TW201020275A - Hole-transport material for polymer light-emitting diode and fabrication thereof - Google Patents

Hole-transport material for polymer light-emitting diode and fabrication thereof Download PDF

Info

Publication number
TW201020275A
TW201020275A TW97146143A TW97146143A TW201020275A TW 201020275 A TW201020275 A TW 201020275A TW 97146143 A TW97146143 A TW 97146143A TW 97146143 A TW97146143 A TW 97146143A TW 201020275 A TW201020275 A TW 201020275A
Authority
TW
Taiwan
Prior art keywords
triarylamine
conducting layer
hole conducting
monomer
polymer
Prior art date
Application number
TW97146143A
Other languages
Chinese (zh)
Other versions
TWI387611B (en
Inventor
Man-Kit Leung
Kuo-Huang Hsieh
Kun-Rung Lin
Ying-Hsueh Changchien
Chin-Chuan Chang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW97146143A priority Critical patent/TWI387611B/en
Publication of TW201020275A publication Critical patent/TW201020275A/en
Application granted granted Critical
Publication of TWI387611B publication Critical patent/TWI387611B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The present invention discloses a hole-transport material for polymer light-emitting diode, wherein the hole-transport material comprising a hyperbranched triarylamine polymer, and the hyperbranched triarylamine polymer is derivated from a triarylamine monomer with at least a tosylate group. In addition, the max brightness of the polymer light-emitting diode is over 20000cd/m<SP>2</SP>.

Description

201020275 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種電洞傳導層材料,特別係關於一種包含 高支化三芳胺聚合物(hyperbranched triarylamine polymer)之電 洞傳導層材料。 【先前技術】 〇 有機電激發光原理可以簡單解釋如下:在外加電壓下,電 洞、電子分別由陽極、陰極注入,在電場的作用下,電子、電 洞相向移動,當兩者在有機發光材料上相遇而結合為激發光 子,之後由處在能量較高的激發態回到能量較低的基態時,會 放出能量,而這能量可以以光或熱的形式放出。由於有機電激 發光元件的效率主要取決於電子和電洞是否能有效的在發光 層中放光’當電子或是電洞靠近兩極的地方時會被金屬所驟 Q 熄’而大多數的有機材料若不是輸送電子就是電洞,因而會使 激發光子靠近兩極’造成效率降低,而改善的方法有二:一是 直接對有機材料分子本身的結構修正,加入使其同時具有電子 和電洞傳導特性的官能基。第二種方法是利用多層結構幫助電 子、電洞能均衡的注入到有機層中。 以多層結構設計來說,在發光層(emitting layer; EML)與 ITO陽極之間加入電洞傳導層(h〇ie transport layer,HTL)與電 洞注入層(hole injecting layer,HIL);另一方面,在發光層與金 屬陰極cathode之間加入電子傳導層(electron transport layer, 201020275 ETL)與電子注入層(eiectron injecting layer ’ EIL)。這也多層妹 構的目的主要是使電子之注入、傳導與電洞之注入、傳導,達 到平衡,增加電子與電洞在發光層的結合效率,以達到最大的 發光強度和量子效率(quantum efficiency)。其中,電子傳導層 與電洞傳導層係用以調整電子與電洞的移動速率,使兩者之速 率相近。 在設計和合成上述之電子或電洞傳導材料時有幾項重 ❹ 點:h要有高的耐祕和_錄。2.要能減少電洞輸送層/陽 極、或電子傳導層/陰極介面的能階障礙。因為有報導指出當能 階障礙愈小時,有機發光元件的使用時間越長。3能自然形成 好的薄膜型態。因為在有機電子或電子輸送材料的薄膜層中, 經由長時_㈣後,會有在結㈣老化現象,而此現象是導 致元件通電後逐漸變暗的主因。有鐘於此,仍有必要研究新的 電子或電洞傳導材料,以發展出具有高的耐熱性和㈣定性、 低介面能階障礙與低起始電壓之新材料,以增加有機發光元件 © 之使用壽命,並改善發光亮度和發光效率。 【發明内容】 為了符合產業上之要求,本發明提 鑒於上述發明背景中, 供一種電洞傳導層材料。 一種電洞傳導層材料,上述電洞 一务胺聚合物(hyperbranched 本發明之一特徵在於提供一 傳導層材料包含一高支化三 4 201020275 triarylamine polymer),形成上述高支化三芳胺聚合物之單趙係 衍生自一包含至少一甲苯績酸醋基團(tosylate group)之三芳胺 單體,其中,上述包含至少一甲苯磺酸酯基團(tosylate group) 之三芳胺單體將水解形成一種甲基苯磺酸與一種具親電性之三 芳骇單體,並且該具親電性之三芳胺單體會產生Friedel-Crafts 型之自縮合反應,藉此形成上述高支化三芳胺聚合物。 本發明之另一特徵在於提供一種有機發光二極體,上述有 機發光二極體係利用循環伏安法以電聚合上述高支化三芳胺 聚合物並形成一有機發光二極體之電洞傳導層,上述有機發光 二極體之亮度係能達20000cd/m2以上。 根據以上所述之特徵,本發明揭示了一種電洞傳導層材 料,上述電洞傳導層材料係能應用於有機發光二極體。 ❹ 【實施方式】 本發明在此所探討的方向為一種電洞傳導層材料。為 徹底地瞭解本發明,將提出詳盡_述說明。_地,本發 的施行並未限定於該領域之技藝者所熟習的特殊細節。另 面眾所周去的組成或步驟並未描述於細節中以避免 發明不必要之_。本發明陳佳實關會詳細描述 而除了這鱗吨敎外,本糾還可^泛祕行在、、、 實施例中’且本發明的範_受限定其以之後的專利範圍: 5 201020275 準。 本發明之第一實施例係揭露一種電洞傳導層材料,其係應 用於有機發光二極體(polymer light-emitting diodes),上述洞傳 導層材料包含一高支化三芳胺聚合物(hyperbranched triarylamine polymer),形成上述高支化三芳胺聚合物之單體係 衍生自一包含至少一曱苯橫酸酯基團(tosylate group)之三芳胺 單體。其中,部份上述包含至少一甲苯磺酸酯基團(tosylate group)之三芳胺單體水解形成一種甲基苯磺酸與一種具親電性 之三芳胺單體,並且,上述具親電性之三芳胺單體以 Friedel-Crafts型之自縮合(self-condensation)反應形成上述高支 化三芳胺聚合物。 上述包含至少一甲苯磺酸酯基團之三芳胺單體之一般式 如下:201020275 VI. Description of the Invention: [Technical Field] The present invention relates to a material for a hole conducting layer, and more particularly to a material for a hole conducting layer comprising a hyperbranched triarylamine polymer. [Prior Art] The principle of organic electroluminescence can be explained simply as follows: under the applied voltage, the holes and electrons are injected from the anode and the cathode respectively. Under the action of the electric field, the electrons and the holes move toward each other when the two are in the organic light. When the material meets and combines to excite photons, then when it is returned to the lower energy ground state by the higher energy excited state, energy is released, and the energy can be released in the form of light or heat. Since the efficiency of the organic electroluminescent device depends mainly on whether the electrons and holes can effectively emit light in the luminescent layer. When the electrons or holes are close to the poles, they are quenched by the metal. Most organic If the material is not transporting electrons or holes, it will cause the photons to be close to the two poles, which will reduce the efficiency. There are two ways to improve them: one is to directly modify the structure of the organic material itself, and to add it to both electron and hole conduction. Characteristic functional groups. The second method is to use a multi-layer structure to help the electrons and holes to be injected into the organic layer in a balanced manner. In the multilayer structure design, a hole conduction layer (HTL) and a hole injecting layer (HIL) are added between the emission layer (EML) and the ITO anode; In one aspect, an electron transport layer (201020275 ETL) and an electron injecting layer (EIL) are added between the light emitting layer and the metal cathode cathode. The purpose of this multi-layered sister structure is to balance the injection and conduction of electrons into the electron tunnel, and to increase the efficiency of the combination of electrons and holes in the light-emitting layer to achieve maximum luminous intensity and quantum efficiency. ). Among them, the electron conducting layer and the hole conducting layer are used to adjust the moving speed of electrons and holes, so that the rates of the two are similar. There are several important points in designing and synthesizing the above-mentioned electronic or hole-conducting materials: h must have high resistance and _ recording. 2. It is necessary to reduce the energy barrier of the hole transport layer/anode or the electron conduction layer/cathode interface. It has been reported that the longer the energy barrier is, the longer the use time of the organic light-emitting element. 3 can naturally form a good film type. Because in the thin film layer of organic electron or electron transport material, after a long time _ (four), there will be aging phenomenon in the junction (four), and this phenomenon is the main cause of the darkening of the component after power-on. With this in mind, it is still necessary to study new electronic or hole-conducting materials to develop new materials with high heat resistance and (4) qualitative, low interface energy barriers and low initial voltage to increase organic light-emitting components © The service life and improved luminous brightness and luminous efficiency. SUMMARY OF THE INVENTION In order to meet the requirements of the industry, the present invention provides a hole conducting layer material in view of the above background. A hole conducting layer material, the above-mentioned hole amine amine polymer (hyperbranched is characterized in that a conductive layer material comprises a high branched metal 4 201020275 triarylamine polymer) to form the above-mentioned hyperbranched triarylamine polymer The singular is derived from a triarylamine monomer comprising at least one tosylate group, wherein the triarylamine monomer comprising at least one tosylate group hydrolyzes to form a Methylbenzenesulfonic acid and an electrophilic triarylamine monomer, and the electrophilic triarylamine monomer will produce a self-condensation reaction of Friedel-Crafts type, thereby forming the above-mentioned hyperbranched triarylamine polymer . Another feature of the present invention is to provide an organic light-emitting diode, wherein the organic light-emitting diode system utilizes cyclic voltammetry to electrically polymerize the above-mentioned hyperbranched triarylamine polymer and form a hole-conducting layer of an organic light-emitting diode. The brightness of the above organic light-emitting diode can be up to 20,000 cd/m 2 or more. According to the features described above, the present invention discloses a hole conducting layer material which can be applied to an organic light emitting diode.实施 [Embodiment] The direction of the invention discussed herein is a hole conducting layer material. In order to thoroughly understand the present invention, a detailed description will be provided. The implementation of this issue is not limited to the specific details familiar to those skilled in the art. Other components or steps that are gone in the past are not described in the details to avoid unnecessary inventions. The present invention will be described in detail in addition to the scales of the present invention, and the present invention can be used in the following embodiments, and the scope of the present invention is limited to the following patent scope: 5 201020275. A first embodiment of the present invention discloses a hole conducting layer material for use in polymer light-emitting diodes, the hole conducting layer material comprising a hyperbranched triarylamine (hyperbranched triarylamine) The single system forming the above-mentioned hyperbranched triarylamine polymer is derived from a triarylamine monomer comprising at least one tosylate group. Wherein some of the above-mentioned triarylamine monomers comprising at least a tosylate group are hydrolyzed to form a methylbenzenesulfonic acid and an electrophilic triarylamine monomer, and the above is electrophilic The triarylamine monomer forms a self-condensation reaction of the Friedel-Crafts type to form the above-mentioned hyperbranched triarylamine polymer. The general formula of the above triarylamine monomer containing at least a tosylate group is as follows:

其中’A為CH2,x為2至8。 上述具親電性之三芳胺單體之一般式如下:Where 'A is CH2 and x is 2 to 8. The general formula of the above electrophilic triarylamine monomer is as follows:

6 201020275 於本實施例之較佳範例中,上述高支化三芳胺聚合物之一 般式如下:6 201020275 In a preferred embodiment of the present embodiment, one of the above-described hyperbranched triarylamine polymers is as follows:

本發明之第二實施例係揭露一種電洞傳導層材料之形成 Φ 方法,上述形成方法包含:提供一包含至少一曱苯磺酸酯基團 (tosylate group)之三芳胺單體,上述包含至少一甲苯確酸酯基 團(tosylate group)之三芳胺單體經水解反應後形成一種甲基苯 磺酸與一種具親電性之三芳胺單體,並且上述具親電性之三芳 胺單體以Friedel-Crafts型之自縮合反應形成上述高支化三芳 胺聚合物,據此完成上述電洞傳導層材料。 上述包含至少一曱苯磺酸酯基團之三芳胺單體之一般式 如下: 7 201020275A second embodiment of the present invention discloses a method for forming a material of a hole conducting layer, wherein the forming method comprises: providing a triarylamine monomer comprising at least one tosylate group, the above comprising at least The triarylamine monomer of the tosylate group is hydrolyzed to form a methylbenzenesulfonic acid and an electrophilic triarylamine monomer, and the above electrophilic triarylamine monomer The above-mentioned highly branched triarylamine polymer is formed by a self-condensation reaction of Friedel-Crafts type, whereby the above-mentioned hole conducting layer material is completed. The general formula of the above triarylamine monomer containing at least one benzenesulfonate group is as follows: 7 201020275

其中,A為CH2,x為2至8。Wherein A is CH2 and x is 2 to 8.

上述具親電性之三芳胺單體之一般式如下:The general formula of the above electrophilic triarylamine monomer is as follows:

於本實施例之較佳範例中,上述高支化三芳胺聚合物之一 般式如下:In a preferred embodiment of the present embodiment, one of the above-mentioned hyperbranched triarylamine polymers is as follows:

其中,m為3至9, η為3至9。 201020275 本發明之第三實施例係揭露一種有機發光二極體(p〇lyma Light-Emitting Diode),其包含:一陽極、一種位於上述陽極 上之電洞傳導層(hole-transporting layer )、一種位於電洞傳導層 上之發光層(emitting layer)與一種位於上述發光層上之陰極。Wherein m is from 3 to 9 and η is from 3 to 9. 201020275 A third embodiment of the present invention discloses an organic light-emitting diode (p〇lyma Light-Emitting Diode), comprising: an anode, a hole-transporting layer on the anode, and a hole-transporting layer An emitting layer on the conductive layer of the hole and a cathode on the light emitting layer.

其中,上述電洞傳導層包含一高支化三芳胺聚合物 (hyperbranched triarylamine polymer),形成上述高支化三芳胺令 合物之單體係衍生自一包含至少一甲苯磺酸酯基團(tosylate group)之三芳胺單體。 其中,部份上述包含至少一甲苯績酸醋基困(tosylate group) 之三芳胺單體水解形成一種甲基苯磺酸與一種具親電性之三芳 胺單體,並且上述具親電性之三芳胺單體以Friedel-Crafts型之自 縮合(self-condensation)反應形成上述高支化三芳胺聚合物。此 外,上述電洞傳導層之厚度係小於或等於10奈米,而上述之有機 發光二極體之亮度係達20000cd/m2以上。 上述包含至少一甲苯磺酸酯基團之三芳胺單體之一般式如Wherein the above-mentioned hole conducting layer comprises a hyperbranched triarylamine polymer, and the single system forming the above-mentioned hyperbranched triarylamine compound is derived from a group comprising at least a tosylate group (tosylate) Group) triarylamine monomer. Wherein some of the above-mentioned triarylamine monomers comprising at least one tosylate group are hydrolyzed to form a methylbenzenesulfonic acid and an electrophilic triarylamine monomer, and the above is electrophilic. The triarylamine monomer forms a self-condensation reaction of the Friedel-Crafts type to form the above-mentioned hyperbranched triarylamine polymer. Further, the thickness of the hole conducting layer is less than or equal to 10 nm, and the brightness of the above organic light emitting diode is 20,000 cd/m2 or more. The general formula of the above triarylamine monomer containing at least a tosylate group is as

9 201020275 其中,A為CH2,x為2至8。 上述具親電性之三芳胺單體之一般式如下:9 201020275 where A is CH2 and x is 2 to 8. The general formula of the above electrophilic triarylamine monomer is as follows:

於本實施例之較佳範例中,上述高支化三芳胺聚合物之一In a preferred embodiment of the present embodiment, one of the above-mentioned hyperbranched triarylamine polymers

般式如下:The general style is as follows:

其中,m為3至9, η為3至9。 本發明之第四實施例係揭露一種有機發光二極體(Polymer Light-Emitting Diode)之形成方法,上述之形成方法包含:首 先,提供一陽極,電聚合(electropolymerization) —高支化三芳胺 201020275 聚合物(hyperbranched triarylamine polymer)以形成一電洞傳導 層(hole-transporting layer)於上述陽極上,其次,形成一發光 層於上述電洞傳導層(hole-transporting layer)上,最後,形成 一陰極於上述發光層上。其中,上述高支化三芳胺聚合物係衍生 自一包含至少一曱苯績酸醋基困(tosylate group)之三芳胺單 體’上述包含至少一甲苯確酸醋基團(tosylate group)之三芳胺單 φ 體水解形成一種甲基苯磺酸與一種具親電性之三芳胺單體,並且 上述具親電性之三芳胺單體以Friedel-Crafts型之自縮合反應形 成上述高支化三芳胺聚合物。此外,上述電洞傳導層之厚度係小 於或等於10奈米,並且,上述之有機發光二極體之亮度係 20000cd/m2以上。 上述包含至少一甲苯磺酸酯基團之三芳胺單體之一般式如 下:Wherein m is from 3 to 9 and η is from 3 to 9. A fourth embodiment of the present invention discloses a method for forming an organic light-emitting diode (Polymer Light-Emitting Diode). The method for forming the method includes: firstly, providing an anode, electropolymerization - highly branched triarylamine 201020275 a polymer (hyperbranched triarylamine polymer) to form a hole-transporting layer on the anode, and secondly, a light-emitting layer on the hole-transporting layer, and finally a cathode On the above luminescent layer. Wherein the above-mentioned hyperbranched triarylamine polymer is derived from a triarylamine monomer comprising at least one tosylate group of the tosylate group, wherein the above-mentioned three aromatic groups containing at least one tosylate group (tosylate group) Hydrolysis of amine mono φ to form a methylbenzenesulfonic acid and an electrophilic triarylamine monomer, and the above electrophilic triarylamine monomer is self-condensed by Friedel-Crafts type to form the above-mentioned hyperbranched triaryl Amine polymer. Further, the thickness of the above-mentioned hole conducting layer is less than or equal to 10 nm, and the brightness of the above organic light emitting diode is 20,000 cd/m2 or more. The general formula of the above triarylamine monomer containing at least a tosylate group is as follows:

其中,A為CH2,X為2至8。 上述具親電性之三芳胺單體之一般式如下: 201020275Wherein A is CH2 and X is 2 to 8. The general formula of the above electrophilic triarylamine monomer is as follows: 201020275

於本實施例之較佳範例中,上述高支化三芳胺聚合物之一 般式如下:In a preferred embodiment of the present embodiment, one of the above-mentioned hyperbranched triarylamine polymers is as follows:

其中,m為3至9,η為3至9。 範例一高支化三芳胺聚合物(ΡΜΤΡΑ)之製備 預先配置以下前驅物: 4-(N,N, Diphenylamino) benzyl alcohol 利用芳香環的醛基化反應,將無水DMF(40mL)置入圓底燒 瓶中,將燒瓶置於冰浴環境下,並且將POCl3(25.4g,150mmol) 12 201020275 逐滴加入燒瓶内並進行攪拌。反應30分鐘後,緩慢地加入 TPA(36.8g,150mmol)於燒瓶中。其次,將上述混合物加熱2小 時(90°C) ’接著’加入碎冰至燒杯中以冷卻溫度,隨後逐滴加 入飽和之NaOAc溶液以中和上述混合物之酸鹼值至pH 6-8,其 • 次,以二氣甲烷進行萃取,將萃取物放置於一容器,再以清水 清洗萃取物,並以MgS〇4除去剩餘水分並進行濃縮,據此獲得 黃色固體4-(N,N’ Diphenylamino) benzyldehyde,產率66%,4 NMR (400 MHz, CDC13)(5 9.78 (s, 1H),7.65 (d, J =8.8 Hz, 2H), ❹ 7.32 (m, 4H), 7.14-7.16 (m, 6H), 7.00 (d, J =8.8 Hz, 2H); 13C NMR (100 MHz, CDC13) δ 190.13, 153.11, 145.92, 131.13, 129.56, 128.91, 126.19, 124.95, 119.18; MALDI-TOF-MS:m/z 273.1151 (M+),其中,藉由管柱層析純化 產物(4-(N,N,Diphenylamino) benzyl alcohol) 〇 取 4-(N,N’ Diphenylamino) benzyl alcohol(22.1mg » 80.9mmol)溶於乙醇(280mL)並逐滴加入 NaBH4(1.68g, © 44.3mmol),其中,上述NaBH4溶於NaOH水溶液中(0.1M, 15mL)。接著,於室溫下反應4小時,將產物以二氣甲烷進行萃 取,並將萃取物放置於一容器,再以清水清洗萃取物,以MgS04 除去剩餘水分並進行濃縮。將上述未經純化之產物進行再結 晶,據此獲得一白色固狀產物4-(N,N’ Diphenylamino) benzyl alcohol,產率99%, NMR (400 MHz,CDC13) δ 7.20-7.25 (m, 6H), 7.04-7.07 (m, 13 201020275 6H), 6.97-7.10 (m, 2H), 4.17 (d, J =5.2 Hz, 2H), 1.77 (t, 5.2 Hz, 1H); 13C NMR (100 MHz, CDC13) δ 147.14, 146.87, 134.48,128.80, 127.85, 123.80, 123.61, 122.40, 65.10;MALDI-TOF-MS: m/z 275.1303(M+) » 首先,混合NaH(0.41g ’ 16.9mg)與DMF(lOmL) 於一雙頸瓶中,其次,將 4-(N,N’ Diphenylamino) benzyl alcohol(4.2g,16.9mmol)溶於DMF(lOmL)後加入上述雙頸瓶 ❹ 中,接著,攪拌一段時間後加入Μ 丁二甲苯磺酸酯(l,4-butane ditosylate,ll.Og,27.6mmol)並於室溫下反應2天,隨後加入甲 醇終止反應,其中,以旋轉蒸發器移除甲醇與部份DMF,剩下 之殘餘物以清水洗滌以及使用二氣甲烷進行純化萃取。最後,Wherein m is from 3 to 9 and η is from 3 to 9. Example 1 Preparation of a highly branched triarylamine polymer (ΡΜΤΡΑ) The following precursors were pre-configured: 4-(N,N, Diphenylamino) benzyl alcohol Anhydrous DMF (40 mL) was placed in a round bottom using an aldehyde grouping reaction of an aromatic ring. In a flask, the flask was placed in an ice bath environment, and POCl3 (25.4 g, 150 mmol) 12 201020275 was added dropwise to the flask and stirred. After reacting for 30 minutes, TPA (36.8 g, 150 mmol) was slowly added to the flask. Next, the above mixture was heated for 2 hours (90 ° C) 'then' to add crushed ice to the beaker to cool the temperature, followed by dropwise addition of a saturated NaOAc solution to neutralize the pH of the above mixture to pH 6-8, which • Secondary extraction with di-methane, placing the extract in a container, washing the extract with water, removing the remaining water with MgS〇4 and concentrating, thereby obtaining a yellow solid 4-(N,N' Diphenylamino Benzyldehyde, yield 66%, 4 NMR (400 MHz, CDC13) (5 9.78 (s, 1H), 7.65 (d, J = 8.8 Hz, 2H), ❹ 7.32 (m, 4H), 7.14-7.16 (m , 6H), 7.00 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDC13) δ 190.13, 153.11, 145.92, 131.13, 129.56, 128.91, 126.19, 124.95, 119.18; MALDI-TOF-MS:m /z 273.1151 (M+), wherein 4-(N,N' Diphenylamino) benzyl alcohol was extracted by column chromatography to extract 4-(N,N' Diphenylamino) benzyl alcohol (22.1 mg » 80.9 mmol) Dissolved in ethanol (280 mL) and added NaBH4 (1.68 g, © 44.3 mmol) dropwise, wherein the above NaBH4 was dissolved in aqueous NaOH (0.1 M, 15 mL), and then reacted at room temperature for 4 hours. The product is extracted with di-methane, and the extract is placed in a container, and the extract is washed with water, and the remaining water is removed by MgS04 and concentrated. The unpurified product is recrystallized, thereby obtaining one. 4-(N,N' Diphenylamino) benzyl alcohol, yield 99%, NMR (400 MHz, CDC13) δ 7.20-7.25 (m, 6H), 7.04-7.07 (m, 13 201020275 6H), 6.97 -7.10 (m, 2H), 4.17 (d, J = 5.2 Hz, 2H), 1.77 (t, 5.2 Hz, 1H); 13C NMR (100 MHz, CDC13) δ 147.14, 146.87, 134.48, 128.80, 127.85, 123.80 , 123.61, 122.40, 65.10; MALDI-TOF-MS: m/z 275.1303(M+) » First, mix NaH (0.41g ' 16.9mg) with DMF (10mL) in a double flask, and secondly, 4-( N,N' Diphenylamino) benzyl alcohol (4.2 g, 16.9 mmol) was dissolved in DMF (10 mL) and added to the above-mentioned double-necked flask, followed by stirring for a while and then adding butyl succinyl sulfonate (1,4-butane). Ditosylate, ll.Og, 27.6 mmol) and reacted at room temperature for 2 days, followed by the addition of methanol to terminate the reaction, wherein methanol and part of DMF were removed by rotary evaporator, leaving the residue Washed with water and purified methane gas using two extraction. At last,

獲得淡黃色液狀產物 (l),產率45%,1HNMR(400MHZ,CDCl3):5 7.76((i,J)8.4Obtained as a pale yellow liquid product (1), yield 45%, 1H NMR (400 MHZ, CDCl3): 5 7.76 ((i, J) 8.4

Hz, 2H), 7.30 (d, J ) 8.4 Hz, 2H), 7.19-7.21 (m, 4H), 7 13 (d n 8.4 Hz, 2H), 6.97-7.06 (m, 8H), 4.36 (s, 2H), 4.03 (t, 6 Hz 2H) 3.42 (t,6 Hz, 2H),2.41 (s, 3H), 1.73-1.76 (m,2H),1.6〇-i.6’5(m’ 2H),其中,藉由管柱層析純化產物(1)。 再者’靜置上述產物(1)一夜後即可獲得高支化三芳胺聚合 物(PMTPA) ’其中’上述產物(1)會部分水解形成一種甲基苯磺 201020275Hz, 2H), 7.30 (d, J ) 8.4 Hz, 2H), 7.19-7.21 (m, 4H), 7 13 (dn 8.4 Hz, 2H), 6.97-7.06 (m, 8H), 4.36 (s, 2H ), 4.03 (t, 6 Hz 2H) 3.42 (t,6 Hz, 2H), 2.41 (s, 3H), 1.73-1.76 (m, 2H), 1.6〇-i.6'5(m' 2H), Among them, the product (1) was purified by column chromatography. Further, the above product (1) was allowed to stand overnight to obtain a highly branched triarylamine polymer (PMTPA), wherein the above product (1) was partially hydrolyzed to form a methylbenzenesulfonate.

並且上述具 酸與一種具親電性之三芳胺單體 親電性之三芳胺單體會產生Friedel-Crafts型之自縮合 (self-condensation)反應,因而生成高支化三芳胺聚合物 (PMTPA),其化學反應如下所示。And the above-mentioned triarylamine monomer having an electrophilic property with an electrophilic triarylamine monomer generates a self-condensation reaction of Friedel-Crafts type, thereby producing a highly branched triarylamine polymer (PMTPA). ), the chemical reaction is as follows.

Friedel-Crafts Type polymerizationFriedel-Crafts Type polymerization

PMTPAPMTPA

其中,m為3至9,n為3至9。 15 201020275 此外,上述PMTPA藉由凝膠滲透色譜法(gel permeation chromatography)量測得到:Mw= 10 200; Mn = 3400; DPI= 3.01. 元素分析:C丨9Hi5N,估計值:C,88.68; H,5_88; N, 5.44。實 際值:C, 85·39;Η,5.85; N,5.16。上述PMTPA之分子量與熱穩 定性如下表一所示,其中,Mw:分子量、PDI :聚合分佈指數、 Tg :與玻璃化轉換溫度Td :裂解溫度。 Μ P Tg(° Td(° 102 3. 158 516 範例二有機發光二極體之製備 預配置溶液: 將 PVK(lOOmg)、PBD(30mg)與 Ir(ppy)3(40mg)溶於三氣甲 〇 院(8mL),靜置數小時待其完成溶解,其中,藉由微濾技術移 除未溶解之粒子與塵埃。 利用循環伏安法電聚合PMTPA於一氧化銦錫-玻璃電極 上,並且以二氣甲貌沖洗表面,以形成一電洞傳導層於電極 上。接著,將預配置溶液旋轉塗佈(3〇〇〇rpm,9〇秒)於電洞傳 導層,並於真空下乾燥(7〇。(:,1〇分鐘),藉此形成一光作用層 於電洞傳導層上,其次,沉積一相反電極(Mg/A1)於上述光作用 16 201020275 層上(沉積系統:5xlO_6Torr),據此完成一有機發光二極體。其 中’相反電極之沉積速率:Mg : lA/s,A1 : 4A/s。另外,上述 電洞傳導層之掃描式電子顯微鏡囷片如第一圖所示。 上述有機發光二極體之效能關係圖如下表二所示: 表二 CV eydc numbens H1L film thkkness (rmf i 3 10 IS 20 30 40 0&quot; Qc 0C Qc 43 9.4 13.6 249 lum-oit vdtag^ (V) ai cd/gi2 max bii^itiiess (od^m2) max efficieRcy (cd/A) Ν·Α户 123 ±0M ί\Μ±ϋ.ω 1重‘5 土MS ϋ.5±0,20 il.2±a〇5 ΆΊ ±0.20 I3jS ±0.i0Wherein m is from 3 to 9 and n is from 3 to 9. 15 201020275 Further, the above PMTPA was measured by gel permeation chromatography: Mw = 10 200; Mn = 3400; DPI = 3.01. Elemental analysis: C丨9Hi5N, estimated value: C, 88.68; , 5_88; N, 5.44. Actual value: C, 85·39; Η, 5.85; N, 5.16. The molecular weight and thermal stability of the above PMTPA are shown in Table 1 below, wherein Mw: molecular weight, PDI: polymerization distribution index, Tg: and glass transition temperature Td: cracking temperature. Μ P Tg(° Td(° 102 3. 158 516 Example 2 Preparation of Organic Light-Emitting Diode Pre-configured Solution: Dissolving PVK (100 mg), PBD (30 mg) and Ir(ppy) 3 (40 mg) in three gas Brothel (8 mL), allowed to stand for several hours to complete dissolution, wherein undissolved particles and dust were removed by microfiltration technique. PMTPA was electropolymerized by cyclic voltammetry on an indium tin oxide-glass electrode, and The surface is rinsed with a gas mask to form a hole conducting layer on the electrode. Next, the pre-form solution is spin coated (3 rpm, 9 sec) onto the hole conducting layer and dried under vacuum. (7〇. (:, 1 minute), thereby forming a light-acting layer on the hole conducting layer, and secondly, depositing an opposite electrode (Mg/A1) on the above-mentioned light-acting layer 16 201020275 (deposition system: 5xlO_6Torr According to this, an organic light-emitting diode is completed. The deposition rate of the opposite electrode is: Mg: lA/s, A1: 4 A/s. In addition, the scanning electron microscope of the above-mentioned hole conducting layer is as shown in the first figure. The performance relationship diagram of the above organic light-emitting diodes is shown in Table 2 below: Table 2 CV eydc numbens H1L film thkkness (rmf i 3 10 IS 20 30 40 0&quot; Qc 0C Qc 43 9.4 13.6 249 lum-oit vdtag^ (V) ai cd/gi2 max bii^itiiess (od^m2) max efficieRcy (cd/A) Ν · Seto 123 ±0M ί\Μ±ϋ.ω 1 heavy '5 soil MS ϋ.5±0,20 il.2±a〇5 ΆΊ ±0.20 I3jS ±0.i0

NAfc 16670 at 21 V MI0st22 V 21230 lit 20 V mm ϋ 2〇 v mmumy S9^)at 2i V 2757 ai 21 V NA* 8.9 8.9 10.4 10.1 9Λ 6泠 46 其中,CV cycle numbers :循環伏安循環次數、HTL film thickness :電洞傳導層厚度、turn_〇 voltage :導通電壓、max brightness .最大亮度與max efficiency :最大效率,而n.a. 表示數據未達可提供之值。 顯然地,依照上面實施例中的描述,本發明可能有許多的 修正與差異。因此需要在其附加的權利要求項之範圍内加以理 解,除了上述詳細的描述外,本發明還可以廣泛地在其他的實 施例中施行。上述僅為本發明之較佳實施例而已,並非用以限 定本發明之巾請專利範®;凡其它未脫離本發明所揭示之精神 下所完成的等效改變或修飾,均應包含在下述申請專利範 内。 17 201020275 【圖式簡單說明】 第一圖為範例二中,電洞傳導層之掃描式電子顯微鏡圖片。NAfc 16670 at 21 V MI0st22 V 21230 lit 20 V mm ϋ 2〇v mmumy S9^)at 2i V 2757 ai 21 V NA* 8.9 8.9 10.4 10.1 9Λ 6泠46 where CV cycle numbers : Cyclic voltammetry cycles, HTL Film thickness : thickness of the hole conduction layer, turn_〇voltage: on voltage, max brightness. maximum brightness and max efficiency: maximum efficiency, and na indicates that the data is not up to the available value. Obviously, many modifications and differences may be made to the invention in light of the above description. It is therefore to be understood that within the scope of the appended claims, the invention may be The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent changes or modifications made without departing from the spirit of the present invention should be included in the following. Apply for a patent. 17 201020275 [Simple description of the diagram] The first picture is a scanning electron microscope image of the hole conduction layer in the second example.

1818

Claims (1)

201020275 七、申請專利範圍: 1. 一種電洞傳導層材料,該電洞傳導層材料包含一高支化三芳201020275 VII. Patent application scope: 1. A hole conducting layer material, the hole conducting layer material containing a high branching Sanfang 聚合物之單體係衍生自一包含至少一曱苯磺酸酯基團(tosylate group)之三芳胺單體。 2.如申請專利範圍第1項所述之電洞傳導層材料,其中,部份該包 0 含至少一甲苯磺酸酯基團(tosylate group)之三芳胺單體水解形 成一種甲基苯磺酸與一種具親電性之三芳胺單體,並且該具親 電性之三芳胺單體以 Friedel-Crafts型之自縮合 (self-condensation)反應形成該尚支化三芳胺聚合物。 3·如申請專利範圍第1項所述之電洞傳導層材料,其中,該包含至 Q 少一甲苯磺酸酯基團之三芳胺單艎之一般式如下:The single system of polymer is derived from a triarylamine monomer comprising at least one tosylate group. 2. The hole conducting layer material according to claim 1, wherein a portion of the triarylamine monomer having at least one tosylate group is hydrolyzed to form a methylbenzenesulfonate. The acid is combined with an electrophilic triarylamine monomer, and the electrophilic triarylamine monomer is subjected to a self-condensation reaction of Friedel-Crafts type to form the still branched triarylamine polymer. 3. The material of the hole conducting layer according to claim 1, wherein the general formula of the triarylamine monoterpene containing the Q-toluenesulfonate group is as follows: 其中,A為CH2,X為2至8。 201020275 4.如申請專利範圍第2項所述之電洞傳導層材料,其中,該具親電 性之三芳胺單體之一般式如下:Wherein A is CH2 and X is 2 to 8. 201020275 4. The hole conducting layer material according to claim 2, wherein the general formula of the electrophilic triarylamine monomer is as follows: ❹ 5.如申請專利範圍第1項所述之電洞傳導層材料,其中,該高支化 三芳胺聚合物之一般式如下: ❿❹ 5. The material of the hole conducting layer according to claim 1, wherein the general formula of the highly branched triarylamine polymer is as follows: 其中,m為3至9,η為3至9 6.如申請專利範圍第1項所述之電洞傳導層材料,其中,該電洞傳 導層材料係應用於有機發光二極體(polymer light-emitting diodes) ° 20 201020275 7. —種電洞傳導層材料之形成方法,其中,該電洞傳導層材料包含 一高支化三芳胺聚合物(hyperbranched triarylamine polymer),該 方法包含: 提供一包含至少一甲苯續酸酯基團(tosylate group)之三芳胺單 體,該包含至少一甲苯績酸酯基團(tosylate group)之三芳胺單體 經水解反應後形成一種甲基苯磺酸與一種具親電性之三芳胺單 體,並且該具親電性之三芳胺單體以Friedel-Crafts型之自縮合反 應形成該高支化三芳胺聚合物,據此完成該電洞傳導層材料。 8. 如申請專利範圍第7項所述之電洞傳導層材料,其中,該包含至 少一甲苯磺酸酯基團之三芳胺單體的一般式如下:Wherein, m is 3 to 9, and η is 3 to 9 6. The hole conducting layer material according to claim 1, wherein the hole conducting layer material is applied to an organic light emitting diode (polymer light) -emitting diodes) ° 20 201020275 7. A method for forming a hole conducting layer material, wherein the hole conducting layer material comprises a hyperbranched triarylamine polymer, the method comprising: providing an inclusion a triarylamine monomer of at least one tosylate group, wherein the triarylamine monomer comprising at least one tosylate group is hydrolyzed to form a methylbenzenesulfonic acid and a An electrophilic triarylamine monomer, and the electrophilic triarylamine monomer is formed by a self-condensation reaction of Friedel-Crafts type to form the highly branched triarylamine polymer, thereby completing the hole conducting layer material. 8. The hole conducting layer material according to claim 7, wherein the general formula of the triarylamine monomer containing at least one tosylate group is as follows: °v° Ok 其中,A為CH2,x為2至8。 9. 如申請專利範圍第7項所述之電洞傳導層材料,其中,該具親電 性之三芳胺單體之一般式如下: 21 201020275°v° Ok where A is CH2 and x is 2 to 8. 9. The hole conducting layer material according to claim 7, wherein the general formula of the electrophilic triarylamine monomer is as follows: 21 201020275 10.如申請專利範圍第7項所述之電洞傳導層材料,其中,該高支 化三芳胺聚合物之一般式如下:10. The hole conducting layer material according to claim 7, wherein the general formula of the highly branched triarylamine polymer is as follows: 6 其中,m為3至9,η為3至9。 11.如申請專利範圍第7項所述之電洞傳導層材料,其中,該電洞 傳導層材料係應用於有機發光二極艘(polymer light-emitting diodes) ° 12. —種有機發光二極體(Polymer Light-Emitting Diode),該有機 發光二極體包含: 22 201020275 一陽極; 一種位於該陽極上之電洞傳導層(hole-transporting layer ), 該電洞傳導層包含一高支化三芳胺聚合物(hyperbranched triarylamine polymer),形成該高支化三芳胺聚合物之單體係衍 生自一包含至少一甲苯項酸醋基團(tosylate group)之三芳胺單 體; 一發光層(emitting layer ),該發光層位於該電洞傳導層上; 以及 一陰極,該陰極位於該發光層上。 13. 如申請專利範圍第12項所述之電洞傳導層材料,其中,部份該 包含至少一曱苯績酸酯基團(tosylate group)之三芳胺單體水解形 成一種甲基笨磺酸與一種具親電性之三芳胺單體,並且該具親電 性之二芳胺單體以Friedel-Crafts型之自縮合(self-condensation)反 應形成該高支化三芳胺聚合物。 14. 如申請專利範圍第13項所述之電洞傳導層材料,其中,該包含 至少一甲苯磺酸酯基團之三芳胺單體之一般式如下: 23 2010202756 wherein m is 3 to 9 and η is 3 to 9. 11. The hole conducting layer material according to claim 7, wherein the hole conducting layer material is applied to a polymer light-emitting diodes. 12. an organic light emitting diode (Polymer Light-Emitting Diode), the organic light-emitting diode comprises: 22 201020275 an anode; a hole-transporting layer on the anode, the hole conducting layer comprising a high-branched Sanfang a macrobranched triarylamine polymer, the single system forming the hyperbranched triarylamine polymer is derived from a triarylamine monomer comprising at least one tosylate group; a luminescent layer The luminescent layer is on the hole conducting layer; and a cathode is located on the luminescent layer. 13. The hole conducting layer material according to claim 12, wherein a portion of the triarylamine monomer comprising at least one tosylate group is hydrolyzed to form a methyl sulfonate. The hyperbranched triarylamine polymer is formed by a self-condensation reaction with an electrophilic triarylamine monomer and the electrophilic diarylamine monomer in a Friedel-Crafts type. 14. The hole conducting layer material of claim 13, wherein the general formula of the triarylamine monomer comprising at least one tosylate group is as follows: 23 201020275 其中,A為CH2,χ為2至8。 15.如申請專利範圍第13項所述之電洞傳導層材料,其中,該具親 電性之三芳胺單體之一般式如下:Wherein A is CH2 and χ is 2 to 8. 15. The hole conducting layer material according to claim 13, wherein the general formula of the electrophilic triarylamine monomer is as follows: 16.如申請專利範圍第12項所述之電洞傳導層材料,其中,該高支 化三芳胺聚合之一般式如下:16. The hole conducting layer material of claim 12, wherein the general formula of the highly branched triarylamine polymerization is as follows: 24 201020275 其中,m為3至9, η為3至9。 17.如申請專利範圍第12項所述之有機發光二極體,其中,電洞傳 導層之厚度為小於或等於10奈米。 0 • 18.如申請專利範圍第12項所述之有機發光二極體,其中,該有機 發光二極鱧之亮度係20000cd/m2以上》 0 19.. 一種有機發光二極體(Polymer Light-Emitting Diode)之形成 方法,該形成方法包含: 提供一陽極; 電聚合(electropolymerization) —高支化三芳胺聚合物 (hyperbranched triarylamine polymer)以形成一電洞傳導層 (hole-transporting layer )於該陽極上,其中,該高支化三芳胺 聚合物係衍生自一包含至少一甲苯確酸S旨基團(tosylate group) 之三芳胺單體,其中,該三芳胺單體係藉由自縮合 (self-condensation)反應形成該高支化三芳胺聚合物; 形成一發光層於該電洞傳導層(hole-transP〇rtinglayer)上; 形成一陰極於該發光層上。 20.如申請專利範圍第19項所述之電洞傳導層材料,其中,部份該 包含至少一甲苯磺酸酯基團(tosylate group)之三芳胺單體水解 25 201020275 形成一種甲基苯磺酸與一種具親電性之三芳胺單體,並且該具 親電性之三芳胺單體以Friedel-Crafts型之自縮合反應形成該 高支化三芳胺聚合物。 該包含 21.如申請專利範圍第19項所述之電洞傳導層材料,其中 至少一甲苯磺酸酯基困之三芳胺單體之一般式如下:24 201020275 where m is 3 to 9 and η is 3 to 9. 17. The organic light-emitting diode according to claim 12, wherein the thickness of the hole conducting layer is less than or equal to 10 nm. The organic light-emitting diode according to claim 12, wherein the brightness of the organic light-emitting diode is 20,000 cd/m 2 or more. 0 19. An organic light-emitting diode (Polymer Light- Emitting Diode), the forming method comprising: providing an anode; electropolymerization - a hyperbranched triarylamine polymer to form a hole-transporting layer at the anode Above, wherein the hyperbranched triarylamine polymer is derived from a triarylamine monomer comprising at least a tosylate group, wherein the triarylamine single system is self-condensed (self -condensation) forming the hyperbranched triarylamine polymer; forming a light-emitting layer on the hole-transPrating layer; forming a cathode on the light-emitting layer. 20. The hole conducting layer material of claim 19, wherein a portion of the triarylamine monomer comprising at least one tosylate group hydrolyzes 25 201020275 to form a methyl benzene sulfonate The acid is combined with an electrophilic triarylamine monomer, and the electrophilic triarylamine monomer is self-condensed by a Friedel-Crafts type to form the hyperbranched triarylamine polymer. The invention comprises the material of the hole conducting layer material according to claim 19, wherein the general formula of the at least one tosylate group trapped triarylamine monomer is as follows: 其中,A為CH2,X為2至8。 22.如申請專利範圍第20項所述之電洞傳導層材料,其中,該具親 電性之三芳胺單體之一般式如下:Wherein A is CH2 and X is 2 to 8. 22. The material for a hole conducting layer according to claim 20, wherein the general formula of the electrophilic triarylamine monomer is as follows: 23.如申請專利範圍第19項所述之電洞傳導層材料,其中,該高支 化三芳胺聚合之一般式如下: 26 20102027523. The hole conducting layer material of claim 19, wherein the general formula of the highly branched triarylamine polymerization is as follows: 26 201020275 24.如申請專利範圍第19項所述之有機發光二極體,其中,電洞傳 導層之厚度為小於或等於10奈米。 φ 25.如申請專利範圍第19項所述之有機發光二極體,其中,該有機 發光二極體之亮度係20000cd/m2以上。 27The organic light-emitting diode according to claim 19, wherein the thickness of the hole conducting layer is less than or equal to 10 nm. The organic light-emitting diode according to claim 19, wherein the organic light-emitting diode has a luminance of 20,000 cd/m2 or more. 27
TW97146143A 2008-11-28 2008-11-28 Hole-transport material for polymer light-emitting diode and fabrication thereof TWI387611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146143A TWI387611B (en) 2008-11-28 2008-11-28 Hole-transport material for polymer light-emitting diode and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146143A TWI387611B (en) 2008-11-28 2008-11-28 Hole-transport material for polymer light-emitting diode and fabrication thereof

Publications (2)

Publication Number Publication Date
TW201020275A true TW201020275A (en) 2010-06-01
TWI387611B TWI387611B (en) 2013-03-01

Family

ID=44832128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146143A TWI387611B (en) 2008-11-28 2008-11-28 Hole-transport material for polymer light-emitting diode and fabrication thereof

Country Status (1)

Country Link
TW (1) TWI387611B (en)

Also Published As

Publication number Publication date
TWI387611B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
EP1794256B1 (en) New compound and organic light emitting device using the same(2)
KR101772990B1 (en) Organic compound having highly thermal stability for organic device, and method for manufacturing thereof and organic electroluminescent device comprising thereof
Kumar et al. Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes
JP5686341B2 (en) Compositions and devices
TW201012777A (en) Compounds for electronic devices
EP1373431B1 (en) Asymmetric dendrimers
TWI741087B (en) High-molecular weight compound containing a substituted triarylamine structural unit
TWI421273B (en) Polymer, organic photoelectric device and display including the same
KR20080078072A (en) Polymeric carbazole compounds
US8227096B2 (en) Arylamine compound and organic electroluminescence device
US20180294417A1 (en) Fluorene-carbazole derivatives and phosphorescent organic electroluminescent devices
JP5727434B2 (en) Novel compound for carrier transport, element and electronic device using the novel compound
Gu et al. Tetrasubstituted adamantane derivatives with arylamine groups: Solution-processable hole-transporting and host materials with high triplet energy and good thermal stability for organic light-emitting devices
TW201249956A (en) Polymer for organic electroluminescent elements, and organic electroluminescent element using cured product of same
JP5481057B2 (en) Organic electroluminescence device
JP2000123974A (en) Poly{2-methoxy-5-(2&#39;-ethylhexyloxy)-1,4-phenylene-1, 2- ethenylene-2,5-dimethoxy-1,4-phenylene-1, 2-ethenylene} as electroluminescent material
Jiang et al. Triphenyl phosphine oxide and carbazole-based polymer host materials for green phosphorescent organic light-emitting diodes
JP2005306998A (en) Charge transporting polymer, method for producing the same, polymer composition for organic electroluminescent element and organic electroluminescent element
TW201245196A (en) Curable composition, cured product and organic electroluminescent element using the same
JP5866902B2 (en) Carbazole derivative and organic electroluminescence device using the same
KR20210024966A (en) Organic light emitting device
KR20200069453A (en) Compounds comprising benzophenone group, Organic electronic device comprising organic layers comprising the photo-cured of the monomer compounds
JP7427317B2 (en) Novel polymer and organic light-emitting device using it
KR100865661B1 (en) Polymeric Compounds Containing Phenylcarbazole Group and Polymer Light Emitting Diode Employing the Same
KR100834447B1 (en) Polymeric compounds containing phenylcarbazole group and polymer light emitting diode employing the same