TW201019731A - Bandwidth conditioning device - Google Patents

Bandwidth conditioning device Download PDF

Info

Publication number
TW201019731A
TW201019731A TW98135174A TW98135174A TW201019731A TW 201019731 A TW201019731 A TW 201019731A TW 98135174 A TW98135174 A TW 98135174A TW 98135174 A TW98135174 A TW 98135174A TW 201019731 A TW201019731 A TW 201019731A
Authority
TW
Taiwan
Prior art keywords
level
channel
microprocessor
bandwidth
signal
Prior art date
Application number
TW98135174A
Other languages
Chinese (zh)
Inventor
Thomas A Olson
Joseph Lai
Steven K Shafer
David Kelma
Raymond Palinkas
Tab Kendall Cox
Original Assignee
Mezzalingua John Ass
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/252,850 external-priority patent/US8001579B2/en
Priority claimed from US12/252,907 external-priority patent/US8832767B2/en
Priority claimed from US12/252,817 external-priority patent/US8464301B2/en
Priority claimed from US12/576,612 external-priority patent/US20110085586A1/en
Priority claimed from US12/576,502 external-priority patent/US8213457B2/en
Priority claimed from US12/576,461 external-priority patent/US8516537B2/en
Priority claimed from US12/576,657 external-priority patent/US8385219B2/en
Application filed by Mezzalingua John Ass filed Critical Mezzalingua John Ass
Publication of TW201019731A publication Critical patent/TW201019731A/en

Links

Landscapes

  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

A device is provided for conditioning a total bandwidth. The device includes a return path extending at least a portion of a distance between a supplier side connector and a user side connector, and a forward path extending at least a portion of a distance between the supplier side connector and the user side connector. An upstream section including a variable signal level adjustment device connected within the return path. A downstream section including a forward coupler connected within the forward path. The device further includes at least one microprocessor. The microprocessor is connected electrically upstream the variable signal level adjustment device. The microprocessor reduces an amount of signal level adjustment applied to the return path in response to a reduction in a level of a downstream bandwidth at the forward coupler.

Description

201019731 六、發明說明: 【發明所屬之技術領域】 本發明大體涉及用於共用天線電視(“ CATV”)系統中 的信號調節裝置。 【先前技術】 使用CATV系統來提供互聯網、網路電話(“ VOIP”)、 電視、安全和音樂服務在本領域是已知的。在提供這些服 務時,下行頻寬(即射頻(“RF”)信號、數位信號和/或光信 號)被從服務供應商傳到用戶,而上行頻寬(即射頻(“ RF”) 信號、數位信號和/或光信號)被從用戶處傳到供應商。對於 供應商和用戶之間的許多距離來說,下行頻寬和上行頻寬 構成通過諸如同轴電纜的信號傳輸線傳送的總頻寬。下行 頻寬是例如在CATV系統的總頻寬内頻率相對較高的信 號’而上行頻寬是例如頻率相對較低的信號。 傳統上’ CATV系統包括頭端設施’其中下行頻寬接納 到主CATV分散式系統中,主CATV分散式系統通常包括 各自服務於至少一値本地分散式網路的多根幹線。隨後, 下行頻寬被像到與具體的本地分散式網路相關聯的數量相 對較少(例如約100到500)的用戶。諸如高通濾波器的裝置 佈置在CATV系統内的各點處,以確保下行頻寬從頭端設 施有序地流過幹線、流過本地分散式網路,最終到達用戶。 在頭端設施和用戶之間的各種位置處,存在用於保持 下行頻寬品質的放大器和斜率調整裝置。這句話引入了對 201019731 'Μ 剩餘論述重要的三個術語(即品質、放大器和斜率調整裝 置)。這些將在以下進行大致地論述。 下行頻寬的品質通常是以下特性的量度:⑴下行頻寬 内的具體通道的信號水準,信號水準僅稱為“水準,,:以 .及(ii)下行頻寬中的所有通道上的水準的大體—致性大體 -致性稱為“斜率’,。這些客觀量度常常被技術員、分析 員和/或其他裝置用來評價在運行期間的CATV系統性能和 ©解決客戶投訴。 各個通道的水準應該落纟已經確定為能為用彳提供良 好的視頻、語音和資訊傳遞速率的特定範圍内。對本論述 有用的是,理解各個通道的水平均有特定目標,即使各個 通道的特定要求和目標可能在整個多CATV系統中是變化 的’且甚至是在單CATV系統中是變化的。請注意,這是 用以闡明“水準,,㈣分簡單化的^義,並且請注意此定 義不包括例如在具有類類調制格式的通道和具有數位調制 ❹ 格式的通道之間的其他變化。 斜率是用於估計在很大程度上由於傳送下行頻寬的信 號傳輸線的長度而經受的損失量的量度。雖然下行頻寬中 的所有通道都經受一些損失,但是使用下行頻寬内的較高 頻率來傳輸的通道比使用較低頻率來傳輸的那些經受更多 的損失。因此,當用曲線圖來表示根據相應的通道的頻率 範圍來有序地佈置的下行頻寬内的所有通道的水準時,在 曲線圖中’從最低頻通道到最高頻通道可能存在顯著的可 見的向下斜率。當信號傳輸線的長度增加時,此向下斜率 201019731 變得更加突出。請注意,這是用以解釋所有通道上的水準 的一致性和由出現在信號傳輸線中的損失產生的“斜率,, 的過於簡單化的定義。還應注意,此定義不包括例如在具 有類類調制格式的通道和具有數位調制格式的通道之間的 水準的其他變化。 沒有通過使用典型的功分型放大器來移除斜率的存 在。功分型放大器僅放大整個下行頻寬。換句話說,這些 功分型放大器平等地提高各個通道的水準。而如果存在較 大的斜率,例如當用戶的房屋包括長距離的信號傳輸線 時,功分型放大器可能會使一些通道超過其水準要求或目 標’而其他通道可能保持在其要求或目標以下。 當存在長距離的信號傳輸線時,已知的是添加固定的 或可手動調整的斜率補償器/低頻衰減器。但是,這些裝置 需要昂貴的測試裝備來確定是否應該將斜率補償供應給具 體房屋’以及/或者應該將多少斜率補償供應給具體房屋。 另外’由於安裝成本和關於如何安裝此類裝置的普遍誤 解,與所需要的此類裝置的數量相比,現有的此類裝置相 對較少。除了下行頻寬經歷的這些問題之外,上行頻寬還 必須調節成以便保證用戶滿意。 通過各個本地分散式網路傳送的上行頻寬是在連接到 具趙的分散式網路上的各個用戶的房屋内產生的上行頻寬 的囊集。在各個房屋内產生的上行頻寬包括例如來自數據 機、機頂盒的合乎需要的上行資訊信號,以及其他合乎需 要的信號。在各個用戶房屋内產生的上行頻寬還包括不合 201019731 需要的干擾信號,例如雜訊或其他偽信號。此類不合需要 的干擾信號的許多產生器是電氣裝置,這些電氣裝置由於 其運行而在無意中產生電信號。這些裝置包括真空吸塵 器、電動機、家用變壓器、焊機,以及許多其他家用電氣 , 裝置。此類不合需要的干擾信號的許多其他產生器包括作 為其他運行的一部分而有意地產生RF信號的裝置σ這些裝 置包括無線家用電話或辦公室電話、蜂巢式電話、無線互 聯網裝置、民用波段(“ CB”)無線電通信、個人通信裝置 等。雖然由這些後面的裝置產生的RF信號對於其預定目的 而言是合乎需要的’但是如果允許這些信號進入CATV系 統的話,這些信號就會與合乎需要的上行資訊信號相衝突。 不合需要的干擾信號(不管是無意中產生的電信號還 是有意產生的RF信號)通常可能是通過無終端接頭的埠、 運行不當的裝置、受損的同轴電窥和/或受損的分路器而被 允許進入CATV系統。如上所述,對於用戶和頭端之間的 〇 大部分距離,下行/上行頻寬是通過具體類型的信號傳輸線 (即同軸電纜)傳送的。此同轴電纜由自中央導體徑向向外 佈置且與中央導體同轴佈置的導電層遮罩掉不合需要的干 擾信號。類似地,連接到同轴電纜上的裝置通常會提供對 不合需要的干擾信號的遮罩《但是,當沒有額外的同轴電 纜或沒有裝置連接到埠上時,例如在房屋中的房間内有未 使用的埠的情況下,該埠的中央導體會暴露於存在於房間 中的任何不合需要的干擾信號,且該埠的中央導體會像小 天線一樣起收集那些不合需要的干擾信號的作用。類似 201019731 地,被損壞的或遮罩失靈的同轴電纜或裝置也可能會收集 到不合需要的干擾信號。 不合需要的干擾信號會對CATV系統的上行頻寬部分 施加額外的負擔。當用戶將大型圖像擋上傳到照片共用網 站時,該圖像檔會被分解成許多資料包,這些資料包可與 位於CATV系統内的具體的信號傳輸線上的其他用戶產生 的、通過上行頻寬的具體部分的其他資料包混合。為了優 化具體信號傳輸線上的總數據通過量,在用戶不知道或不 對用戶造成不便的情況下,可能會使資料包產生較大的延 遲以及/或會重新組織資料包。當用戶使用ν〇ιρ電話服務 時用戶的聲音轉換成形式與用於上傳圖像槽的資料包類 似的資料包。因為典型的對話是即時進行的,這意味著需 要連續和完整的資料包流,所以與用戶正在交談的任何人 會迅速地注意到會導致用戶聲音的音頻失真的資料包的輸 送延遲和/或資料包的重新组織。傳送v⑽電話服務的資 ::上傳中的任何此類重新·組織和/或延遲都根據信號的 ., 因為其表現出的重要服務品質特性而 受到密切監視。不合需 需要的干擾信號很容易會引起額外的 k號的不穩定性,因 u為不合需要的干擾信號常常損壞、替 換和/或毁壞單獨的資料包。 根據前述,應該清 行頻寬易於受任何㈣ 子在使上行頻寬打開且使上 例如,雖然下行頻寬不用戶影響的内在的全系統的缺陷。 工程師% H . 斷受到監視,且由技術熟練的網路 程師維修,但是上 頻寬疋由不具有減少干擾信號的產 201019731 生和減少干擾信號進入上行頻寬中所需要的技巧或知識的 用戶維護的。這個問題被在具體的分散式網路内連接在一 起的許多用戶進一步增加,特別是知道一個用戶就可輕易 地影響所有其他用戶的用戶。 使用傳統方法來提高上行頻寬的整體信號品質的努力 還沒有成功。整髏信號品質的量度包括諸如信號強度_信號 雜訊比率(即合乎需要的資訊信號與不合需要的干擾信號 0 的比率)的要素。如所提到的,在具體用戶的房屋中或附近 採用的功分型放大器已經實現了下行頻寬的強度的提高。 适些功分型放大器的成功主要是由於這樣的事實,即由於 以下更全面地闞明的原因,下行頻寬中存在非常低水準的 不合需要的干擾信號。由各個用戶產生的上行頻寬_的不 合需要的干擾信號的内在存在性通常妨礙了使用這些典型 的功分型放大器來放大上行頻寬,因為不合需要的干擾信 號會被放大與合乎需要的資訊信號相同的量。因此,信號 © 雜訊比幾乎保持不變,或者更糟,從而使得當實施這種典 型的功分型放大器時,上行頻寬的整艎信號品質沒有得到 提高。 解決與上行頻寬有關的這些問題的一個嘗試是提高上 行頻寬的寬度來容納更多資訊,從而使得上行頻寬更不受 不合需要的干擾信號的影響。傳統上,由於所提供的服務 的性質,下行頻寬的大小遠遠超過上行頻寬的大小。例如, 雖然下行頻寬必須容納所有的電視和音樂節目安排以及互 聯網和VOIP下載,但是上行頻寬則僅需要容納互聯網上 201019731 傳、系統控制信號和VOIP上傳。 