TW201019947A - Plant derived compounds and compound formulae containing the same for the treatment of cervical cancer - Google Patents

Plant derived compounds and compound formulae containing the same for the treatment of cervical cancer Download PDF

Info

Publication number
TW201019947A
TW201019947A TW97145807A TW97145807A TW201019947A TW 201019947 A TW201019947 A TW 201019947A TW 97145807 A TW97145807 A TW 97145807A TW 97145807 A TW97145807 A TW 97145807A TW 201019947 A TW201019947 A TW 201019947A
Authority
TW
Taiwan
Prior art keywords
compound
hours
human papillomavirus
subject
virus
Prior art date
Application number
TW97145807A
Other languages
Chinese (zh)
Other versions
TWI386219B (en
Inventor
Ming-Kuang Shih
Yu-Chou Chao
Ying-Chu Shih
Kuo-Kuei Huang
Original Assignee
Modetex Biomedical Materials & Technology Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modetex Biomedical Materials & Technology Ind Corp filed Critical Modetex Biomedical Materials & Technology Ind Corp
Priority to TW97145807A priority Critical patent/TWI386219B/en
Publication of TW201019947A publication Critical patent/TW201019947A/en
Application granted granted Critical
Publication of TWI386219B publication Critical patent/TWI386219B/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A compound formula for reducing the activity of a cervical cancer cell in a subject is provided. The compound formula includes at least one compound selected from the group consisting of baicalein, baicalin, berberine hydrochloride, and derivatives thereof, and at least one compound selected from the group consisting of isopsoralen, triptolide, quercetin, gossypol-acetic acid, and derivatives thereof.

Description

201019947 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種兩以治療子宮頸癌之植物衍生化合 物;特別是有關於一種包含上述化合物的複方。 【先前技術】201019947 VI. Description of the Invention: [Technical Field] The present invention relates to a plant-derived compound for treating cervical cancer; in particular, a compound comprising the above compound. [Prior Art]

子宮頸癌高居台灣女性癌症死因的第二位,每年奪走 超過一千條人命。目前已證實人類乳突病毒(human papilloma virus,HPV)感染是子宮頸癌發生的必要原因之 一。在美國與歐洲各國已研發出了 HPV疫苗,這些疫苗可 以有效預防少數人類乳突病毒品系,其中這些品系經證實 與70%的子宮頸癌病變相關。然而,台灣本土的研發單位 對於子宮頸癌的防治則未見重大的進展。 人類乳突病毒為無外膜的雙股DNA病毒,其外型為對 稱的二十面體。人類乳突病毒的基因組係由72個蛋白殼粒 (capsomer )組合物的蛋白殼所圍繞。HPV基因組在宿主 體内極易突變’目前已辨識出約250種HPV品系;一般而 言,人類乳突病毒的結構常隨著地域、生活習慣、種族與 感染途徑而異。如上所述,HPV疫苗僅針對某些高風險品 系;因此婦女即便注射過HPV疫苗,仍須定期;^二子宮= 抹片檢查。此外’HPV疫苗應於感染前注射,因此 苗的主要施打對象為不曾進行性行為的女性。 在感染了人類乳突病毒之後,病毒可能引 胞變異而導致子宮麵。目前常㈣子_癌 '勺 括癌症切除術、放射線治療和/或化學治療。 ’、 ^ 3 201019947 有鑑於此,相關領域亟待提出一種子宮頸癌的治療方 法。 【發明内容】 因此,本發明之一態樣提出一種降低子宮頸癌細胞活 性之組合物。 根據本發明一具體實施例,上述組合物至少包含以下 化合物其中之一:異補骨脂素、雷公藤内酯、黃芩素、沒 食子酸、槲皮素、棉酚醋酸酯、黃芩苷、鹽酸小蘖鹼與其 衍生物,且其含量足以降低受試對象中子宮頸癌細胞之活 性。 本發明另一態樣提出一種降低病毒感染細胞或病毒感 染受試對象中人類乳突病毒的病毒活性之組合物。 根據本發明一具體實施例,上述組合物至少包含以下 化合物其中之一:黃答素、沒食子酸與其衍生物,且其含 量足以降低病毒感染細胞或病毒感染受試對象中之病毒活 參 性。 本發明又一態樣提出一種降低子宮頸癌細胞活性之方 法。 根據本發明一具體實施例,上述方法至少包含對子宮 頸癌細胞施予一組合物,其至少包含治療有效量之異補骨 脂素、雷公藤内s旨、黃答素、沒食子酸、槲皮素、棉酴醋 酸酉旨、黃答苦、鹽酸小蘖驗或其衍生物。 本發明又一態樣提出一種降低病毒感染細胞或病毒感 - 染受試對象中人類乳突病毒的病毒活性之方法。 201019947 ,根據本發明一具體實施例,上述方法至少包含對病毒 感染細胞或病毒感染受試對象施予一組合物,其至少包含 治療有效量之黃芩素、沒食子酸或其衍生物。 可藉由參照下文實施方式與申請專利範圍而更清楚瞭 解本發明實施例的上述及其他特徵、態樣與優點。上文的 概要敘述以及下文的詳細說明僅為例示,其目的在於針對 申請專利範圍欲保護之標的提供進一步的詳細說明。 ❿ 【實施方式】 在目前辨識出的人類乳突病毒品系中,有15種被歸類 為高風險類型(分別為16、18、31、33、35、39、45、51、 52、56、58、59、68、73與82)。更明確地說,在子宮頸 癌病例中,約有70%與HPV 16以及HPV 18有關。雖然上 述品系被歸類為「高風險」類型,但感染高風險HPV品系 卻又不必然會導致子宮頸癌的發生。另一方面,即便是可 能高風險類型(26、53與66)以及低風險類型(6、11、 ❹ 40、42、43、44、54、61、7〇、72、81 與 CP6108)的病 毒感染,也有可能引發子宮頸癌。 傳統醫學與中草藥的運用已歷經了數千年的歷史;而 由於現代科學與醫藥的進步,目前已經確認中草藥能夠有 效地預防、治療和/或減緩多種疾病與不適。此外,已知中 草藥對人體所造成的副作用較少。近來,不論東方或西方 的醫學界’皆曾提出以傳統醫學來搭配常用癌症療法如化 , 療或緩和其副作用。 • 發明人探究了多種植物性中草藥,以尋找能夠治療子 5 201019947 宮頸癌和/或人類乳突病毒的中草藥成分,這些植物包含補 骨脂(ΡίΌΓύτ/ββ cory/zyb/z.flr )、雷公藤( wilfordii Hook. F.)、景斗{Scutellaria baicalensis Georgi)、 山 H X Cornus officinalis)、苦 I { Sophore flavescents j".)、棉花籽(Cotton seeds )以及黃蓮(Cop沿 Frimc/〇。萃取上述植物性中草藥,並以高效液態層析法 (high performance liquid chromatography,HPLC)純化出 其中的活性成分’而所得到的每一種活性物質之純度大於 等於97%。下表1中列出所用的植物與其活性化合物的名 稱及結構式。 表1 特定植物的活性化合其結構式 化合物編號 植物來源 活性化合物/結 分子式 A 補骨脂 異補骨脂素 。人 A^。 ChH6〇3 B 雷公藤 雷公藤内酯 CH3 δΗ C2〇H24〇6 C 黃芩 黃芩素 Cl5Hl〇〇5 6 201019947Cervical cancer ranks second in Taiwan's female cancer deaths, killing more than a thousand lives each year. It has been confirmed that human papilloma virus (HPV) infection is one of the necessary causes of cervical cancer. HPV vaccines have been developed in the United States and European countries to effectively prevent a small number of human papillomavirus strains, which have been shown to be associated with 70% of cervical cancer lesions. However, Taiwan's local R&D units have not made significant progress in the prevention and treatment of cervical cancer. Human papillomavirus is a double-stranded DNA virus without an outer membrane, and its appearance is a symmetric icosahedron. The genome of human papillomavirus is surrounded by the protein shell of 72 protein capsomer compositions. The HPV genome is highly susceptible to mutation in the host. Currently, approximately 250 HPV strains have been identified; in general, the structure of human papillomavirus often varies with region, lifestyle, ethnicity, and route of infection. As noted above, HPV vaccines are only targeted at certain high-risk strains; therefore, women must be on a regular basis even if they have been vaccinated with HPV; ^ uterus = smear. In addition, the 'HPV vaccine should be injected before infection, so the main target of the vaccine is women who have not had sex. After infection with human papillomavirus, the virus may induce mutations in the cell surface. At present, the (four) sub-cancers include cancer resection, radiation therapy and/or chemotherapy. ‘, ^ 3 201019947 In view of this, there is an urgent need to propose a treatment method for cervical cancer. SUMMARY OF THE INVENTION Accordingly, one aspect of the present invention provides a composition for reducing the activity of cervical cancer cells. According to a specific embodiment of the present invention, the composition comprises at least one of the following compounds: isopsoralen, triptolide, baicalein, gallic acid, quercetin, gossypol acetate, baicalin, hydrochloric acid Berberine and its derivatives, and in an amount sufficient to reduce the activity of cervical cancer cells in a subject. Another aspect of the present invention provides a composition for reducing the viral activity of human papillomavirus in a virus-infected cell or a virus-infected subject. According to a particular embodiment of the invention, the above composition comprises at least one of the following compounds: flavin, gallic acid and its derivatives, and is present in an amount sufficient to reduce viral activity in a virus-infected cell or virus-infected subject. Yet another aspect of the invention provides a method of reducing the activity of cervical cancer cells. According to a specific embodiment of the present invention, the method comprises at least administering to the cervical cancer cell a composition comprising at least a therapeutically effective amount of isopsoralen, triptolide, safrole, gallic acid, suede Ordinary, cotton aphid acetic acid, yellow bitter, hydrochloric acid small test or its derivatives. Still another aspect of the present invention provides a method for reducing viral activity of a human papillomavirus in a subject infected with a virus-infected cell or virus. 201019947, in accordance with an embodiment of the present invention, the method comprising at least administering to the subject a virus-infected cell or a virus-infected subject a composition comprising at least a therapeutically effective amount of baicalein, gallic acid or a derivative thereof. The above and other features, aspects and advantages of embodiments of the present invention will become more apparent from the aspects of the appended claims. The above summary and the following detailed description are merely illustrative, and are intended to provide a further detailed description of the claimed subject matter. ❿ [Embodiment] Among the currently identified human papillomavirus lines, 15 are classified as high risk types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, respectively). 58, 59, 68, 73 and 82). More specifically, about 70% of cervical cancer cases are associated with HPV 16 and HPV 18. Although the above lines are classified as “high risk” types, infection with high-risk HPV lines does not necessarily lead to cervical cancer. On the other hand, even viruses that may be of high risk type (26, 53 and 66) and low risk types (6, 11, 40, 42, 43, 44, 54, 61, 7〇, 72, 81 and CP6108) Infection can also cause cervical cancer. Traditional medicine and Chinese herbal medicine have been used for thousands of years. Due to advances in modern science and medicine, it has been confirmed that Chinese herbal medicine can effectively prevent, treat and/or alleviate various diseases and discomforts. In addition, Chinese herbal medicines are known to have fewer side effects on the human body. Recently, both the Eastern and Western medical professions have proposed traditional medicine to match common cancer treatments such as chemotherapy, or to alleviate their side effects. • The inventors explored a variety of botanical Chinese herbal medicines to find Chinese herbal ingredients that can treat cervical cancer and/or human papillomavirus, including psoralen (ΡίΌΓύτ/ββ cory/zyb/z.flr), Leigong Vine ( wilfordii Hook. F.), Jingu {Scutellaria baicalensis Georgi), HX Cornus officinalis, Blot I { Sophore flavescents j".), Cotton seeds and Yellow Lotus (Cop along Frimc/〇. Extraction The above-mentioned botanical Chinese herbal medicine, and the active ingredient thereof is purified by high performance liquid chromatography (HPLC), and the purity of each active substance obtained is 97% or more. The following Table 1 lists the used substances. The name and structure of the plant and its active compounds. Table 1 The active compound of the specific plant. Its structural formula number Plant-derived active compound / knot formula A psoralen isopsoralen. Human A^. ChH6〇3 B Leigong Teng Leigong Rattan lactone CH3 δΗ C2〇H24〇6 C Astragalus scutellariae Cl5Hl〇〇5 6 201019947

OH ΟOH Ο

D 山茱萸 沒食子酸D Hawthorn Gallic acid

(H0)3C6H2C02H E 苦蔘 槲皮素(H0)3C6H2C02H E Bitter quercetin

C15H10O7 F 棉花籽 棉酚醋酸酯 C3〇H3〇08 · C2H4〇2C15H10O7 F Cotton Seed Gossypol Acetate C3〇H3〇08 · C2H4〇2

G 黃芩 黃芩苷 C2lHi8〇ll 201019947G Astragalus Baicalin C2lHi8〇ll 201019947

根據本發明一態樣,進行活體外試驗以探討上述化合 物用以降低子宮頸癌細胞(HeLa細胞)活性的效果。 根據本發明另一態樣,進行活體外試驗以探討上述化 合物用以降低病毒感染細胞和/或病毒感染受試對象中人 類乳突病毒之病毒活性的效果。 名詞定義 本說明書中所用之名詞通常具有在習知領域中所通用 的意義,不論是在本發明之脈絡下或任何其他脈絡下皆 然。本說明書中利用某些名詞,以便讓閱讀本發明之相關 人士能夠理解本發明。說明書中提供了某些名詞的同義 詞。然而,提及一或更多種同義詞,不代表排除了其他的 同義詞。在本說明書中,運用例示的說明方式時,包括此 處所述之任何名詞的舉例,都僅具備說明性,且不應認定 201019947 - 其可限定本發明或任何例示名詞之範圍及意涵。本發明不 限於說明書中所述之多種具體實施例。 除非另為相反之定義,此處所用之所有技術及科學專 有名詞的意義,皆和習知此技術者之一般理解相同。當二 者有所衝突時,本說明書包括名詞定義部分,會加以避免。 「治療」涵蓋對於人類之疾病提供或給予任何治療方 法。所謂治療包含抑制疾病、阻止疾病發展、減緩疾病, 例如藉使其退化、或回復或修補遺失、缺失、或缺損之功 Φ 能;或刺激沒有效率的生理過程。上述名詞包含得到一種 理想的藥理學和/生理學效果,涵蓋對於人類任何的病理情 況或疾患的治療。上述效果可以是預防性的,亦即能夠完 全或部分地防止疾患和或相關症狀;或者可以是治療性 地,亦即能夠部分或完全地治癒疾患和/或該疾患所導致之 不良影響。因此,本發明提供了治療及預防。其包含(1) 防止可能罹患疾病但尚未出現症狀的受試對象患病或復 發;(2)抑制疾患,例如阻止疾患之發展;(3)停止或終 φ 止疾患或至少相關之症狀,而使得患者不再受疾患或其症 狀所苦,例如使得疾患或其症狀退化,例如藉由回復或修 補遺失、缺失、或缺損之功能;或刺激沒有效率的生理過 程;以及(4)減輕、緩和或改善疾患或相關症狀,其中「改 善」一詞廣義地係指能夠減輕至少一種參數的強度,例如 癌症細胞或病毒感染細胞的細胞活性,上述細胞活性可為 細胞增生或細胞代謝活性。 > 「有效劑量」係指化合物之量對於受治療之受試對 象,足以產生一理想效果。舉例而言,根據本發明一具體 9 201019947 實施例之組合物的有效劑量應足以降低受試對象之子宮頸 癌細胞活性。根據本發明另〜具體實施例,-有效劑量组 合=應^以降低病番感染細跑或病毒感染受朗象中人類 乳突病毒的病毒活忮。精確的劑量會隨著治療的目的而 異,且習知技藝人士可利用已知技術來確定上述劑量。相 關領域中也已經知道,可能需要針對全身或局部投藥、年 重、一般健康狀況、性別、飲食習慣、投藥時間、 樂物父互作用、及嚴重性等情形,來調整劑量,且習知此 技術者可經由慣常試驗確定該劑量。 、、「藥學上可接受的載體」係指非毒性的固態、半固態 或液體填料、騎劑、封裝材料、配方辅#]、餘何習^ 類型之賦型劑。藥學上可接受的紐在所㈣劑量及濃度 下,對於使用者而言是沒有毒性的,且可和配方中盆他成 分相容。 〃 杜料與方法According to one aspect of the present invention, an in vitro test was conducted to investigate the effect of the above compounds for reducing the activity of cervical cancer cells (HeLa cells). According to another aspect of the present invention, an in vitro test is conducted to investigate the effect of the above compound for reducing the viral activity of human papillomavirus in a virus-infected cell and/or a virus-infected subject. Noun Definitions Terms used in this specification generally have the meanings that are common in the art, whether under the context of the present invention or any other context. Certain terms are used in the specification to enable those skilled in the art to understand the invention. Synonyms for certain nouns are provided in the specification. However, the reference to one or more synonyms does not imply the exclusion of other synonyms. In the present specification, the use of the exemplified descriptions, including any examples of the nouns described herein, are merely illustrative and should not be construed as limiting the scope and meaning of the invention or any exemplary term. The invention is not limited to the specific embodiments described in the specification. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art. When there is a conflict between the two, this specification includes the noun definition part and will be avoided. "Treatment" covers the provision or treatment of any disease in humans. The so-called treatment involves inhibiting the disease, preventing the development of the disease, slowing down the disease, for example by degrading it, or recovering or repairing the loss, loss, or defect; or stimulating an inefficient physiological process. The above nouns include obtaining an ideal pharmacological and/or physiological effect covering the treatment of any pathological condition or condition in humans. The above effects may be prophylactic, i.e., capable of completely or partially preventing the condition and or associated symptoms; or may be therapeutically, i.e., capable of partially or completely curing the condition and/or the adverse effects caused by the condition. Accordingly, the present invention provides for the treatment and prevention. It contains (1) preventing the disease or recurrence of a subject who may have a disease but has not yet developed symptoms; (2) inhibiting the disease, such as preventing the development of the disease; (3) stopping or eventually stopping the disease or at least the associated symptoms, and The patient is no longer suffering from the disease or its symptoms, such as degrading the condition or its symptoms, for example by replying or repairing the function of loss, loss, or defect; or stimulating an inefficient physiological process; and (4) mitigating, easing Or to ameliorate a condition or a related condition, wherein the term "improvement" broadly refers to reducing the strength of at least one parameter, such as the cellular activity of a cancer cell or a virus-infected cell, which may be cell proliferation or cellular metabolic activity. > "Effective dose" means that the amount of the compound is sufficient to produce a desired effect on the subject being treated. For example, an effective dose of a composition according to a specific embodiment of the present invention, in the embodiment of the present invention, should be sufficient to reduce the activity of cervical cancer cells in a subject. According to another specific embodiment of the present invention, the effective dose combination = should be used to reduce the viral activity of the human papilloma virus in the squamous infection of the infected or virgin infection. The precise dosage will vary with the purpose of the treatment, and the skilled artisan can utilize known techniques to determine such dosages. It is also known in the related art that it may be necessary to adjust the dosage for systemic or topical administration, annual weight, general health, gender, eating habits, time of administration, interaction of music, and severity, and this is known. The skilled artisan can determine this dosage via routine experimentation. And "pharmaceutically acceptable carrier" means a non-toxic solid, semi-solid or liquid filler, a riding agent, a packaging material, a formulation auxiliary #], and a type of excipient. The pharmaceutically acceptable ketone is not toxic to the user at the dose and concentration and can be compatible with the pelvic ingredients of the formulation. 〃 Du materials and methods

*生物材料與化學藥剤*Biomaterials and chemicals

HeLa細胞株來自工研院生醫所沈欣欣博士。細 胞為貼附型細胞,並以 DMEM( Dulbecco,s m〇dified Eagle,s medium)來增殖並維持HeLa細胞,培養基中添加了 ι〇% 胎牛血清(FBS)、1·5 g/L碳酸氫鈉(NaHc〇3)、lmM丙 酮酸鈉以及O.lmM非必須胺基酸。 人類臍靜脈内皮細胞(HUVEC)購自新竹食品工業研 究所。以Medium 1"培養基來增殖並維持huve^細胞, 培養基中添加了 10%的FBS、肝抗凝血素與EGFp。 201019947 人類293FT細胞株講自美國公司invitr〇gen Corporation。以DMEM來增殖並維持293FT細胞,培養基 中添加了 10%胎牛血清(FBS)、0.1mM非必須胺基酸與500 ug/ml 的 geneticin 抗生素(G418 )。 質體pl6sheLL與pCIneoEGFP來自美國國家癌症中心 (National Cancer Institute)的約輪•席勒博士。 DPBS-Mg 緩衝液包含 100 ml 之 DPBS、475 μΐ 之 2M 氯化鎂(MgCl2)以及lml之100Χ抗生素原液。 0 DMEM、Medium 199 培養基、geneticin 抗生素、非必 須胺基酸、脂質體(lipofectamine ) 2000、細胞培養試劑 Opti-ΜΕΜ-Ι 與 DPBS 係購自美國公司 Gibco Invetrogen。 FBS係購自以色列公司Biological Industries Ltd.。肝抗凝 血素、EGFP、溴化十六烷基三甲銨(MTT, Brij-58,3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazoliu-m bromide)係購自美國公司 Sigma-Aldrich Corp. 〇HeLa cell line was from Dr. Shen Xinxin from the Institute of Biomedical Research, Institute of Industrial Technology. The cells are adherent cells, and DMEM (Dulbecco, sm〇dified Eagle, s medium) is used to proliferate and maintain HeLa cells. The medium is supplemented with 〇% fetal bovine serum (FBS), and 1.5 g/L of hydrogen carbonate. Sodium (NaHc〇3), lmM sodium pyruvate, and O.lmM non-essential amino acid. Human umbilical vein endothelial cells (HUVEC) were purchased from the Hsinchu Food Industry Research Institute. The Medium 1" medium was used to proliferate and maintain huve cells, and 10% FBS, hepatic anticoagulant and EGFp were added to the medium. 201019947 The human 293FT cell line is from the American company invitr〇gen Corporation. 293FT cells were propagated and maintained in DMEM, and 10% fetal bovine serum (FBS), 0.1 mM non-essential amino acid, and 500 ug/ml of geneticin antibiotic (G418) were added to the medium. The plastids pl6sheLL and pCIneoEGFP were from Dr. Ronald Schiller of the National Cancer Institute. The DPBS-Mg buffer contained 100 ml of DPBS, 475 μM of 2M magnesium chloride (MgCl2), and 1 ml of 100 Χ antibiotic stock solution. 0 DMEM, Medium 199 medium, geneticin antibiotic, non-essential amino acid, lipofectamine 2000, cell culture reagents Opti-ΜΕΜ-Ι and DPBS were purchased from American company Gibco Invetrogen. The FBS is purchased from the Israeli company Biological Industries Ltd. Hepatic antithrombin, EGFP, and MTT, Brij-58, 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazoliu-m bromide were purchased from American company Sigma-Aldrich Corp. 〇

Doxorubicin HC1是一種可商業取得的化療藥物可用以 φ 治療癌症,購自 Sigma-Aldrich Co·。Doxorubicin HC1 is a commercially available chemotherapeutic drug that can be used to treat cancer, purchased from Sigma-Aldrich Co.

Corning® 96孔盤(型錄編號Cat :3603 )係購自美國 公司 Corning Inc. ° ♦細胞毒性分析(MTT分析) 利用MTT分析來評估本發明實施例提出之化合物對 HeLa細胞與HUVEC細胞之細胞毒性。利用HUVEC細胞 - 來研究上述化合物對正常人類細胞的細胞毒性。此外,利 . 用化療藥物doxorubicin HC1作為對照組,以探討根據本發 201019947 明具體實施例之化合物的有效性。 簡言之,MTT分析至少包含以下三個步驟: (A) 在進行處理前3小時將細胞植入96孔盤中,其中 HeLa細胞之濃度為每孔1X104細胞,而HUVEC細胞 之濃度為每孔2X104細胞; (B) 之後以不同濃度的試驗樣本處理細胞,並將之培 養一預定時期(24、48與72小時); (C) 在經過該預定時期後,移除試驗樣本並在每一孔 ❹ 中加入ΙΟΟμΙ之MTT試劑(1 mg/ml); (D) 將96孔盤在37°C與5%二氧化碳的條件下培養5小 時; (E) 移除MTT試劑’並在每一孔中加入ι〇〇μι之 DMSO ; (F) 利用ELISA分析儀來讀取每一孔在560 nm波長下 的光學密度(optical density,O.D.)。 每一試驗重複進行3次,本說明書表格内呈現的結果 ❹ 為3次重複試驗的平均值。紀錄對照組與實驗組的〇D. 值。每一樣本中,細胞存活率的計算方式如下: 細胞存活率(%) =〇.D.實驗组/O.Dm * 1〇〇〇/。 之後’以細胞存活率相對於化合物濃度來作圖,並利 用 GraFit.資料分析軟體(Erithacus Software· Ltd.)來計算 每一化合物的IC5〇值。 •製備表現綠色螢光蛋白質(GFP)的HPV16假病毒 . 將2 3 9 F τ細胞和密碼子經修飾的乳突病毒病毒蛋白殼 12 201019947 基因L1與L2、質體:pl6shell以及GFP報導質體 pCIneo-GFP共轉染’以觀察細胞的感染狀態。 根據美國國家癌症研究院提供的技術手冊來製備並獲 取可表現GFP之HPV 16假病毒,上述技術手冊請參見 http://home.ccr.cancer.gov/lco/production.asp 〇 在本發明實施例中,所用的可表現GFP之HPV 16假 病毒的病毒力價為每毫升約4*1〇8感染單位。Corning® 96-well plate (Cat. No. Cat. 3603) was purchased from the American company Corning Inc. ♦ Cytotoxicity Assay (MTT Analysis) MTT assay was used to evaluate cells of the compounds of the present invention against HeLa cells and HUVEC cells. toxicity. HUVEC cells were used to study the cytotoxicity of the above compounds against normal human cells. Further, the chemotherapeutic drug doxorubicin HC1 was used as a control group to investigate the effectiveness of the compound according to the specific examples of the present invention. Briefly, the MTT assay consists of at least three steps: (A) Implant the cells into 96-well plates 3 hours prior to treatment, with HeLa cells at a concentration of 1×104 cells per well, and HUVEC cells at a concentration of 1×104 cells per well. 2X104 cells; (B) The cells are then treated with different concentrations of test samples and cultured for a predetermined period of time (24, 48 and 72 hours); (C) after the predetermined period of time, the test samples are removed and MTμΙ of MTT reagent (1 mg/ml) was added to the wells; (D) 96-well plates were incubated for 5 hours at 37 ° C with 5% carbon dioxide; (E) Remove MTT reagent 'and in each well Add ι〇〇μι DMSO; (F) Use an ELISA analyzer to read the optical density (OD) of each well at 560 nm. Each test was repeated 3 times and the results presented in the table of this specification ❹ were the average of 3 replicates. The 〇D. values of the control group and the experimental group were recorded. Cell viability was calculated in each sample as follows: Cell viability (%) = 〇.D. Experimental group / O.Dm * 1 〇〇〇 /. Thereafter, the cell viability was plotted against the compound concentration, and the GraFit. data analysis software (Erithacus Software Ltd.) was used to calculate the IC5 enthalpy of each compound. • Preparation of HPV16 pseudovirus expressing green fluorescent protein (GFP). Papillomavirus protein shell 12 modified with 2 3 9 F τ cells and codons 12 201019947 Gene L1 and L2, plastid: pl6shell and GFP reporter plastid pCIneo-GFP was co-transfected 'to observe the infection state of the cells. Prepare and obtain HPV 16 pseudovirus that can express GFP according to the technical manual provided by the National Cancer Institute. Please refer to http://home.ccr.cancer.gov/lco/production.asp for the above technical manual. In the example, the viral power of the HPV 16 pseudovirus expressing GFP used was about 4*1〇8 infectious units per ml.

♦篩選抗感染化合物 以每孔6X103細胞的密度將HeLa細胞植入%孔盤 中。24小時後’加入不同體積的2X HPV 16假病毒。48 小時後’利用ELISA分析儀來讀取樣本的螢光強度,第j 圖顯示了其結果。第2圖顯示了每一 HPV 16假病毒體積 中的訊號雜訊比。 在挑選篩選平台時,感染率約為20%左右。因此,以 每孔約含0.25 μΐ之HPV 16假病毒的96孔盤作為筛選抗感 染化合物的平台。在此一劑量下,訊號雜訊比约2 〇_2 5 7 所用的篩選方式如下: 胞的密度將 (Α)在處理前24小時以每孔約6Χ103細 HeLa細胞入96孔盤中; (B)以不同濃度的測試樣本來處理細胞,以备孔〇 μΐ的HPV 16假病毒來感染細胞並在37。(:卞^ ’25 小時; 培養邨 13 201019947 - \C)利用ELISA分析儀來讀取樣本的螢光強度 (Excitation : 485 nm,Emission : 535 nm),並根據 上文所述的方法進行與MTT分析。 利用紅藻膠作為陽性控制藥物。每一試驗重複2次, 且本發明書所列之結果為2次重複試驗的平均值。利用上 文所述之方法得到細胞存活率與IC5Q值。 結果 參 •活性化合物A-Η對HeLa細胞之細胞毒性 根據本發明之一態樣,進行了一系列試驗來決定每一 化合物對於HeLa細胞之細胞毒性。將表1所列的活性化 合物以及陽性控制化合物—Doxorubin HC1以不同濃度施 予HeLa細胞與HUVEC細胞。在相關試驗中,利用未經活 性化合物A-Η與Doxorubin HC1處裡(添加濃度為〇吨/mi) 的HeLa細胞作為陰性控制。.根據以上材料與方法段落中 所述的方式得出HeLa細胞與HUVEC細胞在處理後24、 φ 48與72小時的存活率。表2與表3列出了 MTT分析的結 果。在本說明書中’化合物A到Η分別為異補骨脂素、雷 公藤内酯、黃芩素、沒食子酸、槲皮素、棉酚醋酸酯、黃 答苷與鹽酸小蘖鹼。 表2 不同濃度之活性化合物與HeLa細胞在預定時間的存活率 ----- _ (佔未加藥空白對照組之百分比) ,_ - 化合物A:異補骨脂素 0 pg/ml 0.125 μ^ιηΐ 1·25 tig/nil 12.5 μβ/ml 125 pg/ml 14 201019947♦ Screening of anti-infective compounds HeLa cells were seeded in a % well plate at a density of 6 x 103 cells per well. Different volumes of 2X HPV 16 pseudovirus were added after 24 hours. After 48 hours, the ELISA analyzer was used to read the fluorescence intensity of the sample, and the j-graph shows the results. Figure 2 shows the signal-to-noise ratio in each HPV 16 pseudovirus volume. When selecting a screening platform, the infection rate is about 20%. Therefore, a 96-well plate containing approximately 0.25 μM of HPV 16 pseudovirus per well was used as a platform for screening anti-infective compounds. At this dose, the signal noise ratio is about 2 〇_2 5 7. The screening method is as follows: The density of the cells will be (Α) about 6Χ103 fine HeLa cells per well into the 96-well plate 24 hours before the treatment; B) Cells were treated with different concentrations of test samples to prepare cells for infection with HPV 16 pseudovirus. (:卞^ '25 hours; Cultivate Village 13 201019947 - \C) Use the ELISA analyzer to read the fluorescence intensity of the sample (Excitation : 485 nm, Emission : 535 nm) and perform according to the method described above. MTT analysis. Red algae gum was used as a positive control drug. Each test was repeated 2 times, and the results listed in the present invention are the average of 2 replicates. Cell viability and IC5Q values were obtained using the methods described above. Results Reference cytotoxicity of the active compound A-oxime to HeLa cells According to one aspect of the present invention, a series of experiments were conducted to determine the cytotoxicity of each compound against HeLa cells. The active compounds listed in Table 1 and the positive control compound, Doxorubin HC1, were administered to HeLa cells and HUVEC cells at various concentrations. In the relevant experiments, HeLa cells in the non-active compounds A-Η and Doxorubin HC1 (addition concentration of xanth/mi) were used as negative control. The survival rates of HeLa cells and HUVEC cells at 24, φ 48 and 72 hours after treatment were obtained according to the methods described in the above Materials and Methods section. Tables 2 and 3 list the results of the MTT analysis. In the present specification, 'Compound A to sputum are isopsoralen, triptolide, baicalein, gallic acid, quercetin, gossypol acetate, berberine and berberine hydrochloride, respectively. Table 2 Survival rates of active compounds and HeLa cells at different concentrations for a predetermined period of time ----- (% of untreated blank control group), _ - Compound A: isopsoralen 0 pg/ml 0.125 μ ^ιηΐ 1·25 tig/nil 12.5 μβ/ml 125 pg/ml 14 201019947

24小時 100 91 88 70 18 48小時 100 99 75 30 11 72小時 100 98 69 10 7 化合物B:雷公藤内酯 0 pg/ml 0.001 pg/ml 0·01 pg/ml 0.1 μ^πιΐ 1 pg/ml 24小時 100 98 89 33 26 48小時 100 94 37 14 12 72小時 100 81 15 9 9 化合物C:黃芩素 0 μ^/τηΐ 0.125 μ^ιηΐ 1_25 pg/ml 12.5 μξ/ηά 125 μ^ιηΐ 24小時 100 104 126 109 134 48小時 100 107 110 73 68 72小時 100 99 106 66 29 化合物D:沒食子酸 0 pg/ml 0.125 pg/ml 1.25 μβ/πιΐ 12·5 pg/ml 125 pg/ml 24小時 100 85 84 90 17 48小時 100 96 91 82 11 72小時 100 101 103 99 8 化合物E:槲皮素 0 μ^ιηΐ 0.1 μ^πχΐ 1 μ§/ϊη\ 10 pg/ml 100 pg/ml 24小時 100 93 96 83 — 48小時 100 102 102 51 32 72小時 100 95 91 33 12 化合物F:棉酚醋酸酯 0 μ^ηιΐ 0_1 pg/ml 1 pg/ml 10 μ§/ηύ 100 pg/ml 24小時 100 101 97 80 17 48小時 100 103 105 52 13 72小時 100 98 98 40 10 化合物G:黃芩苷 0 pg/ml 0.1 μ^ιηΐ 1 μ§/πι1 10 pg/ml 100 pg/ml 24小時 100 104 103 109 68 48小時 100 94 96 98 50 15 201019947 72小時 100 97 97 97 37 化合物Η:鹽酸小蘖鹼 0 μ^ιηΐ 0.1 μ^ιηΐ 1 pg/ml 10 pg/ml 100 pg/ml 24小時 100 89 87 82 28 48小時 100 98 84 71 17 72小時 100 98 91 62 10 Control : Doxorubin HC1 0 pg/ml 0.00058 pg/rnl 0.0058 pg/ml 0.058 pg/ml 0.58 pg/ml 24小時 100 96 95 84 46 48小時 100 100 92 81 23 72小時 100 97 89 72 11 由表2可知,在不同的預定時間後,經活性化合物A-H 處理之HeLa細胞的細胞存活率低於陰性控制組中的細胞 存活率。與Doxorubicin HC1相較之下,在其他條件相同的 情形下,本發明實施例提出之活性化合物例如異補骨脂素 (化合物A)、雷公藤内酯(化合物B)、沒食子酸(化合 物D)、棉酚醋酸酯(化合物F)、與鹽酸小蘖鹼(化合物H) 參 對於HeLa細胞之細胞毒性較高。舉例而言,在以1〇〇 gg/mi 之雷公藤内酯處理的組別中,HeLa細胞在24、48與72小 時的存活率分別為20%、13°/。以及9%。另一方面,以0.5824 hours 100 91 88 70 18 48 hours 100 99 75 30 11 72 hours 100 98 69 10 7 Compound B: triptolide 0 pg/ml 0.001 pg/ml 0·01 pg/ml 0.1 μ^πιΐ 1 pg/ml 24 Hour 100 98 89 33 26 48 hours 100 94 37 14 12 72 hours 100 81 15 9 9 Compound C: baicalein 0 μ^/τηΐ 0.125 μ^ιηΐ 1_25 pg/ml 12.5 μξ/ηά 125 μ^ιηΐ 24 hours 100 104 126 109 134 48 hours 100 107 110 73 68 72 hours 100 99 106 66 29 Compound D: gallic acid 0 pg/ml 0.125 pg/ml 1.25 μβ/πιΐ 12·5 pg/ml 125 pg/ml 24 hours 100 85 84 90 17 48 hours 100 96 91 82 11 72 hours 100 101 103 99 8 Compound E: quercetin 0 μ^ιηΐ 0.1 μ^πχΐ 1 μ§/ϊη\ 10 pg/ml 100 pg/ml 24 hours 100 93 96 83 — 48 hours 100 102 102 51 32 72 hours 100 95 91 33 12 Compound F: gossypol acetate 0 μ^ηιΐ 0_1 pg/ml 1 pg/ml 10 μ§/ηύ 100 pg/ml 24 hours 100 101 97 80 17 48 hours 100 103 105 52 13 72 hours 100 98 98 40 10 Compound G: baicalin 0 pg/ml 0.1 μ^ιηΐ 1 μ§/πι1 10 pg/ml 100 pg/ml 24 hours 100 10 4 103 109 68 48 hours 100 94 96 98 50 15 201019947 72 hours 100 97 97 97 37 Compound Η: berberine hydrochloride 0 μ^ιηΐ 0.1 μ^ιηΐ 1 pg/ml 10 pg/ml 100 pg/ml 24 hours 100 89 87 82 28 48 hours 100 98 84 71 17 72 hours 100 98 91 62 10 Control : Doxorubin HC1 0 pg/ml 0.00058 pg/rnl 0.0058 pg/ml 0.058 pg/ml 0.58 pg/ml 24 hours 100 96 95 84 46 48 Hours 100 100 92 81 23 72 hours 100 97 89 72 11 As can be seen from Table 2, the cell viability of HeLa cells treated with active compound AH was lower than the cell viability in the negative control group after different predetermined times. In contrast to Doxorubicin HC1, the active compounds proposed in the examples of the present invention, such as isopsoralen (Compound A), triptolide (Compound B), gallic acid (Compound D), under otherwise identical conditions ), gossypol acetate (compound F), and berberine hydrochloride (compound H) are more cytotoxic to HeLa cells. For example, in the group treated with 1 〇〇 gg/mi of triptolide, the survival rates of HeLa cells at 24, 48, and 72 hours were 20% and 13 °, respectively. And 9%. On the other hand, to 0.58

Hg/ml 之 Doxorubicin HC1 處理之 HeLa 細胞在 24、48 與 72 小時的存活率則分別為46%、23%以及11〇/〇。 表3 不同濃度之活性化合物與HUVEC細胞在預定時間的存活 率(佔未加藥空白對照組之百分比) 16 201019947The Hg/ml Doxorubicin HC1 treated HeLa cells had 46%, 23%, and 11% survival at 24, 48, and 72 hours, respectively. Table 3 Survival of different concentrations of active compound and HUVEC cells at predetermined times (% of untreated blank control group) 16 201019947

化合物A:異補骨脂素 0 pg/ml 0.125 μ^/ναΐ 1.25 pg/ml 12.5 pg/ml 125 pg/ml 24小時 100 103 103 100 67 48小時 100 104 96 83 31 72小時 100 92 87 80 19 化合物B:雷公藤内酯 0 pg/ml 0.001 pg/ml 0.01 pg/ml 0.1 pg/ml 1 pg/ml 24小時 100 93 94 59 71 48小時 100 102 111 36 35 72小時 100 108 114 23 23 化合物C:黃芩素 0 pg/ml — 1.25 pg/ml 12.5 pg/ml 125 pg/ml 24小時 100 — 109 88 199 48小時 100 — 94 75 78 72小時 100 — 83 69 57 化合物E:槲皮素 0 μ§/τη\ 0.1 pg/ml 1 μ^ιηΐ 10 μ^ιηΐ 100 μ^πιΐ 24小時 100 104 108 101 120 48小時 100 102 95 87 51 72小時 100 98 94 80 26 化合物F:棉酚醋4酯 0 pg/ml 0.1 pg/ml 1 pg/ml 10 μ^ιηΐ 100 pg/ml 24小時 100 93 88 80 20 48小時 100 104 104 85 17 72小時 100 103 98 71 17 化合物G:黃芩苷 0 pg/ml -- 1.25 μ〇/τη\ 12.5 μ§/ηύ 125 pg/ml 24小時 100 — 98 97 81 48小時 100 — 96 101 76 72小時 100 -- 88 75 56 化合物Η:鹽酸小蘖鹼 17 201019947Compound A: Isopsoralen 0 pg/ml 0.125 μ^/ναΐ 1.25 pg/ml 12.5 pg/ml 125 pg/ml 24 hours 100 103 103 100 67 48 hours 100 104 96 83 31 72 hours 100 92 87 80 19 Compound B: triptolide 0 pg/ml 0.001 pg/ml 0.01 pg/ml 0.1 pg/ml 1 pg/ml 24 hours 100 93 94 59 71 48 hours 100 102 111 36 35 72 hours 100 108 114 23 23 Compound C: Baicalin 0 pg/ml — 1.25 pg/ml 12.5 pg/ml 125 pg/ml 24 hours 100 — 109 88 199 48 hours 100 — 94 75 78 72 hours 100 — 83 69 57 Compound E: quercetin 0 μ§/ Ηη\ 0.1 pg/ml 1 μ^ιηΐ 10 μ^ιηΐ 100 μ^πιΐ 24 hours 100 104 108 101 120 48 hours 100 102 95 87 51 72 hours 100 98 94 80 26 Compound F: Gossypol vinegar 4 ester 0 pg/ Ml 0.1 pg/ml 1 pg/ml 10 μ^ιηΐ 100 pg/ml 24 hours 100 93 88 80 20 48 hours 100 104 104 85 17 72 hours 100 103 98 71 17 Compound G: baicalin 0 pg/ml -- 1.25 Μ〇/τη\ 12.5 μ§/ηύ 125 pg/ml 24 hours 100 — 98 97 81 48 hours 100 — 96 101 76 72 hours 100 -- 88 75 56 Compound Η: berberine hydrochloride 17 201 019947

24小時 48小時 72小時24 hours 48 hours 72 hours

100 1 Hg/ml 10 pg/ml 100 pg/ml — 89 76 23 81 64 16 77 51 15 〜Control : Doxorubin HC1 0.145 pg/ml 0.290 μ^ιηΐ 0.580 pg/ml 111 100 90 77 56 19 68 38 14 由表2與矣1 人撕、3可以發現,在特定濃度下,上述活性化 : 夕種化合物對於HeLa細胞有較高的選擇性,且 囚而更適合用沐 種可降低受試對象中子宮頸癌細胞活性 】°物以雷公藤内酯(化合物B)為例,在處理後72 時’以ο·οι pg/ml之雷公藤内酯處裡的huvec細胞與 HeLa細胞的細胞存活率分別為 114%與 15%。 活性化合物A-Η抑制HeLa細胞的ICS0值 將表2與表3中的資料繪製成折線圖,以闡明化合物 濃度與細胞存活率間的關係。第3_u圖為折線圖,分別繪 不每一實驗組與對照組中,H eL a細胞存活率與所用化合物 後度的關係。利用GraFit資料分析軟體來計算每一化合物 抑制HeLa與HUVEC細胞的ic50值,其結果見表4。表4 中亦列出每一化合物對HUVEC細胞之IC50以及對HeLa 細胞IC5〇的比值。 201019947 活性化合物與對照組化合物在預定時間抑制HeLa細胞與HUVEC細胞之IC50100 1 Hg/ml 10 pg/ml 100 pg/ml — 89 76 23 81 64 16 77 51 15 ~Control : Doxorubin HC1 0.145 pg/ml 0.290 μ^ιηΐ 0.580 pg/ml 111 100 90 77 56 19 68 38 14 Table 2 and 矣1 human tear, 3 can be found, at a specific concentration, the above activation: Xi compound has higher selectivity for HeLa cells, and prisoner is more suitable to use the mucus to reduce the cervix in the subject Cancer cell activity] In the case of triptolide (Compound B), the cell survival rate of huvec cells and HeLa cells in triptolide at ο·οι pg/ml was 114% at 72 °C after treatment. With 15%. Active Compound A-Η Inhibits ICS0 Value of HeLa Cells The data in Tables 2 and 3 are plotted as a line graph to illustrate the relationship between compound concentration and cell viability. Figure 3_u is a line graph showing the relationship between the survival rate of HeLa cells and the degree of compound used in each experimental group and control group. The GraFit data analysis software was used to calculate the ic50 value of each compound inhibiting HeLa and HUVEC cells. The results are shown in Table 4. The IC50 of each compound to HUVEC cells and the ratio of IC5〇 to HeLa cells are also listed in Table 4. 201019947 Active compound and control compound inhibit IC50 of HeLa cells and HUVEC cells at predetermined time

化合物A:異補骨脂素 24小時之IC50 (pg/ml) 48小時之IC50 (pg/ml) 72小時之IC50 (μ^ιηΐ) HeLa 27 5 2 HUYEC >125 57 38 HUVEC/HeLa ratio >4.6 11.4 19 化合物B:雷公藤内酯 24小時之IC50 (ng/ml) 48小時之IC50 (ng/ml) 72小時之IC50 (ng/ml) HeLa 72.08 7.24 2.87 HUVEC >1000 151 84 HUVEC/HeLa ratio >13.9 20.9 29.3 化合物C:黃芩素 24小時之IC50 (pg/ml) 48小時之IC50 (pg/ml) 72小時之IC50 (pg/ml) HeLa >125 >125 37 HUYEC >125 >125 >125 HUVEC/HeLa ratio — — >3.4 化合物D:沒食子酸 24小時之IC50 (pg/ml) 48小時之IC50 (pg/ml) 72小時之IC50 (pg/ml) HeLa 37 26 45 化合物E:槲皮素 24小時之IC50 (pg/ml) 48小時之IC50 (pg/ml) 72小時之IC50 (gg/ml) HeLa >100 20 6 HUVEC >100 104 36 HUYEC/HeLa ratio — 5.2 6 化合物F:棉酚醋酸酯 19 201019947 24小時之IC50 (pg/ml) 48小時之IC50 (pg/ml) 72小時之IC50 (pg/ml) HeLa 29 12 8 HUVEC 30 33 23 HUVEC/HeLa ratio 1.0 2.8 2.9 化合物G:黃答苷 24小時之IC50 (pg/ml) 48小時之IC50 (μ^ιηΐ) 72小時之IC50 (pg/ml) HeLa >125 >125 92 HUVEC >125 >125 218 HUVEC/HeLa ratio — — 2.4 化合物H:鹽酸小蘖鹼 24小時之IC50 (pg/ml) 48小時之IC50 (pg/ml) 72小時之IC50 (pg/ml) HeLa 39 21 15 HUVEC 30 15 9 HUVEC/HeLa ratio 0.8 0.7 0.6 Control : DoxorubinHCl 24小時之IC50 (μ_) 48小時之IC50 (μ_) 72小時之IC50 (pg/ml) HeLa 0.48 0.20 0.12 HUVEC >0.58 0.299 0.22 HUVEC/HeLa ratio >1.2 1.5 1.8 由表4可以發現,活性化合物A到Η皆可有效地降低 HeLa細胞活性。因此,根據本發明之一態樣,一種用以降 低子宮頸癌細胞活性之組合物至少包含以下化合物其中之 一:異補骨脂素、雷公藤内醋、黃答素、沒食子酸、槲皮 素、棉酚醋酸酯、黃荅苷、鹽酸小蘖鹼與其衍生物,且其 含量足以降低受試對象中子宮頸癌細胞之活性。 20 201019947 ,習知技藝人士當可理解,當一化合物對於HUVEC細 胞以及HeLa細胞之IC5〇的比值越高,代表該化合物對於 HeLa細胞的選擇性較高,也就因而更適合作為用以降低受 試對象中子宮頸癌細胞活性之組合物中的活性成份。因 而,根據本發明一具體實施例,一種用以降低子宮頸癌細 胞活性之組合物至少包含以下化合物其中之一:異補骨脂 素、雷公藤内醋、黃答素、梅|·皮素、棉酴醋酸醋、黃答普 與其衍生物,且其含量足以降低受試對象中子宮頸癌細胞 之活性。 參 _複方 根據本發明另一具體實施例,提出一種具有加乘效果 的複方。利用含有兩種以上活性化合物的複方來進行上述 細胞毒性分析,表5中列出部分複方對於HeLa細胞的細 胞毒性分析結果。Compound A: Isopsoralen 24 hours IC50 (pg/ml) 48 hours IC50 (pg/ml) 72 hours IC50 (μ^ιηΐ) HeLa 27 5 2 HUYEC >125 57 38 HUVEC/HeLa ratio &gt ;4.6 11.4 19 Compound B: Triptolide 24 hours IC50 (ng/ml) 48 hours IC50 (ng/ml) 72 hours IC50 (ng/ml) HeLa 72.08 7.24 2.87 HUVEC >1000 151 84 HUVEC/HeLa Ratio >13.9 20.9 29.3 Compound C: xanthine 24 hours IC50 (pg/ml) 48 hours IC50 (pg/ml) 72 hours IC50 (pg/ml) HeLa >125 >125 37 HUYEC >125 >125 >125 HUVEC/HeLa ratio — — >3.4 Compound D: IC50 for pentaic acid for 24 hours (pg/ml) IC50 for 48 hours (pg/ml) IC50 for 72 hours (pg/ml) HeLa 37 26 45 Compound E: quercetin 24 hours IC50 (pg/ml) 48 hours IC50 (pg/ml) 72 hours IC50 (gg/ml) HeLa >100 20 6 HUVEC >100 104 36 HUYEC/ HeLa ratio — 5.2 6 Compound F: gossypol acetate 19 201019947 24 hours IC50 (pg/ml) 48 hours IC50 (pg/ml) 72 hours IC50 (pg/ml) HeLa 29 12 8 HUVEC 30 33 23 HUVEC /HeLa ratio 1.0 2.8 2.9 Compound G: IC50 (pg/ml) for 24 hours IC50 (μ^ιηΐ) IC50 (pg/ml) for 72 hours HeLa >125 >125 92 HUVEC >125 >125 218 HUVEC /HeLa ratio — — 2.4 Compound H: berberine hydrochloride 24 hours IC50 (pg/ml) 48 hours IC50 (pg/ml) 72 hours IC50 (pg/ml) HeLa 39 21 15 HUVEC 30 15 9 HUVEC/ HeLa ratio 0.8 0.7 0.6 Control : DoxorubinHCl IC50 for 24 hours (μ_) IC50 for 48 hours (μ_) IC50 for 72 hours (pg/ml) HeLa 0.48 0.20 0.12 HUVEC >0.58 0.299 0.22 HUVEC/HeLa ratio >1.2 1.5 1.8 As can be seen from Table 4, the active compounds A to guanidine were effective in reducing HeLa cell activity. Therefore, according to one aspect of the present invention, a composition for reducing the activity of cervical cancer cells comprises at least one of the following compounds: isopsoralen, tripterygium wilfordii, safrole, gallic acid, quercetin Gossypol acetate, baicalin, berberine hydrochloride and its derivatives, and the content thereof is sufficient to reduce the activity of cervical cancer cells in the subject. 20 201019947 , It is understood by those skilled in the art that the higher the ratio of a compound to the IC5 HU of HUVEC cells and HeLa cells, the higher the selectivity of the compound for HeLa cells, and thus the more suitable for reducing the The active ingredient in the composition of cervical cancer cells active in the subject. Thus, according to one embodiment of the present invention, a composition for reducing the activity of cervical cancer cells comprises at least one of the following compounds: isopsoralen, tripterygium wilfordii, scutellaria, plum|peelin, cotton aphid Acetic acid vinegar, yellow april and its derivatives, and its content is sufficient to reduce the activity of cervical cancer cells in the subject. Reference Method According to another embodiment of the present invention, a compound having a multiplying effect is proposed. The above cytotoxicity assay was carried out using a compound containing two or more active compounds, and the results of the cytotoxicity analysis of the partial compound for HeLa cells are listed in Table 5.

在處理後48小時複方抑制HeLa細胞之IC50 複方編號 組成 IC5〇 (pg/ml) Ml 化合物H:化合物A =2:1 0.14 M2 化合物C:化合物A =2:1 0.3 M3 化合物G:化合物A= 2:1 0.2 M4 化合物Η:化合物E = 2:1 0.19 M5 化合物C:化合物E = 2:1 0.72 M6 化合物Η:化合物B = 3:1 0.62 ( ng/ml) M7 化合物C:化合物B = 3:1 1.28 (ng/ml) M8 化合物G:化合物B = 3:1 0.77 (ng/ml) 21 201019947 M9 化合物H:化合物F =2:1 0.08 M10 化合物C:化合物F =2:1 0.1 Mil 化合物G:化合物F =2:1 0.13 比較表4與表5可以發現,複方組成所需的IC5()遠小 於個別單方化合物的IC5Q ’也就是說,根據本發明實施例 提出的複方所包含的活性化合物間展現了加乘的效果。以 複方Ml (IC5〇 = 0.14)為例,複方M1包含化合物η (鹽 酸小蘖鹼,IC5〇 = 2l)以及化合物Α (異補骨脂素,IC5〇 = • n.4) ·’而複方M1的ic5〇為0.14,此一數值遠小於個別組 成化合物的ic50。 因而,本發明一具體實施例提供一複方,該複方至少 包含至少一種以下化合物:黃芩素、黃芩苷、鹽酸小蘖鹼 與其衍生物;以及至少一種以下化合物:異補骨脂素、雷 公藤内酯、槲皮素、棉酚醋酸酯與其衍生物。 春抗感染化合物之篩選 ❹ 根據本發明另一態樣,進行了系列實驗以確認活性化 合物A至Η是否能夠抑制HPV 16假病毒感染HeLa細胞。 相關實驗中’將表1所列之活性化合物以及陽性控制化合 物一紅藻膠以不同濃度加入上述篩選平台中。 第13圖至第15圖顯示了相關實驗的部分結果,其中 長條圖表示樣本中HPV 16假病毒的量,而MTT分析的結 果則以折線圖表示。第15圖繪示了紅藻膠的試驗結果;紅 , 藻膠抑制HPV 16假病毒之jc50約為〇.〇7 pg/ml,此一結果 和文獻所載相同(參見’如 Carrageenan Is a Potent Inhibitor 22 201019947 of Papillomavirus Infection,PloS Pathogens. 2006; 2:617) 0 試驗結果顯示,在適當的濃度下,黃芩素(化合物c) 與沒食子酸(化合物D)可以抑制HPV16假病毒感染HeLa 細胞而不會對HeLa細胞造成明顯的細胞毒性。由第13圖 及第14圖所示的資料可以計算出黃荅素與沒食子酸抑制 HPV 16假病毒的1(:5〇值分別為約8.2與約8.9 pg/ml。同 時,以κ芩素與沒食子酸處理的jjeLa細胞存活率高於約 80%。 參 具體實施例 本發所載的結果―驗’兹提出下列 在本發明一態樣中,提出用以降低受試對象中子宮頸 =活=合物。上述組合物至少包含以下化合物其 .異補月月旨素、雷公藤内酉旨、黃签素、沒酸、 槲皮素 '棉__旨、黃料、鹽酸 ==::r對象中子宮頸癌二二 宮頸癌之=精神,可接受治療的受試對象可為羅患子 根據本發明一具體實施例,上 物’其含有單—種上述活性化合物。μ為早方組合 合物根體實㈣’上述組合物可為複方组 活性化合物間展現了加乘效應複舉方二物中複 U少-種以下化合物:黃料、黃料酸小 23 201019947 蘖鹼與其衍生物;以及至少一種以下化合物:異補骨脂素、 雷公藤内§1、槲皮素、_醋_旨與其衍生物。 从根據本發明又-具體實施例,上述組合物至少更包含 -藥學上可接钱體。適當的藥學上可接受載體包括但不 限於=S旋糖,甘油、生理食鹽水、乙醇、及上述之組 ,。藥子上^^:她可麵額外㈣劑,例如潤濕劑或 $Ub^J pH 卜或佐劑’這些額外的藥劑能夠加強配 Φ Φ + |時,亦可加入其他材料如抗氧化劑、 ㈣劑、黏度安定劑、及類似藥劑。 在本發明另一離揭由 * 胞或病毒感染受試m ’提出-種用以降低病毒感染細 物。上述組合物至小 人類乳突病毒之病毒活性的組合 沒食子酸與其衍含以下化合物其中之-:黃答素、 病毒感染受試對象中且其含量足以降低病毒感染細胞或 神,可接受治療的j病毒活性。根據本剌之原理及精 根據本發明—具對象可為罹患子宮頸癌之人類。 為高風險型人類乳突=施例’欲治療的人類乳突病毒可 病毒可為人類乳突。舉例而言’高風險型人類乳突 (HPV 18) 〇 母6 (HPV 16)或人類乳突病毒18 根據本發明一昱 物,其僅含有〜種j實施例’上述組合物可為單方組合 根據本發明另一化合物。 合物,其含有至少兩種,上述組合物可為複方組 組合物中的各活性 〜化合物。在複方魬合物中, 述複方可至少包含,物可展現加乘效果。舉例而言,上 至>'一種以下化合物:黃芩素、黃芩苷、 24 201019947 鹽酸小蘖鹼與其衍生物;以及至少一種以下化合物:異補 骨脂素、雷公藤内s旨、槲皮素、棉盼醋酸醋與其衍生物。 根據本發明又一具體實施例,上述組合物至少更包含 一藥學上可接受載體。適當的藥學上可接受載體如上文所 述者。 在本發明又一態樣中,提出一種用以降低子宮頸癌細 胞活性之方法。上述方法至少包含對子宮頸癌細胞施用一 種含治療有效量之組合物,上述組合物至少包含一種以下 化合物:異補骨脂素、雷公藤内醋、黃答素、沒食子酸、 槲皮素、棉酚醋酸酯、黃芩苷、鹽酸小蘖鹼與其衍生物。 根據本發明之原理及精神,可接受治療的受試對象可為罹 患子宮頸癌之人類。 根據本發明一具體實施例,可供施用的組合物可為僅 含有一種上述活性化合物的單方組合物。 根據本發明另一具體實施例,可供施用的組合物可為 含有至少兩種上述活性化合物的複方組合物。在上述複方 中,組合物中的各活性化合物可展現加乘效應。舉例而言, 上述複方可至少包含至少一種以下化合物:黃芩素、黃芩 苷、鹽酸小蘖鹼與其衍生物;以及至少一種以下化合物: 異補骨脂素、雷公藤内酯、槲皮素、棉酚醋酸酯與其衍生 物0 根據本發明另一具體實施例,上述組合物至少更包含 一藥學上可接受載體。適當的藥學上可接受載體如上文所 述者。 在藥品劑量的形式中,本發明之組合物能夠以其藥學 25 201019947 上可接受的鹽類之形式投藥,或亦可單獨使用該組合物、 或和其他具有藥物活性之化合物以適當的聯合或組合方式 使用。可根據可能的投藥方式來合成目標組合物。 參 在本發明又一態樣中,提出一種用以降低病毒感染細 胞或病毒感染受試對象中人類乳突病毒之病毒活性的方 ,上述方法至少包含對病毒感染細胞或病毒感染細胞受 試對象施用一種含治療有效量之組合物,上述組合物至少 包3種以下化合物:黃芩素、沒食子酸與其衍生物。根 據本發明之原理及精神,可接受治療的受試對象可 子宮頸癌之人類。 _ 根據本發明一具體實施例’欲治療的人類乳突病毒可 為高風險型人類乳突病毒。舉例而言,高風險型人類^突 病毒可為人類乳突病毒16 (HPV 16)或人類乳突 1 (HPV18)。 帑 18 根據本發明一具體實施例,可供施用的組合物可為僅 含有一種上述活性化合物的單方組合物。 根據本發明另一具體實施例,可供施用的組合物可為 3有至少兩種上述活性化合物的複方組合物。在上塊複方 中’組合物中的各活性化合物可展現加乘效應。舉例而士, 上述複方可至少包含至少一種以下化合物:黃芩素、^艾 苷、鹽酸小蘖鹼與其衍生物;以及至少一種以下化合物了 異補骨脂素、雷公藤内酯、槲皮素、棉酚醋酸酯與其衍生 物0 相似地’在藥品剤量的形式中,本發明之組合物能夠 以其藥學上可接受的鹽類之形式投藥,或亦可單獨使用該 26 201019947 組合物、或和其他具有藥物活性之化合物以適當的聯合或 組合方式使用。可根據可能的投藥方式來合成目標組合物。 習知技藝人士可輕易想見本發明之各種修飾與變形而 不致悖離本發明之範圍或精神。任何習知技藝人士,在不 脫離本發明之精神和範圍内,當可作各種之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 φ 【圖式簡單說明】 第1圖為折線圖,繪示本發明一實驗例中HPV 16假 病毒體積與相對螢光強度間之關係; 第2圖為折線圖,繪示第1圖所示實驗例中HPV 16 假病毒體積與訊號雜訊比之關係; 第3圖為折線圖,繪示本發明一實驗例中,在經處理 24、48與72小時後,異補骨脂素(化合物A)濃度與HeLa 細胞存活率間之關係; ❹ 第4圖為折線圖,繪示本發明一實驗例中,在經處理 24、48與72小時後,雷公藤内酯(化合物B)濃度與HeLa 細胞存活率間之關係; 第5圖為折線圖,繪示本發明一實驗例中,在經處理 24、48與72小時後,黃芩素(化合物C)濃度與HeLa細 胞存活率間之關係; 第6圖為折線圖,繪示本發明一實驗例中,在經處理 24、48與72小時後,沒食子酸(化合物D)濃度與HeLa ' 細胞存活率間之關係; 27 201019947 第7圖為折線圖,繪示本發明一實驗例中,在經處理 24、48與72小時後,槲皮素(化合物E)濃度與HeLa細 胞存活率間之關係; 第8圖為折線圖,繪示本發明一實驗例中’在經處理 24、48與72小時後,棉酚醋酸酯(化合物F)濃度與HeLa 細胞存活率間之關係; 第9圖為折線圖,繪示本發明一實驗例中,在經處理 24、48與72小時後,黃芩苷(化合物G)濃度與HeLa細 胞存活率間之關係; 第10圖為折線圖,繪示本發明一實驗例中’在經處理 24、48與72小時後,鹽酸小蘖鹼(化合物Η)濃度與HeLa 細胞存活率間之關係; 第11圖為折線圖,繪示本發明對照組中’在經處理 24、48與72小時後’ Doxorubin HC1(對照組)濃度與HeLa 細胞存活率間之關係; 第12圖為折線圖’進一步闡明本發明實驗例中,在經 處理24、48與72小時後,雷公藤内酯(化合物B)濃度 與HeLa細胞存活率間之關係; 第13圖繪示在本發明實驗例中’在經處理48小時後’ 黃芩素(化合物C)濃度與HeLa細胞存活率間之關係(以 折線圖顯示);以及黃芩素(化合物c)濃度與HPV 16假 病毒感染率間之關係(以長條圖顯示)’ 第14圖繪示在本發明實驗例中,在經處理48小時後’ 沒食子酸(化合物D)濃度與HeLa細胞存活率間之關係(以 折線圖顯示);以及沒食子酸(化合物D)濃度與HPV 16 28 201019947The IC50 compound number of the compound inhibited HeLa cells 48 hours after the treatment. IC5〇 (pg/ml) Ml Compound H: Compound A = 2:1 0.14 M2 Compound C: Compound A = 2:1 0.3 M3 Compound G: Compound A = 2:1 0.2 M4 Compound Η: Compound E = 2:1 0.19 M5 Compound C: Compound E = 2:1 0.72 M6 Compound Η: Compound B = 3:1 0.62 (ng/ml) M7 Compound C: Compound B = 3 :1 1.28 (ng/ml) M8 Compound G: Compound B = 3:1 0.77 (ng/ml) 21 201019947 M9 Compound H: Compound F = 2:1 0.08 M10 Compound C: Compound F = 2:1 0.1 Mil Compound G: Compound F = 2:1 0.13 Comparing Table 4 with Table 5, it can be found that the IC5() required for the compound composition is much smaller than the IC5Q of the individual single compound. That is, the activity of the compound according to the embodiment of the present invention The compounding effect is exhibited between the compounds. Taking compound Ml (IC5〇=0.14) as an example, compound M1 contains compound η (berberine hydrochloride, IC5〇= 2l) and compound Α (iso-psoralen, IC5〇= • n.4) ·' and compound The ic5 M of M1 is 0.14, which is much smaller than the ic50 of the individual constituent compounds. Thus, a specific embodiment of the present invention provides a compound comprising at least one of the following compounds: baicalein, baicalin, berberine hydrochloride and derivatives thereof; and at least one of the following compounds: isopsoralen, triptolide , quercetin, gossypol acetate and its derivatives. Screening of Spring Anti-Infective Compounds ❹ According to another aspect of the present invention, a series of experiments were conducted to confirm whether active compound A to sputum can inhibit HPV 16 pseudovirus infection of HeLa cells. In the relevant experiments, the active compounds listed in Table 1 and the positive control compound, a red algae, were added to the above screening platform at different concentrations. Figures 13 through 15 show some of the results of the relevant experiments, where the bar graph represents the amount of HPV 16 pseudovirus in the sample, and the results of the MTT analysis are represented by a line graph. Figure 15 shows the test results of red algae; red, algae inhibits the HPV 16 pseudovirus with a jc50 of about 〇.7 pg/ml, which is the same as the literature (see 'Carrageenan Is a Potent Inhibitor 22 201019947 of Papillomavirus Infection, PloS Pathogens. 2006; 2:617) 0 The test results show that baicalin (compound c) and gallic acid (compound D) can inhibit HPV16 pseudovirus infection of HeLa cells at appropriate concentrations. It does not cause significant cytotoxicity to HeLa cells. From the data shown in Fig. 13 and Fig. 14, it can be calculated that baicale and gallic acid inhibit the HPV 16 pseudovirus by 1 (:5〇 value is about 8.2 and about 8.9 pg/ml, respectively. Meanwhile, κ芩素The survival rate of jjeLa cells treated with gallic acid is higher than about 80%. DETAILED DESCRIPTION OF THE INVENTION The results contained in the present invention are set forth below. In one aspect of the present invention, it is proposed to reduce the neutrons of the subject. Cervical = live = compound. The above composition contains at least the following compounds. Heterophyllin, Tripterygium wilfordii, yellow saponin, no acid, quercetin 'cotton __ purpose, yellow material, hydrochloric acid == ::r target cervical cancer 2nd cervical cancer = mentality, the subject to be treated may be a patient according to a specific embodiment of the invention, the upper substance 'containing a single active compound. μ is The early composition of the root complex (4) 'The above composition can be a compound of the compound group exhibits a multiply effect. The compound is replenished with a small amount of U - the following compounds: yellow material, yellow acid small 23 201019947 And its derivatives; and at least one of the following compounds: isopsoralen, tripterygium § 1. Quercetin, vinegar, and its derivatives. From further embodiments according to the present invention, the above composition further comprises at least a pharmaceutically acceptable carrier. Suitable pharmaceutically acceptable carriers include, but are not limited to, =S spin sugar, glycerin, physiological saline, ethanol, and the above group. On the medicine ^^: she can face additional (four) agents, such as wetting agent or $Ub^J pH or adjuvant 'these extra When the agent can strengthen the Φ Φ + |, other materials such as an antioxidant, a (four) agent, a viscosity stabilizer, and the like may be added. In the present invention, another detachment is caused by a cell or a virus infection. The combination of the above composition to the viral activity of the human papillomavirus is a gallic acid and is derived from the following compounds: - yellow avidin, virus infected in a test subject and sufficient to reduce viral infection Cell or god, acceptable for the treatment of j virus activity. According to the principle of the present invention and according to the invention - the object can be a human suffering from cervical cancer. For high-risk human mastoid = application of the human milk to be treated Virus can be a virus Human mastoid. For example, 'high-risk human papillae (HPV 18) 〇 mother 6 (HPV 16) or human papillomavirus 18 according to the invention, which contains only a few examples of the above-mentioned composition Another compound according to the present invention may be a single compound, which contains at least two kinds, and the above composition may be each active-compound in the compound composition. In the compound composition, the compound may contain at least two substances. The addition effect can be exhibited. For example, up to > 'one of the following compounds: baicalein, baicalin, 24 201019947 berberine hydrochloride and its derivatives; and at least one of the following compounds: isopsoralen, tripterygium s Purpose, quercetin, cotton vinegar and its derivatives. According to still another embodiment of the present invention, the above composition further comprises at least one pharmaceutically acceptable carrier. Suitable pharmaceutically acceptable carriers are as described above. In still another aspect of the invention, a method for reducing cervical cancer cell activity is provided. The above method comprises at least administering to the cervical cancer cells a therapeutically effective amount of a composition comprising at least one of the following compounds: isopsoralen, triptolide, flavin, gallic acid, quercetin, cotton Phenol acetate, baicalin, berberine hydrochloride and its derivatives. In accordance with the principles and spirit of the present invention, a subject who is treatable may be a human suffering from cervical cancer. According to a particular embodiment of the invention, the composition for administration may be a single composition comprising only one of the above active compounds. According to another embodiment of the invention, the composition for administration may be a combination composition comprising at least two of the above active compounds. In the above combination, each active compound in the composition may exhibit a multiplication effect. For example, the above compound may comprise at least one of the following compounds: baicalein, baicalin, berberine hydrochloride and its derivatives; and at least one of the following compounds: isopsoralen, triptolide, quercetin, gossypol Acetate and Its Derivatives 0 According to another embodiment of the invention, the above composition further comprises at least one pharmaceutically acceptable carrier. Suitable pharmaceutically acceptable carriers are as described above. In the form of a pharmaceutical dosage form, the composition of the present invention can be administered in the form of a salt acceptable for its pharmaceutically 25 201019947, or it can be used alone or in combination with other pharmaceutically active compounds. Used in combination. The target composition can be synthesized according to the possible mode of administration. In another aspect of the present invention, a method for reducing viral activity of a human papillomavirus in a virus-infected cell or a virus-infected subject is provided, the method comprising at least a virus-infected cell or a virus-infected cell-subject A composition comprising a therapeutically effective amount is administered, the composition comprising at least three of the following compounds: baicalein, gallic acid and derivatives thereof. According to the principles and spirit of the present invention, a subject who is treatable can be a human having cervical cancer. According to a specific embodiment of the present invention, the human papillomavirus to be treated may be a high-risk human papillomavirus. For example, the high-risk human virus can be human papillomavirus 16 (HPV 16) or human mastoid 1 (HPV18).帑 18 According to one embodiment of the invention, the composition for administration may be a single composition comprising only one of the above active compounds. According to another embodiment of the invention, the composition for administration may be a combination of 3 and at least two of the above active compounds. Each active compound in the composition in the upper block composition can exhibit a multiplication effect. For example, the above compound may comprise at least one of the following compounds: baicalein, lysine, berberine hydrochloride and its derivatives; and at least one of the following compounds: psoralen, triptolide, quercetin, cotton Phenol acetate is similar to its derivative 0. In the form of a pharmaceutical amount, the composition of the present invention can be administered in the form of its pharmaceutically acceptable salt, or the composition of the compound can be used alone, or Other pharmaceutically active compounds are used in a suitable combination or combination. The target composition can be synthesized according to the possible mode of administration. A person skilled in the art can easily contemplate various modifications and variations of the present invention without departing from the scope or spirit of the invention. The scope of the present invention is defined by the scope of the appended claims, unless otherwise claimed. Φ [Simplified description of the drawings] Fig. 1 is a line diagram showing the relationship between the volume of HPV 16 pseudovirus and the relative fluorescence intensity in an experimental example of the present invention; Fig. 2 is a line diagram showing the first diagram The relationship between the HPV 16 pseudovirus volume and the signal noise ratio in the experimental example; Fig. 3 is a line graph showing the isopsoralen (compound) after 24, 48 and 72 hours of treatment in an experimental example of the present invention. A) Relationship between concentration and HeLa cell survival rate; ❹ Figure 4 is a line graph showing the concentration of triptolide (Compound B) and HeLa after 24, 48 and 72 hours of treatment in an experimental example of the present invention. Relationship between cell viability; Fig. 5 is a line graph showing the relationship between the concentration of baicalein (Compound C) and the survival rate of HeLa cells after 24, 48 and 72 hours of treatment in an experimental example of the present invention; Figure 6 is a line graph showing the relationship between the concentration of gallic acid (Compound D) and the survival rate of HeLa ' cells after 24, 48 and 72 hours of treatment in an experimental example of the present invention; 27 201019947 7th The figure is a line drawing showing an experimental example of the present invention, after being processed 24, 48 and 72 After the time, the relationship between the concentration of quercetin (compound E) and the survival rate of HeLa cells; Fig. 8 is a line diagram showing the experimental example of the invention: after 24, 48 and 72 hours of treatment, gossypol acetic acid Relationship between ester (compound F) concentration and HeLa cell survival rate; Figure 9 is a line graph showing the concentration of baicalin (compound G) after 24, 48 and 72 hours of treatment in an experimental example of the present invention. Relationship between HeLa cell survival rate; Fig. 10 is a line graph showing the ratio of berberine hydrochloride (compound oxime) to HeLa cell survival rate after 24, 48 and 72 hours of treatment in an experimental example of the present invention. Figure 11 is a line graph showing the relationship between the concentration of 'Doxorubin HC1 (control group) and the survival rate of HeLa cells after 24, 48 and 72 hours of treatment in the control group of the present invention; Fig. 12 is a broken line Figure 'further clarifies the relationship between the concentration of triptolide (Compound B) and the survival rate of HeLa cells after 24, 48 and 72 hours of treatment in the experimental example of the present invention; Figure 13 is a diagram showing the experimental example of the present invention. 'Bakein (Compound C) after 48 hours of treatment Relationship between degree and HeLa cell survival rate (shown by a line graph); and the relationship between the concentration of baicalein (compound c) and the HPV 16 pseudovirus infection rate (shown in bar graph) 'Figure 14 is shown in the present invention In the experimental example, the relationship between the concentration of gallic acid (Compound D) and the survival rate of HeLa cells after 48 hours of treatment (shown in a line graph); and the concentration of gallic acid (Compound D) with HPV 16 28 201019947

假病毒感染率間之關係(以長條圖顯示);以及 第15圖繪示在本發明對照組中,在經處理48小時後, 紅藻膠(對照組)濃度與HeLa細胞存活率間之關係(以 折線圖顯示);以及紅藻膠(對照組)濃度與HPV 16假病 毒感染率間之關係。 29Relationship between pseudovirus infection rates (shown in bar graph); and Figure 15 shows the concentration of red algae (control) and HeLa cell survival after 48 hours of treatment in the control group of the present invention. Relationship (shown on a line graph); and the relationship between the concentration of red algae (control) and the HPV 16 pseudovirus infection rate. 29

Claims (1)

201019947 七、申請專利範圍: 1. 一種用以降低一受試對象中子宮頸癌細胞活性之 複方,該複方至少包含: 由黃芩素、黃芩苷、鹽酸小蘖鹼與其衍生物中選擇的 至少一種化合物;以及 由補骨脂素、雷公藤内酯、槲皮素、棉酚醋酸酯與其 衍生物中選擇的至少一種化合物。 2. 如申請專利範圍第1項所述之複方,其中該受試 對象為一人類。 3. 如申請專利範圍第1項所述之複方,至少更包含 一藥學上可接受載體。 4. 一種用以降低一病毒感染細胞或一病毒感染受試 對象中人類乳突病毒之病毒活性的複方,該複方至少包含: φ 由黃芩素、黃芩苷、鹽酸小蘖鹼與其衍生物中選擇的 至少一種化合物;以及 由補骨脂素、雷公藤内酯、槲皮素、棉酚醋酸酯與其 衍生物中選擇的至少一種化合物。 5. 如申請專利範圍第4項所述之複方,其中該人類 乳突病毒為一高風險型人類乳突病毒。 . 6. 如申請專利範圍第5項所述之複方,其中該高風 30 201019947 險型人類乳突病毒為人類乳突病毒16。 7. 如申請專利範圍第5項所述之複方,其中該高風 險型人類乳突病毒為人類乳突病毒18。 8. 如申請專利範圍第4項所述之複方,其中該受試 對象為一人類。 9. 如申請專利範圍第4項所述之複方,至少更包含 一藥學上可接受載體。 10. —種用以降低一子宮頸癌細胞之活性的方法,該 方法至少包含施用一治療有效量之一複方至該子宮頸癌細 胞,其中該複方至少包含: 由黃芩素、黃芩苷、鹽酸小蘖鹼與其衍生物中選擇的 至少一種化合物;以及 由補骨脂素、雷公藤内S旨、槲皮素、棉盼醋酸酯與其 衍生物中選擇的至少一種化合物。 11. 如申請專利範圍第10項所述之方法,其中該受試 對象為一人類。 12.如申請專利範圍第10項所述之方法,其中該複方 至少更包含一藥學上可接受載體。 31 201019947 13. —種用以降低一病毒感染細胞或一病毒感染受試 對象中乳突病毒之病毒活性的方法,該方法至少包含施用 一治療有效量之一複方至該病毒感染細胞或該病毒感染細 胞受試對象,其中該複方至少包含: 由黃芩素、黃芩苷、鹽酸小蘖鹼與其衍生物中選 擇的至少一種化合物;以及 由補骨脂素、雷公藤内醋、槲皮素、棉盼醋酸醋 與其衍生物中選擇的至少一種化合物。 ® 14.如申請專利範圍第13項所述之方法,其中該人類 乳突病毒為一高風險型人類乳突病毒。 15. 如申請專利範g|第14項所述之方法,其中該高風 險型人類乳突病毒為人類乳突病毒16。 16. 如申請專利範圍第14項所述之方法,其中該高風 A 險型人類乳突病毒為人類乳突病毒18。 17. 如申請專利範圍第13項所述之#方法,其中該受試 對象為一人類。 18. 如申請專利範圍第13項所述之方法,其中該複方 至少更包含一藥學上可接受載體。 32201019947 VII. Patent application scope: 1. A compound for reducing the activity of cervical cancer cells in a subject, the compound comprising at least: at least one selected from the group consisting of baicalein, baicalin, berberine hydrochloride and derivatives thereof a compound; and at least one compound selected from the group consisting of psoralen, triptolide, quercetin, gossypol acetate and derivatives thereof. 2. A compound as claimed in claim 1 wherein the subject is a human. 3. The compound of claim 1, further comprising at least one pharmaceutically acceptable carrier. 4. A compound for reducing the viral activity of human papillomavirus in a virus-infected cell or a virus-infected subject, the compound comprising at least: φ selected from baicalein, baicalin, berberine hydrochloride and derivatives thereof At least one compound; and at least one compound selected from the group consisting of psoralen, triptolide, quercetin, gossypol acetate and derivatives thereof. 5. The compound of claim 4, wherein the human papillomavirus is a high-risk human papillomavirus. 6. The compound according to claim 5, wherein the high wind 30 201019947 human HPV is human papillomavirus 16 . 7. The compound of claim 5, wherein the high risk human papillomavirus is human papillomavirus 18 . 8. The compound of claim 4, wherein the subject is a human. 9. The compound of claim 4, further comprising at least one pharmaceutically acceptable carrier. 10. A method for reducing the activity of a cervical cancer cell, the method comprising administering at least one therapeutically effective amount of a compound to the cervical cancer cell, wherein the compound comprises at least: baicalein, baicalin, hydrochloric acid At least one compound selected from the group consisting of berberine and a derivative thereof; and at least one compound selected from the group consisting of psoralen, triptolide, quercetin, cotton acetate and derivatives thereof. 11. The method of claim 10, wherein the subject is a human. 12. The method of claim 10, wherein the compound further comprises at least one pharmaceutically acceptable carrier. 31 201019947 13. A method for reducing the viral activity of a virus-infected cell or a virus-infected papilloma virus in a subject, the method comprising at least administering a therapeutically effective amount of one of the compounds to the virus-infected cell or the virus Infected cell subject, wherein the compound comprises at least: at least one compound selected from the group consisting of baicalein, baicalin, berberine hydrochloride and derivatives thereof; and psoralen, tripterygium vinegar, quercetin, cotton At least one compound selected from the group consisting of acetic acid vinegar and its derivatives. The method of claim 13, wherein the human papillomavirus is a high-risk human papillomavirus. 15. The method of claim 14, wherein the high risk human papillomavirus is human papillomavirus 16 . 16. The method of claim 14, wherein the high wind A dangerous human papillomavirus is human papillomavirus 18 . 17. The method of claim 13, wherein the subject is a human. 18. The method of claim 13, wherein the compound further comprises at least one pharmaceutically acceptable carrier. 32
TW97145807A 2008-11-26 2008-11-26 Plant derived compounds and compound formulae containing the same for the treatment of cervical cancer TWI386219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97145807A TWI386219B (en) 2008-11-26 2008-11-26 Plant derived compounds and compound formulae containing the same for the treatment of cervical cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97145807A TWI386219B (en) 2008-11-26 2008-11-26 Plant derived compounds and compound formulae containing the same for the treatment of cervical cancer

Publications (2)

Publication Number Publication Date
TW201019947A true TW201019947A (en) 2010-06-01
TWI386219B TWI386219B (en) 2013-02-21

Family

ID=44831981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145807A TWI386219B (en) 2008-11-26 2008-11-26 Plant derived compounds and compound formulae containing the same for the treatment of cervical cancer

Country Status (1)

Country Link
TW (1) TWI386219B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109908119A (en) * 2019-04-25 2019-06-21 中国科学院化学研究所 The agent of LRPPRC negative regulation and purposes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294546B1 (en) * 1999-08-30 2001-09-25 The Broad Of Trustees Of The Leland Stanford Junior University Uses of diterpenoid triepoxides as an anti-proliferative agent
US7972632B2 (en) * 2003-02-28 2011-07-05 Unigen Pharmaceuticals, Inc. Identification of Free-B-Ring flavonoids as potent COX-2 inhibitors
JP2003339376A (en) * 2002-05-23 2003-12-02 Sangaku Renkei Kiko Kyushu:Kk Photocrosslinkable antisense dna and method for controlling gene expression using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109908119A (en) * 2019-04-25 2019-06-21 中国科学院化学研究所 The agent of LRPPRC negative regulation and purposes

Also Published As

Publication number Publication date
TWI386219B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
Ma et al. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway
Levy et al. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)?
Hong et al. 6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway
Syam et al. β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo
Qin et al. Curcumin inhibits the replication of enterovirus 71 in vitro
Mou et al. Curcumin inhibits cell proliferation and promotes apoptosis of laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by upregulating miR-15a
Song et al. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3
CN110325187A (en) The method for treating influenza
Li et al. Honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating Nrf2/ARE pathway in vitro and in vivo
Ni et al. Dihydromyricetin prevents diabetic cardiomyopathy via miR-34a suppression by activating autophagy
Lin et al. Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis
Clain et al. Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface
Zhong et al. Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment
TWI359670B (en) Composition for reducing activity of human papillo
Liu et al. The inhibitory activities and antiviral mechanism of medicinal plant ingredient quercetin against grouper iridovirus infection
Bharti et al. Therapeutic startegies for human papillomavirus infection and associated cancers
WO2013004171A1 (en) Use of c15-substituted andrographolide derivatives in preparation of anti-hepatitis b virus medicament
WO2018035294A9 (en) Method of inducing an oncolytic effect on tumor cells using zika virus
Sadri Nahand et al. Virus, exosome, and MicroRNA: new insights into autophagy
Luan et al. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis
Zhang et al. Xiangsha Liujunzi Decoction improves gastrointestinal motility in functional dyspepsia with spleen deficiency syndrome by restoring mitochondrial quality control homeostasis
Sun et al. Inhibitory effect of Buddlejasaponin IVb on porcine epidemic diarrhea virus in vivo and in vitro
Dissook et al. Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID
Ma et al. Baohuoside I inhibits osteoclastogenesis and protects against ovariectomy-induced bone loss
JP2010222344A (en) Influenza virus suppressing composition and application thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees