TW201020661A - Liquid crystal device and the manufacturing method thereof - Google Patents

Liquid crystal device and the manufacturing method thereof Download PDF

Info

Publication number
TW201020661A
TW201020661A TW97146234A TW97146234A TW201020661A TW 201020661 A TW201020661 A TW 201020661A TW 97146234 A TW97146234 A TW 97146234A TW 97146234 A TW97146234 A TW 97146234A TW 201020661 A TW201020661 A TW 201020661A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
substrate
polymer
lower substrate
Prior art date
Application number
TW97146234A
Other languages
Chinese (zh)
Other versions
TWI438537B (en
Inventor
Kuei-Lin Chu
Original Assignee
Chi Mei Comm Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Comm Systems Inc filed Critical Chi Mei Comm Systems Inc
Priority to TW97146234A priority Critical patent/TWI438537B/en
Publication of TW201020661A publication Critical patent/TW201020661A/en
Application granted granted Critical
Publication of TWI438537B publication Critical patent/TWI438537B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A liquid crystal device and the manufacturing method thereof are provided. The optical compensated bend (OCB) liquid crystal device includes an upper substrate, a lower substrate and a plurality of liquid crystal cells between the upper substrate and the lower substrate. Each liquid crystal cells includes a transmissive area and a reflective area. In addition, an upper electrode and an upper alignment layer successively form beneath the upper substrate, and a lower electrode and a lower alignment layer successively forms on the lower substrate. The liquid crystal cell includes a solution made of a mixed alignment liquid and liquid crystal. The solution forms polymer walls in the liquid crystal cell in response to radiation of a UV light source and a first voltage applied to the upper substrate and the lower substrate so as to obtain bend-state liquid crystals at initial operation.

Description

201020661 九、發明說明: 【發明所屬的技術領域] 本發明涉及一種液晶顯示器,特別涉及一種光學補償 • 彎曲模式的液晶顯示器及其製造方法。 【先前技術】 隨著液晶顯示器大量應用於各式電子產品中,使得液 晶顯示器的應用領域迅速擴大。為了進一步提高反應速度 並擴大其視角’習知的液晶顯示器廣泛地採用光學補償彎 曲(optical compensated bend,OCB)模式。在採用 〇CB 模 式的液晶顯示器中,分佈於上、下玻璃基板表面的液晶分 子為平行配向,但内層的液晶分子並不產生扭曲,只是在 一個平面内彎曲排列,此種排列方式可以使光線產生雙折 射;此時在玻璃基板上再加上雙抽相位差板(Biaxial Retardation Film),即可補償各個轴向的相位差,並克服視 角受到液晶分子傾斜造成光學特性變化的影響,從而使液 ⑩ 晶顯示器獲得較寬廣的視角。 如圖6所示,習知的0CB液晶顯示器中,液晶分子初 始狀態處於均勻斜展態(splay state)。該OCB液晶顯示器 開機後’液晶分子受到施加於該0CB液晶顯示器的電壓的 影響,經過一定的暖機時間後,才能由均勻斜展態經過一 非對稱斜展態(asymmetric splay state)逐漸轉換到適於進行 工作的彎曲態(bend state),此時該液晶顯示器才進入正常 工作狀態,之後再逐漸增加電壓,直至該被施加的電壓值 等於彎曲飽和電壓,該液晶顯示器進入暗態。 7 201020661 同時參閱圖7即可知,當該施加在液晶顯示器上的電 壓由〇伏特增加至4伏特左右後’該液晶分子才轉換成適 於工作的彎曲態。而於該OCB液晶顯示器完成暖機後,其 工作電壓範圍約為4伏特到10伏特。顯然,習知的〇CB 液晶顯示器在開機後,需要經過較長的暖機時間,完成上 述升壓過程後方可進入正常的工作狀態,這可能造成使用 上的不便。另外’現有的OCB液晶顯示器經常存在亮度較 低的問題。 ❿ 是以,如何減少OCB模式液晶顯示器暖機所需時間, 並增加OCB液晶顯示器的亮度是一重大課題。 【發明内容】 鑒於以上内容,有必要提供一種能快速開機、又同時 提供較高亮度的OCB液晶顯示器。 一種光學補償模式的液晶顯示器,其包含一上基板、 一與該上基板平行的下基板及至少一位於該上基板及該下 ❹ 基板間的液晶盒,所述每一液晶盒包含一穿透區及一反射 區。該上基板的下方形成一上電極及一上配合臈,且該下 基板的上方依序形成一下電極及一下配向膜。該液晶盒包 含由一高分子單體製成的混合配向劑及液晶組成的溶液, 其中該溶液因施加至該上基板及下基板的一第一電壓以及 UV光源照射而於該液晶盒形成高分子網路,從而得到初 始狀態為彎曲態的液晶。 種光學補彳員模式的液晶顯示器製造方法,其包含以 下步驟:混合兩種高分子單體製成配向劑;混合配向劑與 8 201020661 液曰曰為一溶液,並將該溶液填入一液晶盒;及提供一第一 電壓至該液晶盒,並同時提供一 uv光源照射該液晶盒直 至該咼分子單體於該液晶盒内形成高分子網路,從而得到 ' 初始狀態為彎曲態的液晶。 與習知技術相比,所述液晶顯示器將高分子單體所製 成的配向劑與液晶進行混合,並同時控制施加至該液晶盒 的電壓以及控制該液晶盒曝光的時間,以使得液晶於初始 狀態時就呈現為彎曲態,從而降低該液晶顯示器所需暖機 時間、並可增加亮度及達到省電的目的。 【實施方式】 圖1所示為一OCB液晶顯示器10的部分結構示意圖。該 OCB液晶顯示器1G包含—上基板2()、—下基板规一由若 干液晶盒40組成的液晶層,其中該冬一液晶盒扣包含一穿 透區41a及一反射區4ib。 上基板20朝向下基板30的表面依序形成有一上電極22 φ與上配向膜24,而下基板30朝向上基板20的表面則依序 形成下電極32及-下配向膜34,該液晶盒4〇配置於該上 基板20的上配向膜24及該下基板3〇的下配向膜%之間。 ^於本較佳實施例中,該上電極22及該下電極32為ITO 導電玻璃’而該上配向膜24及該下配向膜34是分別塗布於 該上電極22及該下電極32的㈣—(p()lyimide,pi)化學 薄膜,且該上配向膜24及該下配向膜34具有同向性。 圖2a〜2e為用以顯示〇CB液晶顯示器1〇中液晶分子的 配向改變的過程的示意圖。 9 201020661 首先’將兩種高分子單體(Monomer)44a,44b混合製成 垂直配向劑。於本較佳實施例令’該兩種高分單體包括一 種含侧鏈高分子44a及一種光聚合高分子44b,該含侧鏈高 分子44a與該光聚合高分子44b的重量百分比大致介於1:2 至1:3的範圍。之後’再將該垂直配向劑與液晶42混合並灌 入該液晶盒40的穿透區41a及該反射區41b中(如圖2a所 示)。於本較佳實施例中’該垂直配向劑重量百分比約占其 與該液晶42混合後的溶液的3%至7%。 請參照圖2b,之後通過一驅動電路5〇提供一第一電壓 至該上基板20及該下基板3〇。於本較佳實施例中,該驅動 電路50所提供的為一交流電壓,該第一電壓值大致介於5 伏特及9伏特之間。該第一電壓會於該上電極22及該下電極 32間產生一垂直電場。該垂直電場使得該液晶盒4〇中的液 晶42會依據電場方向而呈垂直排列。雖然高分子單體4如, 44b並不會對該垂直電場產生反應,但該含侧鏈高分子44& 會被液晶42拉起而改變其排列方式。 於該驅動電路50提供該第一電壓的同時,一uv光源也 同時被開啟,並用於對該液晶盒4〇進行照射曝光。如圖2b 所示,於提供該UV光源時,該穿透區4la與該xjV光源之間 配置有一光罩55。該反射區41b經過一第一時間週期的1;乂 光源照射後才移除該光罩55,並以該UV光源同時照射該穿 透區41a及該反射區41b。 於本較佳實施例中’該UV光源波長可以是254nm、 302nm及365nm任一者。可以理解,曝光時間的長短影響含 201020661 侧鏈高分子44a的排列方式,曝光時間愈長,該含侧鏈高分 子44a與上配向膜24及下配向膜34的角度愈趨近於90度。同 時,該光聚合高分子44b會因為其曝光於該xjv光,而會呈 • 現一平行於該上配向膜24及下配向膜34的狀態。 如圖2c所示,經過適當的曝光時間,該含側鏈高分子 44a穩定在一垂直於該上配向膜24及該下配向膜34的方 向,同時該光聚合高分子44b穩定于一平行於該上配向膜24 及該下配向膜34的方向,從而形成高分子網路(p〇lymer ❹ network),且該高分子網路固定該液晶42以使該液晶“具 有一預傾角(pertilt angle)。 於本較佳實施例中,該穿透區41a中的液晶42的預傾角 大致介於54至60度的範圍,。之後再移除該11乂光源及該第 一電壓。此時,如圖2d所示,於液晶盒4〇中的液晶“已呈 現0CB液晶所需的f曲•態。需注意的是,由於該反射區仙 被該UV光源照射的時間相對於該穿透區41a較長,因此該 ⑩反射區41b中的液晶42包含-較高的預傾角θ,其大致介於 65至70度的範圍内。 ' ' 當液晶42處於彎曲態時,此時,再提供一第二電壓至 該上基板20及該下基板30,該第二電壓的起始值%為〇伏 特。之後,逐漸增加該第二電壓的值直至該值等於◦⑶液 晶的彎曲飽合電壓Vsat。當該第二電壓的值等於〇cb液晶 的彎曲飽合電壓Vsat時’於液晶盒4〇中的液心即呈現: 圖2e所示的排列。 圖3所示為一0CB液晶顯示器1〇的結構示意圖。該〇cb 11 201020661 液晶顯示器10包含該上基板20、該下基板30、及配置於談 上基板20及該下基板30間的若干液晶盒40,其中該每一液 晶盒40包含穿透區41a及反射區41b。另外,該液晶顯示器 10還包括依序設置於該上基板20背向下基板30—側的—上 1/4波長板72及一上偏光板82,以及依序設置於該下基板3〇 背向上基板20—側的一下1/4波長板70、一下偏光板8〇及一 下背光板90。此外,該液晶顯示器1〇還包括至少一配置在 該反射區41b及該1/4波長板70之間的反射器60。201020661 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display, and more particularly to an optical compensation/bending mode liquid crystal display and a method of fabricating the same. [Prior Art] As liquid crystal displays are widely used in various electronic products, the field of application of liquid crystal displays is rapidly expanding. In order to further increase the reaction speed and expand the viewing angle, conventional liquid crystal displays widely employ an optically compensated bend (OCB) mode. In the liquid crystal display using the 〇CB mode, the liquid crystal molecules distributed on the surfaces of the upper and lower glass substrates are parallel alignment, but the liquid crystal molecules of the inner layer are not twisted, but are arranged in a plane, and the arrangement can make the light Birefringence is generated; at this time, a Biaxial Retardation Film is added to the glass substrate to compensate for the phase difference in each axial direction, and to overcome the influence of the optical characteristics of the liquid crystal molecules on the viewing angle, thereby The liquid 10-crystal display gives a wide viewing angle. As shown in Fig. 6, in the conventional 0CB liquid crystal display, the initial state of the liquid crystal molecules is in a uniform splay state. After the OCB liquid crystal display is turned on, the liquid crystal molecules are affected by the voltage applied to the 0CB liquid crystal display, and after a certain warm-up time, the uniform oblique state can be gradually converted to an asymmetric splay state. A bend state suitable for operation, when the liquid crystal display enters a normal working state, and then gradually increases the voltage until the applied voltage value is equal to the bending saturation voltage, and the liquid crystal display enters a dark state. 