TW201020326A - Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system - Google Patents

Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system Download PDF

Info

Publication number
TW201020326A
TW201020326A TW97145611A TW97145611A TW201020326A TW 201020326 A TW201020326 A TW 201020326A TW 97145611 A TW97145611 A TW 97145611A TW 97145611 A TW97145611 A TW 97145611A TW 201020326 A TW201020326 A TW 201020326A
Authority
TW
Taiwan
Prior art keywords
seq
primer pair
pair
primer
anaerobic
Prior art date
Application number
TW97145611A
Other languages
Chinese (zh)
Inventor
Chun-Hsiung Hung
Chin-Hung Cheng
Chiu-Yue Lin
Original Assignee
Univ Feng Chia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Feng Chia filed Critical Univ Feng Chia
Priority to TW97145611A priority Critical patent/TW201020326A/en
Publication of TW201020326A publication Critical patent/TW201020326A/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

This invention is about method that enables rapid inspection on microorganism community structure in anaerobic hydrogen producing system, with steps described as following: (a) acquiring a sample from anaerobic hydrogen producing system, (b) extracting RNA and DNA from the sample, (c) retrotranscribing RNA with reverse primer of specific primer set to yield cDNA mixture, (d) conducting PCR using the cDNA mixture in (c) and relevant forward primer; meanwhile, perform PCR with DNA in (b) and either one direction of the specific primer set, and (e) observing the amount of PCR product generated in (d) to evaluate the microorganism community structure in anaerobic hydrogen producing system. In addition, this invention also covers the primer set for retreotranscription and PCR, and its usage in DNA or RNA quantification.

Description

201020326 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種快速分析厭氧產氫系統的微生 ,群落結構之方法,主要係利用引子對放大厭氧產氫 系統的微生物之產氫酵素基因,以快速分析其中群落 的結構。 % Ο 【先前技術】 氫氣之單位重量發熱量為甲烷之25倍,為石化 巧料之2.75倍,且氫氣的燃燒只產生水而無其他空氣 污染物,如:一氧化碳及二氧化碳等,故氫氣可發展 為未,重要的石化取代能源之一。由於目前人類面臨 石化忐源逐漸栝竭之危機,在化石能源蘊藏量逐漸短 缺,台灣’各研究團隊積極的開發以廢棄物進行生物 產虱之發酵系統,逐步發展出多種反鮮。然而這些 f統的穩定與否與其内部微生物族群組結構之變動^ „。目前針對產氫系統的群落結構之研究所採 ^虛=子生物方式,均以現有的專利之儀器或技術, :應用DGGE技術、選殖資料庫(clone library)及螢朵 原位^技術(FISH)等方式分析存在㈣先 二^材枓方法進行監測分析,且其分析過程多須 況,益法3星财等’若產氫系統發生不穩定狀 “,、快速的瞭解原因以致系統損壞難以挽救。 201020326 目前一般厭氧產氫的微生物群落結構分析方法, 須經由聚合酶連鎖反應(PCR)放大微生物群落之產氫 基因,接著以DGGE、T-RELF、選殖資料庫加以分析, 再進行定序分析。以上述步驟進行分析,至少須耗時 兩^,至多達一星期以上時間才可完成微生物群落結 構刀析,無法立即監測系統内的微生物群落結構,故 亦無法即時調整改正產氳系統可能發生的問題。 ❷ 【發明内容】 有鑑於習知技術之缺失,本發明之目的係在於提 供一種快速分析厭氧產氫系統的微生物群落結構之方 法,主要係藉由抽取樣本中產氫微生物之核酸,放大 其基因片段,並分析其微生物群落組成結構。 …由於目前產業所應用之厭氧產氫系統存在微生物 ,落組成結構之變動性,造成產氫系統運作上的不穩 疋,因此是否能有效地檢測出微生物群落之組成結構 ❹ 的變動,即成為處理產氫系統之重要因素,意即快速 的檢測可縮短危機處理之時間,達到更佳^產氫效 率。為分析其微生物群落組成結構,以得知各類因微 生物變動或衰減造成的影響,可利用不同微生物群落 之特定基因片段的差異而分析之。 為達上述目的’本發明係提供一種可用以辦 同微生物種之產氫酵素基因之引子對,包括: γ〇: 1至16核苷酸序列及其互補股。並提供一種利用 則述引子對來快速檢測厭氧產氫系統中微生物群結構 201020326 之方法。 【實施方式】 本發明提供之快速檢測厭氧產氫系統中微生物群 落結構之方法係具有簡單、有效且迅速之特點,其係 包括下列步驟: (a) 提供一得自厭氧產氫系統之樣本; (b) 分別抽取前述樣本之RNA及DNA ; (c) 取前述步驟(b)所得之RNA,分別與引子對1至 2其中之一的反向引子進行反轉錄,得一 cDNA 混合物;其中 引子對1 : SEQ ID NO: 1, SEQ ID NO: 2 ; 引子對2 : SEQ ID NO: 3, SEQ ID NO: 4 ; (d)在前述步驟(c)所得之混合物中分別加入對應之 正向引子,進行聚合酶連鎖反應;同時取前述步 驟(b)所得之DNA,分別與引子對3至8其中之 一進行聚合酶連鎖反應;其中 引子對 3 : SEQ ID NO 5, SEQ ID NO 6 ; 引子對 4 : SEQ ID NO 7, SEQ ID NO 8 ; 引子對 5 : SEQ ID NO 9, SEQ ID NO 10 ; 201020326 引子對 6 · SEQ ID NO: 11, SEQ ID NO: 12 ; 引子對 7 : SEQ ID NO: 13, SEQ ID NO: 14 ; 引子對 8 : SEQ ID NO.- 15, SEQ ID NO: 16 ;以及 (e)觀察前述步驟(d)之產物量,以決定前述厭氧產氫 鲁系統之微生物群落結構。 、在較佳實施態樣中,前述樣本係污泥、堆肥、污 水或廢水系統生物膜;其中前述污泥較佳係生物性污 泥。前述生物性污泥係指含微生物之污泥,其污泥來 源一般為經廢水處理系統所產生。 在較佳實施態樣中’前述步驟(d)之聚合酶連鎖反 應為即時定量聚合酶連鎖反應。 在較佳實施態樣中,前述厭氧產氫系統之樣本較 佳係厭氧產虱微生物;更佳係屬微生物、 • Bifidobacterium 屬微 ± 物、K!ebsieHa 屬微支物、 Pseudomonas屬微生_物或Streptococcus屬微支物;最 隹儀、Clostridium pasteurium、Clostridium butyricum 氣 Klebsiella pneumoniae。 為達上述目的’本發明提供一種用於檢測厭氧產 氫系統中微生物群落結構的引子對,其係: 引子對 1 : SEQIDNO: 1, SEQ ID NO: 2 ; 引子對 2: SEQ ID NO: 3, 201020326 引子對3 : SEQ ID NO: 4 ; SEQ ID NO: 5, 引子對4 : SEQ ID NO: 6 ; SEQ ID NO: 7, 引子對5 : SEQ ID NO: 8 ; SEQ ID NO: 9, 引子對6 : SEQ ID NO: 10 ; SEQ ID NO: 11 > 引子對7 : SEQ ID NO: 12 ; SEQ ID NO: 13 > SEQ ID NO: 14 ; 或 引子對8 : SEQ ID NO: 15, SEQ ID NO: 16 ; 或其互補股。 在較佳實施態樣中,前述厭氧產氫系統之樣本較 佳係厭氧產氫微生物;更佳係C7〇yir/^wm屬微生物、 Bifidobacterium 屬微复物、Klebsiella 屬敬 ± 物、 ❹ 户所⑽仍屬微生物或Sirepiococcw·?屬微生物;最 隹你 Clostridium pasteurium、Clostridium butyricum 或201020326 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for rapidly analyzing the microbial and community structure of an anaerobic hydrogen production system, mainly by using primers to amplify hydrogen production by microorganisms of an anaerobic hydrogen production system. Enzyme genes to quickly analyze the structure of the community. % Ο [Prior Art] The unit weight of hydrogen is 25 times that of methane, 2.75 times that of petrochemical materials, and the combustion of hydrogen produces only water without other air pollutants, such as carbon monoxide and carbon dioxide. Development is not, one of the important petrochemical alternative energy sources. As humanity is facing a crisis of gradual exhaustion of petrochemical resources, the fossil energy reserves are gradually becoming scarce, and Taiwan's research teams are actively developing a fermentation system that uses waste to carry out biological production, and gradually develops various anti-fresh. However, the stability of these systems is related to the changes in the structure of the internal microbial group. The current research on the community structure of hydrogen production systems is based on existing patent instruments or techniques: The DGGE technology, the clone library and the flue in situ technology (FISH) are used to analyze the existence of the (4) first two materials method for monitoring and analysis, and the analysis process is more than necessary. Waiting for 'if the hydrogen production system is unstable,' and quickly understand the cause that the system damage is difficult to save. 201020326 At present, the microbial community structure analysis method for general anaerobic hydrogen production requires amplification of the hydrogen production gene of the microbial community via polymerase chain reaction (PCR), followed by analysis by DGGE, T-RELF, and selection database, and then sequencing. analysis. It takes at least two hours to analyze the above steps, and it takes at least one week to complete the microbial community structure analysis. It is impossible to immediately monitor the microbial community structure in the system, so it is impossible to adjust the correction of the puerperal system. problem. SUMMARY OF THE INVENTION In view of the absence of the prior art, the object of the present invention is to provide a method for rapidly analyzing the microbial community structure of an anaerobic hydrogen production system, mainly by extracting a nucleic acid of a hydrogen-producing microorganism in a sample, and amplifying the gene. Fragments and analysis of their microbial community composition. ...Because of the anaerobic hydrogen production system used in the industry, the variability of the structure of the falling structure causes instability in the operation of the hydrogen production system, so whether the composition of the microbial community can be effectively detected, that is, It becomes an important factor in the treatment of hydrogen production system, which means that rapid detection can shorten the time of crisis treatment and achieve better hydrogen production efficiency. In order to analyze the composition of the microbial community to understand the effects of various microbial changes or attenuation, it can be analyzed by using the differences in specific gene fragments of different microbial communities. To achieve the above object, the present invention provides a primer pair for the production of a hydrogenase gene of a microorganism species, comprising: γ〇: a nucleotide sequence of 1 to 16 and its complementary strand. A method for rapidly detecting microbial population structure 201020326 in an anaerobic hydrogen production system using a pair of primers is also provided. [Embodiment] The method for rapidly detecting microbial community structure in an anaerobic hydrogen production system according to the present invention is characterized by being simple, effective, and rapid, and includes the following steps: (a) providing an anaerobic hydrogen production system (b) separately extracting the RNA and DNA of the aforementioned sample; (c) taking the RNA obtained in the above step (b), and performing reverse transcription with the reverse primer of one of the primer pairs 1 to 2 to obtain a cDNA mixture; Wherein the primer pair 1: SEQ ID NO: 1, SEQ ID NO: 2; primer pair 2: SEQ ID NO: 3, SEQ ID NO: 4; (d) respectively added to the mixture obtained in the aforementioned step (c) The positive primer is subjected to a polymerase chain reaction; the DNA obtained in the above step (b) is simultaneously subjected to a polymerase chain reaction with one of the primer pairs 3 to 8; wherein the primer pair 3: SEQ ID NO 5, SEQ ID NO 6; primer pair 4: SEQ ID NO 7, SEQ ID NO 8; primer pair 5: SEQ ID NO 9, SEQ ID NO 10; 201020326 primer pair 6 · SEQ ID NO: 11, SEQ ID NO: 12; : SEQ ID NO: 13, SEQ ID NO: 14; Of the sub-8: SEQ ID NO.- 15, SEQ ID NO: 16; and (e) the observation step (d) the amount of product to determine the microbial community structure Lu anaerobic hydrogen production systems. In a preferred embodiment, the sample is a biofilm of sludge, compost, sewage or wastewater system; wherein the sludge is preferably a biological sludge. The aforementioned biological sludge refers to a sludge containing microorganisms, and the sludge source is generally produced by a wastewater treatment system. In a preferred embodiment, the polymerase chain reaction of step (d) above is an instant quantitative polymerase chain reaction. In a preferred embodiment, the sample of the anaerobic hydrogen production system is preferably an anaerobic sputum microorganism; a better genus microorganism, • a Bifidobacterium genus, a K!ebsieHa genus micro-branche, and a Pseudomonas genus _ or Streptococcus genus micro-branches; the most funeral, Clostridium pasteurium, Clostridium butyricum gas Klebsiella pneumoniae. To achieve the above object, the present invention provides a primer pair for detecting a microbial community structure in an anaerobic hydrogen production system, which is: primer pair 1: SEQ ID NO: 1, SEQ ID NO: 2; primer pair 2: SEQ ID NO: 3, 201020326 Primer pair 3: SEQ ID NO: 4; SEQ ID NO: 5, primer pair 4: SEQ ID NO: 6; SEQ ID NO: 7, primer pair 5: SEQ ID NO: 8; SEQ ID NO: 9 , primer pair 6 : SEQ ID NO: 10; SEQ ID NO: 11 > primer pair 7 : SEQ ID NO: 12; SEQ ID NO: 13 > SEQ ID NO: 14; or primer pair 8: SEQ ID NO: 15, SEQ ID NO: 16; or its complementary strand. In a preferred embodiment, the sample of the anaerobic hydrogen production system is preferably an anaerobic hydrogen producing microorganism; more preferably a C7〇yir/^wm genus, a Bifidobacterium genus, a Klebsiella genus, ❹ The household (10) is still a microbe or a Sirepiococcw· microorganism; finally you are Clostridium pasteurium, Clostridium butyricum or

Klebsiella pneumoniae。 本發明亦提供一種如前文所述之弓丨子對於dna 或RNA定量之用途;更佳者,前述引子對為引子對工 或引子對2。 以下實施態樣係用於進一步了解本發明之優點, 並非用於限制本發明之申請專利範圍。 " 201020326 實施例 實施例1,以pcr鑑定厥氳态氡糸统中的徽生物 污泥中徼生物核酸之萃取 本實施例所使用的厭氧產氫系統係自行設計之玻 璃裝置,其為一持續攪拌容器反應裝置(Continuously Stirred Tank Reactor,實反應體積4升)。在標準條件(1 atm,25°C)下收集適量的污泥。分別於下列不同培養 條件之反應槽體内所生長之生物性污泥中直接抽取樣 本,將其編號為'樣本1-5 : 樣本1 :以澱粉為基質(碳源)、反應槽HRT(水力停留 時間;hydraulic retention time,係指水分子在反 應槽内停留之時間,在此代表微生物在反應槽内 停留之時間,亦即生物性污泥之培養時間)控制在 12小時,pH值為6.0。 樣本2:以木糖(xylose)為基質、HRT控制在12小時、 魯 pH值為6.0,並添加粉狀活性碳(powder active carbon,PAC)做為細胞擔體。此處所使用之細胞 擔體作用係提供微生物在於擔體上附著及凝聚, 以提高反應槽内之菌體濃度,進而提升分析菌群 結構的有效性。 樣本3:以葡萄糖(glucose)為基質、HRT控制在1小 時、pH值為6.0,並添加顆粒梦膠(sillicon gel cell,SC)做為細胞擔體。 樣本4 :以木糖為基質、HRT控制在4小時、pH值為 8 201020326 6.0,並添加固定化細胞擔體(immobilize mass, IM)。此處所使用之固定化細胞擔體為人工合成矽 膠高分子(silicone gel),係利用矽膠内之孔隙,將 微生物截留在矽膠内之孔隙中’外界環境中的基 質、反應物及產物可自由經由矽膠内部的細微孔 道自由進出參與反應。 樣本5:以木糖為基質、HRT控制在0.5小時、pH值 為6.0,並添加固定化細胞擔體。 ❷ 將污泥的OD_吸光值調整為〇.6_1〇 (若〇d6〇〇 超出此一範圍,利用已滅菌之超純水稀釋之),取2〇〇 μΕ 污泥’以 Blood & Tissue Genomic DNA Extraction Miniprep System (VIOGENE,Taiwan)萃取其 DNA ;另 取 1 mL 污泥’以 SV Total RNA Is〇la加n ⑽ (卩11〇]^£0八,1;8八)萃取其111^。Klebsiella pneumoniae. The present invention also provides a use of a scorpion as described above for the quantification of DNA or RNA; more preferably, the aforementioned pair of primers are pairs of primers or primers. The following embodiments are intended to further understand the advantages of the present invention and are not intended to limit the scope of the invention. "201020326 Example 1 Example, extracting the biological nucleic acid in the biological biological sludge in the sputum system by PCR. The anaerobic hydrogen production system used in this embodiment is a self-designed glass device, which is A Continuous Stirred Tank Reactor (4 liters in actual reaction volume). A suitable amount of sludge was collected under standard conditions (1 atm, 25 ° C). Samples were directly taken from the biological sludge grown in the reaction tanks of the following different culture conditions and numbered as 'sample 1-5: sample 1: starch as matrix (carbon source), reaction tank HRT (hydraulic force) The retention time refers to the time during which the water molecules stay in the reaction tank, where the time during which the microorganisms stay in the reaction tank, that is, the incubation time of the biological sludge, is controlled at 12 hours, and the pH is 6.0. . Sample 2: Xylose was used as a substrate, HRT was controlled at 12 hours, Lu pH was 6.0, and powder active carbon (PAC) was added as a cell carrier. The cell support function used herein provides the adhesion and aggregation of microorganisms on the support to increase the concentration of the cells in the reaction tank, thereby improving the effectiveness of the analysis of the bacterial population structure. Sample 3: Glucose was used as a substrate, HRT was controlled at 1 hour, pH was 6.0, and sillicon gel cell (SC) was added as a cell carrier. Sample 4: Xylose was used as a substrate, HRT was controlled at 4 hours, pH was 8 201020326 6.0, and an immobilized cell mass (IM) was added. The immobilized cell carrier used herein is a synthetic silicone gel which utilizes pores in the silicone to trap microorganisms in the pores of the silicone. The matrix, reactants and products in the external environment are freely accessible. The fine pores inside the silicone are free to enter and exit to participate in the reaction. Sample 5: Xylose was used as a substrate, HRT was controlled at 0.5 hour, pH was 6.0, and an immobilized cell carrier was added.调整 Adjust the OD_ absorbance of the sludge to 〇.6_1〇 (if 〇d6〇〇 is outside this range, dilute with sterilized ultrapure water), take 2〇〇μΕ sludge' to Blood & Tissue Genomic DNA Extraction Miniprep System (VIOGENE, Taiwan) extracted its DNA; another 1 mL of sludge was extracted from SV Total RNA Is〇la plus n (10) (卩11〇]^£0 八,1;8 八) .

引子設計 氫微生物的 本發明所用的引子對係針對厭氧之產 產氫酵素基因所設計,其如下表j . 201020326 si i 蛛 激 則 δ ^ •S δ ^ 3 ·*»* 〇 V ·*** 2 ^ u S _ V Is •is 、T »«* "·» k 3 %%¥ o廷激 1 ^ JaJL sul. ^5® δ tl ^ s C 〇 端' CO u S S |辦 =c o 00 匕, 〇q W 蹲® a 4 s: 1^ ^ -cu CO >> v〇 …— CO m (Ν q .2 ® 3 §砩 c〇 δ <; C〇 S 〇 ® S硝 a - c〇 S o辦 2 CN Oi 〇 τ-Η 1 含 Ο »r> CO X jg. o 卜 l 含 o v-> 寸 l jg. 〇 m 寸 l o o CN l o (N t**H l O o cn l /*—N rf.tJ 锻 :S| S_^ /—\ ό-^6 Q ^ α9 办 xn m ^ 1 〇 〇 cn Η Λ 5[: < ί ^ H ^ ϋ 〇 < go ^ H H cj ^ O ^ H < H < 〇 ^ O H L·-, £h ^ u 〇 H < u 1 1 i〇 /—V m 〇 Q >~H /—N α寸 w 6 h Q 1 1—< 8c/ o^S ϋ u -< E-1 Sy u 5 2u <! ^ 〇S <3 H CH ϋ < H U H U < u < o 1 1 in i〇 /·-N IT) 6 ^ V〇 Q .. ^ 〇 巴s k ex Λ ω < CO < w H ?〇 < ' U < ϋ o u〇 < ^ Η H < 〇 <3 H H 〇 H h < < O < <c H Sy ο P < u < H C H 1 1 U〇 /—s 卜 • · /—s 〇 00 之·· \1 〇 S ^ a〇 w WW ΰ ^ o . c 〇 〇 ^ 〇3 o < < 〇 ϋ o 〇 h 〇 〇 〇g Η ϋ C U H < O C CO 齡 1 yr\ m /—\ o ^〇 6 Q ^ c/ P w ^ CO cyw w h l/l 『 H *7 o C u 〇 H Η H C 〇 H U Ο H ϋ h ο O ϋ H H 〇 η ϋ Ο H U U ϋ < ϋ ο ϋ 〇 υ ϋ Η ο Η Η 1 1 ^ CM t—H §6 9 Q h-H O* Qi W W ''—^ 〇 ΰ E—1 ϋ u h υ o g H ^ o 2 u 〇 σ <d 2〇 2< u ^ 5 < < H <:U 1 ! cn ^ —— ..· · 〇〇 〇a Η-i ^ cyO" W W «X ^ cn << c u 〇 < < H 〇 C C U c rS^〇 9 〇 < u 〇 < o 〇 < < 〇 〇 < H Η H ^ 〇 < tj 〇 < C H 0 u 1 1 »n i〇 /—N v〇 > < /-~N in · · —〇 -^ 2臼 Q 〇 ^ QQ <y c/3 W w w^> 今s H <! ο o o u C H Η H < ϋ 〇 c H <3 ◦ ϋ H O 〇 ^ o 2 < < 〇 < u O u H < ϋ匕 〇 <3 H U 1 1 U^i m 画< X) o P. 〇 1 K U •f-y PQ τ3 W Ρη P. r-H 00 <N CO 屮餱 nr> CN cn 寸 Ό Ό 卜 oo 01 201020326 反轉錄及PCR公析 利用反轉錄套組 lmPr〇m-nTM Reverse Transcription System (PROMEGA,USA),以前述經萃取之叙引 子對1至2中的反向引子其中之一來進行二一 其中前述RNA二級結構解離所使用轉条’传 cDNA 2 : 之配方如表Primer Design Hydrogen microorganisms The primer pairs used in the present invention are designed for anaerobic production of hydrogenase genes, as shown in the following table j. 201020326 si i spiders δ ^ • S δ ^ 3 ·*»* 〇V ·* ** 2 ^ u S _ V Is •is, T »«* "·» k 3 %%¥ o 廷激 1 ^ JaJL sul. ^5® δ tl ^ s C 〇端' CO u SS | Co 00 匕, 〇q W 蹲® a 4 s: 1^ ^ -cu CO >> v〇...—CO m (Ν q .2 ® 3 §砩c〇δ <; C〇S 〇® S硝 a - c〇S o 2 2 CN Oi 〇τ-Η 1 Ο »r> CO X jg. o 卜 l o v-> inch l jg. 〇m inch loo CN lo (N t**H l O o cn l /*—N rf.tJ Forging: S| S_^ /—\ ό-^6 Q ^ α9 do xn m ^ 1 〇〇cn Η Λ 5[: < ί ^ H ^ ϋ 〇&lt ; go ^ HH cj ^ O ^ H < H < 〇^ OHL·-, £h ^ u 〇H < u 1 1 i〇/—V m 〇Q >~H /—N α inch w 6 h Q 1 1—< 8c/ o^S ϋ u -< E-1 Sy u 5 2u <! ^ 〇S <3 H CH ϋ < HUHU < u < o 1 1 in i〇 /·-N IT) 6 ^ V〇Q .. ^ 〇巴 sk ex Λ ω < CO < w H ?〇< ' U < ϋ ou〇< ^ Η H < 〇 <3 HH 〇H h << O <<c H Sy ο P < u < HCH 1 1 U〇/-s 卜• · /-s 〇00··· \ 1 〇S ^ a〇w WW ΰ ^ o . c 〇〇^ 〇3 o << 〇ϋ o 〇h 〇〇〇g Η ϋ CUH < OC CO Age 1 yr\ m /—\ o ^〇 6 Q ^ c / P w ^ CO cyw whl/l 『 H *7 o C u 〇H Η HC 〇HU Ο H ϋ h ο O ϋ HH 〇η ϋ Ο HUU ϋ < ϋ ο ϋ 〇υ ϋ Η ο Η Η 1 1 ^ CM t—H §6 9 Q hH O* Qi WW ''—^ 〇ΰ E—1 ϋ uh υ og H ^ o 2 u 〇σ <d 2〇2< u ^ 5 << H <:U 1 ! cn ^ —— ..· · 〇〇〇a Η-i ^ cyO" WW «X ^ cn << cu 〇<< H 〇CCU c rS^〇9 〇< u 〇< o 〇<<〇〇< H Η H ^ 〇< tj 〇< CH 0 u 1 1 »ni〇/—N v〇>< /-~N in · ·〇-^ 2臼Q 〇^ QQ <yc/3 W ww^> Today s H <! ο oou CH Η H < ϋ 〇c H <3 ◦ ϋ HO 〇^ o 2 &lt ; <〇< u O u H <ϋ匕〇<3 HU 1 1 U^im Drawing < X) o P. 〇1 KU •fy PQ τ3 W Ρη P. rH 00 <N CO 屮糇nr> CN cn inch Ό 卜 oo 01 201020326 Reverse transcription and PCR analysis using the reverse transcription kit lmPr〇m-nTM Reverse Transcription System (PROMEGA, USA), using one of the reverse primers of the extracted excipient pair 1 to 2 described above, wherein the transfer of the aforementioned RNA secondary structure dissociation is carried out using the cDNA 'reported cDNA 2:

表2,RNA二級結構解離配方 配方 添加量 經萃取之RNA 1 μΐ 反向引子 0.5 μΐ 不含核酸酶之水 3.5 μΐ 總量 15 μΐ 將表2的配方混合物於7〇。〇中拉 冰水中培養5分鐘’使RNA二級結: 魏鑪舟驟。苴中,g喆〜哪離’之後進订反 轉錄步驟。其中,反轉錄步驟所使用之配方如表 表3,反轉錄配方 3 配方 前述經RNA二級結彳混^ 不含核鹸酶之水 &Table 2, RNA secondary structure dissociation formula Formulation Addition amount Extracted RNA 1 μΐ Reverse primer 0.5 μΐ Nuclease-free water 3.5 μΐ Total 15 μΐ The formulation mixture of Table 2 was 7 μL. 〇中拉 Pulled in ice water for 5 minutes' to make RNA secondary knot: Wei furnace boat. In the middle, g喆~Where is left, then the reverse transcription step is entered. Among them, the formula used in the reverse transcription step is shown in Table 3, the reverse transcription formula 3 formula, the above-mentioned RNA secondary sputum mixing, and the ribozyme-free water &

rTM 5x反應緩衝液rTM 5x Reaction Buffer

ImProm-II MgCl2 dNTP混合物 重組RNasin RNA酶抑製齋丨 ImProm-II™反轉錄酵素 總量ImProm-II MgCl2 dNTP mixture Recombinant RNasin RNase inhibits the total amount of ImProm-IITM reverse transcriptase

將表3的配方混合物先於25°C中拉 45〇C中培養90分鐘’ 。+ °養5分鐘,再於™-鐘,最後將樣本中心鐘最= 11 201020326 將與直接萃取之DNA —同進行PCR的步驟。 ΦThe formulation mixture of Table 3 was incubated for 90 minutes at 45 ° C in 25 ° C. + ° for 5 minutes, then with the TM-clock, and finally the sample center clock = 11 201020326 will be the same as the direct extraction of DNA - PCR step. Φ

另外,使用Master mix (Pr〇mega,USA)套組來進行 聚合酶連鎖反應(PCR)。將前述經萃取之DNA分別與引 子對3至8其中之一、或以前述已進行反轉錄後之DNA 與引子對1或2之正向引子’其中DNA用量為以體積控 制其濃度在每個反應100 ng以下,引子對用量為小於每 個反應100ng。PCR反應條件為二於95°c下進行變性反 應(denature)、於5代下進行黏合反應(annealing)、於72 。匚下進行延展反應(elongation),共進行35個循環。 結果 以 將前述經聚合酶連鎖反應所得之放大基因片 L爾泳明膠於丽電壓下,進行電泳25分鐘,將電泳 結果以ErBr核酸染劑染色後,以挚 如第-圖麻。 科総祕,其結果 第一圖係使用本發明之引子m姆測取自厭氧產 氫系統之樣本1-5中的微生物群落姓 乳 列示於下表4: 心、、、。構的結果。其結果亦 12 201020326 表4 樣本編说 (碳源/HRT) 存在之菌種 1 澱粉/12小時 (pH 值為 6.0) Clostridium butyricum Bifidobacterium 愚 Pseudomonas Μ Klebsiella pneumoniae Clostridium 屬 2 木糖/12小時 (PAC) Clostridium butyricum Clostridium pasteurium Pseudomonas M Klebsiella pneumoniae Streptococcus M Clostridium 愚 3 葡萄糖/1小時 (SC)(已生成顆粒 性污泥) Clostridium butyricum Clostridium pasteurium Bifidobacterium 爆 Klebsiella pneumoniae Streptococcus 屬 Clostridium 屬 4 木糖/4小時 (IM) Clostridium butyricum Bifidobacterium 屬 Pseudomonas Mt Klebsiella pneumoniae Clostridium 爆 —---- 5 木糖/0.5小_ (IM)(已生成顆粒 性污泥) Clostridium butyricum Clostridium pasteurium Bifidobacterium 屬 Klebsiella pneumoniae Streptococcus M Clostridium 屬 另外’並比較前述聚合酶連鎖反應的結果與傳統 DGGE分析的結果。 以下列表5中配方配置變性梯度凝膠,將樣本丨-5經 13 201020326 PCR放大後的各DNA樣本注入變性梯度凝膠中,再以變 性梯度電泳系統,以80伏特進行電泳12小時(由低濃度至 高濃度),再經由EtBr (Ethidium Bromide,溴化乙唆)染 色,以UV燈顯像並判讀膠片上不同的亮帶(一個亮帶代 表一種菌種),其結果如表6。 表5,變性梯度凝膠配方In addition, a Master mix (Pr〇mega, USA) kit was used for polymerase chain reaction (PCR). Combining the extracted DNA with one of the primer pairs 3 to 8, respectively, or the forward primer of the DNA and primer pair 1 or 2 which has been subjected to reverse transcription, wherein the amount of DNA is controlled by volume in each concentration. The reaction is less than 100 ng, and the amount of the primer is less than 100 ng per reaction. The PCR reaction conditions were two denaturation reactions at 95 ° C and annealing at 5 passages, at 72 °. The elongation was carried out under the armpit for a total of 35 cycles. As a result, the amplified gene fragment obtained by the above-mentioned polymerase chain reaction was subjected to electrophoresis for 25 minutes under a Li voltage, and the electrophoresis result was stained with ErBr nucleic acid dye, for example, as described in Fig. The results of the first diagram are the microbial community names in samples 1-5 taken from the anaerobic hydrogen production system using the primers of the present invention. The milk is shown in Table 4 below: Heart,,,. The result of the structure. The result is also 12 201020326 Table 4 Sample preparation (carbon source / HRT) Species present 1 Starch / 12 hours (pH 6.0) Clostridium butyricum Bifidobacterium Stupid Pseudomonas Μ Klebsiella pneumoniae Clostridium Genus 2 Xylose / 12 hours (PAC) Clostridium butyricum Clostridium pasteurium Pseudomonas M Klebsiella pneumoniae Streptococcus M Clostridium 3 glucose / 1 hour (SC) (granulated sludge) Clostridium butyricum Clostridium pasteurium Bifidobacterium Explosive Klebsiella pneumoniae Streptococcus Genus Clostridium genus 4 xylose / 4 hours (IM) Clostridium Butyricum Bifidobacterium genus Pseudomonas Mt Klebsiella pneumoniae Clostridium blast ----- 5 xylose / 0.5 small _ (IM) (granulated sludge has been formed) Clostridium butyricum Clostridium pasteurium Bifidobacterium genus Klebsiella pneumoniae Streptococcus M Clostridium belongs to another 'and compares the aforementioned polymerization The results of the enzyme chain reaction were compared with the results of conventional DGGE analysis. The following table 5 formula is configured with a denaturing gradient gel. Each DNA sample amplified by PCR 丨-5 by 13 201020326 is injected into a denaturing gradient gel, and then electrophoresed at 80 volts for 12 hours by a denaturing gradient electrophoresis system (from low The concentration was increased to a high concentration, and then stained with EtBr (Ethidium Bromide) to visualize with UV light and to interpret different bright bands on the film (one bright band represents one species), and the results are shown in Table 6. Table 5, Denaturing Gradient Gel Formulation

變性用溶液 30% 60% 40% Acrylamide/Bis 3 mL 3 mL 5〇χΤΑΕ緩衝液 0.4 mL 0.4 mL 甲醯胺(formamide) 2.4 mL 4.8 mL 尿素 2.412 g 5.04 g 水 定量至20mL 10 % APS 200 mL 200 mL TEMED 20 \\L 20 pL 14 201020326 表6,DGGE分析結果 樣本編號 (碳源/HRT) 存在之菌種 1 澱粉/12小時 (pH 值為 6.0) Clostridium butyricum Klebsiella pneumoniae Pseudomonas 爆 未知物種xl 2 木糖/12小時 (PAC) Clostridium butyricum C. celerecrescens Klebsiella oxytoca Pseudomonas M 3 葡萄糖八小時 (SC)(已生成顆粒 性污泥) Clostridium pasteurium Klebsiella pneumoniae Streptococcus M Dialister 爆 Bifidobacterium 雇 未知物種 4 木糖/4小時 (IM) Clostridium butyricum Klebsiella pneumoniae Klebsiella oxytoca Pseudomonas M Dialister J% Bifidobacterium 屬 5 木糖/0.5小時 (IM)(已生成顆粒 性污泥) Clostridium butyricum Klebsiella pneumoniae Klebsiella oxytoca Dialister Mi 表 6 中的 C. ce/erecrescews 及[為產氫菌 群,但在產氫系統中出現機率不高,Z)zWz\yier屬及 屬則為非產氫菌,因此偵測與否並無實 質經濟效益。 本發明之快速檢測方法與傳統DGGE分析方法之比 較結果如下表7 : 15 201020326 表7 引子對 ^編號 樣本 1 2 3 4 5 6 7+8 1 + — + (+) + + — 2 + (+ ) + — + (+ ) (+ ) 3 (+) + + + — + + 4 + — + + + + — 5 + (+) + (+ ) — + (+)Denaturing solution 30% 60% 40% Acrylamide/Bis 3 mL 3 mL 5〇χΤΑΕ buffer 0.4 mL 0.4 mL Formamide 2.4 mL 4.8 mL Urea 2.412 g 5.04 g Water to 20 mL 10 % APS 200 mL 200 mL TEMED 20 \\L 20 pL 14 201020326 Table 6. DGGE analysis results sample number (carbon source / HRT) Species present 1 Starch / 12 hours (pH 6.0) Clostridium butyricum Klebsiella pneumoniae Pseudomonas Explosive unknown species xl 2 wood Sugar / 12 hours (PAC) Clostridium butyricum C. celerecrescens Klebsiella oxytoca Pseudomonas M 3 Glucose eight hours (SC) (granulated sludge has been formed) Clostridium pasteurium Klebsiella pneumoniae Streptococcus M Dialister Bifidobacterium hiring unknown species 4 xylose / 4 hours ( IM) Clostridium butyricum Klebsiella pneumoniae Klebsiella oxytoca Pseudomonas M Dialister J% Bifidobacterium genus 5 xylose / 0.5 hour (IM) (granulated sludge produced) Clostridium butyricum Klebsiella pneumoniae Klebsiella oxytoca Dialister Mi C. ce/erecrescews in Table 6 and [for the production of hydrogen bacteria, but in the hydrogen production system Occurrence probability is not high, Z) zWz \ yier genera and genera, compared with non-hydrogen-generating bacteria, and thus detect whether or not there is no substantial economic benefits. The comparison between the rapid detection method of the present invention and the conventional DGGE analysis method is shown in Table 7 below: 15 201020326 Table 7 Introduction Pairs ^ Number Sample 1 2 3 4 5 6 7+8 1 + — + (+) + + — 2 + (+ ) + — + (+ ) (+ ) 3 (+) + + + — + + 4 + — + + + + — 5 + (+) + (+ ) — + (+)

在表7中,縱行表示所抽取之核酸來自不同的樣本, 橫列表示所用之引子對編號,其中引子對1及2係分別針 對 Clostridium butyricum反Clostridium pasteurium .,弓\ 子 對3係針對C7似屬第一菌群或第二菌群;引子對4 係針對謂屬微生物;引子對5係針對 屬微生物;引子對6係針對iadWe/Za 引子對7及8係針對汾reeococcM·?屬微生物。 此外’符號「+」表示以DGGE及本發明之方法均偵測 得到此樣本中此微生物之存在;符號「( + )」表示以DGGE 無法偵測此樣本中此微生物之存在,但以本發明之方法 可偵測此樣本中此微生物之存在;符號「一」表示以 DGGE及本發明之方法均無法偵測得到此樣本中此微生 物之存在。換言之’符號「(+)」表示本發明方法較傳 統方法更加敏銳。 由上可知’本發明之方法較傳統DGGE方法更加敏 銳;此外’本發明之方法的分析時程也較快,DGGE電 泳從樣本取得後約需2-3個工作天才可完成,利用本發明 16 201020326 之方法則可在1個工作天内(6小時内)完成分析。 實施例2 ’以即疫塞分析厥氣產氪系统中的微生 物群落結構In Table 7, the wales indicate that the extracted nucleic acids are from different samples, and the rows indicate the number of primer pairs used, where the pair 1 and 2 are directed against Clostridium butyricum anti-Clostridium pasteurium. The bows are paired with C3. It belongs to the first flora or the second flora; the primer pair 4 is directed to the genus microorganism; the primer pair 5 is directed to the genus microorganism; the primer pair 6 is directed against the iadWe/Za primer pair 7 and 8 against the 汾reeococcM·? . In addition, the symbol "+" indicates that the presence of the microorganism in the sample is detected by DGGE and the method of the present invention; the symbol "(+)" indicates that the presence of the microorganism in the sample cannot be detected by DGGE, but the present invention The method can detect the presence of the microorganism in the sample; the symbol "one" indicates that the presence of the microorganism in the sample cannot be detected by the DGGE and the method of the present invention. In other words, the symbol "(+)" indicates that the method of the present invention is more acute than the conventional method. It can be seen from the above that the method of the present invention is more sensitive than the conventional DGGE method; in addition, the analysis time of the method of the present invention is also faster, and it takes about 2-3 working days for the DGGE electrophoresis to be obtained from the sample, and the invention 16 is utilized. The method of 201020326 can be completed within 1 working day (within 6 hours). Example 2 'Analysis of microbial community structure in the hernia pupa system

污泥中微生物核酴之萃P DN A及RN A之萃取方法如實施例i,但所用樣本係於 一300L厭氧發酵反應槽中在標準條件(1 atm,25。〇下所 收集的污泥’其中該反應槽的培養條件為:以蔗糖做為 基質(碳源),持續培養60天(HRT= 12h操作30天、HRT = 8 h操作10天、HRT = 4操作15天最後再轉為HRT = 8 h操 作5天)。 1轉錄及即時定眚ΡΓΑ公析 利用表1所述的引子對,以實施例1所揭示的方法來 進行反轉錄及PCR分析,但PCR分析係改用LightCycler FastStart DNA MasterPLUS SYBR Green I (Roche)套組來 進行即時定量聚合酶連鎖反應(real_time PCR)。將前述 ⑩ 經萃取之DNA分別與引子對3至8其中之一、或以前述已 進行反轉錄後之DNA與引子對1或2之正向引子,其中 DNA用量為以體積控制其濃度在每個反應100 ng以 下’引子對用量為小於每個反應100 ng。PCR反應條件 為.於95°C下進行變性反應(denature)、於54°C下進行 黏合反應(annealing)、於72下進行延展反應 (elongation),共進行35個循環。 此一套組係在反應溶液中加入螢光染劑SYBR Green I來進行即時定量,會與雙股DNA嵌合而釋放出 螢光的物質,目前最常被使用的螢光染劑是8丫丑尺-green I,SYBR-green I會嵌入雙股DNA之間的小溝區 17 201020326 (minor groove),進而釋出螢光;因此,pCR所產出的雙 股DNA越多’則嵌入的SYBR_green !越多,釋出的螢= 強度越強。 以上即時定量PCR之檢測結果如第二圖所示。其中 定量係另外將前述PCR增幅放大之片段利用載體(Vect〇r) 選殖至大腸菌中培養,得出帶有基因片段的質體〇1<[八, 作為定量分析用的標準品,之後利用儀器The extraction method of microbial nucleus in sludge sludge P DN A and RN A is as in example i, but the sample used is in a 300L anaerobic fermentation reaction tank under standard conditions (1 atm, 25. Mud's culture condition is: sucrose as a substrate (carbon source), continuous culture for 60 days (HRT = 12h operation for 30 days, HRT = 8h operation for 10 days, HRT = 4 operation for 15 days and finally re-turn Operation for HRT = 8 h for 5 days.) 1 Transcription and immediate determination. Using the primer pair described in Table 1, the reverse transcription and PCR analysis were carried out by the method disclosed in Example 1, but the PCR analysis was changed. LightCycler FastStart DNA MasterPLUS SYBR Green I (Roche) kit for real-time quantitative polymerase chain reaction (real_time PCR). The above 10 extracted DNA and primer pair 3 to 8 respectively, or reverse transcription as described above The DNA and primer pair 1 or 2 forward primer, wherein the amount of DNA is controlled by volume in a concentration of less than 100 ng per reaction. The amount of primer used is less than 100 ng per reaction. The PCR reaction conditions are at 95 °. Denature reaction at C, at 54 ° C Line bonding (annealing), elongation at 72, a total of 35 cycles. This set of systems in the reaction solution added fluorescent dye SYBR Green I for immediate quantification, and double-stranded DNA A substance that is chimeric and emits fluorescence. Currently, the most commonly used fluorescent dye is 8 丫 - - green I, SYBR-green I will be embedded in the small groove between the double strands of DNA 17 201020326 (minor groove), In addition, the fluorescence is released; therefore, the more double-stranded DNA produced by pCR, the more SYBR_green! is embedded, and the stronger the intensity of the released fluorescence is. The results of the above-mentioned real-time quantitative PCR are shown in the second figure. In the quantitative system, the amplified PCR amplification fragment is further cultured in a coliform by a vector (Vect〇r), and a plastid with a gene fragment is obtained. [8, as a standard for quantitative analysis, and then utilized. instrument

SpactroPhotometer (nano-drop、ND-l〇〇〇)定出各基因複本 數目對即時定量PCR之ct值(cycle threshold value)的檢量 線(回歸曲線)’定出回歸公式。最後即可將前述樣本代 入回歸公式,計算出對應之基因複本數目。此一定量方 法為即時疋置PCR絕對定量之方法。 第二圖(A)之Χ軸代表反應槽操作HRT(即水力停留 時間,每單位進流水在反應槽中停留的時間),係於HRT 12小時、8小時初期(由i2h轉換至8 h後一天)、8小時中期 (8小時操作穩定時中間任取一點)、8小時末期(由8 h轉換 至4h前1天)、4小時初期(由8h轉換至4h後一天)、4小時中 期(4小時操作穩定時中間任取一點)、4小時末期(由彳^轉 換至8h並增加基質濃度為原濃度之一倍的前丨天)、8小時 初期(由4h轉換至8h後一天)、以及8小時末期(反應槽結束 實驗操作的前一天)’其中前述基質濃度包含營養源及碳 源。而第二圖(A)之Y軸係顯示使用本發明之引子對3、4、 5、6以及7+8藉由即時定量PCR分別定量前述反應槽操作 各時期之07〇价/心_屬微生物(引子對3 )、 屬微生物(引子對4)、微生物(引子對6)、 Pseudom麵s屬微±物(弓}子對5)或加印⑽⑽⑽屬微± 物(引子對7+8)在系統中的絕對數量,以及各時期之產氫 速率(HPR,Hydrogen production rate),即總產氫量/(每 18 201020326 單位反應體積χ每小時)之值。 而第二圖(B)係顯示使用本發明之引子對1及2 _由 反轉錄及即時定量PCR分別分析前述反應槽♦生物亏 泥的C. butyricum反C. pasteurianum之轰I鲜素表現 其係利用即時定量PCR來定量產氫酵素之cj)Na,莽此 得知產氫酵素活性表現情形。其Y軸係代表每ng jJNA 及每uL樣本中帶有之mRNA複本數目。 本發明之方法可在取得污泥樣本後6小時内測知微 生物群落結構,可快速得知微生物群落的消長,故可立 • 即監測產氫系統内穩定及不穩定態的微生物群落結構。 綜上所述,本發明利用厭氧產氫系統中微生物之產 氫相關功能基因為標的,突破傳統厭氧產氫系統微生物 群落組成檢測法之限制,建構功能性基因之即時檢測及 監測系統,以便能有效掌握厭氧產氫系統中微生物組成 的動態,而使各種產氫系統在發生問題時縮短危機處理 應變時間,以達到最佳的生產效力。利用本發明不但能 夠快速的判斷微生物群落組成結構的變動,在系統出問 題初期即能儘速解決,以防止產氫系統的損壞甚至影響 下游系統’以節省大量的時間、人力與金錢,對於產氫 系統狀況處理與其相關生產系統有莫大的經濟效益。 其他實施態樣 在本s尤明書中所揭露的所有特徵都可能與其他方法 結合丨本說,書中所揭露的每一個特徵都可能選擇性的 以巧同、相等或相似目的特徵所取代,因此,除了特別 顯著的特徵之外’所有的本說明書所揭露的特徵僅是相 等或相似特徵中的一個例子。 雖然本發明已以較佳實施例揭露如JL,然其並非用 19 201020326 以限定本發明,任何熟悉此技藝者,在不脫離本發明之 精神和範圍内,當可作各種之更動與潤飾。 【圖式簡單說明】 第一圖(A)-(E)分別為厭氧產氳系統之樣本1-5中使 用本發明之引子對1-8進行檢測的結果。M : DNA分子 量標準物;1-8 :引子對1-8。 第二圖係顯示本發明之引子對用於即時定量PCR的 結果。第二圖(Α)係顯示使用本發明之引子對3-8分別定 ❿ 量反應槽操作各時期之各種微生物在系統中的絕對數 量;而第二圖(Β)係顯示使用本發明之引子對1及2分析 反應槽中生物性污泥的C. 及C. 之產氫酵素表現。 【主要元件符號說明】 無The SpactroPhotometer (nano-drop, ND-l〇〇〇) determines the number of copies of each gene to determine the regression curve for the calibration curve (regression curve) of the UT value of the instantaneous quantitative PCR. Finally, the above samples can be substituted into the regression formula to calculate the corresponding number of gene copies. This method is a method for the absolute quantification of PCR. The axis of the second graph (A) represents the HRT operation of the reaction tank (ie, the hydraulic retention time, the time each unit of influent water stays in the reaction tank), at 12 hours and 8 hours after HRT (from i2h to 8 h) One day), mid-eighth (eighth in the middle of 8 hours of operation), end of 8 hours (from 8 h to 1 day before 4 h), early 4 hours (from 8 h to 4 h after one day), and 4 hours in the middle ( When the operation is stable for 4 hours, take a little at the middle), at the end of 4 hours (from 彳^ to 8h and increase the substrate concentration to one time before the original concentration), and at the beginning of 8 hours (from 4h to 8h after one day), And the end of 8 hours (the day before the end of the experimental operation of the reaction tank) 'where the aforementioned substrate concentration comprises a nutrient source and a carbon source. The Y-axis of the second graph (A) shows that the primers 3, 4, 5, 6, and 7+8 of the present invention are used to quantify the 07 valence/heart genus of each period of the reaction tank operation by real-time quantitative PCR. Microorganism (introduction pair 3), genus microbe (introduction pair 4), microbe (introduction pair 6), Pseudom surface s genus micro±object (bow} subpair 5) or imprinted (10)(10)(10) genus micro± (introduction pair 7+8) The absolute number in the system, and the hydrogen production rate (HPR), ie the total hydrogen production / (per 18 201020326 unit reaction volume per hour). The second figure (B) shows the use of the primer pair 1 and 2 of the present invention. The C. butyricum anti-C. pasteurianum is characterized by reverse transcription and real-time quantitative PCR, respectively. The instant quantitative PCR was used to quantify the hydrogen production enzyme cj)Na, and the activity of hydrogen production enzyme activity was obtained. Its Y-axis represents the number of mRNA copies carried per ng of jJNA and per uL of sample. The method of the invention can detect the microbial community structure within 6 hours after obtaining the sludge sample, and can quickly know the growth and decline of the microbial community, so that the stable and unstable microbial community structure in the hydrogen production system can be monitored immediately. In summary, the present invention utilizes the hydrogen-related functional genes of microorganisms in the anaerobic hydrogen production system as a target, breaks through the limitation of the traditional anaerobic hydrogen production system microbial community composition detection method, and constructs an instant detection and monitoring system for functional genes. In order to effectively grasp the dynamics of microbial composition in the anaerobic hydrogen production system, various hydrogen production systems can shorten the crisis processing time when problems occur to achieve the best production efficiency. The invention not only can quickly determine the change of the microbial community composition structure, but can solve the problem as soon as possible in the early stage of the system to prevent the damage of the hydrogen production system and even affect the downstream system' to save a lot of time, manpower and money. Hydrogen system condition processing and its related production systems have great economic benefits. All of the features disclosed in this siemen's book may be combined with other methods. Each of the features disclosed in the book may be selectively replaced by features of coincidence, equality or similarity. Therefore, all of the features disclosed in this specification are merely one of the equivalent or similar features, except for the particularly distinctive features. While the present invention has been disclosed in its preferred embodiments, such as JL, it is not intended to limit the scope of the invention, and it is to be understood that those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figures (A)-(E) are the results of the detection of 1-8 using the primer of the present invention in samples 1-5 of the anaerobic calf system, respectively. M: DNA molecular weight standard; 1-8: primer pair 1-8. The second panel shows the results of the primer pair of the present invention for use in real-time quantitative PCR. The second figure (Α) shows the absolute number of various microorganisms in the system for each period of operation of the reaction tank using the primers of the present invention; and the second figure (Β) shows the use of the primer of the present invention. Analysis of the hydrogen production performance of C. and C. of biological sludge in the reaction tank for 1 and 2. [Main component symbol description] None

20 20102032620 201020326

SEQUENCE LISTING <110>逢甲大學 <120>厭氧產氫系統微生物群落結構快速檢測之方法 <130> 08P0388 <160> 16 <170> Patentln version 3.4 <210> 1 <211> 24 <212> 應 <213>人工序列 <220> <223>引子 <400> 1 agtgttcaaa tgttggtaaa tgtg 24SEQUENCE LISTING <110>Fengjia University<120> Method for rapid detection of microbial community structure of anaerobic hydrogen production system <130> 08P0388 <160> 16 <170> Patentln version 3.4 <210> 1 <211&gt ; 24 <212> should <213>manual sequence<220><223>primer<400> 1 agtgttcaaa tgttggtaaa tgtg 24

<210> 2 <211> 23 <212> Wk <213>人工序列 <220> <223>引子 <400> 2 ctcttgtgtt gcctcagtat tag 23 <210> 3 <211> 24 <212> m <213>人工序列 <220> <223>引子 <400> 3 aacttgaaga tagcgaagca gacc 24<210> 2 <211> 23 <212> Wk <213>Artificial sequence<220><223>Introduction<400> 2 ctcttgtgtt gcctcagtat tag 23 <210> 3 <211> 24 <;212> m <213>Artificial sequence<220><223>Introduction<400> 3 aacttgaaga tagcgaagca gacc 24

<210> 4 <211> 19 <212> DNA <213>人工序列 <220> <223>引子 <400> 4 ccaccattta cacatcctc 19 <210> 5 <211> 23 <212> DNA <213>人工序列<210> 4 <211> 19 <212> DNA <213> artificial sequence <220><223> primer <400> 4 ccaccattta cacatcctc 19 <210> 5 <211> 23 <212> DNA <213> artificial sequence

<220> <223>引子 <400> 5 aaaggragat taataccgca taa <210> 6 <211> 20 <212> DNA <213>人工序列 23 201020326 <220> <223>引子 <400〉 6 ttcttcctaa tctctacgca <220> 7 <211> 18 <212〉腿 <213>人工序列 <220> <223>引子 <400> 7 agtaatgcgt gaccgacc <210> 8 <211> 16 <212> im <213>人工序列<220><223>Introduction<400> 5 aaaggragat taataccgca taa <210> 6 <211> 20 <212> DNA <213> Artificial sequence 23 201020326 <220><223> 400> 6 ttcttcctaa tctctacgca <220> 7 <211> 18 <212>leg<213>manual sequence<220><223>introduction<400> 7 agtaatgcgt gaccgacc <210> 8 <211> 16 <212> im <213> artificial sequence

<220> <223>引子 <400〉8 gaaccgccta cgagcc <210> 9 <211> 19 <212> DNA <213>人工序列 <220〉 <223>引子 <400> 9 ttcgggcctt gcgctatca <210> 10 <211> 22 <212> DNA <213>人工序列 <220> <223>引子 <400> 10 tcgccactgg tgttccttcc ta <210> 11 <211> 20 <212> DNA <213>人工序列 <220> <223>引子 <400> 11 aaggctgagg tgtgatgacg <210> 12 <211> 20 <212> DNA <213>人工序列 <220> <223>引子 201020326 <400> 12 ctacacacca gcgtgccttc <210> 13 <211> 24 <212> DNA <213>人工序列 <220〉 <223>引子 <400> 13 caacattacg agcagccata ccaa <210> 14 <211> 24 <212〉臟 <213>人工序列 <220> <223>引子<220><223>Introduction<400>8 gaaccgccta cgagcc <210> 9 <211> 19 <212> DNA <213>Artificial Sequence<220><223>Introduction<400> 9 ttcgggcctt gcgctatca <210> 10 <211> 22 <212> DNA <213> artificial sequence <220><223> primer <400> 10 tcgccactgg tgttccttcc ta <210> 11 <211> 20 <212> DNA <213>Artificial sequence<220><223>Introduction<400> 11 aaggctgagg tgtgatgacg <210> 12 <211> 20 <212> DNA <213> Artificial sequence<212>;220><223>Introduction 201020326 <400> 12 ctacacacca gcgtgccttc <210> 13 <211> 24 <212> DNA <213>Artificial sequence <220><223>Introduction<400> 13 caacattacg agcagccata ccaa <210> 14 <211> 24 <212>dirty<213> artificial sequence <220><223>

<400> 14 cttaccttcc agacggaaca ccag <210> 15 <211> 20 <212> DNA <213>人工序列 <220> <223>引子 <400> 15 tcgtgaagtg cgtgatacgt <210> 16 <211> 22 <212> DNA <213>人工序列 <220> <223>引子 <400> 16 catacccagg tgaagttcca ta<400> 14 cttaccttcc agacggaaca ccag <210> 15 <211> 20 <212> DNA <213>Artificial sequence<220><223>Introduction<400> 15 tcgtgaagtg cgtgatacgt <210><211> 22 <212> DNA <213>Artificial sequence<220><223>Introduction<400> 16 catacccagg tgaagttcca ta

Claims (1)

201020326 七、申請專利範圍: 1. 一種快速檢測厭氧產氫系統中微生物群落結構之方 法,係包括下列步驟: (a) 提供一得自厭氧產氳系統之樣本; (b) 分別抽取前述樣本之RNA及DNA ; (c) 取前述步驟(b)所得之RNA,分別與引子對1至2 其中之一的反向引子進行反轉錄,得一 cDNA混 合物;其中 引子對1 : SEQ ID NO: 1, SEQ ID NO: 2 ; 引子對2 : SEQ ID NO: 3, SEQ ID NO: 4 ; (d)在前述步驟(c)所得之混合物中分別加入對應之 正向引子,進行聚合酶連鎖反應;同時取前述步 驟(b)所得之DNA,分別與引子對3至8其中之 一進行聚合酶連鎖反應;其中 引子對 3 : SEQ ID NO: 5, SEQ ID NO: 6 ϊ 引子對 4 : SEQ ID NO: 7, SEQ ID NO: 8 ; 引子對 5 : SEQ ID NO: 9, SEQ ID NO: 10 引子對 6 : SEQ ID NO: 11 SEQ ID NO: 12 引子對 7 : SEQ ID NO: 13 SEQ ID NO: 14 引子對 8 : SEQ ID NO: 15 SEQ ID NO: 16 以及 21 201020326 2. 3. 4. 5. 6. 7. ❿ 8. ⑹= = = 量,以決定前述厭氧產氫ΞΙ請d::物之方法,其中前述樣本為 如申請專利範‘第2或廢水系統生物膜。 生物性污泥。苐項所述之方法’其中前述污泥為 圍第1項所述之方法’其中前述步驟(d) 反應為即時定量聚合酶連鎖反應。 氫系“ =之方法’其中前述厭氧產 X王物群落為厭氧之產氫微生物,其係選自 Um屬微支物、Bifidobacterium屬微±物、 Klebsiella Μ M a- al. ^ , 句傈聖物、pseud〇monas屬微支物成 St_coc⑽屬微±物。 物a j請專利$1圍第i項所述之方法,其中前述厭氧之 Clostridium butyricum ^ Clostridium pasteurium。 1 如=請專利範圍第1項所述之方法,其中前述厭知 轰乱薇支物為Klebsiella pneumoniae。 之 一種用於檢測厭氧產氳系統中微生物群落级 對,其係: 、、。镩的引子 引子對1 : 引子對2 : 引子對3 引子對4 : SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO: 2 ; 3, 4 ; 5, 6 ; 7, 22 201020326 引子對 5 : SEQ ID NO: 9, SEQ ID NO: 10 ; 引子對 6 : SEQ ID NO.· 11, SEQ ID NO: 12 ; 引子對 7 : SEQ ID NO: 13, SEQ ID NO: 14 ;或 引子對 8 : SEQ ID NO: 15, SEQ ID NO: 16 ;或其互補股。201020326 VII. Patent application scope: 1. A method for rapidly detecting the microbial community structure in an anaerobic hydrogen production system, comprising the following steps: (a) providing a sample obtained from an anaerobic pupa system; (b) separately extracting the foregoing RNA and DNA of the sample; (c) The RNA obtained in the above step (b) is reverse-transcribed with the reverse primer of one of the primer pairs 1 to 2 to obtain a cDNA mixture; wherein the primer pair 1: SEQ ID NO : 1, SEQ ID NO: 2; primer pair 2: SEQ ID NO: 3, SEQ ID NO: 4; (d) Adding the corresponding forward primer to the mixture obtained in the aforementioned step (c) for polymerase linkage The DNA obtained by the above step (b) is simultaneously subjected to a polymerase chain reaction with one of the primer pairs 3 to 8; wherein the primer pair 3: SEQ ID NO: 5, SEQ ID NO: 6 引 primer pair 4: SEQ ID NO: 7, SEQ ID NO: 8; Primer Pair 5: SEQ ID NO: 9, SEQ ID NO: 10 Primer Pair 6: SEQ ID NO: 11 SEQ ID NO: 12 Primer Pair 7: SEQ ID NO: 13 SEQ ID NO: 14 Primer Pair 8: SEQ ID NO: 15 SEQ ID NO: 16 21 201020326 2. 3. 4. 5. 6. 7. ❿ 8. (6) = = = quantity to determine the aforementioned anaerobic hydrogen production d d:: method, the above sample is as patent application '2 Or wastewater system biofilm. Biological sludge. The method of the invention wherein the sludge is the method of item 1 wherein the aforementioned step (d) is an immediate quantitative polymerase chain reaction. The hydrogen system "method of =" wherein the aforementioned anaerobic X king community is an anaerobic hydrogen producing microorganism selected from the group consisting of Um microtubules, Bifidobacterium genus, Klebsiella ΜM a- al. ^ , The sacred object, the pseudomons of the pseudomonas is a St. coc (10) genus. The object aj please patent the method described in item i, in which the aforementioned anaerobic Clostridium butyricum ^ Clostridium pasteurium. The method according to the item 1, wherein the aforementioned fascination is Klebsiella pneumoniae. One of the methods is for detecting a microbial community level pair in an anaerobic pupa system, and the system is: 、, 镩 引引引子 Pair 1: Introduction Pair 2: primer pair 3 primer pair 4: SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO: 2; 3, 4; 5, 6; 7, 22 201020326 Pair 5: SEQ ID NO: 9, SEQ ID NO: 10; primer pair 6: SEQ ID NO. 11, SEQ ID NO: 12; primer pair 7: SEQ ID NO: 13, SEQ ID NO: 14; or primer Pair 8 : SEQ ID NO: 15, SEQ ID NO: 16; or its complementary strand. 9. 如申請專利範圍第8項所述之引子對,其中前述厭氧 之產氫微生物為 Clostridium 屬微生物、 Bifidobacterium 賡敬 ± 物、Klebsiella 餍敫 ± 物、 Pseudomonas屬微支物氣Streptococcus屬微支物。 10. 如申請專利範圍第8項所述之引子對,其中前述厭氧 之產虱微生物為C/oWrzWz’w?«屬第一菌群或第二菌群 之微生物,且該引子對為引子對3。 Π.如申請專利範圍第8項所述之引子對,其中前述厭氧 之產氫微生物為屬微生物,且該引子 對為引子對4。 12·如申,專利範圍第8項所述之引子對,其中前述厭氧 之產氫微生物為足/e心狀謂⑽⑻,且該引子對 為引子對5。 13. 如申,專利範圏第8項所述之引子對,其中前述厭氧 之產氫微生物為hew办momw屬微生物,且該引子對 為引子對6。 14. 如申,專利範園第9項所述之引子對,其中前述厭氧 之產風微生物為《SYre/piococcwi1屬微生物,且該引子對 為引子對7或8。 15·如申請專利範圍第8項所述之引子對,其中前述厭氧 23 201020326 之產氬^微生^物為Clostridium butyricum,JL該弓]子對為 引子對1。 16. 如申請專利範圍第8項所述之引子對,其中前述厭氧 之產氫微生物為,且該引子對 為引子對2。 17. —種如申請專利範圍第8項所述之引子對於DNA或 RNA定量之用途。 18. 如申請專利範圍第17項所述之用途,其中前述引子對 為引子對1或引子對2。9. The primer pair according to Item 8 of the patent application, wherein the aforementioned anaerobic hydrogen-producing microorganism is Clostridium microorganism, Bifidobacterium 赓±, Klebsiella 餍敫±, Pseudomonas genus microtubule gas Streptococcus genus microtubule Things. 10. The pair of primers according to item 8 of the patent application, wherein the aforementioned anaerobic pupa microorganism is C/oWrzWz'w?« a microorganism belonging to the first flora or the second flora, and the primer pair is an primer For 3.引. The primer pair according to claim 8, wherein the aforementioned anaerobic hydrogen producing microorganism is a microorganism, and the primer pair is a primer pair 4. 12. The pair of primers according to claim 8, wherein the aforementioned anaerobic hydrogen-producing microorganism is a foot/e heart-like (10) (8), and the pair of primers is a pair of primers. 13. The primer pair according to claim 8, wherein the anaerobic hydrogen-producing microorganism is hew momw microorganism, and the primer pair is a primer pair 6. 14. The primer pair according to claim 9, wherein the anaerobic wind-producing microorganism is a microorganism belonging to the SYre/piococcwi1 genus, and the primer pair is a primer pair 7 or 8. 15. The pair of primers described in claim 8 wherein the argon-producing anaerobic 23 201020326 is a Clostridium butyricum, and the JL is a pair of primers. 16. The primer pair according to item 8 of the patent application, wherein the aforementioned anaerobic hydrogen producing microorganism is, and the primer pair is a primer pair 2. 17. Use of a primer as described in claim 8 of the patent application for the quantification of DNA or RNA. 18. The use of claim 17, wherein the aforementioned pair of primers is a pair of primers or a pair of primers. 24twenty four
TW97145611A 2008-11-26 2008-11-26 Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system TW201020326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97145611A TW201020326A (en) 2008-11-26 2008-11-26 Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97145611A TW201020326A (en) 2008-11-26 2008-11-26 Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system

Publications (1)

Publication Number Publication Date
TW201020326A true TW201020326A (en) 2010-06-01

Family

ID=44832147

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145611A TW201020326A (en) 2008-11-26 2008-11-26 Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system

Country Status (1)

Country Link
TW (1) TW201020326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886660A1 (en) * 2013-12-20 2015-06-24 Rigas Tehniska universitate A fluorescent in situ hybridization method for identification of a microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886660A1 (en) * 2013-12-20 2015-06-24 Rigas Tehniska universitate A fluorescent in situ hybridization method for identification of a microorganism

Similar Documents

Publication Publication Date Title
CN112680547B (en) Real-time fluorescent nucleic acid isothermal amplification detection kit and application thereof
Gao et al. RT-qPCR based quantitative analysis of gene expression in single bacterial cells
JP5238248B2 (en) Method for quantitative analysis of microorganisms targeting rRNA
JP2004530416A (en) Examination of internal symbiotic organelles and compounds identifiable thereby
CN111560482A (en) Detection method based on CRISPR/Cas and nucleic acid test paper and human papilloma virus detection kit
JP2004533204A (en) Method for controlling microbiological quality of aqueous medium and kit therefor
EP0562056A1 (en) Amplification of nucleic acid molecules
EA005577B1 (en) A material having an immobilized nucleic acid prepared by the method using a chimeric oligonucleotide primer, a dna polymerase and an endonuclease
WO2010012464A1 (en) Improved lysis and reverse transcription for mrna quantification
Uyeno et al. Sequence-specific cleavage of small-subunit (SSU) rRNA with oligonucleotides and RNase H: a rapid and simple approach to SSU rRNA-based quantitative detection of microorganisms
CN112501257B (en) Visualization sensor based on nucleic acid self-assembly enzyme-catalysis-free circRNA living cell imaging
US20210139968A1 (en) Rna amplification method, rna detection method and assay kit
CN106148500B (en) Integrated micro RNA fluorescent quantitative detection kit and application thereof
EP2585615B1 (en) Highly sensitive method for detection of a target nucleic acid in a sample
CN114317684B (en) Intracellular magnesium ion imaging method based on TNA molecules
TW201020326A (en) Rapid inspection method on microorganism community structure in anaerobic hydrogen producing system
CN115029345A (en) Nucleic acid detection kit based on CRISPR and application thereof
KR101695059B1 (en) A composition for analyzing microbial flora in kefir fermented milk and a quantitative real-time pcr method therefor
CN111378724A (en) RNA amplification detection method and detection kit
CN112301116A (en) Method for ultrasensitively detecting miRNA based on CRISPR/Cas technology for non-diagnostic purpose
CN117126925B (en) Crispr-Cas nucleic acid detection kit capable of being stored stably for long term
CN114836548B (en) Quantitative qPCR (quantitative polymerase chain reaction) detection method and kit for tRNA (ribonucleic acid) aminoacylation level
CN112553378B (en) Reagent and kit for detecting 2019-nCoV and application
CN110669857B (en) Micro-drop digital PCR (polymerase chain reaction) rapid detection method for vibrio mimicus in aquatic product
WO2022244104A1 (en) Isothermal gene amplification method, gene detection method, virus detection method, and kit used therefor