TW201020713A - Control signal generation of a solar panel orientation system with interference reduction using an infrared filter - Google Patents

Control signal generation of a solar panel orientation system with interference reduction using an infrared filter Download PDF

Info

Publication number
TW201020713A
TW201020713A TW098133514A TW98133514A TW201020713A TW 201020713 A TW201020713 A TW 201020713A TW 098133514 A TW098133514 A TW 098133514A TW 98133514 A TW98133514 A TW 98133514A TW 201020713 A TW201020713 A TW 201020713A
Authority
TW
Taiwan
Prior art keywords
sensor
additional
solar panel
control signal
signal
Prior art date
Application number
TW098133514A
Other languages
Chinese (zh)
Inventor
Chin Keong Lam
Original Assignee
Chin Keong Lam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chin Keong Lam filed Critical Chin Keong Lam
Publication of TW201020713A publication Critical patent/TW201020713A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/781Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Disclosed are a system and methods of control signal generation of a solar panel orientation system with interference reduction using an infrared filter. In one embodiment, a solar panel orientation system includes a sensor that generates a control signal component when the sensor receives an ultraviolet part of a radiation signal. The system further includes an additional sensor coupled to the sensor that generates an additional control signal component when the additional sensor receives an additional ultraviolet part of the radiation signal. The control signal component and the additional control signal component each include one or more of a voltage and a current. In addition, the system includes an infrared filter that reduces an interference caused by an infrared part of the radiation signal.

Description

201020713 六、發明說明: 【發明所屬之技術領域】 本公開文件大體上是關於太陽能板的定向。更明確 地,本發明是關於以紅外線濾光片降低干擾之太陽能板定 向系統之控制訊號產生。 【先前技術】 太陽能板定向系統可以使用輻射訊號來定向太陽能板 朝向太陽。如果雲經過太陽能板和太陽之間,則雲會吸收、 反射、重新輻射或散射來自於太陽的輻射,雲會干擾用來 決定太陽的位置之感測器操作。輻射也會被固態物體和大 氣氣體(舉例來說’二氧化碳和甲烷)吸收、反射、重新 輻射、漫射或影響。因此,太陽能板定向裝置在可接受的 範圍内來追縱太陽的位置可能會失敗,其造成將太陽光轉 換成電力的效率降低。接著’降低的效率會增加操作成本 和太陽能板所提供的電力的成本。因此,關聯於定向太陽 能板的失敗之增加的成本會造成功率產生的效率不佳和資 源的浪費。 【發明内容】 本發明公開一種以紅外線濾光片降低干擾之太陽能板 定向系統之控制訊號產生之系統及方法。在一方面,太陽 能板定向系統包含在接受到輻射訊號的紫外線部分時會產 生控制訊號成分之感測器。系統還包含額外感測器額外 201020713 感測器耦合至感測器,額外感測器在接受到輻射訊號的額 外紫外線部分時會產生額外控制訊號成分。控制訊號成分 及額外控制訊號成分各包含一個或多個電壓及電流。此 外,系統包含降低由轄射訊號的紅外線部分造成之干擾之 紅外線濾光片。在感測器及額外感測器接收到輻射訊號 前’當輻射訊號的紅外線部分藉由紅外線濾光片而減少 時,干擾降低。 可以定向大陽能板朝向輻射訊號來源體直到結合控制 Φ 訊號被降低至閾限值,並且當感測器及額外感測器的安裝 面實質上與輻射訊號來源體成垂直時,則會得到閾限值。 感測器及額外感測器可以各別包含發光二極體。紅外線遽 光片可以包含聚胺酯圓頂,聚胺酯圓頂包含擴大由紅外線 濾光片所遮蔽的感測器視角之魚眼。 在另一方面,系統包含基於控制訊號成分及額外控制 訊號成分的結合輸出而產生馬達訊號的調整模組。馬達訊 號使太陽能板循一方向繞著軸轉動。系統還可以包含相互 ❿ 耦合的補充感測器及附加感測器》補充感測器及附加感測 器之額外結合輸出可以提供額外馬達訊號的基準,額外馬 達訊號使太陽能板循額外方向繞軸轉動。 在另一方面’系統包含額外感測器組,額外感測器組 包含四個紫外線感測器’用以使太陽能板繞著額外軸轉動 來定向太陽能板朝向輻射訊號來源體。額外軸與轴垂直, 而感測器、額外感測器、補充感測器以及附加感測器各以 垂直角度附接至安裝面。 201020713 此系統還可以包含接收被導向太陽能板背面之額外輻 射訊號的背面感測器。背面感測器可以在背面感測器接收 到額外輻射訊號之部分時,用於定向太陽能板朝向額外輻 射訊號的額外來源體。 感測器、額外感測器、補充感測器以及附加感測器可 以各自偵測波長實質上在390奈米至4〇〇奈米之間的紫外 線輻射。感測器的陽極可以耦合至額外感測器的陰極,而 感測器的陰極可以耦合至額外感測器的陽極。紅外線濾光 片可以包含厚度在2.0〜3.0毫米間的聚胺酯。系統還可以包 含太陽能板定向系統之垂直支柱及太陽能板定向系統的水 平支柱。系統可以包含被垂直支柱包覆之垂直轴馬達及被 水平支柱包覆之水平轴馬達。 調整模組可以包含全橋’其包含兩個p通道金氧半場 效電晶體及兩個N通道金氧半場效電晶體。在接收到一個 或多個結合訊號及額外結合訊號時,全橋使一個或多個水 平轴馬達及垂直轴馬達轉動。 在另一方面’太陽能板定向系統之方法包含在感測器 及額外感測器接收到輻射訊號前,當輻射訊號以紅外線濾 光片改變時’降低由輻射訊號的紅外線部分所造成的干 擾》方法還包含當感測器接收到輻射訊號的紫外線部分 時,產生控制訊號成分。方法亦還包含當額外感測器接收 到輻射訊號的額外紫外線部分時,形成額外控制訊號成 分。此外,方法包含結合控制訊號成分及額外控制訊號成 分,以形成結合控制訊號。 201020713 方法可以包含定向太陽能板朝向輻射訊號來源體直到 結合控制訊號被降低至閾限值。感測器及額外感測器可以 各包含發光二極體,而紅外線濾光片可以包含聚胺酯圓 頂°方法還可以包含基於控制訊號成分及額外控制訊號成 分之結合輸出來操作馬達。太陽能板可以基於該結合輸出 而循一方向繞軸轉動^方法亦包含基於補充感測器及附加 感測器之額外結合輸出,使太陽能板循額外方向繞轴轉動。 在又另一方面,太陽能板定向系統的方法包含將感測 Φ 器及額外感測器耦合至太陽能板定向系統。當感測器接受 輻射訊號中的紫外線部分時,感測器會產生控制訊號成 分’而當額外感測器接收到輻射訊號中的額外紫外線部分 時’額外感測器會產生額外控制訊號成分。控制訊號成分 及額外控制訊號成分各自包含一個或多個電壓及電流。 在此方面’方法還包含形成太陽能板定向系統的紅外 線濾光片。紅外線濾光片降低由輻射訊號的紅外線部分所 造成的干擾’在感測器及額外感測器接收到輻射訊號前, Φ 當輻射訊號的紅外線部分被紅外線濾光片減少,則干擾降 低。在此方面’紅外線濾光片包含厚度在2〇〜3〇毫米之間 的聚胺酯。 在此方面’方法包含將調整模組置於太陽能板定向系 統内。調整模組基於控制訊號成分及額外控制訊號成分的 結合輸出而產生馬達訊號,且馬達訊號使太陽能板循一方 向繞轴轉動°方法還包含將補充感測器及附加感測器耦合 至太陽能板定向系統。耦合補充感測器及附加感測器,而 7 201020713 補充感測器及附加感測器的額外結合輸出提供了使太陽能 板循額外方向繞軸轉動之額外馬達訊號的基準。 。方法亦可以包含在太陽能板定向系統中置放額外感測 器組。額外感測器組可以包含四個紫外線感測器其使太 陽能板繞額外軸轉動來定向太陽能板朝向轄射訊號來源 體。額外軸可以與軸垂直,而可以定向太陽能板朝向輕射 訊號來源體直到結合控制訊號被降至閾限值。當感測器與 額外感測器·之安裝面與輻射訊號來源體實質上垂直,則可 以達到閾限值。 方法還可以包含將背面感測器耦合至太陽能板定向系 統。背面感測器可以接收被導向太陽能板背面之額外輻射 訊號。當背面感測器接收額外輻射訊號的部分時,背面感 測器可以用來定向太陽能板朝向額外輻射訊號來源。感測 器、額外感測器、補充感測器以及附加感測器各自偵測波 長實質上在390奈米至400奈米間的紫外線輻射》 【實施方式】 本發明公開以紅外線濾光片降低干擾之太陽能板定向 系統之控制訊號產生之系統及方法。 圖1闞明根據具體實施例的輻射訊號11 〇的紅外線部 分所造成的干擾降低,以及結合控制訊號120的產生。圏1 包含感測器組1 〇〇、太陽能板定向系統101、感測器102 ' 額外感測器104、紅外線濾光片1〇6、輻射源1〇8、輻射訊 號110、紫外線訊號112、額外紫外線訊號Π4、控制訊號 8 201020713 成分116、額外控制訊號成分118、結合控制訊號12〇以及 安裝面122。在具體實施例中,感測器組1〇〇包含感測器 102及額外感測器1〇4,兩者各自附接至與安裝面m。圖 1至圖6闡明各式太陽能板定向系統的具體實施例ι〇1、 301、401、501、601,其能做為數種太陽能板定向系統1〇1 的具體實施例之參考,亦可以應用於其他具體實施例上。 輻射訊號110由太陽產生’太陽即為輻射源108。輻射 訊號110可以包含不同波長的輻射,其包含紫外線及紅外 0 線輕射。輻射訊號110亦可以由吸收、反射、再輻射、扭 曲或改變輻射訊號110的物體或氣體所產生。 在具體實施例中,太陽能板定向系統ιοί包含紅外線 渡光片106。紅外線濾光片i 〇6降低輻射訊號J i 〇中紅外線 部分所造成的干擾,輻射訊號110會被雲、放射紅外線輻 射的物體或是會扭曲輻射訊號11〇的紅外線部分的大氣狀 況而改變或影響。紅外線濾光片1〇6反射、吸收或減少 感測器102、額外感測器104,或感測器組1〇〇的任何其他 φ 部分所接收到的紅外線輻射量。. 紅外線濾光片106可以被架置於安裝面122上或附接 至任何表面,使紅外線濾光片能夠在感測器組1〇〇接收到 紅外線輻射前攔截到紅外線輻射。紅外線濾光片1〇6可以 與感測器組100的感測器接觸,且可以被塑形,以直接與 感測器102及額外感測器1〇4之表面相合。紅外線濾光片 106可以以氣隙、真空,或其他材料而與感測器組分開。紅 外線據光片106可以包含魚眼形半圓頂,魚眼形半圓頂使 9 201020713 每個被紅外線濾光片1 06遮蓋的感測器能夠以i 8〇度的視 角看見輻射源108。 在具體實施例中’輻射訊號110穿過紅外線據光片106 的距離是在2.1至2.9毫米間。紅外線濾光片1〇6可以包含 聚胺酯,並可以降低輻射波長大於700奈米之紅外線扭曲 檢波,降幅為60%~85°/。。紅外線濾光片1〇6可以包含降低 進入之輻射訊號11〇扭曲之圓頂形狀。紅外線遽光片106 可以降低進入之紫外線訊號,降幅小於1 5%。 輻射訊號110通過紅外線濾光片106後,一部分的賴 射訊號110及紫外線訊號112將為感測器102接收。接著, 感測器102產生控制訊號成分U 6 ’控制訊號成分116可以 為電壓或電流。輻射訊號110的額外部分(即額外紫外線 訊號114 )亦為額外感測器104所接收,接著額外感測器 104會產生額外控制訊號成分118,額外控制訊號成分ι18 可以為電壓或電流。然後,合併控制訊號成分116及額外 控制訊號成分1 18,以形成結合控制訊號120,結合控制訊 號120可以為電壓或電流。 在具體實施例中,結合控制訊號120用於形成一個定 向太陽能板朝向輻射訊號110來源體之馬違控制訊號。當 太陽能板定向系統、感測器組100、太陽能板被定向而朝向 輻射源108,感測器102及額外感測器104會接收到輻射 量’結合控制訊號120則降低。當結合控制訊號120被降 至閾限值下,太陽能板及太陽能板定向系統101的活動就 會停止。 .201020713 在具體實施例中,當感測器及額外感測器104之安裝 面122實質上垂直,就會到達閾限值。感測器1〇2及額外 感測器104可以與安裝面122以□角相接,□角實質上為 40〜50度間之角度。感測器1〇2及感測器1〇4可以以實質上 直線方式相互連接,並被定向至相反方向,使感測器之陽 極能與額外感測器104之陰極直接相連。 在具體實施例中,感測器102及額外感測器104各為 實際峰值波長介於380奈米至410奈米之紫外線發光二極 φ 體。視角可為80度或更小。感測器1 〇2及額外感測器1 〇4 之其他特性可以包含高達5伏特的正向電壓、高達20亳安 的反向電流’及高達20亳瓦特的功率輸出》 太陽能板定向系統101可以被穿過雲層的輻射所啟 動。使用太陽能板定向系統1〇1可使太陽光轉換成電力強 化約40%。太陽能板定向系統1 〇丨可以被太陽能板背面接 收到的太陽光所啟動。65瓦特之太陽能板背面所產生的電 力可被太陽能板定向系統101用於使太陽能板轉動至朝前 ❹ 的方向,以增強太陽能轉換的效率。 圖2闞明根據具體實施例的太陽能板定向系統1〇1中 的感測器組200 ^圖2包含感測器1〇2、額外感測器ι〇4、 感測器組200、陽極203、陰極205、陰極207、陽極209、 陰極211、陽極213、陽極215、陰極217、電極219、電極 221、補充感測器226、附加感測器228。感測器組2〇〇包 含感測器1 02、額外感測器i 〇4、補充感測器226、附加感 測器228。感測器組200可以闡明圖!中的感測器組1〇〇的 11 201020713 元件及圖3中的方位感測器組3 3 2、高度感測器組3 3 4、背 面感測器組3 3 6 »感測器組2 0 0可以同樣被包含在圖5的並 聯感測器組588中。 在具體實施例中,感測器組200的各感測器各為紫外 線發光二極體所構成,其可以是保存空間之表面安裝式發 光二極體。如圖所示’感測器102之陽極203耦合至額外 感測器104之陰極207及電極219»補充感測器226之陰 極21卜附加感測器228之陽極215以及電極221相互耦合。 陰極205、陽極209、陽極213以及陰極217與地面耦合。 ^ 當額外感測器1 〇4比感測器102接收到更多紫外線輻 射’就會產生誤差電壓或電流,其經放大以驅動直流電馬 達來疋向太陽能板定向系統1〇1朝向輻射訊號11〇來源 體。感測器102及額外感測器1 〇4之正誤差電壓或電流用 於媒動直流電馬達循一方向。包含補充感測器226及附加 感測器228之額外紫外線發光二極體對之正誤差電壓是用 於驅動直流電馬達循反方向。 感測器102與額外感測器104平行,而發光二極體被 ❹ 定向循相反方向。補充感測器226與額外感測器104實質 上以同方向排列,附加感測器228與感測器102實質上以 同方向排列。 如圖1所示’感測器組200中之感測器是與安裝面122 以□角相接。□角實質上為45度。將感測器200藉由注入 塑形聚胺醋外盒而密封可以使感測器免受天氣影響’該外 盒被塑形以與感測器的上方相合。聚胺酯外盒可形成紅外 12 201020713 線濾、光片106,並可承受紫外線輻射的傷害。在具體實施例 中,如圖1所示,聚胺酯外盒包含魚眼圓頂’以使輻射源 108能在感測器組200的每個感測器之擴大視角中被定向。 擴大視角可高達180度,但可以利用並聯擴大視角。 魚眼圓頂可以為圓形圓頂形狀,或可以有不同的透鏡 形狀來扭曲進來的輻射,使輻射能根據映射函數適合較小 的視角,舉例來說,角彎或透視、線性等距縮放、垂直、 等面積,或立體》 φ 圖3闡明根據具逋實施例的具有方位感測器組332、高 度感測器組334、背面感測器組336的太陽能板定向系統 301 ^圖3包含方位感測器組332、高度感測器組334、背 面感測器組336、調整模組338、高度直流電馬達340、方 位直流電馬達342、電壓調節器344、處理器346、充電控 制器348、太陽能板350、直流電/交流電電壓轉換器352、 電力網354、燈350、電池358、無線電收發器360、遠端 無線電收發器3 62、遠端處理器364。 φ 在具體實施例調整模組3 3 8耦合至方位感測器組 332、高度感測器組334、背面感測器組、高度直流電馬達 340、方位直流電馬達342、電壓調節器344、處理器346。 處理器346耦合至無線電收發器360及充電控制器348。充 電控制器348耦合至太陽能板350、燈356、電麼調節器 344、電池358、直流電/交流電電壓轉換器352。直流電/ 交流電電壓轉換器352耦合至電力網354。 在具體實施例中,太陽能板定向系統301包含基於結 13 201020713 合控制訊號120而產生馬達訊號的調整模組338,結合控制 訊號120是藉由控制訊號成分116及額外控制訊號成分n8 而混合產生。馬達訊號使太陽能板循一方向繞轴轉動,轴 可以與水平支柱690或垂直支柱692平行。朝相反方向轉 動的馬達是由額外馬達訊號所控制,額外馬達訊號是由額 外結合控制訊號產生。額外結合控制訊號120包含補充感 測器226及附加感測器228之輸出。馬達可以為高度直流 電馬達340或方位直流電馬達342。調整模組338之額外具 體實施例之操作流程在圖4有更深入的解說。 電壓調節器344可以提供具有相容於電晶體-電晶體邏 輯(TTL)電路的電壓給太陽能板定向系統3〇1元件,以使 邏輯閘及電晶體運作。充電控制器348可供内部或外部電 池358充電’以在沒有太陽能時運作太陽能板定向系統 301。充電控制器348能在電池358充足電力後,切斷電池 358與太陽能板350或電力網354的連結。充電控制器348 亦可以在黃昏之後或在光線不足的情況下啟動或關閉路燈 或其他燈光。 充電控制器348可以透過直流電/交流電電壓轉換器 352耗合至電力網354。直流電/交流電電壓轉換器352可以 將太陽能板350的直流電轉換成交流電,以供電給電力網 354,或可以將電力網354的交流電轉換成太陽能板定向系 統301運作用的直流電,或供電池358充電。 處理器346可以用於管理與控制調整模組338、高度直 流電馬達340、方位直流電馬達342、電壓調節器344以及 14 201020713 充電控制器348的操作流程。在額外的具體實施例中,圖4 更進一步閣明處理器346的操作流程。 在具體實施例中,太陽能板定向系統3〇1包含無線電 收發器360。無線電收發器36〇透過IEEE 8〇2 15 zigbee、 藍芽或其他無線工具與遠端無線電收發器362及遠端處理 器364通訊。每一個太陽能板定向系統3〇1可以包含網路 位置。遠端處理器364可用於監控或控制燈356及太陽能 板定向系統301。實地維修組可決定太陽能板定向系統3〇1 ❹ 疋否需要利用遠端處理器364進行維修或優化。 圖4闡明根據額外具體實施例之太陽能板定向系統 401之調整模組438。圖4包含方位太陽能感測器組332、 高度太陽能感測器組334、背面太陽感測器336、高度直流 電馬達340、方位直流電馬達342、電壓調節器344、處理 器346、太陽能板定向系統401、調整模組438、P通道金 氧半場效電晶體470、472、478、480、N通道金氧半場效 電晶體 474、476、482、484、全橋 466、468 以及 AND 邏 ❹ 輯閘471、473、475、477。全橋466包含P通道金氧半場 效電晶體470、472、N通道金氧半場效電晶體474、476。 全橋468包含P通道金氧半場效電晶體478、480、N通道 金氧半場效電晶體482、484。 方位太陽能感測器組332、高度太陽能感測器組334以 及背面太陽能感測器336各包含四個紫外線發光二極體。 方位太陽能感測器組332、高度太陽能感測器組334以及背 面太陽能感測器組336的安裝面122可以平行。高度太陽 15 201020713 能感測器組334的感測器可以從方位太陽能感測器組332 的感測器的定向而循著平行於安裝面122及太陽能板350 的表面轉動90度。背面太陽能感測器組336可以面對與方 位太陽能感測器組332及高度太陽能感測器組334相反的 方向。 方位感測器組332耦合至電極219及221。如果方位太 陽能感測器組332未被定向,安裝面122在接收太陽光時 沒有與太陽呈垂直,則感測器1 02及額外感測器104會產 生約1.5伏特的正誤差電壓,並啟動耦合至電極219的NPN ^ 通道電晶體。這會引起耦合NPN通道電晶體的AND邏輯閘 471至邏輯電路「〇」之輸出,,其會啟動p通道金氧半場 效電晶趙470及N通道金氧半場效電晶體474。如此一來, 全橋466可以驅動經耦合之方位直流電馬達342循一方向。 替代性地,與電極221耦合的補充感測器226及附加 感測器228可以產生正電壓’其可啟動經耦合的NPN通道 電晶體。NPN通道電晶體可以引起and邏輯閘473至邏輯 電路「〇」的輸出,其可以啟動p通道金氧半場效電晶體472 Q 及N通道金氧半場效電晶體476。如此一來,全橋466可以 反方向驅動經耦合之方位直流電馬達342。 每對P通道金氧半場效電晶鱧及N通道金氧半場效電 晶趙可以用來在一方向驅動經搞合的馬達,而全橋468會 藉由耦合i AND邏輯閘475及477之高度太陽能感測器組 334而以類似方式驅動。舉例而言’ p通道金氧半場效電晶 體478及N通道金氧半場效電晶體482可以被活化,以驅 16 201020713 動高度直流電馬達340向前運轉,而P通道金氧半場效電 晶體480及N通道金氧半場效電晶體484可被活化,以驅 動高度直流電馬達340反向運轉。 當背面太陽能感測器組336暴露在例如太陽光之輻射 訊號110中’就會產生正電壓,其活化耦合至AND邏輯閘 477之NPN通道電晶體,其可以驅動高度直流電馬達340 反向運轉。面向背面的感測器組336可被用於在太陽能板 350被定向背對太陽時,重新啟動太陽能板35〇β於是,面 ⑩ 向背面的感測器組336的兩個電極可被用於驅動高度直流 電馬達340循反方向運轉。 保護的二極鱧可以被耦合至高度直流電馬達34〇及方 位直流電馬達342的輸出電極,以防止馬達的反電壓損壞 太陽能板定向系統401連接元件。 處理器346耦合至AND邏輯閘471、473、475、477, 並可以藉由提高或降低適當AND邏輯閘之輸出邏輯位準, 以用於直接控制方位直流電馬達342及高度直流電馬達340 ® 之轉動。處理器346能因而在無太陽能時使太陽能板定向 系統停放。 圖5闞明根據具體實施例的具有並聯感測器組588之 太陽能板定向系統501 ^圓5包含紅外線濾光片1〇6、太陽 能板定向系統50 1、額外紅外線濾光片586以及並聯感測器 組588。在具體實施例中,紅外線濾光片1〇6遮蓋住裝置於 太陽能板定向系統501的印刷電路版上的高度太陽能感測 器組3 3 2及方位太陽能感測器組3 3 4。額外紅外線滤光片 17 201020713 5 8 6覆蓋裝置在印刷電路板相反面的背面感測器組3 3 6,使 背面感測器組能夠從被紅外線濾光106覆蓋之相反方向之 感測器接收輻射訊號。 圖6闡明根據額外的具體實施例的具有水平支柱69〇 及垂直支柱692之太陽能板定向系統601。圖6包含太陽 能板定向系統601、水平支柱690、垂直支柱692、水平轴 馬達694、垂直軸馬達696以及星齒輪系統698 » 太陽能板350可以被固定在太陽能板定向系統6〇丨之 水平支柱690及垂直支柱692上。在具體實施例中,垂直 支柱092及水平支柱690可以被設計成圓柱支柱,以支撑 太陽能板定向系統601及太陽能板350的重量《水平支柱 690及垂直支柱692可以支撐其他結構或裝置,如街燈的燈。 水平支柱690及垂直支柱692可以以金屬建成,並可 依移動應用而組裝或分解。舉例來說,水平支柱69〇、垂直 支柱692以及太陽能板定向系統601的其他元件可被設計 為幾個可被個人所攜帶的零件,以利安裝太陽能板35〇在 缺乏正常電力供給的遍遠地區。 在具髏實施例中’水平軸馬達694包復於水平支柱69〇 内,垂直軸馬達696包復於垂直支柱692内。固定水平支 柱690及垂直支柱692内之水平軸馬達694及垂直轴馬達 696可以讓馬達免於遭竊、破壞、天氣損害。此外固定水 平及垂直支柱内包覆水平轴馬達694及垂直軸馬達696可 以在為直接使用者安裝太陽能板定向系統時減少一此 步驟。 201020713 水平軸馬達694使太陽能板定向系統601繞著水平支 柱690轉動,以追蹤輻射源的仰角而垂直軸馬達使 太陽能板定向系統6G1繞著垂直支柱692轉動,以追縱輕 射源的方位角。 在具體實施例中,水平支柱690及垂直支柱692中的 一者或兩者可以包含星齒輪系統698,其機械地耦合至垂直 轴馬達696或水平軸馬達69〇行星齒輪系統6卯可以耦合 至齒輪齒數比為1〇〇比i之馬達,使馬達的轉數每分鐘達 ❹ 2400,並使系統每分鐘轉數為24。齒輪齒數比之其他倍數 亦可用之。將行星齒輪系統698包含在水平支柱69〇或垂 直支柱092内,可使太陽能板定向系統601之馬達和行星 齒輪系統698相互耦合,並以一定數量之工具排列。將行 星齒輪系統698包覆於水平支柱690或垂直支柱692内亦 可保護行星齒輪系統698免於遭竊、破壞、天氣損害以及 撞擊損害。行星齒輪系統698可以使用95度齒角,以降低 太陽能板定向系統601轉動所需的能量。 〇 行星齒輪系統698的軸可以被喪入水平支柱690或垂 直支柱692的圓柱段上一半圓形的洞,半圓形洞使該軸在 太陽能板定向系統601往某方向或高度轉動時產生阻力。 該圓柱段的末端可以沿著水平支柱690或垂直支柱692 之嚙合面滑動或轉動,以形成滑動接頭。水平支柱690或 垂直支柱692與圓柱段間之滑動連接可降低雨或風造成水 或空氣流進太陽能板定向系統60 1支撐處。行星齒輪系統 698可被調整,以改變太陽能板定向系統601之齒輪齒數比。 201020713 在具體實施例中,太陽能板定向系統601使太陽能板 350水平轉動3 60度,垂直轉動90度。當太陽能板轉到90 度’限位開關會切斷馬達操作流程,以防止太陽能板垂直 轉動超過仰角90度,但太陽能板可以被降至仰角〇度,以 如其所設定,定向太陽能板350朝向太陽。同樣地,額外 限位開關會防止太陽能板3 5 0轉動超過仰角〇度,以防止 太陽能板350接觸支撐結構》 在另一具體實施例中’光電壓節板耦合至處理器346, 以防止太陽能板350因為部分被遮蔽的太陽能板而形成高 阻力路徑。該光電壓節板利用旁路二極體提供低阻力之電 流路徑’以防止太陽能板350過熱.太陽能板35〇元件之 電壓位準可以透過遠端處理器364及遠端無線電收發器362 與無線電收發器360之間的無線通訊而獲得監控。 太陽能板定向系統601可以包含繞著與地面平行之太 陽能板350轉動的風速探測器,以在風速超過每小時15〇 公里時降低其風阻。太陽能板定向系統6〇1可以在高達每 小時150公里的風速下在其他方位支撐太陽能板。 太陽能板定向系統601可以包含故障檢驗模式,在該 模式下,具有活化旁路二極體超過十二小時的板將產生要 求維修之警報。該警報將為遠端處理器364接收。太陽能 板定向系統601亦可以包含溫度感測器,以偵測可以連接 至監控站之過熱情況。太陽能板定向系統601亦可以包含 防雷接地線’以降低雷擊發生時太陽能板定向系統6〇1受 到的損傷。 20 201020713 太陽能板定向系統601之支撐結構可以支撐八塊太陽 能板350,每塊太陽能板重15公斤。系統產生的總電力約 可以為1千瓦,而電池358可由單一面板充電,或由平行 連接至電池358之並聯太陽能板35〇快速充電。任何由太 陽能板350產生的過載電流可以提供至電力網354。 在具體實施例中,太陽能板定向系統6〇丨包含應用網 狀拓撲的基於802.15.4電信協定的無線電收發器3 6〇。配有 無線電收發器360的太陽能板之數個太陽能板定向系統6〇1 〇 的每一者都可以作為傳輸節點或轉接點。如基站無法從傳 輸節點接收訊號,則其他網狀拓撲中的太陽能板定向系統 601可以從傳輸節點轉達資料。該資料可包含太陽能板35〇 電壓位準、風速以及太陽能板35〇之溫度。 圖7闡明根據具體實施例中的降低輻射訊號n〇的紅 外線部分所造成之干擾的運作流程。操作流程7〇2中,當 感測器102及額外感測器104接收輻射訊號11()前,輻射 訊號110被紅外線濾光片106所改變,輻射訊號11()的紅 ® 外線部分所造成的干擾則降低。紅外線遽光片106可降低 感測器102及額外感測器所接收到輻射訊號丨丨〇之部分之 扭曲’其使太陽能板定向系統101之正確度提升。紅外線 據光片106可使紅外線扭曲降低約80% ’並降低約5%的紫 外線。 操作流程704中,當感測器102接收到輻射訊號1 1 〇 的紫外線部分,感測器產生控制訊號成分。感測器丨〇2接 收到的輻射訊號11 〇比例可以取決於感測器丨〇2安裝至安 21 201020713 裝面122之角度、輻射訊號110之進入角度、輻射訊號110 穿過紅外線濾光片106之比例、紅外線濾光片106的材質 以及其他因素。控制訊號成分116可以是藉由接收紫外線 訊號112之感測器102之紫外線發光二極體所產生的電壓 或電流。 操作流程706中,當額外感測器104接收到輻射訊號 11 〇中之額外紫外線部分,額外感測器形成額外控制訊號成 分118。在額外感測器1〇4接收到額外紫外線訊號114時, 額外控制訊號成分118可以是額外感測器1 〇4的紫外線發 ㈣ 光二極體所形成的電壓或電流。 操作流程7 0 8中,結合控制訊號成分116及額外控制 訊號成分1 18以形成結合控制訊號120❶結合控制訊號120 為感測器102及額外感測器104所產生之電塵或電流間之 誤差。結合控制訊號120可被放大並用於使馬達運轉以定 向太陽能板350直到安裝面122實質上與輻射源1〇8垂直。 圖8闡明根據具體實施例的定向太陽能板35〇朝向輻 射訊號110來源體108之運作流程。操作流程802中,在 ◎ 感測器102及額外感測器104接收到輻射訊號丨1〇前,當 輕射訊號110被紅外線渡光片106改變時,輻射訊號丨1〇 的紅外線部分所造成的干擾會降低。操作流程8〇4中,當 感測器102接收到輻射訊號11 〇的紫外線部分,感測器丨〇2 產生控制訊號成分116。操作流程806中,當額外感測器 104接收到輻射訊號11〇的額外紫外線部分,額外感測器 104形成額外控制訊號成分118。在操作流程8〇8中結合 22 201020713 控制訊號成分116及額外控制訊號成分丨丨8,以形成結合控 制訊號120。 操作流程810中’會定向太陽能板350朝向輻射訊號 11 〇的源1 08直到結合控制訊號i 2〇被降低至閾限值。閾限 值為結合控制訊號12〇之電壓或電流位準,電壓或電流位 準產生馬達轉矩,馬達轉矩和太陽能板350的重量以及太 陽能板定向系統101的靜摩擦力呈現靜態平衡。操作流程 812中’馬達基於控制訊號成分116及額外控制訊號成分 ❿ 118之結合輸出而運轉。操作流程814中,太陽能板3 50基 於補充感測器226及附加感測器228之額外結合輸出而循 額外方向繞軸轉動。 在具體實施例中’額外方向是與太陽能板35〇轉動方 向的相反方向。舉例來說’感測器1〇2及額外感測器1〇4 之錯誤訊號可以用來使太陽能板350繞太陽能板定向系統 601之垂直轴順時針轉動。轉動太陽能板35〇亦可以轉動感 測器組100。額外方向可以為逆時針轉動,而補充感測器 ® 226及附加感測器228所產生之錯誤訊號即為額外結合輸 出。 圖9闡明根據具體實施例的形成太陽能板定向系統 101之江外線濾光片1〇6之操作流程。操作流程902中, 感測器102及額外感測器104被耦合至太陽能板定向系統 1〇1。操作流程904中,形成太陽能板定向系統1〇1之紅外 線濾光片106。紅外線濾光片1〇6可由聚胺酯材料製成,聚 胺酯被注入並塑形為其有圓頂形狀外型,内部則被塑形為 23 201020713 適合感測器組100的形狀。紅外線遽光片1 06可以與安裝 面122相接。操作流程906中,調整模組338被置於太陽 能板定向系統601中《在具體實施例中,調整模組338的 組成有 AND 邏輯閘 471、473、475、477、全橋 466、468、 P通道金氧半場效電晶體47〇、472、478、480,及N通道 金氧半場效電晶體474、476、482、484。 圖1〇為根據具體實施例的行星齒輪系統698之分解 圊。行星齒輪系統698包含太陽齒輪1〇〇2、星齒輪1〇〇4、 載具1006以及環齒輪1〇〇8。行星齒輪系統698之太陽齒輪 1002、載具1〇〇6以及環齒輪1〇〇8之主轴為水平支柱69〇 及垂直支柱692之中央軸。行星齒輪系統698之行星齒輪 1〇〇4可以附接至載具1006,载具1006會圍繞著水平支柱 690或垂直支柱692之中央轴轉動。行星齒輪1綱及太陽 齒輪1002可相嚙合。環齒輪1〇〇8及行星齒輪ι〇〇4亦可相 响合。 行星齒輪系統698的各個元件(包含太陽齒輪1〇〇2、 行星齒輪讓、載具刪以及環絲刪)可與驅動動 力、輸出或固定物相連。要達到不同的齒輪盘數比,需改 變行星齒輪线698中搞合至輸入或輸出的元件,或機械 地耦合至行星齒輪系統698另一元件的移動。 雖然本發明的公開内容皆透過特定具體實施例或範例 :實施’但擅長此技藝者會瞭解:本發明可從在此被特別 公開的具體實施例延伸至袁袪 甲其他替代⑯具體實施似/或用 途’並有明顯修改及相同點。因&,本發明並不受限於本 24 201020713 發明提及之特定公開内容中之具體實施例。擅長此技藝者 將瞭解的是:不同的操作流程、過程以及方法將可透過電 腦作業而在可為電腦讀取之媒介上具體化並實施。 【圖式簡單說明】 圖1闡明根據具體實施例之輻射訊號的紅外線部分所 造成之干擾的減低及結合控制訊號的產生。 圖2闡明根據具體實施例的太陽能板定向系統之感測 圖3闡明根據具體實施例的具有方位感測器組、高度 感測器組、背面感測器組的太陽能板定向系統。 圖4闡明根據另一具體實施例的太陽能板定向系統之 調整模組。 圖5闡明根據具體實施例的具有並聯感測器組的太陽 能板定向系統。 圖6闡明根據另一具艎實施例的具有水平支柱及垂直 Φ 支柱的太陽能板定向系統。 圖7闡明根據具體實施例的降低由輻射訊號的紅外線 部分所導致的干擾之運作流程。 圖8閣明根據具體實施例的定向太陽能板朝向輕射訊 號來源之運作流程, ° 圖9閣明根據具體實施例的形成太陽能板定向系統的 紅外線遽光片之運作流程。 ' « 、 圖10為根據具體實施例的星齒輪系統之分解圖。 25 201020713201020713 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to the orientation of solar panels. More specifically, the present invention relates to control signal generation for a solar panel directional system that reduces interference with an infrared filter. [Prior Art] A solar panel orientation system can use a radiation signal to orient a solar panel toward the sun. If the cloud passes between the solar panel and the sun, the cloud will absorb, reflect, re-radiate or scatter radiation from the sun, and the cloud will interfere with the sensor operation used to determine the position of the sun. Radiation is also absorbed, reflected, re-radiated, diffused or affected by solid objects and atmospheric gases such as carbon dioxide and methane. Therefore, the solar panel orientation device may fail to track the position of the sun within an acceptable range, which causes a decrease in the efficiency of converting sunlight into electricity. Then the reduced efficiency increases the operating costs and the cost of the electricity provided by the solar panels. Therefore, the increased cost associated with failure of directional solar panels can result in inefficient power generation and waste of resources. SUMMARY OF THE INVENTION The present invention discloses a system and method for generating control signals for a solar panel orientation system that reduces interference by an infrared filter. In one aspect, the solar panel orientation system includes a sensor that produces a control signal component when the ultraviolet portion of the radiation signal is received. The system also includes an additional sensor. The 201020713 sensor is coupled to the sensor, and the additional sensor generates additional control signal components when it receives the extra UV portion of the radiated signal. The control signal component and the additional control signal components each contain one or more voltages and currents. In addition, the system includes an infrared filter that reduces the interference caused by the infrared portion of the signal. Before the sensor and the additional sensor receive the radiation signal, the interference is reduced when the infrared portion of the radiation signal is reduced by the infrared filter. The directional energy plate can be oriented toward the radiation signal source until the combined control Φ signal is reduced to a threshold value, and when the mounting surface of the sensor and the additional sensor is substantially perpendicular to the source of the radiation signal, Threshold limit. The sensor and the additional sensor can each comprise a light emitting diode. The infrared ray film may comprise a polyurethane dome, and the polyurethane dome comprises a fisheye that expands the sensor's viewing angle shaded by the infrared filter. In another aspect, the system includes an adjustment module that generates a motor signal based on a combined output of the control signal component and the additional control signal component. The motor signal causes the solar panel to rotate about the axis in one direction. The system can also include complementary sensors and additional sensors that are coupled to each other. The additional combined output of the complementary sensor and the additional sensor provides a reference for additional motor signals. The additional motor signal allows the solar panel to follow an additional direction. Turn. In another aspect, the system includes an additional sensor set that includes four ultraviolet sensors 'to rotate the solar panel about an additional axis to orient the solar panel toward the source of the radiation signal. The additional shaft is perpendicular to the axis, while the sensor, additional sensor, supplemental sensor, and additional sensor are each attached to the mounting surface at a vertical angle. 201020713 The system may also include a back sensor that receives additional radiation signals directed to the back of the solar panel. The back sensor can be used to direct the solar panel to an additional source of additional radiation signals when the back sensor receives a portion of the additional radiation signal. The sensors, additional sensors, supplemental sensors, and additional sensors can each detect ultraviolet radiation having a wavelength between substantially 390 nm and 4 nm. The anode of the sensor can be coupled to the cathode of the additional sensor, while the cathode of the sensor can be coupled to the anode of the additional sensor. The infrared filter can contain a thickness of 2. 0~3. Polyurethane between 0 mm. The system can also include the vertical struts of the solar panel orientation system and the horizontal struts of the solar panel orientation system. The system can include a vertical axis motor covered by vertical struts and a horizontal axis motor covered by horizontal struts. The adjustment module can include a full bridge' which includes two p-channel MOS field-effect transistors and two N-channel MOS field-effect transistors. The full bridge rotates one or more horizontal axis motors and vertical axis motors upon receipt of one or more combined signals and additional combined signals. In another aspect, the method of the solar panel orientation system includes 'reducing the interference caused by the infrared portion of the radiation signal when the radiation signal is changed by the infrared filter before the sensor and the additional sensor receive the radiation signal. The method also includes generating a control signal component when the sensor receives the ultraviolet portion of the radiation signal. The method also includes forming an additional control signal component when the additional sensor receives the additional ultraviolet portion of the radiation signal. In addition, the method includes combining the control signal component and the additional control signal component to form a combined control signal. The 201020713 method may include directing the solar panel toward the source of the radiation signal until the combined control signal is lowered to a threshold value. The sensor and the additional sensor may each comprise a light emitting diode, and the infrared filter may comprise a polyurethane dome. The method may also include operating the motor based on a combined output of the control signal component and the additional control signal component. The solar panel can be pivoted in a direction based on the combined output. The method also includes an additional combined output based on the supplemental sensor and the additional sensor to cause the solar panel to pivot in an additional direction. In yet another aspect, a method of solar panel orientation system includes coupling a sense Φ and an additional sensor to a solar panel orientation system. When the sensor receives the ultraviolet portion of the radiation signal, the sensor generates a control signal component' and the additional sensor generates an additional control signal component when the additional sensor receives the additional ultraviolet portion of the radiation signal. The control signal component and the additional control signal components each contain one or more voltages and currents. In this aspect the method also includes forming an infrared filter for the solar panel orientation system. The infrared filter reduces the interference caused by the infrared portion of the radiation signal. Φ Before the sensor and the additional sensor receive the radiation signal, Φ When the infrared portion of the radiation signal is reduced by the infrared filter, the interference is reduced. In this respect, the infrared filter comprises a polyurethane having a thickness of between 2 Å and 3 〇 mm. In this regard, the method includes placing the adjustment module within the solar panel orientation system. The adjustment module generates a motor signal based on the combined output of the control signal component and the additional control signal component, and the motor signal causes the solar panel to pivot in a direction. The method further includes coupling the supplemental sensor and the additional sensor to the solar panel. Orientation system. Coupled with complementary sensors and additional sensors, and 7 201020713 The additional combined output of the complementary sensor and additional sensors provides a benchmark for additional motor signals that cause the solar panel to pivot in additional directions. . The method can also include placing an additional sensor set in the solar panel orientation system. The additional sensor set can include four ultraviolet sensors that rotate the solar panel about an additional axis to orient the solar panel toward the source of the signal. The additional shaft can be perpendicular to the axis and the solar panel can be oriented toward the light source source until the combined control signal is lowered to the threshold limit. The threshold value can be reached when the mounting surface of the sensor and the additional sensor is substantially perpendicular to the source of the radiation signal. The method can also include coupling the back sensor to the solar panel orientation system. The back sensor can receive additional radiation signals that are directed toward the back of the solar panel. When the backside sensor receives a portion of the additional radiation signal, the backside sensor can be used to orient the solar panel toward an additional source of radiation signals. The sensor, the additional sensor, the supplemental sensor, and the additional sensor each detect ultraviolet radiation having a wavelength substantially between 390 nm and 400 nm. [Embodiment] The present invention discloses reduction by an infrared filter. System and method for generating control signals for disturbing solar panel orientation systems. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates the reduction in interference caused by the infrared portion of the radiation signal 11 根据 in accordance with a particular embodiment, and in conjunction with the generation of control signal 120.圏1 includes a sensor group 1 太阳能, a solar panel orientation system 101, a sensor 102 'an additional sensor 104 , an infrared filter 1 〇 6 , a radiation source 1 〇 8 , a radiation signal 110 , an ultraviolet signal 112 , Additional ultraviolet signal Π4, control signal 8 201020713 component 116, additional control signal component 118, combined control signal 12〇, and mounting surface 122. In a particular embodiment, the sensor group 1A includes a sensor 102 and an additional sensor 1〇4, each attached to a mounting surface m. 1 to 6 illustrate specific embodiments of various solar panel orientation systems, i.e., 301, 401, 501, 601, which can be used as reference for specific embodiments of several solar panel orientation systems 1-1, and can also be applied. In other specific embodiments. The radiation signal 110 is generated by the sun 'the sun is the source of radiation 108. The radiation signal 110 can contain radiation of different wavelengths, including ultraviolet light and infrared light rays. The radiation signal 110 can also be generated by an object or gas that absorbs, reflects, re-radiates, twists, or changes the radiation signal 110. In a particular embodiment, the solar panel orientation system ιοί includes an infrared illuminator 106. The infrared filter i 〇6 reduces the interference caused by the infrared portion of the radiation signal J i , and the radiation signal 110 may be changed by the cloud, the object radiated by the infrared radiation, or the atmospheric condition of the infrared portion of the radiation signal 11 扭曲 or influences. The infrared filter 1〇6 reflects, absorbs, or reduces the amount of infrared radiation received by the sensor 102, the additional sensor 104, or any other φ portion of the sensor group 1〇〇. .  The infrared filter 106 can be placed on the mounting surface 122 or attached to any surface to enable the infrared filter to intercept infrared radiation before the sensor group 1 receives infrared radiation. The infrared filter 1〇6 can be in contact with the sensor of the sensor group 100 and can be shaped to directly conform to the surface of the sensor 102 and the additional sensor 1〇4. Infrared filter 106 can be separated from the sensor component by an air gap, vacuum, or other material. The infrared line 106 can include a fisheye half dome, and the fisheye half dome allows each of the sensors covered by the infrared filter 106 to see the radiation source 108 at an angle of view of i 8 degrees. In a specific embodiment, the distance of the radiation signal 110 through the infrared light beam 106 is 2. 1 to 2. 9 mm. The infrared filter 1〇6 can contain polyurethane and can reduce infrared distortion detection with a wavelength greater than 700 nm, with a reduction of 60% to 85°/. . The infrared filter 1〇6 may contain a dome shape that reduces the distortion of the incoming radiation signal 11〇. The infrared ray tube 106 can reduce the incoming UV signal by less than 1 5%. After the radiation signal 110 passes through the infrared filter 106, a portion of the ray signal 110 and the ultraviolet signal 112 will be received by the sensor 102. Next, the sensor 102 generates a control signal component U 6 '. The control signal component 116 can be a voltage or a current. An additional portion of the radiation signal 110 (i.e., the additional ultraviolet signal 114) is also received by the additional sensor 104. The additional sensor 104 then generates an additional control signal component 118. The additional control signal component ι18 can be voltage or current. Then, the control signal component 116 and the additional control signal component 1 18 are combined to form a combined control signal 120, which may be a voltage or current. In a specific embodiment, the control signal 120 is used to form a horse-deficient control signal for the directional solar panel toward the source of the radiation signal 110. When the solar panel orientation system, sensor group 100, and solar panel are oriented toward the radiation source 108, the sensor 102 and the additional sensor 104 receive the amount of radiation combined with the control signal 120 to decrease. When the combined control signal 120 is lowered to a threshold value, the activity of the solar panel and solar panel orientation system 101 is stopped. . 201020713 In a particular embodiment, the threshold value is reached when the mounting surface 122 of the sensor and additional sensor 104 is substantially vertical. The sensor 1〇2 and the additional sensor 104 can be connected at an angle to the mounting surface 122 at an angle of substantially 40 to 50 degrees. The sensor 1〇2 and the sensor 1〇4 can be connected to each other in a substantially linear manner and oriented in opposite directions such that the anode of the sensor can be directly connected to the cathode of the additional sensor 104. In a specific embodiment, the sensor 102 and the additional sensor 104 are each an ultraviolet light emitting diode φ body having an actual peak wavelength between 380 nm and 410 nm. The viewing angle can be 80 degrees or less. Other characteristics of sensor 1 〇2 and additional sensors 1 〇4 can include forward voltages up to 5 volts, reverse currents up to 20 amps, and power outputs up to 20 watts. Solar Panel Orientation System 101 It can be activated by radiation passing through the clouds. Using solar panel orientation system 1〇1 converts sunlight into electricity for about 40%. The solar panel orientation system 1 can be activated by the sunlight received from the back of the solar panel. The power generated by the back of the 65 watt solar panel can be used by the solar panel orientation system 101 to rotate the solar panel toward the front ❹ to enhance the efficiency of solar energy conversion. 2 illustrates a sensor set 200 in a solar panel orientation system 101 in accordance with a particular embodiment. FIG. 2 includes a sensor 1〇2, an additional sensor ι4, a sensor group 200, and an anode 203. Cathode 205, cathode 207, anode 209, cathode 211, anode 213, anode 215, cathode 217, electrode 219, electrode 221, supplemental sensor 226, additional sensor 228. The sensor group 2 includes a sensor 102, an additional sensor i 〇4, a supplemental sensor 226, and an additional sensor 228. The sensor group 200 can clarify the map! 11 in the sensor group 1 201020713 components and the orientation sensor group 3 in FIG. 3 2, height sensor group 3 3 4, back sensor group 3 3 6 » sensor group 2 0 0 can also be included in the parallel sensor group 588 of FIG. In a specific embodiment, each of the sensors of the sensor group 200 is each formed of an ultraviolet light emitting diode, which may be a surface-mounted light emitting diode that holds a space. As shown, the anode 203 of the sensor 102 is coupled to the cathode 207 of the additional sensor 104 and the cathode 219 of the supplemental sensor 226. The anode 215 of the additional sensor 228 and the electrode 221 are coupled to each other. Cathode 205, anode 209, anode 213, and cathode 217 are coupled to the ground. ^ When the additional sensor 1 〇 4 receives more ultraviolet radiation than the sensor 102', an error voltage or current is generated, which is amplified to drive the DC motor to the solar panel orientation system 1〇1 toward the radiation signal 11 〇 Source body. The positive error voltage or current of the sensor 102 and the additional sensor 1 〇4 is used for the direction of the medium-frequency DC motor. The positive error voltage of the additional ultraviolet light-emitting diode pair including the supplemental sensor 226 and the additional sensor 228 is used to drive the DC motor in the opposite direction. The sensor 102 is parallel to the additional sensor 104, and the light emitting diodes are oriented in opposite directions by ❹. The supplemental sensor 226 and the additional sensor 104 are substantially aligned in the same direction, and the additional sensor 228 and the sensor 102 are substantially aligned in the same direction. As shown in Fig. 1, the sensor in the sensor group 200 is at an angle to the mounting surface 122. The angle is substantially 45 degrees. Sealing the sensor 200 by injecting a shaped polyurethane outer casing protects the sensor from the weather' the outer casing is shaped to conform to the top of the sensor. The polyurethane outer box can form infrared 12 201020713 line filter, light sheet 106, and can withstand the damage of ultraviolet radiation. In a particular embodiment, as shown in Figure 1, the polyurethane outer casing contains a fisheye dome' to enable the radiation source 108 to be oriented in an enlarged viewing angle of each sensor of the sensor set 200. The expanded viewing angle can be as high as 180 degrees, but the viewing angle can be expanded in parallel. The fisheye dome can have a circular dome shape, or can have different lens shapes to distort the incoming radiation, allowing the radiant energy to fit a smaller viewing angle according to the mapping function, for example, corner or perspective, linear isometric scaling , vertical, equal area, or stereo φ FIG. 3 illustrates a solar panel orientation system 301 having an orientation sensor set 332, a height sensor set 334, and a back sensor set 336 according to an embodiment of the invention. FIG. 3 includes The orientation sensor group 332, the height sensor group 334, the back sensor group 336, the adjustment module 338, the height DC motor 340, the azimuth DC motor 342, the voltage regulator 344, the processor 346, the charge controller 348, Solar panel 350, DC/AC voltage converter 352, power grid 354, lamp 350, battery 358, radio transceiver 360, remote radio transceiver 3 62, remote processor 364. φ is coupled to the orientation sensor group 332, the height sensor group 334, the back sensor group, the height DC motor 340, the azimuth DC motor 342, the voltage regulator 344, and the processor in a specific embodiment adjustment module 3 3 8 . 346. Processor 346 is coupled to radio transceiver 360 and charge controller 348. Charge controller 348 is coupled to solar panel 350, lamp 356, electrical regulator 344, battery 358, DC/AC voltage converter 352. The DC/AC voltage converter 352 is coupled to the power grid 354. In a specific embodiment, the solar panel orientation system 301 includes an adjustment module 338 for generating a motor signal based on the junction 13 201020713 and the control signal 120. The control signal 120 is mixed by the control signal component 116 and the additional control signal component n8. . The motor signal causes the solar panel to pivot in a direction that is parallel to the horizontal strut 690 or vertical strut 692. The motor that rotates in the opposite direction is controlled by an additional motor signal, and the additional motor signal is generated by an additional combined control signal. The additional combined control signal 120 includes an output of the supplemental sensor 226 and the additional sensor 228. The motor can be a high direct current motor 340 or an azimuth direct current motor 342. The operational flow of the additional specific embodiment of the adjustment module 338 is explained in more detail in FIG. Voltage regulator 344 can provide a voltage compatible with a transistor-to-plasma logic (TTL) circuit to the solar panel orientation system 3〇1 component to operate the logic gate and transistor. The charge controller 348 can be used to charge the internal or external battery 358 to operate the solar panel orientation system 301 in the absence of solar energy. The charge controller 348 can disconnect the battery 358 from the solar panel 350 or the power grid 354 after the battery 358 is sufficiently powered. The charge controller 348 can also turn street lights or other lights on or off after dusk or in low light conditions. Charge controller 348 can be coupled to power grid 354 via DC/AC voltage converter 352. The DC/AC voltage converter 352 can convert the DC power of the solar panel 350 to AC power to supply power to the power grid 354, or can convert the AC power of the power grid 354 to DC power for operation of the solar panel orientation system 301, or for charging the battery 358. The processor 346 can be used to manage and control the operation of the adjustment module 338, the height DC motor 340, the azimuth DC motor 342, the voltage regulator 344, and the 14207713 charge controller 348. In an additional embodiment, FIG. 4 further illustrates the operational flow of processor 346. In a particular embodiment, the solar panel orientation system 3.1 includes a radio transceiver 360. The radio transceiver 36 communicates with the remote radio transceiver 362 and the remote processor 364 via IEEE 8〇2 15 zigbee, Bluetooth or other wireless means. Each solar panel orientation system 3.1 can contain a network location. Remote processor 364 can be used to monitor or control lamp 356 and solar panel orientation system 301. The field maintenance team can determine whether the solar panel orientation system 3〇1 ❹ 需要 need to be repaired or optimized with the remote processor 364. FIG. 4 illustrates an adjustment module 438 of a solar panel orientation system 401 in accordance with additional embodiments. 4 includes an azimuth solar sensor group 332, a height solar sensor group 334, a back solar sensor 336, a high DC motor 340, an azimuth DC motor 342, a voltage regulator 344, a processor 346, and a solar panel orientation system 401. , adjustment module 438, P-channel MOS half-effect transistor 470, 472, 478, 480, N-channel MOSFETs 474, 476, 482, 484, full bridge 466, 468 and AND logic 471 , 473, 475, 477. Full bridge 466 includes P-channel MOS half-effect transistors 470, 472, N-channel MOS half-effect transistors 474, 476. Full bridge 468 includes P-channel MOS field effect transistors 478, 480, N-channel MOS half-field transistors 482, 484. The azimuth solar sensor group 332, the high solar sensor group 334, and the back solar sensor 336 each include four ultraviolet light emitting diodes. The mounting surface 122 of the azimuth solar sensor group 332, the height solar sensor group 334, and the back solar sensor group 336 can be parallel. Height Sun 15 201020713 The sensors of the sensor group 334 can be rotated 90 degrees from the surface of the mounting surface 122 and the solar panel 350 from the orientation of the sensors of the azimuth solar sensor group 332. The backside solar sensor group 336 can face the opposite direction of the abutment solar sensor group 332 and the height solar sensor group 334. Azimuth sensor group 332 is coupled to electrodes 219 and 221. If the azimuth solar sensor group 332 is not oriented and the mounting surface 122 is not perpendicular to the sun when receiving sunlight, the sensor 102 and the additional sensor 104 will produce about 1. A positive error voltage of 5 volts and initiates an NPN^ channel transistor coupled to electrode 219. This causes the AND logic gate 471 of the coupled NPN channel transistor to output to the logic circuit "〇", which activates the p-channel MOS half-effect transistor 470 and the N-channel MOS field 474 transistor. As such, the full bridge 466 can drive the coupled azimuth direct current motor 342 in a direction. Alternatively, supplemental sensor 226 and additional sensor 228 coupled to electrode 221 can generate a positive voltage 'which can initiate a coupled NPN channel transistor. The NPN channel transistor can cause the output of the AND logic gate 473 to the logic circuit "〇", which can activate the p-channel MOS field effect transistor 472 Q and the N-channel MOS half field effect transistor 476. As such, the full bridge 466 can drive the coupled azimuth direct current motor 342 in the opposite direction. Each pair of P-channel MOSFETs and N-channel MOSFETs can be used to drive the motor in one direction, while the full bridge 468 will be coupled by i AND logic gates 475 and 477. The solar sensor set 334 is highly driven in a similar manner. For example, 'p-channel MOS half-effect transistor 478 and N-channel MOS field 482 can be activated to drive 16 201020713 moving height DC motor 340 forward, while P-channel MOS half-effect transistor 480 The N-channel MOS half-effect transistor 484 can be activated to drive the high-current DC motor 340 to operate in reverse. When the backside solar sensor group 336 is exposed to, for example, the solar radiation signal 110, a positive voltage is generated which activates the NPN channel transistor coupled to the AND logic gate 477, which can drive the high DC motor 340 to operate in reverse. The sensor group 336 facing the back can be used to restart the solar panel 35A when the solar panel 350 is oriented facing away from the sun, then the two electrodes of the sensor group 336 of the face 10 can be used for The drive height DC motor 340 operates in the reverse direction. The protected diodes can be coupled to the output electrodes of the high DC motor 34A and the DC motor 342 to prevent the reverse voltage of the motor from damaging the solar panel orientation system 401 to connect the components. The processor 346 is coupled to the AND logic gates 471, 473, 475, 477 and can be used to directly control the rotation of the azimuth DC motor 342 and the high DC motor 340® by increasing or decreasing the output logic level of the appropriate AND logic gate. . The processor 346 can thus park the solar panel orientation system when there is no solar energy. 5 illustrates a solar panel orientation system 501 having a parallel sensor group 588. The circle 5 includes an infrared filter 1〇6, a solar panel orientation system 501, an additional infrared filter 586, and a sense of parallelism, in accordance with a particular embodiment. Tester group 588. In a specific embodiment, the infrared filter 1 遮 6 covers the highly solar sensor group 323 and the azimuth solar sensor group 343 disposed on the printed circuit board of the solar panel orientation system 501. Additional Infrared Filter 17 201020713 5 8 6 Covering the sensor group 3 3 6 on the opposite side of the printed circuit board, enabling the back sensor group to receive from the sensor in the opposite direction covered by the IR filter 106 Radiation signal. Figure 6 illustrates a solar panel orientation system 601 having horizontal struts 69A and vertical struts 692 in accordance with additional embodiments. 6 includes a solar panel orientation system 601, a horizontal strut 690, a vertical strut 692, a horizontal axis motor 694, a vertical axis motor 696, and a star gear system 698 » The solar panel 350 can be secured to a horizontal strut 690 of the solar panel orientation system 6〇丨And vertical pillars 692. In a particular embodiment, the vertical struts 092 and the horizontal struts 690 can be designed as cylindrical struts to support the weight of the solar panel orientation system 601 and the solar panels 350. The horizontal struts 690 and vertical struts 692 can support other structures or devices, such as street lights. Lights. The horizontal struts 690 and vertical struts 692 can be constructed of metal and can be assembled or disassembled depending on the mobile application. For example, horizontal strut 69〇, vertical strut 692, and other elements of solar panel orientation system 601 can be designed as parts that can be carried by individuals to facilitate installation of solar panels 35 in the absence of normal power supply. area. In the illustrated embodiment, the horizontal axis motor 694 is wrapped within the horizontal post 69A and the vertical axis motor 696 is wrapped within the vertical post 692. The horizontal axis motor 694 and the vertical axis motor 696 in the fixed horizontal column 690 and the vertical column 692 can protect the motor from theft, damage, and weather damage. In addition, the horizontal horizontal axis motor 694 and the vertical axis motor 696 in the fixed horizontal and vertical struts can be reduced in this step when installing the solar panel orientation system for direct users. 201020713 Horizontal axis motor 694 rotates solar panel orientation system 601 about horizontal struts 690 to track the elevation angle of the radiation source and vertical axis motor rotates solar panel orientation system 6G1 about vertical struts 692 to track the azimuth of the light source . In a particular embodiment, one or both of the horizontal post 690 and the vertical post 692 can include a star gear system 698 that is mechanically coupled to a vertical axis motor 696 or a horizontal axis motor 69. The planetary gear system 6 can be coupled to A motor with a gear ratio of 1 〇〇 to i, the number of revolutions of the motor is ❹ 2,400 per minute, and the system has 24 revolutions per minute. Other multiples of the gear ratio can also be used. The inclusion of the planetary gear system 698 in the horizontal post 69〇 or the vertical strut 092 allows the motor and planetary gear system 698 of the solar panel orientation system 601 to be coupled to each other and to be arranged with a number of tools. Encapsulating the planetary gear system 698 in the horizontal strut 690 or vertical strut 692 also protects the planetary gear system 698 from theft, damage, weather damage, and impact damage. The planetary gear system 698 can use a 95 degree tooth angle to reduce the energy required to rotate the solar panel orientation system 601. The shaft of the 〇 planetary gear system 698 can be immersed in a semi-circular hole in the cylindrical section of the horizontal strut 690 or vertical strut 692, which causes the shaft to resist when the solar panel orientation system 601 is rotated in a certain direction or height. . The end of the cylindrical section can be slid or rotated along the mating surface of the horizontal post 690 or the vertical post 692 to form a slip joint. The sliding connection between the horizontal strut 690 or the vertical strut 692 and the cylindrical section reduces rain or wind causing water or air to flow into the support of the solar panel orientation system 60 1 . The planetary gear system 698 can be adjusted to vary the gear ratio of the solar panel orientation system 601. 201020713 In a specific embodiment, solar panel orientation system 601 rotates solar panel 350 horizontally by 360 degrees and vertically by 90 degrees. When the solar panel is turned to the 90 degree 'limit switch, the motor operation flow is cut off to prevent the solar panel from rotating vertically over the elevation angle by 90 degrees, but the solar panel can be lowered to the elevation angle to be oriented as the solar panel 350 is oriented. sun. Similarly, the additional limit switch prevents the solar panel 350 from rotating beyond the elevation angle to prevent the solar panel 350 from contacting the support structure. In another embodiment, the photovoltage panel is coupled to the processor 346 to prevent solar energy. Plate 350 forms a high resistance path due to partially obscured solar panels. The photovoltage junction plate provides a low resistance current path by the bypass diode to prevent the solar panel 350 from overheating. The voltage level of the solar panel 35 〇 component can be monitored by wireless communication between the remote processor 364 and the remote radio transceiver 362 and the radio transceiver 360. The solar panel orientation system 601 can include an anemometer that rotates about a solar panel 350 that is parallel to the ground to reduce wind resistance when the wind speed exceeds 15 kilometers per hour. The solar panel orientation system 6〇1 can support solar panels in other orientations at wind speeds of up to 150 km per hour. The solar panel orientation system 601 can include a fault verification mode in which a panel with activated bypass diodes for more than twelve hours will generate an alarm requiring maintenance. This alert will be received by remote processor 364. The solar panel orientation system 601 can also include a temperature sensor to detect overheating conditions that can be connected to the monitoring station. The solar panel orientation system 601 can also include a lightning protection grounding wire to reduce damage to the solar panel orientation system 6〇1 when a lightning strike occurs. 20 201020713 The support structure of the solar panel orientation system 601 can support eight solar panels 350, each weighing 15 kilograms. The total power generated by the system can be approximately 1 kilowatt, and the battery 358 can be charged by a single panel or by a parallel solar panel 35 that is connected in parallel to the battery 358. Any overload current generated by the solar panel 350 can be provided to the power grid 354. In a particular embodiment, the solar panel orientation system 6 基于 includes an application based mesh topology based on 802. 15. 4 telecommunications protocol radio transceivers 3 6〇. Each of the plurality of solar panel orientation systems 6〇1 配 equipped with solar panels of the radio transceiver 360 can function as a transfer node or a transfer point. If the base station is unable to receive signals from the transmitting node, the solar panel orientation system 601 in other mesh topologies can relay data from the transmitting node. This data may include the solar panel 35 电压 voltage level, wind speed and temperature of the solar panel 35 。. Figure 7 illustrates the operational flow of the interference caused by the reduction of the infrared portion of the radiated signal n〇 in accordance with a particular embodiment. In operation flow 〇2, before the sensor 102 and the additional sensor 104 receive the radiation signal 11(), the radiation signal 110 is changed by the infrared filter 106, and the red signal of the radiation signal 11() is caused by the outer portion of the radiation The interference is reduced. The infrared illuminating sheet 106 reduces the distortion of the portion of the radiant signal received by the sensor 102 and the additional sensor, which increases the accuracy of the solar panel orientation system 101. Infrared light 106 can reduce infrared distortion by about 80% ' and reduce about 5% of the ultraviolet line. In operation flow 704, when the sensor 102 receives the ultraviolet portion of the radiation signal 1 1 ,, the sensor generates a control signal component. The ratio of the radiation signal 11 接收 received by the sensor 丨〇 2 may depend on the angle at which the sensor 丨〇 2 is mounted to the amp 21 201020713, the angle of the radiation signal 110, and the radiation signal 110 through the infrared filter. The ratio of 106, the material of the infrared filter 106, and other factors. The control signal component 116 can be a voltage or current generated by the ultraviolet light emitting diode of the sensor 102 that receives the ultraviolet signal 112. In operation flow 706, the additional sensor forms an additional control signal component 118 when the additional sensor 104 receives the additional ultraviolet portion of the radiation signal 11 。. When the additional sensor 110 receives the additional ultraviolet signal 114, the additional control signal component 118 may be the voltage or current formed by the ultraviolet (four) photodiode of the additional sensor 1 〇4. In operation sequence 708, the control signal component 116 and the additional control signal component 1 18 are combined to form a combined control signal 120 ❶ in combination with the control signal 120 for the electrical dust or current error generated by the sensor 102 and the additional sensor 104. . The combined control signal 120 can be amplified and used to operate the motor to align the solar panel 350 until the mounting surface 122 is substantially perpendicular to the radiation source 〇8. Figure 8 illustrates the operational flow of the directional solar panel 35A toward the source 108 of the radiant signal 110, in accordance with a particular embodiment. In operation flow 802, before the radiation signal 丨1〇 is received by the sensor 102 and the additional sensor 104, when the light-emitting signal 110 is changed by the infrared light-emitting sheet 106, the infrared portion of the radiation signal 丨1〇 is caused. The interference will be reduced. In operation flow 8.4, when the sensor 102 receives the ultraviolet portion of the radiation signal 11 感, the sensor 丨〇 2 generates the control signal component 116. In operation flow 806, additional sensor 104 forms an additional control signal component 118 when additional sensor 104 receives the additional ultraviolet portion of radiation signal 11A. The control signal component 116 and the additional control signal component 丨丨8 are combined in operation flow 8-8 to form a combined control signal 120. In operation flow 810, the solar panel 350 is directed toward the source 108 of the radiation signal 11 直到 until the combined control signal i 2 〇 is lowered to a threshold value. The threshold value is a voltage or current level in conjunction with the control signal 12, the voltage or current level produces motor torque, the motor torque and the weight of the solar panel 350, and the static friction of the solar panel orientation system 101 are statically balanced. In operation flow 812, the motor operates based on the combined output of control signal component 116 and additional control signal component ❿118. In operation flow 814, solar panel 350 is pivoted in an additional direction based on the additional combined output of supplemental sensor 226 and additional sensor 228. In a particular embodiment the 'extra direction' is the opposite direction to the direction of rotation of the solar panel 35. For example, the error signals of sensor 1〇2 and additional sensor 1〇4 can be used to rotate solar panel 350 clockwise about the vertical axis of solar panel orientation system 601. The sensor group 100 can also be rotated by rotating the solar panel 35. The additional direction can be counterclockwise, and the error signal generated by the supplemental sensor ® 226 and the additional sensor 228 is an additional combined output. Figure 9 illustrates the operational flow of forming the outer-line filter 1〇6 of the solar panel orientation system 101, in accordance with a particular embodiment. In operational flow 902, sensor 102 and additional sensor 104 are coupled to solar panel orientation system 101. In operation flow 904, an infrared ray filter 106 of solar panel orientation system 101 is formed. The infrared filter 1〇6 can be made of a polyurethane material, and the polyurethane is injected and shaped into a dome-shaped shape, and the inside is shaped into 23 201020713 suitable for the shape of the sensor group 100. The infrared ray tube 106 can be attached to the mounting surface 122. In operation flow 906, adjustment module 338 is placed in solar panel orientation system 601. In a particular embodiment, adjustment module 338 is composed of AND logic gates 471, 473, 475, 477, full bridges 466, 468, P. Channel gold oxide half field effect transistors 47〇, 472, 478, 480, and N channel gold oxide half field effect transistors 474, 476, 482, 484. Figure 1A is an exploded view of a planetary gear system 698 in accordance with a particular embodiment. The planetary gear system 698 includes a sun gear 1〇〇2, a star gear 1〇〇4, a carrier 1006, and a ring gear 1〇〇8. The main shaft of the sun gear 1002 of the planetary gear system 698, the carrier 1〇〇6, and the ring gear 1〇〇8 are the central struts of the horizontal struts 69〇 and the vertical struts 692. The planet gears 1〇〇4 of the planetary gear system 698 can be attached to the carrier 1006, and the carrier 1006 can rotate about the central axis of the horizontal strut 690 or the vertical strut 692. The planetary gear 1 and the sun gear 1002 are meshable. The ring gear 1〇〇8 and the planetary gear ι〇〇4 can also be combined. The various components of the planetary gear system 698 (including the sun gear 1 〇〇 2, the planetary gears, the carrier removal, and the loop wire) can be coupled to the drive power, output, or fixture. To achieve different gear ratios, the components of the planetary gear line 698 that are engaged to the input or output, or that are mechanically coupled to the other components of the planetary gear system 698, need to be changed. Although the disclosure of the present invention has been implemented by way of specific embodiments or examples, it is to be understood that it is understood by those skilled in the art that the present invention can be extended from the specific embodiments disclosed herein to the other alternatives. Or use 'and have obvious modifications and similarities. The present invention is not limited to the specific embodiments of the specific disclosure mentioned in the present invention. Those skilled in the art will understand that different operational processes, processes, and methods can be embodied and implemented on a computer-readable medium through computer operations. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates the reduction of interference caused by the infrared portion of a radiation signal according to a specific embodiment and the generation of a combined control signal. 2 illustrates sensing of a solar panel orientation system in accordance with a particular embodiment. FIG. 3 illustrates a solar panel orientation system having an orientation sensor set, a height sensor set, and a back sensor set, in accordance with a particular embodiment. Figure 4 illustrates an adjustment module for a solar panel orientation system in accordance with another embodiment. Figure 5 illustrates a solar panel orientation system with a parallel sensor set in accordance with a particular embodiment. Figure 6 illustrates a solar panel orientation system having horizontal struts and vertical Φ struts in accordance with another embodiment. Figure 7 illustrates the operational flow of reducing interference caused by the infrared portion of the radiated signal, in accordance with a particular embodiment. 8 is a flow chart showing the operation of a directional solar panel toward a light source source according to a specific embodiment. FIG. 9 illustrates an operational flow of an infrared ray sheet forming a solar panel orientation system according to a specific embodiment. ' « , Figure 10 is an exploded view of a star gear system in accordance with a particular embodiment. 25 201020713

Claims (1)

201020713 七、申請專利範圍: 1. 一種太陽能板定向系統,其包括: 感測器,當感測器接收到輻射訊號的紫外線部分時, 感測器產生控制訊號成分; 額外感測器,其耦合至該感測器,當額外感測器接收 到輻射訊號的額外紫外線部分時,額外感測器產生額外控 制訊號成分,其中控制訊號成分及額外控制訊號成分各包 含電壓和電流中的至少一個;及 0 紅外線濾光片,其降低由輻射訊號的紅外線部分所造 成之干擾,其中在感測器及額外感測器接收到輻射訊號 前,當輻射訊號的紅外線部分被紅外線濾光片減少時,則 干擾降低。 2. 根據申請專利範圍第1項所述之系統,其中定向太陽 能板朝向輻射訊號來源髏直到結合控制訊號被降低至閾限 值,並且其中當感測器及額外感測器之安裝面與輻射訊號 來源體實質上垂直時,則到達閾限值。 ❹ 3.根據申請專利範圍第2項所述之系統,其中感測器及 額外感測器各包含發光二極體。 4·根據申請專利範圍第3項所述之系統,其中紅外線濾 光片包含聚胺酯圓頂,聚胺酯圓頂包含擴大由紅外線濾光 片所遮蔽之該感測器視角之魚眼。 5.根據申請專利範圍第1項所述之系統,其更進一步地 包括: 調整模組’其基於控制訊號成分及額外控制訊號成分 27 201020713 之結合輪出來產生馬達訊號 循一方向繞轴轉動。 其中該馬達訊號使太陽能板 6.根據申請專利範圍第5項所述之系統,其更進— 包括: ' ' 補充感測器;及 附加感測器,其中補充感測器及附加感測器相互耦 合,且其中補充感測器及附加感測器之額外結合輸出提供 了額外馬達訊號之基準,額外馬達訊號使太陽能板循額外 方向繞轴轉動。201020713 VII. Patent application scope: 1. A solar panel orientation system, comprising: a sensor, when the sensor receives the ultraviolet portion of the radiation signal, the sensor generates a control signal component; an additional sensor coupled To the sensor, when the additional sensor receives the extra ultraviolet portion of the radiation signal, the additional sensor generates an additional control signal component, wherein the control signal component and the additional control signal component each comprise at least one of a voltage and a current; And 0 infrared filter, which reduces the interference caused by the infrared portion of the radiation signal, wherein when the infrared portion of the radiation signal is reduced by the infrared filter before the sensor and the additional sensor receive the radiation signal, Then the interference is reduced. 2. The system of claim 1, wherein the directional solar panel is directed toward the source of the radiation signal until the combined control signal is reduced to a threshold value, and wherein the mounting surface and the radiation of the sensor and the additional sensor are When the signal source is substantially vertical, the threshold is reached. 3. The system of claim 2, wherein the sensor and the additional sensor each comprise a light emitting diode. 4. The system of claim 3, wherein the infrared filter comprises a polyurethane dome, and the polyurethane dome comprises a fisheye that expands the viewing angle of the sensor shaded by the infrared filter. 5. The system of claim 1, further comprising: an adjustment module </ RTI> based on a combination of a control signal component and an additional control signal component 27 201020713 to generate a motor signal for pivoting in a direction. Wherein the motor signal causes the solar panel to be further improved according to the system of claim 5, including: ''Supply sensor; and additional sensor, wherein the sensor and the additional sensor are supplemented They are coupled to each other, and the additional combined output of the supplemental sensor and the additional sensor provides a reference for the additional motor signal, and the additional motor signal causes the solar panel to pivot in an additional direction. 7·根據申請專利範圍第6項所述之系統,其更進一步地 包括: 額外感測器組,其包含四個紫外線感測器,紫外線感 測器是用於使太陽能板繞額外軸轉動’以定向太陽能板朝 向輻射訊號來源體,其中該額外軸與該轴垂直,且其中感 測器、額外感測器、補充感測器以及附加感測器各自以經 預定的角度而附接至安裝面。 8.根據申請專利範圍第7項所述之系統,其更進一步地 ◎ 背面感測器’其接收被導引而朝向太陽能板背面之額 夕卜輕射訊號’其中背面感測器是用於當背面感測器接收到 額外輪射訊號之部分時,定向太陽能板朝向額外輻射訊號 之額外來源體。 9.根據申請專利範圍第8項所述之系統,其中感測器、 額外感測器、補充感測器以及附加感測器各自偵測波長實 28 .201020713 質上介於390奈米及400奈米間的紫外線輻射,感測器陽 極耦合至額外感測器陰極,及感測器陰極連接至額外感測 1 〇·根據申請專利範圍第8項所述之系統,其中紅外線 濾光片包含厚度介於2.0至3.0毫米的聚胺酯。 Π .根據申請專利範圍第8項所述之系統,其更進—步 地包括: ^ 太陽能板定向系統之垂直支柱; ❿ 太陽能板定向系統之水平支柱; 包覆在垂直支柱内的垂直轴馬達;及 包覆在水平支枉内的水平軸馬達。 12.根據申請專利範圍第U項所述之系統,其中調整模 組包含全橋,該全橋包含二個P通道金氧半場效電晶體及 二個N通道金氧半場效電晶體,其中在接收到結合訊衆及 額外結合訊號中的至少一個時,全橋使水平轴馬達及垂直 轴馬達中的至少一個轉動β ® 13· 一種太陽能板定向系統之方法,其包括: 在感測器及額外感測器接收到輻射訊號前,當輕射气 號被紅外線濾光片改變時’降低由輻射訊號的紅外線部八 所造成之干擾; 77 當該感測器接收到輕射訊號的紫外線部分時,該感、 器產生控制訊號成分; 當該額外感測器接收到輻射訊號的額外紫外線1分 時’該額外感測器形成額外控制訊號成分;及 29 201020713 結合控制訊號成分及額外控制訊號成分,以形成結合 控制訊號* α 14. 根據申凊專利範圍第13項所述之方法,其更進一步 地包括: 定向太陽能板朝向輻射訊號來源體直到結合控制訊號 被降低至閾限值》 15. 根據申請專利範圍第14項所述之方法,其中感測器 及額外感測器各包含發光二極體。 16. 根據申請專利範圍第15項所述之方法’其中紅外線 濾光片包含聚胺酯圓頂》 1 7 ·根據申請專利範圍第1 3項所述之方法,其更進一步 地包括: 基於控制訊號成分及額外控制訊號成分之結合輸出來 操作馬達’其中太陽能板是基於該結合輸出而循一方向繞 軸轉動。 18.根據申請專利範圍第17項所述之方法,其更進一步 地包括: 基於補充感測器及附加感測器之額外結合輸出而使太 陽能板循額外方向繞軸轉動。 19· 一種太陽能板定向系統之方法,其包括: 麵合感測器及額外感測器至太陽能板定向系統,其中 當該感測器接收到輻射訊號的紫外線部分時,該感測器產 生控制訊號成分,且其中當該額外感測器接收到輻射訊號 的額外紫外線部分時,該額外感測器產生額外控制訊號成 201020713 分’其中控制訊號成分及額外控制訊號成分各自包含電歷 及電流中的至少一個; 形成太陽能板定向系統之紅外線濾光片,其中紅外線 遽光片降低由輻射訊號的紅外線部分所造成之干擾,其中 在感測器及額外感測器接收到輻射訊號前,當輻射訊號的 紅外線部分藉由紅外線濾光片而減少時,則干擾降低,紅 外線濾光片包含厚度介於2.0至3.0之間的聚胺酯; 將調整模組置於太陽能板定向系統中,其中該調整模 0 組基於控制訊號成分及額外控制訊號成分之結合輸出而產 生馬達訊號’且其中馬達訊號使太陽能板循額外方向繞轴 轉動;及 耦合補充感測器及附加感測器至太陽能板定向系統, 其中補充感測器及附加感測器為耦合,且其中補充感測器 及附加感測器之額外結合輸出提供了額外馬達訊號之基 準’額外馬達訊號使太陽能板循額外方向繞軸轉動》 20.根據申請專利範圍第19項所述之方法,其更進一步 φ 地包括: 將額外感測器組置於太陽能板定向系統中,其中額外 感測器組包含四個紫外線感測器,紫外線感測器是用於使 太陽能板繞額外轴轉動,以定向太陽能板朝向輻射訊號來 源體,該額外軸與該軸垂直,且其中定向太陽能板朝向輻 射訊號來源體直到結合控制訊號被降低至閾限值,當感測 器及額外感測器之安裝面與輻射訊號來源體實質上垂直 時’則達到閾限值;及 31 201020713 耦合背面感測器至太陽能板定向系統,其中背面感測 器接收額外輪射訊號,轄射訊號被引導而朝向至太陽此板 之背面,背面感測器是用於當背面感測器接收到額外輻射 訊號之部分時,定向太陽能板朝向額外輻射訊號之額外來 源體’並且其中感測器、額外感測器、補充感測器以及附 加感測器各自偵測波長實質上在390奈米至400奈米間之 紫外線輻射。 八、圖式: (如次頁) 327. The system of claim 6, further comprising: an additional sensor set comprising four ultraviolet sensors, the ultraviolet sensor being used to rotate the solar panel about an additional axis' Orienting the solar panel toward the radiation signal source, wherein the additional axis is perpendicular to the axis, and wherein the sensor, the additional sensor, the supplemental sensor, and the additional sensor are each attached to the mounting at a predetermined angle surface. 8. The system of claim 7, further comprising: a back sensor 'which receives a light-emitting signal directed toward the back of the solar panel' wherein the back sensor is used When the back sensor receives a portion of the extra wheel signal, the directional solar panel faces the additional source of additional radiation signals. 9. The system of claim 8, wherein the sensor, the additional sensor, the supplemental sensor, and the additional sensor each detect a wavelength of 28 . 201020713 qualitatively between 390 nm and 400 Ultraviolet radiation between the nanoparticles, the sensor anode is coupled to the additional sensor cathode, and the sensor cathode is connected to the additional sensing 1 〇. The system according to claim 8 wherein the infrared filter comprises Polyurethane having a thickness of between 2.0 and 3.0 mm. Π According to the system of claim 8 of the patent application, further comprising: ^ vertical struts of the solar panel orientation system; 水平 horizontal struts of the solar panel orientation system; vertical axis motor wrapped in the vertical struts And a horizontal axis motor wrapped in a horizontal support. 12. The system of claim U, wherein the adjustment module comprises a full bridge comprising two P-channel MOS half-effect transistors and two N-channel MOS half-field transistors, wherein Receiving at least one of the horizontal axis motor and the vertical axis motor by at least one of the combined signal and the additional combined signal, the full bridge rotating the β ® 13 · a solar panel orientation system, comprising: Before the extra sensor receives the radiation signal, when the light ejector is changed by the infrared filter, 'reduces the interference caused by the infrared portion of the radiation signal; 77 when the sensor receives the ultraviolet portion of the light-emitting signal The sensor generates a control signal component; the additional sensor forms an additional control signal component when the additional sensor receives an additional ultraviolet light of the radiation signal; and 29 201020713 combines the control signal component with an additional control signal Ingredients to form a combined control signal*α 14. The method of claim 13 further comprising: directional solar energy Toward the source of the radiation signal until the combined control signal is reduced to a threshold value "15. The method according to item 14 of the scope of patent applications, wherein each sensor and the additional sensor comprises a light emitting diode. 16. The method according to claim 15 wherein the infrared filter comprises a polyurethane dome. The method according to claim 13 further comprising: based on the control signal component And a combination of additional control signal components to operate the motor 'where the solar panel is pivoted in a direction based on the combined output. 18. The method of claim 17, further comprising: pivoting the solar panel in an additional direction based on the additional combined output of the supplemental sensor and the additional sensor. 19. A method of solar panel orientation system, comprising: a face sensor and an additional sensor to solar panel orientation system, wherein the sensor generates control when the sensor receives the ultraviolet portion of the radiation signal a signal component, and wherein when the additional sensor receives an additional ultraviolet portion of the radiation signal, the additional sensor generates an additional control signal into 201020713 minutes, wherein the control signal component and the additional control signal component each comprise an electrical calendar and a current At least one; an infrared filter forming a solar panel orientation system, wherein the infrared ray reduction sheet reduces interference caused by an infrared portion of the radiation signal, wherein the radiation is received before the sensor and the additional sensor receive the radiation signal When the infrared portion of the signal is reduced by the infrared filter, the interference is reduced, and the infrared filter comprises a polyurethane having a thickness of between 2.0 and 3.0; the adjustment module is placed in the solar panel orientation system, wherein the adjustment mode Group 0 generates a motor based on the combined output of the control signal component and the additional control signal component No. 'and the motor signal causes the solar panel to rotate in an additional direction; and coupling the complementary sensor and the additional sensor to the solar panel orientation system, wherein the complementary sensor and the additional sensor are coupled, and the sense of complementation The additional combined output of the detector and the additional sensor provides a reference to the additional motor signal 'additional motor signal causes the solar panel to rotate in an additional direction.>> 20. According to the method described in claim 19, it further φ The ground includes: placing an additional sensor set in the solar panel orientation system, wherein the additional sensor set includes four ultraviolet sensors for rotating the solar panels around the additional axis to orient the solar panels Facing the radiation signal source body, the additional axis is perpendicular to the axis, and wherein the directional solar panel faces the radiation signal source until the combined control signal is lowered to the threshold value, when the sensor and the additional sensor are mounted on the surface and the radiation signal When the source body is substantially vertical, then the threshold is reached; and 31 201020713 Coupled back sensor to solar panel orientation system The back sensor receives an additional wheel signal, the ray signal is directed toward the back of the board to the sun, and the back sensor is used to orient the solar panel when the back sensor receives the portion of the additional radiation signal. An additional source of additional radiation signals' and wherein the sensors, additional sensors, supplemental sensors, and additional sensors each detect ultraviolet radiation having a wavelength substantially between 390 nm and 400 nm. Eight, the pattern: (such as the next page) 32
TW098133514A 2008-10-03 2009-10-02 Control signal generation of a solar panel orientation system with interference reduction using an infrared filter TW201020713A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19506708P 2008-10-03 2008-10-03

Publications (1)

Publication Number Publication Date
TW201020713A true TW201020713A (en) 2010-06-01

Family

ID=42073877

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098133514A TW201020713A (en) 2008-10-03 2009-10-02 Control signal generation of a solar panel orientation system with interference reduction using an infrared filter

Country Status (3)

Country Link
CN (1) CN102171518A (en)
TW (1) TW201020713A (en)
WO (1) WO2010039919A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043411A (en) * 2010-12-30 2011-05-04 中环光伏系统有限公司 Control method for leveling solar oblique single-axis tracker downwind
ZA201308867B (en) * 2012-11-26 2016-01-27 Brightsource Ind (Israel|) Ltd Systems and methods for operating a wirelessly controlled solar field
CN103760918A (en) * 2014-01-15 2014-04-30 华南理工大学 Solar tracking controller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976508A (en) * 1974-11-01 1976-08-24 Mobil Tyco Solar Energy Corporation Tubular solar cell devices
US4179612A (en) * 1979-01-12 1979-12-18 Smith Peter D Radiation tracking control
US4320288A (en) * 1980-04-25 1982-03-16 Thermo Electron Corporation Solar tracking system
US4883340A (en) * 1988-08-02 1989-11-28 Solar Lighting Research, Inc. Solar lighting reflector apparatus having slatted mirrors and improved tracker
US6410940B1 (en) * 2000-06-15 2002-06-25 Kansas State University Research Foundation Micro-size LED and detector arrays for minidisplay, hyper-bright light emitting diodes, lighting, and UV detector and imaging sensor applications
US20060185713A1 (en) * 2005-02-23 2006-08-24 Mook William J Jr Solar panels with liquid superconcentrators exhibiting wide fields of view
US7692091B2 (en) * 2005-09-27 2010-04-06 Karim Altaii Shape memory alloy motor as incorporated into solar tracking mechanism

Also Published As

Publication number Publication date
CN102171518A (en) 2011-08-31
WO2010039919A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US8119962B2 (en) Control signal generation of a solar panel orientation system with interference reduction using an infrared filter
US8063300B2 (en) Concentrator solar photovoltaic array with compact tailored imaging power units
ES2242177T3 (en) PUMP DEVICE POWERED BY SOLAR ENERGY.
JP2013517628A (en) Parabolic solar energy receiver array module
EP2359401B1 (en) SOLAR MODULE HAVING INTEGRATED ELECTRONIC DEVICES and related Method to manufacture it
US20110048656A1 (en) Blind device using solar cells
CN103066886B (en) Self adaptation solar tracking is taken precautions against natural calamities Blast Furnace Top Gas Recovery Turbine Unit (TRT) and control method
JP2006507974A5 (en)
CN116195161A (en) Three-dimensional photovoltaic charging system
AU2019272004A1 (en) A solar lighting system
TW201020713A (en) Control signal generation of a solar panel orientation system with interference reduction using an infrared filter
US10190804B2 (en) Solar module positioning system
JP3818651B2 (en) Solar power system
WO2014048575A2 (en) A utility pole assembly
KR102108156B1 (en) Movable solar panel streetlight using double actuator
US20110139220A1 (en) Solar device and solar system comprising the same
KR20170000112A (en) Parking control system using control machine with basing placement
Andreev et al. Thermophotovoltaic converters with solar powered high temperature emitters
JP5615209B2 (en) Solar power plant
JP2009295836A (en) Solar cell integrating device
KR20190073028A (en) Rotating PV Module for Indoor Installation
US9431561B1 (en) Method and system for providing a wind load resistant, tracking photovoltaic (PV) array
US11509261B2 (en) Verta solar sun panel
KR102251708B1 (en) Solar power system and solar power generating method using the same
Rumyantsev et al. Experimental installations with high-concentration PV modules using III-V solar cells