7 201020661 Referring also to Fig. 7, it can be seen that when the voltage applied to the liquid crystal display is increased from 〇V to about 4 volts, the liquid crystal molecules are converted into a bending state suitable for operation. After the OCB liquid crystal display is warmed up, its operating voltage ranges from about 4 volts to 10 volts. Obviously, the conventional 〇CB liquid crystal display needs a long warm-up time after the power is turned on, and the above-mentioned boosting process can be completed before entering the normal working state, which may cause inconvenience in use. In addition, the existing OCB liquid crystal display often has a problem of low brightness. ❿ Therefore, how to reduce the time required to warm up the OCB mode LCD monitor and increase the brightness of the OCB liquid crystal display is a major issue. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an OCB liquid crystal display that can be quickly turned on while providing higher brightness. An optical compensation mode liquid crystal display comprising an upper substrate, a lower substrate parallel to the upper substrate, and at least one liquid crystal cell between the upper substrate and the lower substrate, each of the liquid crystal cells including a penetrating Zone and a reflection zone. An upper electrode and an upper matching raft are formed under the upper substrate, and a lower electrode and a lower alignment film are sequentially formed on the lower substrate. The liquid crystal cell comprises a mixed alignment agent made of a polymer monomer and a liquid crystal solution, wherein the solution is formed in the liquid crystal cell by a first voltage applied to the upper substrate and the lower substrate and a UV light source. Molecular network, thereby obtaining a liquid crystal whose initial state is a curved state. The invention relates to a method for manufacturing a liquid crystal display of an optical complement mode, comprising the steps of: mixing two polymer monomers to form an alignment agent; mixing the alignment agent with 8 201020661 liquid helium as a solution, and filling the solution into a liquid crystal And providing a first voltage to the liquid crystal cell, and simultaneously providing a uv light source to illuminate the liquid crystal cell until the germanium molecule forms a polymer network in the liquid crystal cell, thereby obtaining a liquid crystal whose initial state is a curved state . Compared with the prior art, the liquid crystal display mixes the alignment agent made of the polymer monomer with the liquid crystal, and simultaneously controls the voltage applied to the liquid crystal cell and controls the exposure time of the liquid crystal cell, so that the liquid crystal is In the initial state, it appears as a curved state, thereby reducing the warm-up time required for the liquid crystal display, and increasing the brightness and achieving power saving. Embodiment 1 FIG. 1 is a partial schematic structural view of an OCB liquid crystal display 10. The OCB liquid crystal display 1G includes an upper substrate 2 (), a lower substrate, and a liquid crystal layer composed of a plurality of liquid crystal cells 40, wherein the winter liquid crystal cell buckle comprises a through region 41a and a reflective portion 4ib. The upper substrate 20 is sequentially formed with an upper electrode 22 φ and an upper alignment film 24 toward the surface of the lower substrate 30, and the lower substrate 30 is sequentially formed with a lower electrode 32 and a lower alignment film 34 toward the surface of the upper substrate 20, the liquid crystal cell 4〇 is disposed between the upper alignment film 24 of the upper substrate 20 and the lower alignment film % of the lower substrate 3〇. In the preferred embodiment, the upper electrode 22 and the lower electrode 32 are ITO conductive glass', and the upper alignment film 24 and the lower alignment film 34 are respectively applied to the upper electrode 22 and the lower electrode 32. —(p() lyimide, pi) a chemical film, and the upper alignment film 24 and the lower alignment film 34 have the same orientation. 2a to 2e are schematic views for showing a process of changing the alignment of liquid crystal molecules in the 〇CB liquid crystal display. 9 201020661 First, two polymer monomers (Monomer) 44a, 44b were mixed to form a vertical alignment agent. In the preferred embodiment, the two high-component monomers include a side chain-containing polymer 44a and a photopolymerizable polymer 44b, and the weight percentage of the side-chain-containing polymer 44a and the photopolymerizable polymer 44b is substantially In the range of 1:2 to 1:3. Thereafter, the vertical alignment agent is mixed with the liquid crystal 42 and poured into the penetration region 41a of the liquid crystal cell 40 and the reflection region 41b (as shown in Fig. 2a). In the preferred embodiment, the vertical alignment agent comprises about 3% to 7% by weight of the solution after mixing with the liquid crystal 42. Referring to FIG. 2b, a first voltage is applied to the upper substrate 20 and the lower substrate 3 through a driving circuit 5'. In the preferred embodiment, the driving circuit 50 provides an alternating voltage, the first voltage value being substantially between 5 volts and 9 volts. The first voltage generates a vertical electric field between the upper electrode 22 and the lower electrode 32. The vertical electric field causes the liquid crystals 42 in the liquid crystal cell 4 to be vertically aligned in accordance with the direction of the electric field. Although the polymer monomer 4 such as 44b does not react to the vertical electric field, the side chain-containing polymer 44& will be pulled up by the liquid crystal 42 to change its arrangement. While the driving circuit 50 supplies the first voltage, a uv light source is also turned on at the same time, and is used to illuminate the liquid crystal cell 4 曝光. As shown in Fig. 2b, when the UV light source is provided, a light mask 55 is disposed between the penetrating region 4la and the xjV light source. The reflective area 41b passes through a first time period of 1; the reticle 55 is removed after the illuminating light source, and the transparent area 41a and the reflective area 41b are simultaneously illuminated by the UV light source. In the preferred embodiment, the UV source wavelength can be any of 254 nm, 302 nm, and 365 nm. It can be understood that the length of the exposure time affects the arrangement of the side chain polymer 44a containing 201020661. The longer the exposure time, the closer the angle of the side chain-containing polymer 44a to the upper alignment film 24 and the lower alignment film 34 is closer to 90 degrees. At the same time, the photopolymerizable polymer 44b is in a state of being parallel to the upper alignment film 24 and the lower alignment film 34 because it is exposed to the xjv light. As shown in FIG. 2c, after a suitable exposure time, the side chain-containing polymer 44a is stabilized in a direction perpendicular to the upper alignment film 24 and the lower alignment film 34, and the photopolymerizable polymer 44b is stabilized in a parallel manner. The direction of the upper alignment film 24 and the lower alignment film 34 forms a polymer network (p〇lymer ❹ network), and the polymer network fixes the liquid crystal 42 such that the liquid crystal "has a pretilt angle" In the preferred embodiment, the pretilt angle of the liquid crystal 42 in the penetration region 41a is substantially in the range of 54 to 60 degrees, and then the 11 乂 light source and the first voltage are removed. As shown in Fig. 2d, the liquid crystal in the liquid crystal cell 4" has exhibited the f-curve state required for the 0CB liquid crystal. It should be noted that since the time when the reflection area is illuminated by the UV light source is longer than the penetration area 41a, the liquid crystal 42 in the 10 reflection area 41b includes a higher pretilt angle θ, which is substantially 65 to 70 degrees. When the liquid crystal 42 is in a bent state, at this time, a second voltage is further supplied to the upper substrate 20 and the lower substrate 30, and the initial value of the second voltage is 〇V. Thereafter, the value of the second voltage is gradually increased until the value is equal to the bending saturation voltage Vsat of the ◦(3) liquid crystal. When the value of the second voltage is equal to the bending saturation voltage Vsat of the 〇cb liquid crystal, the liquid core in the liquid crystal cell 4 turns: the arrangement shown in Fig. 2e. FIG. 3 is a schematic structural view of a 0CB liquid crystal display. The liquid crystal display 10 includes the upper substrate 20, the lower substrate 30, and a plurality of liquid crystal cells 40 disposed between the upper substrate 20 and the lower substrate 30, wherein each of the liquid crystal cells 40 includes a penetration region 41a. And a reflection area 41b. In addition, the liquid crystal display 10 further includes an upper 1/4 wavelength plate 72 and an upper polarizing plate 82 disposed on the side of the upper substrate 20 facing the lower substrate 30, and sequentially disposed on the lower substrate 3 The upper substrate 20 is a side of the lower quarter wave plate 70, the lower polarizing plate 8 and the lower backlight 90. Further, the liquid crystal display 1A further includes at least one reflector 60 disposed between the reflective area 41b and the 1⁄4 wavelength plate 70.

❹ 於本較佳實例中,該彎曲飽合電壓Vsat值約為6伏特 (如圖4所示)。也就是說,該OCB液晶顯示器1〇於開機後的 操作電壓值範圍大致處於〇伏特至6伏特之間。 圖5所示為根據本發明較佳實施例中用於製造一種 OCB液晶顯示器的方法的流程圖。首先,於步驟幻,混合 兩種高分子單體以製成垂直配向劑。步驟S4,將該垂直配 合劑與OCB液晶42混合並灌入一液晶盒40中。步驟S6,提 供一第一電壓及開啟UV光源直到該液晶盒40中的高分子 單體形成高分;f網路。在提供該UV光源時,該穿透區41a 與該UV光源之間配置有一光罩55,並於一第一時間週期經 過後才移除該光罩55,使得該UV光源同時照射該穿透區 41a及該反射區41b。之後,步驟S8,移除UV光源及該第一 電壓。此時,該液晶盒4〇中的液晶42已呈現彎曲態,並已 可開始進行操作。 步驟S10 ’提供一第二電壓至該液晶盒4〇,該第二電 壓的起始值V〇為〇伏特。之後,於步驟S12,逐漸增加該第 12 201020661 二電塵值直至該第二電壓值等於該液晶的彎曲飽和電壓 值。 該等0CB液晶顯示器1〇將高分子單體44a,44b所製成 的配向劑與液晶42進行混合’並同時控制施加至該液晶盒 40的電壓以及控制該液晶盒4〇曝光的時間,以使得液晶42In the preferred embodiment, the bend saturation voltage Vsat is about 6 volts (as shown in Figure 4). That is to say, the operating voltage value range of the OCB liquid crystal display 1 after being turned on is approximately between volts and 6 volts. Figure 5 is a flow chart showing a method for fabricating an OCB liquid crystal display in accordance with a preferred embodiment of the present invention. First, in the step of illusion, two polymer monomers are mixed to form a vertical alignment agent. In step S4, the vertical compounding agent is mixed with the OCB liquid crystal 42 and poured into a liquid crystal cell 40. Step S6, providing a first voltage and turning on the UV light source until the high molecular monomer in the liquid crystal cell 40 forms a high score; When the UV light source is provided, a light mask 55 is disposed between the penetration region 41a and the UV light source, and the light mask 55 is removed after a first time period elapses, so that the UV light source simultaneously illuminates the penetration. A region 41a and the reflective region 41b. Thereafter, in step S8, the UV light source and the first voltage are removed. At this time, the liquid crystal 42 in the liquid crystal cell 4 is already in a curved state, and the operation can be started. Step S10' provides a second voltage to the liquid crystal cell 4', and the initial value V〇 of the second voltage is 〇volt. Then, in step S12, the 12th 201020661 electric dust value is gradually increased until the second voltage value is equal to the bending saturation voltage value of the liquid crystal. The 0CB liquid crystal display 1 mixes the alignment agent made of the polymer monomers 44a, 44b with the liquid crystal 42' while controlling the voltage applied to the liquid crystal cell 40 and controlling the exposure time of the liquid crystal cell 4 to Making liquid crystal 42

於初始狀態時就呈現為彎曲態,如此一來,即可降低該〇CB 液曰b顯示器10所需暖機時間。同時,該〇CB液晶顯示器1〇In the initial state, it appears as a curved state, so that the warm-up time required for the 〇CB liquid 曰b display 10 can be reduced. At the same time, the 〇CB liquid crystal display 1〇

於開機後的操作電壓值範圍也小於習知技術中〇CB液晶顯 不器的操作電壓值範圍。此外,該液晶42於初始狀態時, 於該液晶盒4 0内已形成高分子網路使得該液晶4 2具有一預 傾角,此也同時增加了該〇CB液晶顯示器1〇的亮度。 ,綜上該等,本發明符合發明專利要件,爰依法提出專 曰申明准,以上該等者僅為本發明的較佳實施例,本發 2的範圍並不以上述實施例為限,舉凡熟悉本案技藝的人 、援依本發明的精神所作的等效修飾或變化,皆應涵蓋於 乂下申請專利範圍内。 【圖式簡單說明】 —圖1為本發明較佳實施例〇CB液晶顯示器的部分結構 不意圖; 曰圖以至^為本發明較佳實施例〇CB液晶顯示器中液 明分子之配向改變的示意圖; 圖3為本發明較佳實施例〇CB液晶顯示器的結意 圖; 圖 4為本發明較佳實施例〇 c B液晶顯示器的操作電壓 13 201020661 與穿透與反射光效率之關係圖; 圖5為本發明用以製造OCB液晶顯示器之方法的較佳 實施例之流程圖; 圖6為習知技術OCB液晶顯示器開機後的液晶分子配 向之示意圖;及 圖7為習知技術OCB液晶顯示器於開機後的操作電壓 與發光效率之關係圖。 【主要元件符號說明】The range of operating voltage values after power-on is also smaller than the range of operating voltage values of the 〇CB liquid crystal display in the prior art. In addition, when the liquid crystal 42 is in an initial state, a polymer network is formed in the liquid crystal cell 40 so that the liquid crystal 42 has a pretilt angle, which also increases the brightness of the 〇CB liquid crystal display. In summary, the present invention complies with the requirements of the invention patents, and the specifics are set forth in accordance with the law. The above are only preferred embodiments of the present invention, and the scope of the present invention 2 is not limited to the above embodiments. Equivalent modifications or variations made by those skilled in the art and in accordance with the spirit of the present invention should be covered by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial schematic view of a CB liquid crystal display according to a preferred embodiment of the present invention; FIG. 1 is a schematic view showing a change of alignment of liquid molecules in a CB liquid crystal display according to a preferred embodiment of the present invention. 3 is a schematic view of a CB liquid crystal display according to a preferred embodiment of the present invention; FIG. 4 is a diagram showing the relationship between the operating voltage 13 201020661 and the efficiency of penetrating and reflected light according to a preferred embodiment of the present invention; FIG. FIG. 6 is a schematic diagram of alignment of liquid crystal molecules after starting OCB liquid crystal display according to the prior art; and FIG. 7 is a schematic diagram of a conventional OCB liquid crystal display. Diagram of the relationship between operating voltage and luminous efficiency. [Main component symbol description]

OCB液晶顯示器 10 光聚合高分子 44b 上基板 20 驅動電路 50 上電極 22 光罩 55 上配向膜 24 反射器 60 下基板 30 下1/4波長板 70 下電極 32 上1/4波長板 72 下配向膜 34 下偏光板 80 液晶盒 40 上偏光板 82 穿透區 41a 下背光板 90 反射區 41b 液晶 42 含侧鍵高分子 44a 14OCB liquid crystal display 10 photopolymerizable polymer 44b upper substrate 20 drive circuit 50 upper electrode 22 photomask 55 upper alignment film 24 reflector 60 lower substrate 30 lower quarter wave plate 70 lower electrode 32 upper quarter wave plate 72 under alignment Film 34 lower polarizing plate 80 liquid crystal cell 40 upper polarizing plate 82 penetrating area 41a lower backlight plate 90 reflecting area 41b liquid crystal 42 containing side key polymer 44a 14

Claims (1)

201020661 十、申請專利範圍: 1. 一種光學補償模式的液晶顯示器,其包括: 一下基板; * 一上基板,其與該下基板平行,該上基板朝向下基板的 表面依次形成一上電極及一上配合膜,且該下基板朝向上 基板的表面依序形成一下電極及一下配向膜;及 至少一位於該上基板及該下基板間的液晶盒,所述每一 液晶盒包含一穿透區及一反射區,該液晶盒内包含由高分 ® 子單體製成的混合配向劑及液晶組成的溶液; 其中該溶液經施加至該上基板及下基板的一第一電壓 以及UV光源照射而於該液晶盒形成高分子網路,從而得到 初始狀態為彎曲態的液晶。 2. 如申請專利範圍第1項所述之液晶顯示器,其中該上電 極及該下電極均為ITO導電玻璃。 3. 如申請專利範圍第1項所述之液晶顯示器,其中該上配 Q 向膜及該下配向膜均為具有同向性的配向膜。 4. 如申請專利範圍第1項所述之液晶顯示器,其中所述高 分子單體包括一種含側鍵高分子及一種光聚合高分子,且 其混合的重量百分比介於1:2至1:3之間。 5. 如申請專利範圍第4項所述之液晶顯示器,其中該混合 配向劑的重量占其與該液晶混合後的溶液的3%至7%。 6. 如申請專利範圍第1項所述之液晶顯示器,其中該穿透 區中的液晶具有一介於54到60度之間的預傾角,而反射 區中的液晶具有一介於65到70度之間的預傾角。 15 201020661 7. 如申請專利範圍第1項所述之液晶顯示器,其中該液晶 顯示器還包括依序設置於該上基板背向下基板一側的一上 * 1/4波長板及一上偏光板,及依序設置於該下基板背向上 ' 基板一側的一下1/4波長板、一下偏光板及一下背光板。 8. —種用以製造如申請專利範圍第1項所述之液晶顯示 器的方法,其包括以下步驟: 混合兩種高分子單體製成所述混合配向劑; 混合所述混合配向劑與液晶為一溶液,並將該溶液填 入液晶盒, 提供一第一電壓至該液晶盒;及 , 提供一 UV光源照射該液晶盒直至該高分子單體於該 液晶盒内形成高分子網路,以得到初始狀態為彎曲態的液 晶。 9. 如申請專利範圍第8項所述之方法,其中該方法還包 括:於提供UV光源照射的同時,於該穿透區與該UV光 Q 源之間配置一光罩;及 於該反射區經過一第一時間週期的UV光源照射後移除 該光罩。 10. 如申請專利範圍第8項所述之方法,其中該高分子單 體包括一種含侧鏈高分子及一種光聚合高分子,且其混合 重量百分比介於1:2至1:3之間。 11. 如申請專利範圍第10項所述之方法,其中該混合配向 劑的重量占其與該液晶混合後的溶液的3%至7%。 12. 如申請專利範圍第8項所述之方法,其中該第一電壓 16 201020661 值介於5伏特及9伏特之間,且該第二電壓值介於0伏特 到6伏特之間。 • 13.如申請專利範圍第8項所述之方法,其中該UV光源波 長小於365nm。201020661 X. Patent application scope: 1. An optical compensation mode liquid crystal display, comprising: a lower substrate; * an upper substrate parallel to the lower substrate, the upper substrate sequentially forming an upper electrode and a surface toward the surface of the lower substrate Forming a film, and the lower substrate sequentially forms a lower electrode and a lower alignment film toward the surface of the upper substrate; and at least one liquid crystal cell between the upper substrate and the lower substrate, each of the liquid crystal cells including a penetrating region And a reflective area, the liquid crystal cell comprises a mixed alignment agent made of a high-quality® sub-monomer and a liquid crystal solution; wherein the solution is irradiated with a first voltage applied to the upper substrate and the lower substrate and a UV light source On the other hand, the liquid crystal cell forms a polymer network, thereby obtaining a liquid crystal whose initial state is a curved state. 2. The liquid crystal display of claim 1, wherein the upper electrode and the lower electrode are ITO conductive glass. 3. The liquid crystal display according to claim 1, wherein the upper Q-directed film and the lower alignment film are both isotropic alignment films. 4. The liquid crystal display according to claim 1, wherein the polymer monomer comprises a side bond polymer and a photopolymerizable polymer, and the weight percentage thereof is between 1:2 and 1: Between 3 5. The liquid crystal display of claim 4, wherein the mixed alignment agent has a weight of 3% to 7% of the solution after mixing with the liquid crystal. 6. The liquid crystal display of claim 1, wherein the liquid crystal in the penetrating region has a pretilt angle between 54 and 60 degrees, and the liquid crystal in the reflective region has a pitch between 65 and 70 degrees. Pretilt angle between. The liquid crystal display of claim 1, wherein the liquid crystal display further comprises an upper*1/4 wavelength plate and an upper polarizing plate disposed on one side of the upper substrate facing the lower substrate. And sequentially disposed on the lower substrate of the lower substrate, the lower quarter-wavelength plate, the lower polarizing plate and the lower backlight. 8. A method for manufacturing a liquid crystal display according to claim 1, comprising the steps of: mixing two polymer monomers to form the mixed alignment agent; mixing the mixed alignment agent with liquid crystal a solution, filling the solution into the liquid crystal cell, providing a first voltage to the liquid crystal cell; and providing a UV light source to illuminate the liquid crystal cell until the polymer monomer forms a polymer network in the liquid crystal cell, In order to obtain a liquid crystal whose initial state is a curved state. 9. The method of claim 8, wherein the method further comprises: arranging a reticle between the penetrating region and the UV light source Q while providing the UV light source; and the reflecting The reticle is removed after exposure to a UV light source for a first period of time. 10. The method of claim 8, wherein the polymer monomer comprises a side chain polymer and a photopolymerizable polymer, and the mixing weight percentage thereof is between 1:2 and 1:3. . 11. The method of claim 10, wherein the mixed alignment agent comprises from 3% to 7% by weight of the solution after mixing with the liquid crystal. 12. The method of claim 8, wherein the first voltage 16 201020661 has a value between 5 volts and 9 volts and the second voltage value is between 0 volts and 6 volts. 13. The method of claim 8, wherein the UV source has a wavelength of less than 365 nm. 1717
TW97146234A 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof TWI438537B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146234A TWI438537B (en) 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146234A TWI438537B (en) 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201020661A true TW201020661A (en) 2010-06-01
TWI438537B TWI438537B (en) 2014-05-21

Family

ID=44832308

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146234A TWI438537B (en) 2008-11-28 2008-11-28 Liquid crystal device and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI438537B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558724A (en) * 2013-11-15 2014-02-05 京东方科技集团股份有限公司 Liquid crystal prism, manufacturing method thereof and display device
TWI514032B (en) * 2009-06-18 2015-12-21 Merck Patent Gmbh Process of preparing a liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514032B (en) * 2009-06-18 2015-12-21 Merck Patent Gmbh Process of preparing a liquid crystal display
CN103558724A (en) * 2013-11-15 2014-02-05 京东方科技集团股份有限公司 Liquid crystal prism, manufacturing method thereof and display device
US9810912B2 (en) 2013-11-15 2017-11-07 Boe Technology Group Co., Ltd. Liquid crystal lens, manufacturing method and display device

Also Published As

Publication number Publication date
TWI438537B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
TWI313770B (en) Liquid crystal display apparatus
JP4526590B2 (en) Method for forming optical λ / 4 layer for transflective liquid crystal display device
US7132064B2 (en) Method for manufacturing brightness enhancement film of liquid crystal display and structure thereof
TWI280423B (en) Display device with polarizer sheet and method for manufacturing polarizer sheet
WO2001090788A1 (en) Circular polarization plate and liquid crystal display
TW200302373A (en) Transflective liquid-crystal display device
WO2016049961A1 (en) Liquid crystal display device
US20060087863A1 (en) Optical lens system, backlight assembly and display device
TW200306443A (en) Reflection plate, manufacturing method of reflection plate, liquid crystal apparatus, and electronic machine
WO2009090778A1 (en) Liquid crystal display
TWI344562B (en)
US20060131522A1 (en) Optical film, method of manufacturing the same, and flat fluorescent lamp and display device having the same
WO2018012469A1 (en) Wavelength-selective reflection membrane, optical film, method for manufacturing wavelength-selective reflection membrane, and image display device
CN101738780B (en) Liquid crystal display and manufacture method thereof
JPH11242908A (en) Lighting system and liquid crystal display using the same
JP2002022966A (en) Scattering light guide sheet having polarization function
TW200804901A (en) Transflective liquid crystal panel and method of making the same
TW201020661A (en) Liquid crystal device and the manufacturing method thereof
US20190278140A1 (en) Method for producing substrate provided with alignment film
TW201019002A (en) Optical elements, backlight modules, and liquid crystal display employing the same
TWI247163B (en) Method for producing liquid crystal film, method for forming liquid crystal brightness enhancing film, and structure of liquid crystal film
TWI804430B (en) Display apparatus
JPH11258638A (en) Guest/host type liquid crystal display device
KR20090121110A (en) Reflective polarizing film comprising photocurable cholesteric and photocurable nematic liquid crystals and method of preparing the same
JPH05232439A (en) Phase difference plate type liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees