment zone (3) can be modified. If the decision is negative, the pv device 255 is stable. Thus, as indicated by the indication 496, the PID controller 44 can turn off the illumination device U. Decision 494 also includes continuing the light infiltration process to (eg,) the PV device 25 under various environmental conditions, for example, to test (ie, monitor, record, and/or evaluate) the electrical characteristics of the PV device 255 at a lower or higher level. The second temperature of the first temperature is tested again. Figure 5 is a plan view of one embodiment of a solar module production line having a light infiltration chamber as an assembly. In an example process, substrate 302 is loaded onto load module 502 of solar module production line 500. Substrate 302 is transported to various groups of solar module production lines 5 along conveyor 581 and/or by other means or means, such as by hand or using machine equipment. In one embodiment, the received substrate 3〇2 is in, original, state, i.e., the edge, overall size, and/or cleanliness of the substrate 302 are not well controlled. However, in general, the surface of the receiving substrate 3〇2 has been deposited with the first
Tco層31〇的”原始”基板3〇2是有利的。…^ · . . ' . - 接著’將基板302傳送到切割模組508,在此進行正 23 201021144 面接觸隔離製程處理基板302,以電性隔離基板302表 面的不同區域V接著,將基板302傳送到處理模組512, 在此進行一或多個吸光體沉積製程處理基板302。一或 . 多個吸光體沉積製程包括一或多個製備、蝕刻及/或材料 . 沉積步驟,用以形成太陽能電池裝置的不同區域。一或 多個沉積製程包括一連串的子處理步驟,用以形成太陽 能電池300A、300B的各層。一或多個吸光體沉積製程 φ 一般在處理模組5 12内的一或多個叢集工具(如叢集工具 5 12A-51 2D)中施行,以形成基板302上之太陽能電池裝 置的一或多層。_ 接著,將基板302傳送到切割模組516,在此進行内 連線形成製程處理基板302’以電性隔離基板302表面 的不同區域。利用諸如雷射剝難製程之材料移除步驟移 除基板302表面的材料。在另一實施例中,使用水刀切 割工具或鑽石切割來隔離基板302表面的不同區域。 擎 接著’將基板302傅送到檢視棋組517,在此進行檢 視製程並收集測量資料且送到系統控制器59〇。在一實 施例中,基板302通過檢視模組517,並光學檢視基板 3〇2。擷取基板3〇2的影像且送到系統控制器59〇,在此 分析影像並收集測量資料及儲存於記憶體。在一實施例 中’測量資料用來修改一或多個上游製程。 ... ; ...... ... .. .: . ... . _ 接著’將基板302傳送到處理模組5 18,在此進行背 部接觸形成製程處理基板3〇2。背部接觸形成步驟包括 一或多個製備、蝕刻及7或材料沉積步驟,用以形成太陽 ·. ....... ........ ... . . . ...... . . ... .... . ... .... . ..... .... .. . . .. . ..... . .' .. . . 24 . 201021144 能電池裝置的背部接觸區域。在一實施例中,一或多個 物理氣相沉積(PVD)步驟用來在基板3〇2的表面上形成 背部接觸層350。在一實施例中,利用at〇ntm pVD 5 7 工具施行一或多個處理步驟,其可取自美國加州聖克拉 拉之應用材料公司。在另一實施例中,一或多個化學氣 相沉積(CVD)步驟用來在基板3〇2的表面上形成背部接 觸層350 〇 φ 接著’將基板302傳送到切割模組520,在此進行背 部接觸隔離製程處理基板3 02。在一實施例中,取自應 用材料公司的5.7m2基板雷射切割模組用來精確切割基 板302的預定區域β在一實施例中,雷射切割製程採用 波長為532奈米(nm)的脈衝雷射來圖案化置於基板3〇3 上的材料’以隔離太陽能電池3〇〇a、300B的區域。在 另一實施例中,使用水刀切割工具或鑽石切割來隔離基 板3 0 2表面的不同區域l ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ n 接著’將基板302傳送到檢視模組521,在此進行檢 視製程並收集測量資料且送到系統控制器590。在一實 施例中,基板3 0 2通過檢視模組52丨,並光學檢視基板 302。掏取基板302的影像且送到系統控制器59〇,在此 分析影像並收集測量資料及儲存於記憶體。在一實施例 中,測量資料用來修改一或多俩上游製程,例如正面接 觸隔離製程、内連線形成製程及/或背部接觸隔離製程。 接著,將基板302傳送到封口機/切邊模組526,在此 進行基板表面與邊緣製備製程,以製備基板3〇2的不同 . . . . ..... : .......... . . '25 . .. ..- 201021144 表面》在一態樣中’表面與邊緣製備製程用來防堵後來 裝置形成製程的產率問題。在一實施例中,將基板3〇2 插入封口機/切邊模組526,以製備基板302的邊緣。在 另一實施例令’封口機/切邊模組526用來移除基板3〇2 邊緣的沉積材料(如約10mm) ’以於基板302與背面玻璃 基板361(第3D圖)間形成可靠的密封區域。移除基板3〇2 邊緣的材料亦有助於防止最後形成之PV裝置電氣短路。 • 接著,將基板302傳送到預筛模組527,在此進行選 擇性預篩製程處理基板302,以確保基板表面的裝置符 合預定的品質標準。在一實施例中,發光源和探測裝置 利用一或多個基板接觸探針測量太陽能電池裝置的輸 出。若模組5 2 7偵測到形成於裝置中的缺陷,則可採取 端正動作或報廢太陽能電池。 接著’將基板302傳送到揍合線附接模組531,在此 進行接合線附接製程處理基板3 〇2。接合線附接模組53 1 ^ * 用來附接連接不同外部電组件與太陽能電池所需的各種 接線/引線。接合線附接模組53 1 —般為自動化接線接合 工具,其有益於可靠、快逮地形成許多内連線,生產線 5 00通常需此才能形成大型太陽能電池。在一實施例中, 接合線附接模組531用來形成背部揍觸層35〇上的單側 匿流排355和交叉匯流排356(均繪示於第3C圖)。在此 構造中,單側匯流排355為導電材料,其可附加、接合 . " . ' ... . .. 及/或熔接至背部接觸區域的背部接觸層3 5 〇而形成良好 . . . . .· · .... ...... .... . .. . . - .. 電連接。在一實施例中’單側匯流排35S和交叉匯流排 201021144 356各自包含金屬帶,例如銅帶、覆鎳銀帶、覆銀鎳帶、 覆錫銅帶:、覆錄銅帶、或其他可承載太.陽能電地輸.送電 流且可靠地接合背部接觸區域之金屬層的導電材料。在 . . ' . 一實施例中,金屬帶的寬度釣2mm至約l〇mm,厚度約 1mm至約3mm。於接合區處電性連接單側匯流排355的 交叉匯流排356藉由絕緣材料(如絕緣帶)與太陽能電池 的背部接觸層電性隔離。交叉匯流排356之各者的末端 _ 一般具有一或多個引線,用以連接單側匯流排355和交 叉匯流排356至接線盒275(第3C圖)的電連接,其連接 太陽能電池至其他外部電引線。 在此製程中,製備接合材料和背面玻璃基板361以輸 送至太陽能電池形成製程中。製備製程通常是在玻璃疊 層模組532中施行,其一般包括材料製備模組532A、玻 璃裝載模組532B、玻璃清潔模組532C和玻璃檢視模組 532D。背面玻璃基板361利用積層製程與基板302結合。 ¥ —般來說’接合製程需製備聚合物接合材料,其置於背 面玻璃基板361與基板302之沉積層間,以構成密閉密 ... ....... .. . ..... .. . . . 封件而防止太陽能電池於使用期限内遭環境侵敍1材料 製備模組532A製備接合材料。接合材料接著放到基板 3〇2上’背面玻璃基板361則裝載至裝載模組SMB。清 潔模組2 3 2 C沖洗背面破璃基板。檢視模組5 3 2 D接著檢 視背面玻璃基板361,且將背面破璃基板361放到接合 . .... .. . . 材料和基板302上。 接著’將基板302、背面玻璃基板361和接合材枓傳 . . .. . . . ... ... ... ' .: . . . . : - '- ' ...... ;- . ..... . - 27 201021144 送到接合模組534,在此進行積層製程,以結合背面玻 璃基板361與基板3〇2。在此製程中,諸如聚乙烯縮丁 酸(PVB)或乙烯乙酸乙烯酯(EVA)之接合材料夾設在背面 玻璃基板361與基板302之間。利用各種加熱元件和接 合模組534的其他裝置施加熱和壓力至結構,以構成接 合又密封的裝置。基板302、背面玻璃基板361和接合 材料進而構成複合太陽能電池結構3〇4,其至少部分封 春 裝太陽能電.池裝置的主動.區'。在一實施例中,背面玻璃 基板361的至少一孔洞至少部分依舊未被接合材料覆 蓋’因而仍露出部分交叉匯流排356或單侧匯流排355, 故可在後續製程製造這些太陽能電池結構3 〇 4區域的電 連接。 接著’將複合太陽能電池結構304傳送到高壓釜模組 536,在此進行高壓釜製程處理複合太陽能電池結構 304。高壓蚤製程用來移除陷入接合結構的氣體並確保背 ® 面玻璃基板361與基板302間形成良好接合。在此製程 .中’將接合之太陽:能:電:池結構304:;插入高壓爸模組5.36 的處理區’在此輸送熱和高壓氣體以減少陷入氣體量及 改善基板302、背面玻璃基板361與接合材料間的接合 性:質。南壓爸模組_:536·施行的製程亦有...助..於確保.控制玻 璃和接合層(如PVB層)的應力,以免將來因接合/積層製 .. ... . . ...... . . . . ........ 程引起應_力導致密閉.密封件失效或_玻璃故障...。·在一.實施' 例中,期加熱基板302、背面玻璃基板361和接合材料 能促使複合太陽能電池結構304之一或多個組件釋放應 ... . ; .... .. : ...…... :. .. * * - . * * 1 - - -. ... . . . . ...... . ..... . :: .. ..... 28 201021144 力的溫度。 接著,將複合太陽能電池結構304傳送到接線盒附接 模组538,在此進行接線盒附接製程處理太陽能電池結 構304。接線盒附接模組538用來安裝接線盒275(第3c 圖)至部分形成之pv裝置^安裝之接線盒275做為連接 PV裝置(如其他PV裝置或功率柵極)之外部電組件與pv 裝置之内部電連接點間的介面。在一實施例中,接線盒 ❹ 275含有一或多個終端’例如終端371、372,如此形成 之PV裝置可輕易且有系統地連接其他外部裝置,以輸 送產生之電能。故接線盒275附接複合太陽能電池結構 304後,將形成密封操作之Pv裝置255。 接著’將PV裝置255傳送到測試模組54〇,在此篩選 及分析PV裝置255,以確保pv裝置255上的形成裝置 符合預定的品質標準。在一實施例中,測試模組540包 — 括至少一第一測試腔室538A和第二測試腔室538B。在 此實施例中,第一測試腔室538A位於生產線500,如此 .. ... .... . ..... ... . ... 輸送器581可傳送PV震置255通過测試腔室538A,第 一測試腔室’ 532B則位於.生產線 .:500上.的:.旁_路输送器· 582。在此實施例中’第一測試腔室53 8A或第二測試腔 . . . . . .. .. . . . ... . .. 室538B用來使PV裝置255遭遇光及/或熱。在一實施例 . . ..... :.... . 中,生產線500含有複數個測試腔室(如元件符號538A、 538B) ’其彼此平行設置,如此生產線5〇〇在測試腔室的 . . ...... · ... ' .... ... . 預定測試時間内可達成特定的太陽能電池產量。在一構 造中’測試腔室538A、538B各自搞接複數傭輸送器581, '.. .... ' ..... ' - --29.- 201021144 用以傳送基板進出測試腔室538A、538B。The "original" substrate 3〇2 of the Tco layer 31 is advantageous. . . . then the substrate 302 is transferred to the dicing die 508 where the face 23 201021144 surface contact isolation process substrate 302 is electrically isolated to electrically isolate the different regions of the surface of the substrate 302. Transfer to processing module 512 where one or more light absorber deposition process substrates 302 are performed. A plurality of light absorber deposition processes include one or more preparation, etching, and/or materials. A deposition step to form different regions of the solar cell device. The one or more deposition processes include a series of sub-process steps for forming the layers of the solar cells 300A, 300B. One or more light absorber deposition processes φ are typically performed in one or more cluster tools (e.g., cluster tools 5 12A-51 2D) within processing module 52 to form one or more layers of solar cell devices on substrate 302. . Next, the substrate 302 is transferred to the dicing module 516 where the interconnect forming process substrate 302' is electrically isolated to electrically isolate different regions of the substrate 302. The material of the surface of the substrate 302 is removed using a material removal step such as a laser stripping process. In another embodiment, a waterjet cutting tool or diamond cut is used to isolate different regions of the surface of the substrate 302. The engine then sends the substrate 302 to the inspection board 517 where the inspection process is performed and the measurement data is collected and sent to the system controller 59. In one embodiment, substrate 302 passes through inspection module 517 and optically inspects substrate 3〇2. The image of the substrate 3〇2 is captured and sent to the system controller 59, where the image is analyzed and the measurement data is collected and stored in the memory. In one embodiment, the measurement data is used to modify one or more upstream processes. ....................................... _ Next </ RTI> The substrate 302 is transferred to the processing module 5 18 where the back contact is formed to form the process substrate 3 〇 2 . The back contact forming step includes one or more preparation, etching, and 7 or material deposition steps to form the sun ............................. .. . . ... .... . ... .... . ..... .... .. . . .. . ..... . .' .. . . twenty four . 201021144 The back contact area of the battery unit. In one embodiment, one or more physical vapor deposition (PVD) steps are used to form the back contact layer 350 on the surface of the substrate 3〇2. In one embodiment, one or more processing steps are performed using the at〇ntm pVD 5 7 tool, which is available from Applied Materials, Inc. of Santa Clara, California. In another embodiment, one or more chemical vapor deposition (CVD) steps are used to form a back contact layer 350 〇 φ on the surface of the substrate 3 接着 2 and then 'transfer the substrate 302 to the dicing die 520, where The back contact isolation process processing substrate 302 is performed. In one embodiment, a 5.7 m2 substrate laser cutting module from Applied Materials is used to precisely cut a predetermined area of the substrate 302. In one embodiment, the laser cutting process uses a wavelength of 532 nm (nm). A pulsed laser is used to pattern the material "on the substrate 3" to isolate the regions of the solar cells 3a, 300B. In another embodiment, a waterjet cutting tool or a diamond cut is used to isolate different regions of the surface of the substrate 3 0 2 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ n then 'transfer the substrate 302 to the inspection module 521, The inspection process is performed here and the measurement data is collected and sent to the system controller 590. In one embodiment, substrate 310 is passed through inspection module 52 and optically inspecting substrate 302. The image of the substrate 302 is captured and sent to the system controller 59, where the image is analyzed and the measurement data is collected and stored in the memory. In one embodiment, the measurement data is used to modify one or more upstream processes, such as a front contact isolation process, an interconnect formation process, and/or a back contact isolation process. Next, the substrate 302 is transferred to the sealing machine/cutting module 526 where the substrate surface and edge preparation processes are performed to prepare the substrate 3〇2 different. . . . . . . .... . . '25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In one embodiment, the substrate 3〇2 is inserted into the sealer/trimming module 526 to prepare the edges of the substrate 302. In another embodiment, the 'sealing machine/edge trimming module 526 is used to remove the deposited material (eg, about 10 mm) from the edge of the substrate 3〇' to form a reliable relationship between the substrate 302 and the back glass substrate 361 (Fig. 3D). Sealing area. Removing the material from the edge of the substrate 3〇2 also helps to prevent electrical shorting of the resulting PV device. • Next, substrate 302 is transferred to pre-screening module 527 where a selective pre-screening process substrate 302 is performed to ensure that the device on the substrate surface meets predetermined quality criteria. In one embodiment, the illumination source and detection device measure the output of the solar cell device using one or more substrate contact probes. If the module 52 7 detects a defect formed in the device, it can take a positive action or scrap the solar cell. Next, the substrate 302 is transferred to the twist wire attachment module 531 where the bonding wire attachment process substrate 3 〇 2 is performed. The bond wire attachment module 53 1 ^ * is used to attach various wires/leads required to connect different external electrical components to the solar cell. The bond wire attachment module 53 1 is typically an automated wire bonding tool that facilitates the formation of a number of interconnects in a reliable, fast-paced manner, which is typically required by the production line 500 to form large solar cells. In one embodiment, the bond wire attachment module 531 is used to form a single side busbar 355 and a crossbar busbar 356 on the back contact layer 35A (both shown in Figure 3C). In this configuration, the one-sided bus bar 355 is a conductive material that can be attached, joined, and/or fused to the back contact layer of the back contact area to form a good. . . . . . . . . . . . . . . . - .. Electrical connection. In one embodiment, the 'single side bus bar 35S and the cross bus bar 201021144 356 each comprise a metal strip, such as a copper strip, a nickel-coated silver strip, a silver-coated nickel strip, a tin-coated copper strip: a copper strip, or other The conductive material that carries the electrical current to the current and reliably engages the metal layer of the back contact region. In one embodiment, the metal strip has a width of from 2 mm to about 10 mm and a thickness of from about 1 mm to about 3 mm. The cross bus bar 356 electrically connected to the one-side bus bar 355 at the land is electrically isolated from the back contact layer of the solar cell by an insulating material such as an insulating tape. The ends of each of the cross bus bars 356 generally have one or more leads for connecting the electrical connections of the one side bus bar 355 and the cross bus bar 356 to the junction box 275 (Fig. 3C), which connect the solar cells to other External electrical leads. In this process, a bonding material and a back glass substrate 361 are prepared for transport into a solar cell forming process. The fabrication process is typically performed in a glass stack module 532, which typically includes a material preparation module 532A, a glass loading module 532B, a glass cleaning module 532C, and a glass inspection module 532D. The back glass substrate 361 is bonded to the substrate 302 by a lamination process. ¥—Generally speaking, the bonding process requires the preparation of a polymer bonding material which is placed between the back glass substrate 361 and the deposited layer of the substrate 302 to form a sealed dense ..... . . . . . . . . . Sealing to prevent the solar cell from being environmentally insulted during the service life 1 material preparation module 532A to prepare the bonding material. The bonding material is then placed on the substrate 3〇2. The back glass substrate 361 is loaded onto the loading module SMB. Clean the module 2 3 2 C to rinse the back glass substrate. The inspection module 5 3 2 D then examines the back glass substrate 361 and places the back glass substrate 361 on the bonding material ... and the substrate 302. Then 'substrate the substrate 302, the back glass substrate 361 and the bonding material. . . . . . . . . . . . . . . . . . - . . . . - 27 201021144 sent to the bonding module 534 where a lamination process is performed to bond the back glass substrate 361 and the substrate 3〇2. In this process, a bonding material such as polyvinyl butyric acid (PVB) or ethylene vinyl acetate (EVA) is interposed between the back glass substrate 361 and the substrate 302. Heat and pressure are applied to the structure using various heating elements and other means of joining the module 534 to form a combined and sealed device. The substrate 302, the back glass substrate 361 and the bonding material further constitute a composite solar cell structure 3〇4 which at least partially encapsulates the active area of the solar cell device. In an embodiment, at least one of the holes of the back glass substrate 361 is at least partially covered by the bonding material, and thus the partial cross bus bar 356 or the single side bus bar 355 is still exposed, so that the solar cell structures can be fabricated in a subsequent process. 4 electrical connections. The composite solar cell structure 304 is then transferred to an autoclave module 536 where the autoclave process is performed to process the composite solar cell structure 304. The high pressure crucible process is used to remove gas trapped in the bonded structure and to ensure good bonding between the backside glass substrate 361 and the substrate 302. In this process, 'the sun to be joined: can: electricity: pool structure 304:; insert the high-pressure dad module 5.36 processing area' where heat and high-pressure gas are transported to reduce the amount of gas trapped and improve the substrate 302, the back glass substrate Bondage between 361 and bonding material: quality. South pressure dad module _: 536 · The process of implementation also has ... help to ensure that the control of the glass and the bonding layer (such as PVB layer) stress, so as not to be due to the joint / laminate system ..... ...... . . . . ....... The process causes the force to cause sealing. The seal fails or _ glass fails. In an embodiment, the period of heating the substrate 302, the back glass substrate 361, and the bonding material can cause one or more components of the composite solar cell structure 304 to be released. . . . . . . . ....... :. .. * * - . * * 1 - - -. ... . . . . . . . . . . . :: .. ..... 28 201021144 The temperature of the force. Next, the composite solar cell structure 304 is transferred to a junction box attachment module 538 where a junction box attachment process to process the solar cell structure 304 is performed. The junction box attachment module 538 is used to mount the junction box 275 (Fig. 3c) to the partially formed pv device^the junction box 275 as an external electrical component for connecting the PV device (such as other PV devices or power grids). The interface between the internal electrical connection points of the pv device. In one embodiment, junction box 275 contains one or more terminals 'e.g., terminals 371, 372. The PV device thus formed can be easily and systematically coupled to other external devices to deliver the generated electrical energy. Therefore, after the junction box 275 is attached to the composite solar cell structure 304, a Pv device 255 for sealing operation will be formed. The PV device 255 is then transferred to the test module 54 where the PV device 255 is screened and analyzed to ensure that the forming device on the pv device 255 meets predetermined quality standards. In one embodiment, the test module 540 includes at least a first test chamber 538A and a second test chamber 538B. In this embodiment, the first test chamber 538A is located on the production line 500, such that ..... . . . . . . . . . . . . . . . . . . . Test chamber 538A, first test chamber '532B is located on the production line.: 500..: side_router 582. In this embodiment, 'the first test chamber 53 8A or the second test chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In an embodiment. . . . . . . . . . , the production line 500 contains a plurality of test chambers (e.g., component symbols 538A, 538B) 'which are disposed in parallel with one another such that the production line 5 is in the test chamber . . . . ... ' .... ... . A specific solar cell production can be achieved within the scheduled test time. In one configuration, the test chambers 538A, 538B each engage a plurality of commission conveyors 581, '.. .... '... ' - --29.- 201021144 for transferring substrates into and out of the test chamber 538A 538B.
—在-實施例中’第—測試腔室嶋為太陽能模擬腔 至用以使PV裝置255遭遇光能,及當Pv裝置255遭 遇光能時,監控Pv裝置255的電輸出。在一實施例中, 太陽能模擬腔室發射閃光指向PV裝置255的上表面, 並且監測及描繪Pv裝置255的功率輸出。在另一實施 例中,第二測試腔室538B的構造類似所述光浸潤腔室 100。在一些實施例中,第一測試腔室538A建構成光浸 湖腔室綱’第二測試腔室538B配置成太陽能模擬腔 室。在又一實施例中,第一測試腔室538A和第二測試腔 室538B均配置成所述光浸调腔室100,是以生產線5〇〇 包括一腔至’用以進行光浸潤製程及/或測試PV裝置255 的電性。在任一實施例令,發光源和探測裝置利用一或 多個電性接觸接線盒275之終端371、372的自動化組件 測量PV裝置的輸出。若測試模組540彳貞測到PV裝置255 的缺陷’則可採取矯正動作或報廢pv裝置255。 接著,將PV裝置255傳送到支撐結構模組541,其中 支撐绪構架設硬體連接Pv裂置255。完成架設硬體連接 後’可於客戶地點輕易架設及快速安裝PV裝置255。完 ' . . ' ' . 成之PV裝置255揍著傳送到卸載模組542,PV裝置255 由此移出太陽能模組生產線5〇〇。 第6A圖繪示光浸潤腔室638之一實施例的截面圖,其 可為第5圖的第一測試.腔室538A或第二測試腔室 53 8B。在此實施例中,腔室63 8引導pv裝置255之照 . . . .... ' ; . . .. ... · .. . .... - _ ....: 30 201021144 光陣列605的光能朝垂直方向(Z方向)。 光浸潤腔室638包括定位機器人660和耦接定位機器 人660的平臺145。定位機器人660包括旋轉致動器664 .. . . . ......... ‘ 和旋轉止動器665。平臺145包含高架結構670和複數 . 個使PV裝置255保持倚著高架結構670的支撐元件 290、610 »在一實施例中’支標元件290、610為真空夾 持元件、機械夾持元件和其組合物。光浸潤腔室6 3 8還 ❹ 包括封閉區110’其界定處理區128來處理pv.裝置255。 照光陣列605設於處理區128,用以引導光和熱能朝向 PV裝置25.5。封閉.區11 〇包.括框架1 〇5和門120 »門120 可柩軸轉動或縮回使平臺145進出輸送器581。在一實 施例中’門120包括枢轴機構650,其可為鉸鏈或旋轉 致動器。當門120打開時’旋轉致動器664將平臺145 轉至接觸輸送器581上之PV裝置255的位置^旋轉致 _ 動器664接著將平臺145轉成水平方向,在此平臺145 接收PV裝置255。啟動支撐元件29〇及/或61〇後,旋 轉致動器664將平臺145移進處理區128且處於實質垂 直之測試位置。將n i2〇關閉以排除任何来自處理區128 外的光線且處於不會干擾輸送器581上之其他pv裝置 傳送的位置。依此可將待處理pv裝置255移開生產線, 並於光浸潤腔室638中處理,又不會干擾生產線處理其 他PV裝置。 . ’ ... ........ ...... 在一實施例中,旋轉致動器664包括馬達,用以將平 臺345從實質水平(X或γ方向)之裝載或卸載位置轉成 31 201021144 實質垂直(z方向)之處理位置。若平臺145移動期間喪失 電力,則旋轉止動器665提供支托能力。處於裝栽或卸 載位置時’平臺145與移動Pv裝置255進出光浸潤腔 . 室038的輸送器581互相作用。在一實施例中平臺 . 將未處理之pV裝置255抬離輸送器581,並將處理之 PV裝置255放回輸送器581。 光浸潤腔室638還包括支撐構件682,當pv裝置255 _ 處於垂直位置時,用以定位探針裝置或探針巢套68〇。 探針巢套680 一般包括電引線274(第2E圖),其耦接pv 裝置255的接線盒275。探針巢套680提供pv裝置255 的資料給電腦295。 第6B圖為平臺145之一實施例的平面視圓,用於第 6A囷之光浸潤腔室638。平臺145包括框架6〇2,具有 與之相連的結構支撐元件6〇4,以協助平臺145的結構 支撐。平臺145包括上表面260和貫穿開口 265。部分 平臺145已移除來顧示設在平臺145上表面260對面的 複數個風扇單元245 〇 . . . . . . .... . ..... . .... ... .... 在此實施例中,平臺145包括複數個支撐元件^^及厂 或290 ’队協助支撐pv裝置(未繪示)。在一實施例中, 致動器608耗接支擇元件29〇用以移動支撐元件29〇。 致動器608之各者可為電動氣動或液壓驅動的線性 致動器或伺服馬達。在一實施例中,支撐元件61 〇為真 空驅動塾或杯,其置於平臺145的上表面26〇。一旦啟 動’支擇το件61 〇之各者夾持pv裝置及維持pv裝置接 32 201021144 觸平臺145上表面26〇 β 第7圖為照明陣列700之另一實施例的等角視圖其 可用於本文所述之光浸潤腔室1〇〇或638。在此實施例 ’ 中"、、明陣列700為兩種消耗不同功率的照燈混合物, • 其排成混成照燈陣列。照明陣列7〇〇包括第一光源陣列 705和第二光源陣列71〇<>第一光源陣列7〇5包括複數個 ,成多個行列的第一照燈,第二光源陣列71 〇包括複數 ® _成多個行列的第二照燈。第-光源陣列705和第二 光源陣列7丨〇之各者的行列數量可依待測PV裝置的又 寸調整。 在一實施例中,第一光源陣列7〇5包括複數個具第一 功率級的第一照明裝置130,第二光源陣列71〇包括複 數個具第二功率級的第二照明裝置715。在一態樣中, 第照明裝置130之各者包括金屬鹵化物燈、LIFITM照 _ 明裝置和其組合物,第二照明裝置715之各者包括白熾 燈或鎢絲燈。在一實施例中,為得到均勻的光分布, . ' . . ' . ' .. ...... 光源陣列705排在第一平面,第二光源陣列71〇排在 實質平行第一平面的第二平面y可調整第一與第二平面 的間距來匹配預定光譜。在一實施例中,可手動或使用 或多個致動器720(如步進馬達尊)自動調整第一與第 二平面的間距。在一實施例中’預定光譜包括太陽光光 譜’其實質等於1個太陽。儘管未繪示,第一光源陣列 7〇5和.第—光源库...列.:.7.1 〇之各.考連接主要.piD控制器。: . . : ... .. ....... 第8圖為光浸潤方法8〇〇之一實施例的流程圖 > 在此 33 201021144 實施例中,方法800可施行於當作單一處理腔室之光浸 潤腔室1 00或當作太陽能模組生產線部件之光浸潤腔室 638。在一實施例中,方法8〇〇模擬環境條件以測試及 描繪PV裝置255的特性。例如,以裝置255產生光 致降級(LID)的方式設定處理區128的條件而提供熱和光 能。一般來說,LID為熱和光對PV裝置255組件的作用, 此會造成PV裝置255之太陽能電池結構3〇4中一或多 ❿ 層的原子及/或原子鍵改變其在一或多層内的位置、或改 變其物理或化學結構,以致降低太陽能電池結構3〇4的 效率。在一實例中,延長太陽光及/或熱曝照裝置2 $ 5 用來退火處理PV裝置255的太陽能電池結構。在一態 樣中,太陽能電池結構304内的氫鍵斷裂而捕捉載子, 因而降低PV裝置255的效率。在一實施例中,誘發pV 裝置255的口〇作用提供了測度,其代表1^裝置的品 _ 質。例如’利用PV裝置255的斷鍵百分比可鑑定已以 本文所述之方法進行光浸獨的pv裝置。製造業者或終 %使用者可利用測度表示其他依製程配方製造之m 置255的品質。測度亦可用來表示依特定製程配方製造 之PV裝置255的預期效率及/或使用期限。 在另一態樣中’指向PV裝置255的控制光強度用來 誘發PV裝置255形成熱點。藉由置於照燈235與pv裝 置255間的一或多個擴散構件238(第2c圖),以遮蔽部 分PV裝置255。在其他實施例中,使用材料覆蓋部分 pv裝置及/或關閉一或多個照燈235,可遮蔽裝置。 201021144 在任一實施例中,處理區128的條件模擬環境條件及/或 PV裝置255運作可能遭受的極值,以延長有效使用期限 及提高PV裝置255的生產力。 在方法8〇0中’引用Pv裝置255或提供pv裝置255 至處理區128前,可視處理區128的條件是否達預期而 調換步驟810A、810B。在一實施例中,如步驟81〇八所 示,將PV裝置255送入處理區128前,提供處理區128 ❹ 的條件。引用待測PV裝置255前,可於上升(ramp_up) 期間設定處理區128的溫度和光強度,並監測及/或調整 達成穩態。利用諸如熱輕或高溫計.等設於平臺145内或 上的分離溫度感測器監測溫度。光感測器、光譜儀或參 考電池用來監測及協助調整光強度i在一實施例中,使 用光學感測器132(第2E圖)監測溫度。處理區丨28的溫 度達預定設定值後,提供待測PV裝置25 5至處理區128。 _ 在一態樣中,預定光強度包括提供強度約1千瓦/平方- In the embodiment - the first test chamber is a solar analog cavity to allow the PV device 255 to encounter light energy, and when the Pv device 255 is exposed to light energy, the electrical output of the Pv device 255 is monitored. In one embodiment, the solar simulation chamber emits a flash of light directed onto the upper surface of the PV device 255 and monitors and depicts the power output of the Pv device 255. In another embodiment, the second test chamber 538B is constructed similarly to the light infiltration chamber 100. In some embodiments, the first test chamber 538A is constructed to form a light immersion lake chamber. The second test chamber 538B is configured as a solar simulation chamber. In still another embodiment, the first test chamber 538A and the second test chamber 538B are each configured as the light dip chamber 100, and the production line 5 includes a cavity to 'for the light infiltration process and / or test the electrical properties of the PV device 255. In either embodiment, the illumination source and detection device utilizes one or more automated components of the terminals 371, 372 of the electrical contact junction box 275 to measure the output of the PV device. If the test module 540 detects a defect in the PV device 255, then a corrective action or scrapped pv device 255 can be taken. Next, the PV device 255 is transferred to the support structure module 541, wherein the support structure is provided with a hardware connection Pv split 255. After the hardware connection is completed, the PV unit 255 can be easily installed and quickly installed at the customer's location. The finished PV device 255 is transferred to the unloading module 542, and the PV device 255 is thereby removed from the solar module production line 5〇〇. Figure 6A illustrates a cross-sectional view of one embodiment of a light infiltration chamber 638 which may be the first test chamber 538A or the second test chamber 53 8B of Figure 5. In this embodiment, the chamber 63 8 guides the photo of the pv device 255. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The light energy of the array 605 is in the vertical direction (Z direction). The light infiltration chamber 638 includes a positioning robot 660 and a platform 145 coupled to the positioning robot 660. The positioning robot 660 includes a rotary actuator 664 . . . . . . and a rotation stopper 665. The platform 145 includes an elevated structure 670 and a plurality of support members 290, 610 that hold the PV device 255 against the elevated structure 670. In one embodiment, the 'branch members 290, 610 are vacuum clamping members, mechanical clamping members, and Its composition. The light infiltration chamber 6 3 8 also includes a closed area 110' that defines a processing area 128 for processing the pv. device 255. Illumination array 605 is provided in processing zone 128 for directing light and thermal energy toward PV device 25.5. Enclosed. Area 11 〇 . Included Frame 1 〇 5 and Door 120 » Door 120 The shaft can be rotated or retracted to move the platform 145 in and out of the conveyor 581. In one embodiment, the door 120 includes a pivot mechanism 650 that can be a hinge or a rotary actuator. When the door 120 is open, the 'rotary actuator 664 turns the platform 145 to the position of the PV device 255 on the contact conveyor 581. The rotary actuator 664 then turns the platform 145 into a horizontal direction where the platform 145 receives the PV device. 255. Upon activation of the support members 29 and/or 61, the rotary actuator 664 moves the platform 145 into the processing zone 128 and is in a substantially vertical test position. The n i2 〇 is turned off to exclude any light from outside the processing zone 128 and at a location that would not interfere with the transfer of other pv devices on the conveyor 581. Accordingly, the pv device 255 to be processed can be removed from the production line and processed in the light infiltration chamber 638 without disturbing the production line to process other PV devices. [...] In an embodiment, the rotary actuator 664 includes a motor for loading the platform 345 from a substantial level (X or gamma direction) or The unloading position is converted into a processing position of 31 201021144 substantially vertical (z direction). If the platform 145 loses power during movement, the rotary stop 665 provides support. When in the loading or unloading position, the platform 145 and the moving Pv device 255 enter and exit the light infiltration chamber. The conveyor 581 of the chamber 038 interacts. In one embodiment the platform. The unprocessed pV device 255 is lifted off the conveyor 581 and the processed PV device 255 is placed back into the conveyor 581. The light infiltration chamber 638 also includes a support member 682 for positioning the probe device or probe nest 68〇 when the pv device 255_ is in a vertical position. The probe nest 680 generally includes an electrical lead 274 (Fig. 2E) that is coupled to the junction box 275 of the pv device 255. Probe nest 680 provides information for pv device 255 to computer 295. Figure 6B is a plan view of an embodiment of platform 145 for use in the light infiltration chamber 638 of Figure 6A. The platform 145 includes a frame 6〇2 having structural support members 6〇4 attached thereto to assist in the structural support of the platform 145. The platform 145 includes an upper surface 260 and a through opening 265. A portion of the platform 145 has been removed to provide a plurality of fan units 245 disposed opposite the upper surface 260 of the platform 145. . . . . . . . . . . . . . . . . . . . . . . In this embodiment, the platform 145 includes a plurality of support members and a factory or 290' team to assist in supporting the pv device (not shown). In an embodiment, the actuator 608 is consuming the support member 29 for moving the support member 29A. Each of the actuators 608 can be an electro-pneumatic or hydraulically driven linear actuator or servo motor. In one embodiment, the support member 61 is a vacuum drive or cup that is placed on the upper surface 26 of the platform 145. Once the 'selection' component is activated, the pv device is held and the pv device is maintained. 32 201021144 The upper surface of the touch platform 145 is 26 〇 β. Figure 7 is an isometric view of another embodiment of the illumination array 700. The light infiltration chamber described herein is 1 or 638. In this embodiment, ", Ming array 700 is two kinds of illumination mixtures that consume different powers; • They are arranged in an array of mixed illuminations. The illumination array 7A includes a first source array 705 and a second source array 71. <> The first source array 7〇5 includes a plurality of first lamps in a plurality of rows and columns, and the second source array 71 includes Plural® _ a second light that is in multiple rows and columns. The number of rows and columns of each of the first-light source array 705 and the second light source array 7丨〇 can be adjusted according to the size of the PV device to be tested. In one embodiment, the first source array 7〇5 includes a plurality of first illumination devices 130 having a first power level, and the second source array 71 includes a plurality of second illumination devices 715 having a second power level. In one aspect, each of the first illumination devices 130 includes a metal halide lamp, a LIFITM illumination device, and combinations thereof, and each of the second illumination devices 715 includes an incandescent or tungsten filament lamp. In an embodiment, in order to obtain a uniform light distribution, the light source array 705 is arranged in a first plane, and the second light source array 71 is arranged in a substantially parallel first plane. The second plane y can adjust the spacing of the first and second planes to match the predetermined spectrum. In an embodiment, the spacing of the first and second planes may be automatically adjusted manually or using one or more actuators 720 (e.g., stepper motor). In one embodiment the 'predetermined spectrum includes a solar spectrum' which is substantially equal to one sun. Although not shown, the first source array 7〇5 and the first-light source library...column:.7.1 are each connected to the main .piD controller. : . . : . . . . . . Fig. 8 is a flow chart of one embodiment of the light infiltration method 8 &; in this embodiment, 33, 2010, 144, the method 800 can be implemented as A single processing chamber light infiltration chamber 100 or a light infiltration chamber 638 that is part of a solar module production line. In one embodiment, method 8 simulates environmental conditions to test and characterize the characteristics of PV device 255. For example, the conditions of the processing region 128 are set in a manner that the device 255 produces a photodegradation (LID) to provide heat and light energy. In general, LID is the effect of heat and light on the components of the PV device 255, which causes the atoms and/or atomic bonds of one or more layers of the solar cell structure 3〇4 of the PV device 255 to change within one or more layers. Position, or change its physical or chemical structure, so as to reduce the efficiency of the solar cell structure 3〇4. In one example, the extended solar and/or thermal exposure device 2 $5 is used to anneal the solar cell structure of the PV device 255. In one aspect, the hydrogen bonds within the solar cell structure 304 break to capture the carriers, thereby reducing the efficiency of the PV device 255. In one embodiment, the effect of inducing the mouth of the pV device 255 provides a measure that represents the quality of the device. For example, using the percentage of broken bonds of the PV device 255, a pv device that has been optically immersed in the manner described herein can be identified. The manufacturer or the end user can use the measure to indicate the quality of the other 255 manufactured by the process recipe. The measure can also be used to indicate the expected efficiency and/or lifetime of the PV device 255 fabricated in accordance with a particular process recipe. In another aspect, the intensity of the control light directed to the PV device 255 is used to induce the PV device 255 to form a hot spot. The PV device 255 is partially shielded by one or more diffusing members 238 (Fig. 2c) disposed between the lamp 235 and the pv device 255. In other embodiments, the device may be shielded by covering a portion of the pv device with material and/or turning off one or more of the lights 235. 201021144 In either embodiment, the condition of the processing zone 128 simulates environmental conditions and/or extremes that the PV device 255 may experience to extend the useful life and increase the productivity of the PV device 255. The steps 810A, 810B are reversed if the conditions of the visual processing area 128 are as expected, before the reference to the Pv device 255 or the provision of the pv device 255 to the processing area 128 in method 8000. In one embodiment, as shown in step 810, the PV device 255 is sent to the processing area 128 to provide conditions for the processing area 128 。. Prior to citing the PV device 255 to be tested, the temperature and light intensity of the processing zone 128 can be set during ramp (up) and monitored and/or adjusted to achieve a steady state. The temperature is monitored using a separate temperature sensor located in or on the platform 145, such as a thermal light or pyrometer. A light sensor, spectrometer or reference battery is used to monitor and assist in adjusting the light intensity i. In one embodiment, the temperature is monitored using optical sensor 132 (Fig. 2E). After the temperature of the processing zone 28 reaches a predetermined set value, the PV device to be tested 25 5 to the processing zone 128 is provided. _ In one aspect, the predetermined light intensity includes providing an intensity of about 1 kW/square.
公尺(大概等於1個太陽)的光能,其實質指向平臺14 5 的上表面260。此外’ p-i-n接合區320及/或330(第3A 及3B圖)測量的預定溫度設定值為約4〇c»c至約6〇。〇 α在 . . ' . .... 一特定實施例中’待測PV裝置255中心和周圍附近之 p-i-n接合區320及/或330測量的溫度期為約5〇〇c。主 要PID控制器440用來維持PV裝置255的溫度設定值 .' . ........ .... . . 在每 1.5·平方公尺約士3'。〇以内'. 在一實施例中,使用設於平臺145内或上之分離溫度 . . . . . ' ' 感測器及/或光學感測器132測定預定接合區溫度。在一 35 201021144 態樣中*平臺145上表ίδΐ , < λ u 260的溫度維持比預定接合區 溫度高約代至61或代至代。在一實例中,平臺 145上表面26㈣溫度維持Ε約饥至5化以提供預定 接合、區隨為約贼。在另一實施例中,參考電池420 及/或虛擬PV裝置用來提供預定接合區溫度^處理區128 的溫度達預定設定值後,提供待測ρν裝置255至處理 區128/期PV裝置255的下表面實質上完全接觸平臺 ® I45的上表面260,以促進平臺145與PV裝置255間的 熱傳導。 在又一實施例中,如步驟810Β所示,達到穩態溫度和 光強度前,提供待測PV裝置255至處理區128 ^在此實 施例中,PV裝置255支撐在平臺丨45上並紫密接觸平臺 145的上表面260。開啟照明裝置丨3〇,且將主piD控制 器权疋成南於預定穩態設定值的升溫設定值,以促進違 _ 預定接合區溫度。主PID控制器440控制複數風扇125 及/或240 ’以促進達升溫設定值。溫度可由設於平臺145 . : . .... . ... ......... 内或上的分離溫度感測器、麵接或置於PV裝置255的 溫度感測器及/或光學感測器1 32監測。The light energy of a meter (probably equal to 1 sun) is substantially directed to the upper surface 260 of the platform 14 5 . Further, the predetermined temperature setting measured by the 'p-i-n junction regions 320 and/or 330 (Figs. 3A and 3B) is about 4 〇 c»c to about 6 。. 〇α is in a particular embodiment where the temperature of the p-i-n junction 320 and/or 330 in the vicinity of and around the center of the PV device 255 to be tested is about 5 〇〇c. The primary PID controller 440 is used to maintain the temperature setting of the PV device 255. ' . . . . . . . . . . . . . . In one embodiment, the predetermined junction temperature is measured using a separation temperature . . . . sensor or/or optical sensor 132 disposed in or on the platform 145. In a 35 201021144 aspect, the temperature on the platform 145 is ίδΐ , < λ u 260 is maintained at a temperature higher than the predetermined junction temperature by about 61 or generations. In one example, the temperature of the upper surface 26 of the platform 145 is maintained at a temperature of about 5,000 to provide a predetermined joint, and the zone is a thief. In another embodiment, after the reference battery 420 and/or the virtual PV device is used to provide the predetermined junction temperature, the temperature of the processing region 128 reaches a predetermined set value, the ρν device 255 to the processing region 128/phase PV device 255 is provided. The lower surface substantially completely contacts the upper surface 260 of the platform® I45 to promote heat transfer between the platform 145 and the PV device 255. In still another embodiment, as shown in step 810, before the steady state temperature and light intensity are reached, the PV device 255 to be tested is provided to the processing region 128. In this embodiment, the PV device 255 is supported on the platform 45 and is purple. The upper surface 260 of the platform 145 is contacted. The illumination device 开启3〇 is turned on, and the main piD controller is throttled to a temperature increase setting value that is predetermined to a steady state set value to promote the predetermined junction temperature. The primary PID controller 440 controls the plurality of fans 125 and/or 240' to facilitate the temperature rise setpoint. The temperature may be separated by a temperature sensor disposed in or on the platform 145 . . . . . . . . . , or a temperature sensor disposed on the PV device 255 and / or optical sensor 1 32 monitoring.
在本發明之一實例中,主PID控制器440設定成約75 t: ’以於升溫過程雄持關閉側邊風扇單元125。分離溫 度感測器(如感測器)設在基板302(第3A' 3B圖)上或PV 裝置255的上倒270A(第2E圖)上。在此實施例中,25 + . - . …個溫度感測器間隔25公分排成網格圖案。至少二溫度感 ' . - -. . .: - .... .. .. -- .... :; ....:. 測器連接控制器43〇A、43〇B(第4A圖)和主PID控制器 36 201021144 440。處理區128在約30分鐘内達初始熱平衡,且在此 升溫過程,關閉側邊風扇單元125和底部風扇單元240。 達初始熱平衡後,底部風扇單元240啟動成最低速度 設定。在此實施例中,側邊風扇單元125和底部風扇單 元240為三速風扇。約15分鐘後,處理區128的溫度達 第二熱平衡。檢查及平均分離溫度感測器的溫度讀值, 以測定PV裝置255表面的平衡溫度。PV裝置255的溫 度乃平均自PV裝置255上的25個點。在一情境中,若 平均表面溫度達高於預定設定值溫度(如處理溫度)約3 °C至6°C之溫度梯度,則底部風扇單元240設成預定速 度設定(如最低速度設定)。在一情境中,若平均表面溫 度高於溫度梯度(如高於預定設定值溫度(如處理溫度)約 3°C至6°C ),則底部風扇單元240重設成較快速度,直到 平均溫度降低成高於預定設定值溫度約3°C至6°C。 達預定溫度梯度後,8個側邊風扇單元125全設成最 低速度。參照第4A圖,控制器430A、430B設成預定設 定值溫度,在此實例為約50°C。在平均25個感測器測 得之溫度及計算標準差之後,系統容許達平衡約1 5分 鐘。在一情境中,若此階段的平均測量溫度差異超過標 準差(此實施例為2°C ),則重新校正控制器430A、430B 以彌補此偏差。第4A圖側邊風扇單元125的區域控制可 用來調整PV裝置255的溫度均勻性。例如,若PV裝置 周阍的溫度明顯不同於PV裝置255中心的溫度.,則控 制器43 0A、430B之各者的設定值溫度為不同。在預定 37 201021144 设定值溫度為約5CTC ±2°C (2°C為1個標準差)的 特定設定 實例中,底部風扇單元240設成最高速度,側邊風扇單 元125設成最低速度。在此實例中,控制中心處第一組 風扇單元425B的控制器430B設成48t:,同時控制邊緣 處第二組風扇單元425A的控制器43〇A設成5〇<t。在此 實例中’ PV裝置255維持整體溫度為5(rc 一段時間。 不管步驟810A、810B的施行順序’如步驟82〇所示, 〇 維持預定設定值溫度一段測試時間。測試時間可依使用 者需求改變,但在一實施例中,執行環境模擬模型時, 時間為約30分鐘至約300小時。在一實例中,測試時間 為約100小時至約300小時。在一實施例中,如步驟825In one example of the present invention, the primary PID controller 440 is set to approximately 75 t: 'to hold the side fan unit 125 in a warming process. A separation temperature sensor (e.g., a sensor) is provided on the substrate 302 (Fig. 3A' 3B) or on the PV device 255 up 270A (Fig. 2E). In this embodiment, 25 + - - . . . temperature sensors are arranged in a grid pattern at intervals of 25 cm. At least two sense of temperature ' . - -. . .: - .... .. .. -- .... :; ....:. Tester connection controller 43〇A, 43〇B (4A Figure) and main PID controller 36 201021144 440. The treatment zone 128 reaches an initial heat balance in about 30 minutes, and during the warming up process, the side fan unit 125 and the bottom fan unit 240 are closed. After the initial thermal balance, the bottom fan unit 240 is activated to the lowest speed setting. In this embodiment, the side fan unit 125 and the bottom fan unit 240 are three speed fans. After about 15 minutes, the temperature of the treatment zone 128 reaches a second heat balance. The temperature readings of the temperature sensor are checked and averaged to determine the equilibrium temperature of the surface of the PV device 255. The temperature of the PV device 255 is on average from 25 points on the PV device 255. In one scenario, if the average surface temperature reaches a temperature gradient above about a predetermined set point temperature (e.g., processing temperature) of about 3 ° C to 6 ° C, the bottom fan unit 240 is set to a predetermined speed setting (e.g., a minimum speed setting). In one scenario, if the average surface temperature is above a temperature gradient (eg, about 3 ° C to 6 ° C above a predetermined setpoint temperature (eg, processing temperature), then bottom fan unit 240 is reset to a faster rate until average The temperature is lowered to about 3 ° C to 6 ° C above a predetermined set point temperature. After the predetermined temperature gradient is reached, the eight side fan units 125 are all set to the lowest speed. Referring to Figure 4A, the controllers 430A, 430B are set to a predetermined set temperature, which in this example is about 50 °C. After averaging the temperature measured by 25 sensors and calculating the standard deviation, the system is allowed to equilibrate for approximately 15 minutes. In one scenario, if the average measured temperature difference at this stage exceeds the standard deviation (2°C in this embodiment), the controllers 430A, 430B are recalibrated to compensate for this deviation. The area control of the side fan unit 125 of Fig. 4A can be used to adjust the temperature uniformity of the PV unit 255. For example, if the temperature of the periphery of the PV device is significantly different from the temperature at the center of the PV device 255, the setpoint temperatures of the controllers 43 0A, 430B are different. In the specific setting example of the predetermined 37 201021144 setpoint temperature being about 5CTC ± 2°C (2°C is 1 standard deviation), the bottom fan unit 240 is set to the highest speed, and the side fan unit 125 is set to the lowest speed. In this example, the controller 430B of the first group of fan units 425B at the control center is set to 48t: while the controller 43A of the second group of fan units 425A at the control edge is set to 5 〇 < t. In this example, the PV device 255 maintains the overall temperature at 5 (rc for a period of time. Regardless of the order of execution of steps 810A, 810B), as shown in step 82, 〇 maintains a predetermined setpoint temperature for a test time. The test time may depend on the user. The demand changes, but in one embodiment, the time is from about 30 minutes to about 300 hours when the environmental simulation model is executed. In one example, the test time is from about 100 hours to about 300 hours. In an embodiment, such as steps 825
所示,執行環境模擬模型期間戒之後,監測及評估第4C 圖PV裝置255的電性特徵。在其他實施例中,如步驟 830所示,進行環境模擬製程後,移開pv裝置255^在 i 步驟840中,於另一系統評估PV裝置255的電性特徵。 雖然本發明之實施例揭露如上,本發明之其他及進一 步之實施例仍可在不脫離本發明之基本範疇内施行。 【圖式簡單說明】 . ... .. .............. .... ... ...... 為讓本發明之上述特徵更明顯易懂,可配合參考實施 例說明’其部分乃繪示如附圖式。須注意的是,雖然所 附圖式揭露本發明特定實施例,但其並非用以限定本發 明之精神與範圍’任何熟習此技藝者,當可作各種之更 動與潤飾而得等效實施例。 201021144 第1A圖為測試腔室之一實施例的等角視圖。 第1Β圖為第1Α圖測試腔室的等角視圖,其顯露腔室 的内部空間。 第2Α圖為第} a及1Β圖侧試腔室的俯視圖。 第2Β圖為第2Α圊測試腔室的侧視圖。 第2C圖為第2Α及2Β圖測試腔室的正視圖。 第2D圖為第2A-2C圓腔室的底部視圖。 ❹ 第圖續'示沿著第1Β圖A-Α剖面截切的平臺截面圖。 第3A圖為單一接合面無定形或微晶矽太陽能電池之 一實施例的簡化示意圖。 第3B圖為多重接合面太陽能電池之一實施例的簡化 示意圖。 第3C圖為Pv裝置背側之一實施例的平面視圖。 第3D圓繪示單一接合區太陽能電池的截面圖。 第3E圖為PV裝置的截面圖,顧示各種用來形成單獨 . 電池的切割區1 ... ....... . . . : ... . . . . . . . . ... 第4A圖為光浸潤腔室的俯視圖,其顯示溫度控制迴路 之一實施例。 . . . ...... . · . .. 第4B圖為光浸潤腔室之處理區的局部側視圖。 第 圖為光次湖腔至的底部視圖,其顯示光浸潤電性 測試程序之一實施例。 第5圖為太陽能模組生產線之一實施例的平面視圖。 第6Α圖繪示光浸潤腔室之另—實施例的截面圖。 第6Β圖為平臺之一實施例的平面視圖甩於第从圖 39 201021144 之光浸潤腔室。 第7圖為照明陣列之另一實施例的等角視圖。 第8圖為光浸潤方法之一實施例的流程圖。 為助於理解,各圖中相同的元件符號儘可能代表相似 的元件。應理解某一實施例的元件當可併入其他實施 例,在此不另外詳述。As shown, the electrical characteristics of the 4C map PV device 255 are monitored and evaluated during and after the execution of the environmental simulation model. In other embodiments, as shown in step 830, after the environmental simulation process is performed, the pv device 255 is removed. In step 840, the electrical characteristics of the PV device 255 are evaluated in another system. Although the embodiments of the present invention are disclosed above, other and further embodiments of the present invention can be practiced without departing from the basic scope of the invention. [Simple description of the diagram] ..... ................................ In order to make the above features of the present invention more obvious and easy to understand It can be explained in conjunction with the reference embodiment, the parts of which are illustrated as the accompanying drawings. It is to be understood that the specific embodiments of the present invention are not to be construed as limiting the scope of the invention. . 201021144 Figure 1A is an isometric view of one embodiment of a test chamber. Figure 1 is an isometric view of the test chamber of Figure 1 showing the interior of the chamber. The second drawing is a top view of the side test chambers of the first and second side views. Figure 2 is a side view of the second test chamber. Figure 2C is a front elevational view of the test chambers of the second and second views. Figure 2D is a bottom view of the 2A-2C circular chamber. ❹ The following figure continues to show a section of the platform cut along the A-Α section of Figure 1. Figure 3A is a simplified schematic diagram of one embodiment of a single bonded amorphous or microcrystalline solar cell. Figure 3B is a simplified schematic diagram of one embodiment of a multi-junction solar cell. Figure 3C is a plan view of one embodiment of the back side of the Pv device. The 3D circle shows a cross-sectional view of a single junction solar cell. Figure 3E is a cross-sectional view of the PV device, showing various cutting zones for forming a separate battery. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4A is a top plan view of a light infiltration chamber showing an embodiment of a temperature control loop. . . . . . . . Figure 4B is a partial side view of the processing zone of the light infiltration chamber. The figure is a bottom view of the light sub-cavity to which one embodiment of the light infiltration electrical test procedure is shown. Figure 5 is a plan view of one embodiment of a solar module production line. Figure 6 is a cross-sectional view showing another embodiment of the light infiltration chamber. Figure 6 is a plan view of one embodiment of the platform. The light infiltration chamber from Figure 39 201021144. Figure 7 is an isometric view of another embodiment of an illumination array. Figure 8 is a flow chart of one embodiment of a light infiltration method. To facilitate understanding, the same component symbols in the various figures represent similar components as much as possible. It will be understood that elements of a certain embodiment may be incorporated in other embodiments and are not described in detail herein.
【主要元件符號說明】 100 腔室 105 框架 110 封閉區 115 侧壁 120 門 125 風扇單元 128 處理區 130 照明裝置 132 感測器 135 壁面 140 支撐構件 145 平臺 150 滑動機構 155 狹缝 156 支腳 158 框架結構 160 旋轉構件 170 區段 20 5 A 前侧 205B ' 205D 205C 、270B 背侧 210 機架 215 調整裝置 220 側壁 225 開放區域 230 反射鏡 235 照燈 23 8 擴散構件 240 風扇單元 245 框架 旁側/侧邊 40 201021144 Φ 250、 260 表面_ . 255 PV裝置 265 開口 270A 上側 272 終端 274 引線 275 接線盒 278 感測器 280 通道 290 支撐構件 295 電腦 300A-B 太陽能電池 301 太陽輕射 302 、 303 '361 基板 304 太陽能電池結構 310 、 340 TCO層 320 ' 330 接合區 322 > 324 、 326 、 332 、 334 、336 矽層 350 接觸層 355 ' 356 匯流排 360 接合材料 371 、 372 終端 381A-C 溝槽 382A-B 電池 400 控制迴路 405 、 410 、415 指示 420 電池 425A-B 風扇單元 430Α-Β、440、470 控制器 450 調整裝置 455 轴 460 旋轉裝置 472、474 、476 程式 490 程序 492 、 496 指示 494 決定 500 生產線 5 02、 508 、 512 、 516-518 、 520-521 、 526-527 ' 53 531A-D 、532、534、536、538、540-542 模組 5 12 A - D 工具 53 8A-B 腔室 581、 5 8 2 _ . _.輸送器 590 控制器 201021144 602 框架 604、 610 支撐 605 照光陣列 638 腔室 650 樞軸機構 660 機器人 608 > 664 致動器 665 止動器 670 1¾架結構 680 巢套 682 支撐構件 700 照明陣列 705、 710、715 光源陣列720 致動器 800 方法 810A-B 、 820 、 825 、 830 ' 840 步驟 A、B 、C 距離 ⑩ 42[Main component symbol description] 100 chamber 105 frame 110 closed area 115 side wall 120 door 125 fan unit 128 processing area 130 illuminating device 132 sensor 135 wall 140 support member 145 platform 150 sliding mechanism 155 slit 156 leg 158 frame Structure 160 Rotating member 170 Section 20 5 A Front side 205B '205D 205C, 270B Back side 210 Rack 215 Adjustment device 220 Side wall 225 Open area 230 Mirror 235 Light 23 8 Diffusion member 240 Fan unit 245 Side/side of frame Side 40 201021144 Φ 250, 260 Surface _ . 255 PV device 265 opening 270A upper side 272 terminal 274 lead 275 junction box 278 sensor 280 channel 290 support member 295 computer 300A-B solar cell 301 solar light 302, 303 '361 substrate 304 solar cell structure 310, 340 TCO layer 320' 330 junction region 322 > 324, 326, 332, 334, 336 矽 layer 350 contact layer 355 '356 bus bar 360 bonding material 371, 372 terminal 381A-C trench 382A- B Battery 400 Control Circuit 405, 410, 415 Indicates 420 Battery 425A-B Fan Unit 430Α-Β, 440, 470 controller 450 adjustment device 455 shaft 460 rotation device 472, 474, 476 program 490 procedures 492, 496 indication 494 determines 500 production lines 5 02, 508, 512, 516-518, 520-521, 526 -527 ' 53 531A-D , 532 , 534 , 536 , 538 , 540-542 Module 5 12 A - D Tool 53 8A-B Chamber 581 , 5 8 2 _ . _. Conveyor 590 Controller 201021144 602 Frame 604, 610 support 605 illumination array 638 chamber 650 pivot mechanism 660 robot 608 > 664 actuator 665 stop 670 13⁄4 frame structure 680 nest 682 support member 700 illumination array 705, 710, 715 light source array 720 actuation 800 method 810A-B, 820, 825, 830 '840 steps A, B, C distance 10 42
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9953108P | 2008-09-23 | 2008-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201021144A true TW201021144A (en) | 2010-06-01 |
Family
ID=42417626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98132131A TW201021144A (en) | 2008-09-23 | 2009-09-23 | Light soaking system and test method for solar cells |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101713817A (en) |
TW (1) | TW201021144A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI404950B (en) * | 2010-10-26 | 2013-08-11 | Inst Nuclear Energy Res Atomic Energy Council | Concentrator photovoltaic measuring device |
TWI478362B (en) * | 2012-06-29 | 2015-03-21 | Univ Cheng Shiu | Laser cutting device of thin film solar cell and the measurement method thereof |
TWI703811B (en) * | 2015-11-25 | 2020-09-01 | 美商波音公司 | Temperature controlled system and method for holding, probing, and testing solar cells |
WO2023104515A1 (en) * | 2021-12-10 | 2023-06-15 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Multi-irradiance photoaging chamber |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102012275B (en) * | 2010-06-10 | 2012-01-04 | 常州天合光能有限公司 | Environment simulator for testing NOCT (Nominal Operating Cell Temperature) of component |
CN102175509B (en) * | 2011-02-18 | 2013-05-01 | 东南大学 | Ultraviolet pretreatment testing device for solar panel |
CN102593249A (en) * | 2012-02-23 | 2012-07-18 | 常州天合光能有限公司 | Curing and power stabilizing device for assemblies and method thereof |
CN105489680A (en) * | 2015-12-25 | 2016-04-13 | 苏州瑞晟纳米科技有限公司 | Light bath device of photovoltaic thin film battery |
US10396708B2 (en) * | 2017-01-03 | 2019-08-27 | Saudi Arabian Oil Company | Maintaining a solar power module |
CN108181227B (en) * | 2017-11-22 | 2021-07-30 | 上海锦湖日丽塑料有限公司 | Light aging experimental device for PC/ABS and application |
-
2009
- 2009-09-21 CN CN200910175668A patent/CN101713817A/en active Pending
- 2009-09-23 TW TW98132131A patent/TW201021144A/en unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI404950B (en) * | 2010-10-26 | 2013-08-11 | Inst Nuclear Energy Res Atomic Energy Council | Concentrator photovoltaic measuring device |
TWI478362B (en) * | 2012-06-29 | 2015-03-21 | Univ Cheng Shiu | Laser cutting device of thin film solar cell and the measurement method thereof |
TWI703811B (en) * | 2015-11-25 | 2020-09-01 | 美商波音公司 | Temperature controlled system and method for holding, probing, and testing solar cells |
US10804842B2 (en) | 2015-11-25 | 2020-10-13 | The Boeing Company | Temperature controlled platform, system, and method for holding, probing, and testing solar cells |
WO2023104515A1 (en) * | 2021-12-10 | 2023-06-15 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Multi-irradiance photoaging chamber |
FR3130374A1 (en) * | 2021-12-10 | 2023-06-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Multi-irradiance photo-aging chamber |
Also Published As
Publication number | Publication date |
---|---|
CN101713817A (en) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201021144A (en) | Light soaking system and test method for solar cells | |
US20100073011A1 (en) | Light soaking system and test method for solar cells | |
US20090287446A1 (en) | Photovoltaic cell reference module for solar testing | |
US8138782B2 (en) | Photovoltaic cell solar simulator | |
JP6201157B2 (en) | Manufacturing method of solar cell module | |
US8049521B2 (en) | Solar parametric testing module and processes | |
US20100276571A1 (en) | Calibration method for solar simulators usied in single junction and tandem junction solar cell testing apparatus | |
US20090077804A1 (en) | Production line module for forming multiple sized photovoltaic devices | |
US20100273279A1 (en) | Production line for the production of multiple sized photovoltaic devices | |
US7908743B2 (en) | Method for forming an electrical connection | |
JP2009105401A (en) | Process tester and testing methodology for thin-film photovoltaic device | |
US8227723B2 (en) | Solder bonding method and apparatus | |
US20090188603A1 (en) | Method and apparatus for controlling laminator temperature on a solar cell | |
US9337378B2 (en) | System and method for photovoltaic device temperature control while conditioning a photovoltaic device | |
US20100330711A1 (en) | Method and apparatus for inspecting scribes in solar modules | |
Gopalakrishna et al. | Nondestructive characterization and accelerated UV testing of browned field-aged PV modules | |
TW201350821A (en) | Solar cell test light irradiation device | |
US20110053307A1 (en) | Repatterning of polyvinyl butyral sheets for use in solar panels | |
US20110026254A1 (en) | Method and apparatus for light simulation in a desired spectrum | |
Pern et al. | Thickness effect of Al-doped ZnO window layer on damp-heat stability of CuInGaSe 2 solar cells | |
US20110008947A1 (en) | Apparatus and method for performing multifunction laser processes | |
US8749256B2 (en) | Measurement system | |
Sinha et al. | Activation energy determination for photovoltaic encapsulant discoloration by indoor accelerated UV testing | |
Theelen et al. | In-situ analysis of the degradation of Cu (In, Ga) Se 2 solar cells | |
Oh et al. | Quantum efficiency loss after PID stress: Wavelength dependence on cell surface and cell edge |