幾個CATV供應商已經計畫使上行頻寬的寬度從5·42 MHz提南到5-85 MHz ’以允許較大的上行内容流。與這種 提高一起,下行頻寬的大小必須相應地減小,因為總頻寬 是相對固定的。但是這種改變很難實現。 傳統實踐將要求網路放大器和CATV系統的節點中的 每個功分型放大器和雙向(雙重)濾波器作為提高上行頻寬 的大小的一部分而改變,所有的改變都必須在單個具體時 間在整個CAT V系統的各種位置處實現,這增加了實現這 © 種改變的難度。因此,這種實現是費時、費錢且難以協調 的0 更有甚者,提高上行頻寬的大小迫使供應商將其下行 内谷推入下行頻寬的日益更高的頻率部分中。如上所述, 這些較高頻率較易受由信號傳輸線、用戶的房屋上的連接 器連接到用戶的房屋上的信號傳輸線上的裝置造成的信 號強度的寄生損失的影響。因此,由於增加了上行頻寬$ ◎ 大j移到下行頻寬内的較高頻率的内容的品質可能會顯 著地降低,從而使得顧客滿意度降低,且使昂貴的維修電 話增加。 另外,雖然增加上行頻寬的大小可使上行資料包流遞 曰地Y加’但疋上行頻寬仍然易受由於使上行頻寬打開且 使上行頻宽易受任何單個用戶影響的内在的全系統的缺陷 引起的可靠性/擁擠問題的影響。 由於至少前述原因,顯然需要可提高下行頻寬的整艎 10 201019731 品質、提高上行頻寬的整體品質以及/或提供用以擴大上行 頻寬的寬度的能力的裝置。 【發明内容】 根據本發明的一個實施例,提供了一種可插入在用戶 的房屋處、附近或鄰近的CATV系統的信號傳輸線中的上 行頻寬調節裝置。該裝置包括可變信號水準調節裝置和信 號測量電路’可變信號水準調節裝置構造成以便對上行頻 寬產生一定量的信號水準調節,信號測量電路構造成以便 測量在應用增加量的額外信號水準調節之前的上行頻寬的 第一信號強度值和在應用一定量的額外信號水準調節之後 的第二信號強度。裝置進一步包括電路,該電路構造成⑴ 以便將第一信號強度與第二信號強度進行比較,以及(Η)當 第一信號強度大於第二信號強度時,移除增加量的額外信 號水準調節的至少一部分。 根據本發明的一個實施例,提供了一種用於使用位於 用戶的房屋處、附近近或鄰近的裝置來調節通過catv系 統的傳輸線傳輸的上行頻寬的方法。該方法包括步驟:⑷ 提供具有用戶側和供應商锏的裝置;(b)在用戶側和供應商 侧之間提供可變信號水準調節裝置;⑷測量可變信號水準 調節裝置的下游的位置處的上行頻寬的第一水準值;(d)對 上行頻寬應用增加量的額外信號水準調節;(e)測量第二水 準值;(f)將第-水準值與第二水準值進行比較;以及⑷重 複執行步驟(cHf)以預定數量的循環。當第二水準值小於第 11 201019731 一水準值時’移除該增加量的額外信號水準調節的至少一 部分。 根據本發明的一個實施例’提供了一種用於使用位於 用戶的房屋處、附近或鄰近的裝置來調節通過CATV系統 的傳輸線傳輸的上行頻寬的方法。該方法包括步驟:(&)提 供具有用戶側和供應商側的裝置;(b)在用戶侧和供應商側 之間提供可變信號水準調節裝置;(c)測量可變信號水準調 節裝置的下游的位置處的上行頻寬的第一水準值;(d)對上 行頻寬應用增加量的額外信號水準調節(6)在應用該增加量 © 的額外信號水準調節之後測量第二水準值;(f)將第一水準 值與第二水準值進行比較;(g)當第二水準值小於第一水準 值時進行到步攝(i) ; (h)重複執行步驟(c)_(g)以預定數量的 循環,且在完成預定數量的循環時進行到步驟⑴使額 外信號水準調節的增加量減小預定量,且進行到步驟(』); 以及(j)提供上行頻寬的連續的信號水準調節。 根據本發明的一個實施例,提供了一種可插入在用戶 ❹ 的房屋處、附近或鄰近的CATV系統的信號傳輸線中的下 行頻寬輸出水準和/或輸出水準傾斜補償裝置。該裝置包括 調諧器和通道分析器’調諧器構造成以便掃描下行頻寬, 以識別低頻通道和高頻通道,通道分析器構造成以便確定 低頻通道和高頻通道中的各個的調制格式。裝置進—步包 括構造成以便測量低頻通道水準和高頻通道水準的信號水 準測量裝置,且該裝置進一步包括偏移電路,偏移電路構 造成以便執行以下步驟中的一項或多項:(i)當低頻通道是 12 201019731 f位格式時’對低頻通道水準添加偏移值;(ii)當低頻通道 疋類類格式時’從低頻通道水準中減去偏移值;(iii)當高頻 位格式時,對尚頻通道水準添加偏移值;以及(iv) 當高頻通道是類類格式時,從高帶信號強度中減去增益偏 移值。該裝置進—步包括構造成以便將包括任何偏移值的 低頻通道水準和高頻通道水準與預定信㈣度增益/損失 曲線=行比較的微處理器。該裝置進—步包㈣於對下行 ❹頻寬提供一冑量的輸出水準補償肖可變輸出水準補償裝 置以及用於對下行頻寬提供一定量的斜率調整的可變斜 率調整電路, 根據本發明的一個實施例,提供了一種用於調節在 CATV服#的用戶的房屋處、w近或鄰近的下行頻寬的方 法。該方法包括接收來自CATV供應商的下行頻寬,掃描 該下行頻寬以獲得低頻通道和高頻通道,以及測量該低頻 通道的低頻通道水準和該高頻通道的高頻通道水準。該方 ©法進一纟包括確定低頻通道的調㈣式,蜂定高頻通道的 調制格式,以及當低頻通道和高頻通道中的一個是類類調 制格式,且低頻通道和高頻通道中的一個是數位調制格式 時,使低頻通道水準和高頻通道水準中的一個偏移預定的 偏移值。該方法進一步包括將包括任何偏移值的低頻通道 水準和高頻通道水準與預定的信號強度增益/損失曲線進 行比較。該方法進一步包括對下行頻寬提供一定量的輸出 水準補償’且對下行頻寬提供一定量的斜率調整。 根據本發明的一個實施例,提供了一種可插入在用戶 13 201019731 的房屋處、附近或鄰近的CATV系統的信號傳輸線中的頻 帶選擇裝置。該裝置包括在供應商側和用戶側之間的至少 兩個信號路徑組。各個信號路徑組包括兩個分立的信號路 徑、允許下行頻寬從供應商側傳到用戶侧的正向路徑,以 及允許上行頻寬從用户侧傳到供應商側的反向路徑。正向 路徑和反向路徑由對各個信號路徑組不同的截斷轉換頻率 分開。該裝置進一步包括具有至少二個分立的開關位置的 開關控制器《開關控制器由於資訊信號而選擇開關位置中 的一個。各個開關位置均對應於信號路徑組中相應的一個。Q 根據本發明的一個實施例,提供了一種用於改變在 CATV服務的用戶的房屋處、附近或鄰近的CATV頻帶的方 法。該方法包括在房屋處、附近或鄰近提供頻帶選擇裝置^ 該裝置包括在供應商側和用戶側之間的至少兩傭信號路徑 組。各個信號路徑組包括兩個分立的信號路徑、允許下行 頻寬從供應商侧傳到用戶側的正向路徑,以及允許上行頻 寬從用戶側傳到供應商侧的反向路徑◊正向路徑和反向路 徑由對各個信號路徑組不同的截斷轉換頻率分開。該裝置 © 進一步包括具有至少二個分立的開關位置的開關控制器。 開關控制器由於資訊信號而選擇開關位置中的一個。各個 開關位置均對應於信號路徑組中相應的一個。該方法進一 步包括由於資訊信號而促動開關控制器。 根據本發明的一個實施例,提供了一種可插入在用戶 的房屋處、附近或鄰近的CATV系統的傳輸線中的下行頻 寬調節裝置。該裝置包括延伸供應商側連接器和用戶側連 14 201019731 接器之間的距離的至少一部分的正向路徑。聯接器連接在 正向路徑内,聯接器提供二級路徑》調諧器連接到聯接器 上’且調諧器是可基於來自微處理器的輸入調諸的。調譜 器提供選定通道的調諸器輸出’該選定通道是高頻通道和 一個低通道通道中的至少一個。通道分析器連接到調諧器 的輸出上。通道分析器為微處理器提供調制格式輸出。選 定通道是類類調制格式時的調制格式輸出與選定通道是數 Ο 位調制格式時的調制格式輸出不同。斜率調整電路連接在 聯接器和供應商侧連接器之間的正向路徑内。斜率調整裝 置可基於由微處理器提供的斜率控制輸出而調整。輸出補 償電路電連接在聯接器和供應商側連接器之間的正向信號 路徑内。輸出補償裝置可基於來自微處理器的水準控制輸 出而調整。 根據本發明的一個實施例,提供了一種用於調節在 、 服務的用戶的房屋處、附近或鄰近的下行頻寬的方 法。該方法包括啟動第-模式。第一模式包括從下行頻寬 調諧到初始高頻通道,以及從初始高頻通道獲得高通道調 制格式和高通道水準。該方法進一步包括從下行頻寬調諸 =初始低頻通道,以及從初始低頻通道獲得低通道調制格 =和低通道水準。該方法進一步包括對下行頻寬提供-定 的水準調整’以及對下行頻寬提供量的斜率調整。 寬施例種詩㈣總頻 、。該襞置包括延伸供應商侧連接器和用戶侧連接 器之間的距齄ίΑ ζί , 的至乂 一部分的反向路徑,以及延伸供應商 15 201019731 側連接器和用戶側連接器之間的距離的至少一部分的正向 ,控。上行區包括連接在反向路徑之間的可變信號水準調 節裝置。下行區包括連接在正向路徑内的正向聯接器。該 裝置進-步包括至少一個微處理器。微處理器電連接在可 變信號水準調節裝置的上游。微處理器響應於正向聯接器 處的下行頻寬的水準的降低而減小應用於反向路徑的信號 水準調節量。 根據本發明的一個實施例,提供了一種用於調節上行 頻寬的方法。該方法包括對上行頻寬添加至少—個增加# 〇 的衰減。該方法進一步包括測量下行頻寬的第一水準。方 法進一步包括響應於下行頻寬的第一水準,移除該至少一 個增加量的衰減的至少一部分。 根據本發明的一個實施例,提供了一種用於測量上行 頻寬的測量裝置。該裝置包括延伸供應商側連接器和用戶 側連接器之間的距離的至少一部分的反向路徑。聯接器連 接在反向路徑内,聯接器提供二級路徑。探測電路電連接 在聯接器的下游。水準檢測器電連接在探測電路的下游, 且微處理器電連接在水準檢測器的下游。微處理器包括第 一緩衝器和第二緩衝器。 根據本發明的一個實施例,提供了一種用於獲得上行 頻寬的水準資料的方法。該方法包括將頻率依賴性的電壓 流轉換成包括多個時間段的增大的電壓的時間依賴性的電 壓流。該方法進一步包括使用低通放大器和峰值檢測器來 放大和保持該多個時間段的增大的電壓。該方法進一步包 16 201019731 括記錄來自輪出電堡流内的多個電壓序列的峰值,各個序 列始於超過高電壓間值的測得的電壓水準,且結束於經過 低電麼閾值以下的測得的電麼水準。方法進一步包括將峰 值置於第一緩衝器中,且定期計算第一緩衝器平均值。該 進步包括將第-緩衝器平均值中的各個置於第二緩 衝器中,且定期計算第二緩衝器平均值。該方法進一步包 括將第-緩衝器平均值中的至少一個和第二緩衝器平均值 ❹ ❹ 中的至少-個輸出到輸出裝置,以由技術員儲存、檢查或 分析,以便優化上行頻寬的調節。 根據本發明的一個實施例,裝置可用於調節上行頻 寬。裝置包括延伸供應商侧連接器和用戶側連接器之間的 距離的至少-部分的反向路徑,且聯接器連接在反向路徑 内,聯接器提供二級路徑。探測電路電連接在聯接器的下 游,且水準檢測器電連接在探測電路的下游。微處理器電 連接在水準檢測器的下游。微處理器包括第一緩衝器和第 一緩衝器。可變信號水準調節裝置連接在電連接在聯接器 的上游的反向路徑内。可變信號水準調節裝置由微處理器 控制。 根據本發明的另-個實施例,提供了一種用於調節上 行頻寬的方法。該方法包括將頻率依賴性的電壓流轉換成 包括多個時間段的增大的電壓的時間依賴性的電壓流,以 及使用低通放大器和峰值檢測器來放大和保持該多個時間 段的增大的電Μ。該方法進-步包括記錄來自輪出電錢 内的多個電壓序列的峰值,各個序列始於超過高電魔閣值 17 201019731 的測得的電磨水準,且結束於經過低電壓閾值以下的測得 的電壓水準。該方法進一步包括將峰值置於第一緩衝器 申,且定期計算第一缓衝器平均值。方法進一步包括將第 一緩衝器平均值中的各個置於第二緩衝器中,且確定第一 缓衝器平均值是否是在值範圍以上和值範圍以下中的一 個,值範圍是置於第二緩衝器中的第一緩衝器平均值中的 一個加上(+)上變化量和減去㈠下變化。該方法進一步包括 當第一緩衝器大於值範圍時,對上行頻寬添加增加量的衰 減,以及當第一緩衝器小於值範圍時,對上行頻寬減小該 增加量的衰減。 【實施方式】 如圖1所示,CATV系統通常包括供應商2〇,供應商 20通過主分散式系統30將諸如RF信號、數位信號和/或 光信號的下行頻寬傳輸給用戶,並且通過相同的主信號分 散式系統30接收來自用户的諸如rf信號、數位信號和/ 或光信號的上行頻寬。分接頭90位於主信號分散式系統 3 0處,以允許來自主信號分散式系統3〇的下行頻寬通過, 以及允許上行頻寬傳到主信號分散式系統3〇。然後使用功 分式傳輸線120來將分接頭90連接到房子1〇、6〇、公寓 大樓50、70、咖啡店80等。如圖i所示,本發明的總頻 寬調節裝置100( ‘‘調節裝置100”)可以串聯的方式連接在 功分式傳輸線120和用戶的房屋分散式系統13〇之間。調 節裝置100設置成使得調節裝置1 〇〇的“供應商侧,,設置 201019731 得比調節裝置1〇"“用戶側”在電方面更加靠近分接頭 90 °因此’調節裝置100設置成使得調節裝置刚的“用 戶側設置得比調節裝置100的“供應商侧,,在電方面更 加靠近用戶的房屋分散式系統130。 仍然參看圓1,應當理解,調節裝置1〇〇可放置在分 接頭9〇和用戶的房屋分散式系統130之間的任何位置處。 此位置可便利地設置在房屋(例如房子1〇、公寓大樓7〇等) 〇内’或者設置在房屋(例如房子60、公寓大樓50等)附近。 應當理解,調節裝置100可放置在任何位置處’例如其中 使用包括互聯網服務、VOIP服務的CATV服務或者其他 單向/雙向服務的咖啡店80或其他商行。 如圖2所示,可使用分路器19〇來使用戶的房屋分散 式系統130分開,從而使得根據本領域已知的慣例,下游 頻寬可傳到電視150和數據機14〇,或者可從電視15〇和 數據機140傳送上行頻寬。數據機14〇可包括提供電話丄7〇 φ 服務的voiP能力,且可包括例如對臺式機16〇和膝上型 電腦180提供互聯網服務的路由器。 另外’通常的做法是提供機頂盒(“ STB”)或機頂單元 (“STU”),以直接與電視機150 一起使用。但是,為了清 楚起見,囷2中沒有包括STB或STU的表示。在本文中提 到了 STB和STU是由於這樣的事實,即許多模型使用上行 頻寬來傳輸與按次計費購買、開發票、利用和其他用戶交 互有關的資訊’所有這些都可能需要將資訊從STB或STU 發送到供應商20。因此,應當理解,即使圖2明埃地顯示 19 201019731 了對於一個房屋裝置(即數據機140)僅有一個調節裝置 100,但是各個調節裝置1〇〇可與通過上行頻寬傳輸合乎需 要的上行資訊信號的不止一個房屋裝置(即數據機、STB、 STU和/或專用的VOIP伺服器)一起使用。 始終使用術語“房屋裝置,,來描述產生上行頻寬的合 乎需要的部分的多種裝置中的任何一個或多個。更具體 地’使用術語房屋裝置來描述位於用戶的房屋上或附近的 裝置,該裝置接收下行頻寬、通過上行頻寬向供應商20傳 輸資訊或者兩者兼有。這些房屋裝置包括互聯網訪問數據 機、STB、STU、電視機、房屋安全監視裝置,以及可能需 要通過上行頻寬來報告或以別的方式提供資訊的任何未來 的裝置。 另外’雖然沒有在圖2中明確地顯示,但是可以存在 位於單個房屋處、附近或鄰近的不止一個調節裝置100。 例如’可以存在位於數據機140和分路器190之間的調節 裝置!〇〇 ’以及位於電視機150上的STB或STU和分路器 190之間的另一個調節裝置100。類似地,可以存在位於上 行頻寬通過其中傳送(例如從數據機、STB、STU、VOIP服 務等)的房屋分散式系統130中的任何點處的調節裝置 100 〇 另外’雖然圖2中沒有明確地顯示,但是當使用一根 功分式傳輪線120將分接頭90連接到兩個(或多個)用戶房 屋上時’可以存在位於兩個(或多個)用戶房屋附近的一個 調節装置100。雖然不認為這種佈置是理想的,但是因為 201019731 來自兩個(或多個)用戶的耔 人似 扪上仃頻寬可能在進行調節之前就 口併了 ’所以當兩個(岑客伽 -多個)房屋由於單獨的調節裝置1〇〇 的物理佈局而彼此靠得太 非作双边時,這種佈置可能是必要的。 應當理解,將調節裝置⑽放置在以上所述的位置中 的一個中的目標是要通過提高在具體用戶的上行頻寬與其 他用戶的上行頻寬合併之前離開用戶的房屋的上行頻寬的 信^雜訊比率來提高主分散式系统%中的上行頻寬的整 ❾體W質⑹上所述,僅僅放大上行頻寬未能實現期望的結 果’因為存在於上行頻寬中的不合需要的干擾信號也被放 大了。 現在參看圖3,對調節裝置1〇〇的描述將分成四個一 般的論述主題:⑴一般構件;(ii)可選上行區1〇5 ;(丨⑴可 選下行區108 ; (iv)上行區105和下行區1〇8之間的交互; 以及(v)頻帶選擇裝置。首先將論述一般構件,以導出始終 會用到的術語,且有助於闞述上行頻寬如何傳到上行區 G 105 ’以及下行頻寬如何傳到下行區1〇8。將根據硬體、操 作和控制來對上行區105、下行區108和頻帶選擇裝置中 的各個進行論述。 ⑴一般構件 仍然參看圖3’調節裝置1〇〇可包括用戶側連接器21〇 和供應商側連接器215。這些連接器210、215中的各個可 為在本領域中用來將信號連接到裝置上的任何連接器。例 如’用戶側連接器210和供應商側連接器215中的各個均 可為傳統的内凹式“ F型”連接器。 21 201019731 用戶侧突波保護器220和供應商側突波保護器225可 以分別在電方面佈置在用戶侧連接器21〇和供應商侧連接 器215附近。突波保護器22〇、225的這種佈置允許保護佈 置在突波保護器220、225之間的在電方面脆弱的構件(在 以下更全面地論述)。用戶側突波保護器22〇和供應商側突 波保護器225中的各個均可為電子應用領域中已知的任何 突波保護器。 用戶侧開關250和供應商侧開關255各自具有兩個位 置。在第一個默認位置(在圓3中示出)上,開關250、255 ® 使信號通過旁路路徑230。在第個二位置上,用戶側開關 250和供應商側開關255分別將用戶側連接器21〇電連接 到用戶侧主路徑240上,且將供應商側連接器215電連接 到供應商側主路徑242上。如以下將進一步論述的,調節 裝置100的主要構件以串聯的方式電連接在用戶側主路徑 240和供應商侧主路徑242之間。 在調節裝置100内出現故障(例如電力故障)的情況 ❹ 下’開關250、255允許總頻寬通過旁路路徑230。開關250、 255可為本領域已知的任何SPDT(單刀雙擲)開關。例如, 開關250、255可選擇和安裝成使得當沒有對調節裝置1〇〇 供應電力時,開關250、255自動選擇第一個默認位置,以 使總頻寬通過旁路路徑230。相反,當有電力時,開關25〇、 255則移向其第個二位置,從而使總頻寬傳到主路徑24〇、 242。在調節裝置ι〇〇内出現電路短路的情況下,短路有可 能會產生額外電流’該額外電流最終會損壞保險線或使斷 22 201019731 路器型裝置(未示出)打開。因此,這種短路有可能會對開 關造成電力損失,從而允許總頻寬通過旁路路徑230。 當在調節裝置100内檢測到除了電力損失之外的故障 時,還可使用微處理器310(將在以下進行更全面地論述) 來使開關250、255運動到其第一個位置(即運動到旁路路 徑230)。雖然圖3中未示出用於這種連接的電路但是應 當理解,由微處理器31〇進行的控制應當附加到自動控制 ❿開關25G、255上’如以上所述的’在出現電力故障的情況 下’開關250、255會進行自動定位。 始終用到的術語“微處理器,’應當理解為包括能夠執 行本文所述的功能的所有活動電路。例如,可用微控制器、 系統專用的數位控制器或者複雜的類類電路來代替微處理 器 310。 旁路路徑230可為同軸電纜、未遮罩線材,以及/或電 路板上的金屬跡線。所有這些選擇均能夠以很小的信號衰 φ 減傳送總頻寬。 用户侧雙工器260和供應商側雙工器265分別電聯接 到用戶侧主路徑240和供應商側主路徑242上。雙工器 260、265佈置和構造成以便在其之間產生正向路徑244和 反向路徑246、248。雙工器260、265中的各個均可起分 路器、高通濾、波器和低通濾波器的組合的作用,分路器將 相應的主路徑240、242分成兩個信號路徑,低通濾波器和 局通據波器中的各個各一個。使用術語這個組合,各個高 通濾波器傳送下行頻寬,各個低通濾波器傳送上行頻寬。 23 201019731 在本實例中,下行頻寬沿雙卫器26G、265之間的正向路徑 244傳送。上行頻寬沿雙工器細、如之間的反向路徑 246、248 傳送。 ⑴)上行區 ❹ 為了給以下論述打好基礎,將在此處對硬競、運行和 對上行區105的控制的非常普通的細節進行描述。在知道 典型的房屋裝置將增大其用來傳輸其上行頻寬(即合乎需 要的上行頻寬)的部分的功率以解決額外衰減的情況下,上 行區選擇性地以增量的方式使上行頻寬衰減、结果是 合乎需要的上行頻寬的比例將大於剩餘部分(即不合需要 的上行頻寬為了實現這些目標,上行區i 精確地測量 合乎需要的上行頻寬的水準。精確的量度允許過程在不添 加太多衰減的情況下使衰減量增大,正是這時房屋裝置不 再能夠通過增大其輸出功率來增加衰減。 ❹ 由於房屋裝置的内在的功能特性,可能難以測量合乎 需要的上行頻寬。例如’僅當房屋裝置被請求傳輸資訊時, 房屋裝置通常才傳輸合乎需要的上行頻寬。例如,僅當用 戶將資訊發送到互聯網時,房屋裝置,例如互聯網訪問數 據機’通常才傳輸資訊。因為無法預測何時會發送此類資 訊’所以必須假定由房屋裳置建立的合乎需要的上行頻寬 是不依賴於時間且在時間上是不連續的。另外,被傳輸的 資訊的連續性例如在簡單的按次計費購買請求和大型詳細 照片的互聯網上傳之間變化很大。換句話說,由房屋裝置 建立的上行頻寬的部分可能出現在任何時候,且可能持續 24 201019731 任何時間長度。 上行區105包括聯接器34〇,聯接器34〇連接在反向 路徑246、268内,以根據功率和/或頻率範圍通過來自 聯接器輸出342(圖4)的二級路徑,將上行頻寬的一部分傳 到上行區1〇5令的後續裝置。基於具髏安裝的本描述和大 J要求纟領域技術人員將容易地理解何種類型的聯接器 適於本目的。例如,在慎重考慮這些備選方案對調節裝置 ❹100的特性阻抗可能會有的影響的情況下,可使用簡單的 電阻器、功率分配器、定向聯接器和/或分路器。囷4中表 示了存在於聯接器340的一個實施例中的單獨的構件。 始終使用術語“連接,,來表示可選地或以電的方式設 置’從而使得電流、電壓和/或光在連接的構件之間傳送。 應當理解,街語“連接,,不排除連接的構件之間有插入構 件或裝置的可能性。例如,儘管顯示了高通濾波器35〇以 插入的關係佈置在聯接器340和RF放大器之間,但是聯接 〇 器340是連接到RF放大器365上的。 還可始終使用術語“電連接在下游,,和“電連接在上 游”來協助描述關於兩個構件在何處連接或如何連接。作 為實例,當第二裝置電連接在第一裝置的下游時,第二裝 置接收來自第一裝置的信號^此相同的佈置也可描述為使 第一裝置電連接在第二裝置的上游。 再參看圖3,高通濾波器350電連接在聯接器34〇的 下游’從而使得聯接器輸出342電連接到高通濾波器輸入 352(圖5)上。在此實例中使用高通濾波器35〇來通過高通 25 201019731 濾波器輸出354(圖5),僅使上行頻寬段傳送到以下所述的 剩餘裝置。可能不會在所有實例中都需要這種高通濾波器 350,但是這種高通濾波器35〇可能是有益的,因為其使已 知不會傳送合乎需要的上行頻寬的上行頻寬段衰減。例 如,如果已知房屋裝置會在具體上行頻寬段中提供其合乎 需要的上行頻寬,可能有益的是將高通濾波器35〇構造成 以便使上行頻寬段衰減到房屋裝置在其中進行傳輸的具體 上行頻寬段以下。基於本描述和具體安裝的大小要求,本 領域技術人員將容易地理解何種類型的高通濾波器適於本 © 目的。圖5中表示了存在於高通濾波器35〇的一個實施例 中的單獨的構件。 RF探測電路360電連接在高通濾波器35〇的下游,從 而使得尚通濾波器輸出354電連接到RF檢測器輸出362(圖 6)上。RF探測電路360包括RF放大器365、RF檢測器366 和低通放大器367。RF放大器365放大傳送通過高通濾波 器350的下行頻寬的一部分’以為rf檢測器366做準備。q RF檢測器366起拉普拉斯逆變換的作用(拉普拉斯變換是 廣泛使用的積分變換),以將下行頻寬的一部分從頻域電壓 流轉換成時域電壓流。拉普拉斯逆變換是複雜的積分,已 知其有多種名稱,Bromwich積分、傅立葉—梅林積分和梅 林的逆公式。拉普拉斯逆變換的備選公式由p〇st的反演公 式給出。然後時域電壓流傳到低通放大器367,低通放大 器367放大電壓流’同時區別具有合適的信號持續時間的 増大的電壓水準的較長區和太短以致於不能在隨後的電路 26 201019731 平臺内使用的增大的電壓水準的較短區。 作為實例,圖8表示從RF檢測器说傳到低通放大器 367的時域電壓流輸出4〇〇。時域電壓流彻包括持續變化 量的時間的增大的電塵水準彻和的區。增大的電麼 4U)的較長區通常表示由房屋裝置發送的重要資訊,而增 大的電屢420的較短區通常表示“網路連接搜索 —gS)” ’網路連接搜索是少許資訊的非常短的脈衝。增 〇201019731 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to signal conditioning apparatus for use in a shared antenna television ("CATO") system. [Prior Art] The use of CATV systems to provide Internet, Voice over Internet Protocol ("VOIP"), television, security and music services is known in the art. In providing these services, the downlink bandwidth (ie, radio frequency ("RF") signals, digital signals, and/or optical signals) is transmitted from the service provider to the user, while the upstream bandwidth (ie, the radio frequency ("RF") signal, The digital signal and/or optical signal) is passed from the user to the supplier. For many distances between the supplier and the user, the downlink bandwidth and the upstream bandwidth constitute the total bandwidth transmitted through the signal transmission line such as a coaxial cable. The downlink bandwidth is, for example, a signal having a relatively high frequency within the total bandwidth of the CATV system, and the uplink bandwidth is, for example, a signal having a relatively low frequency. Traditionally, CATV systems have included headend facilities where the downstream bandwidth is accommodated in the primary CATV decentralized system, which typically includes multiple trunks each serving at least one local distributed network. Subsequently, the downlink bandwidth is like a relatively small number (e.g., about 100 to 500) of users associated with a particular local distributed network. Devices such as high-pass filters are placed at various points within the CATV system to ensure that the downstream bandwidth flows through the trunk from the head-end facility, through the local decentralized network, and ultimately to the user. At various locations between the headend facility and the user, there are amplifiers and slope adjustments for maintaining downstream bandwidth quality. This sentence introduces three terms that are important to the 201019731 'Μ remaining discussion (ie, quality, amplifier, and slope adjustment devices). These will be discussed generally below. The quality of the downlink bandwidth is usually a measure of the following characteristics: (1) The signal level of the specific channel within the downlink bandwidth, the signal level is only called "level,": to . And (ii) the generality of the level on all channels in the downlink bandwidth is called the "slope". These objective measures are often used by technicians, analysts, and/or other devices to evaluate during operation. CATV System Performance and © Resolve Customer Complaints. The level of each channel should be within a specific range that has been determined to provide good video, voice, and information transfer rates for users. It is useful to understand the level of each channel. There are specific goals, even if the specific requirements and goals of each channel may vary throughout the multiple CATV system' and even in a single CATV system. Note that this is used to clarify the "level, (4) points Simplify the meaning, and note that this definition does not include other variations between, for example, channels with class-like modulation formats and channels with digital modulation format. The slope is a measure used to estimate the amount of loss experienced to a large extent due to the length of the signal transmission line that carries the downlink bandwidth. Although all of the channels in the downlink bandwidth suffer some loss, channels that use higher frequencies within the downlink bandwidth are subject to more losses than those that use lower frequencies. Therefore, when a graph is used to represent the level of all channels within the downlink bandwidth that are arranged in an orderly manner according to the frequency range of the corresponding channel, the 'from the lowest frequency channel to the highest frequency channel may be significantly visible in the graph. The downward slope. This downward slope 201019731 becomes more prominent as the length of the signal transmission line increases. Note that this is an oversimplified definition of the "slope" that is used to explain the level of consistency across all channels and the loss that occurs in the signal transmission line. It should also be noted that this definition does not include, for example, classes. Other variations in the level between the channel of the modulation-like format and the channel with the digital modulation format. The existence of the slope is not removed by using a typical power divider amplifier. The power divider amplifier only amplifies the entire downstream bandwidth. In other words These power-divided amplifiers equally increase the level of each channel. If there is a large slope, such as when the user's house includes a long-distance signal transmission line, the power split amplifier may cause some channels to exceed their level requirements or targets. 'Other channels may remain below their requirements or targets. When there are long-distance signal transmission lines, it is known to add fixed or manually adjustable slope compensators/low frequency attenuators. However, these devices require expensive testing. Equipment to determine if slope compensation should be supplied to a specific house' and/or should Less slope compensation is supplied to specific houses. In addition, due to installation costs and general misconceptions about how to install such devices, there are relatively few such devices compared to the number of such devices required. In addition to these problems, the upstream bandwidth must also be adjusted to ensure user satisfaction. The upstream bandwidth transmitted through each local decentralized network is the uplink generated in the houses connected to each user on the distributed network with Zhao. The bandwidth of the bandwidth. The upstream bandwidth generated in each house includes, for example, the desired uplink information signals from the data set, the set top box, and other desirable signals. The upstream bandwidth generated in each user's house also includes the difference. 201019731 Interference signals required, such as noise or other spurious signals. Many of the generators of such undesirable interfering signals are electrical devices that inadvertently generate electrical signals due to their operation. These devices include vacuum cleaners, electric motors. , household transformers, welders, and many other household electrical appliances, Many other generators of such undesirable interfering signals include devices that intentionally generate RF signals as part of other operations, including wireless home or office phones, cellular phones, wireless internet devices, and civilian bands (" CB") radio communication, personal communication devices, etc. Although the RF signals generated by these latter devices are desirable for their intended purpose, but if these signals are allowed to enter the CATV system, these signals will be desirable. Uplink information signals are in conflict. Unwanted interference signals (whether inadvertently generated electrical signals or intentionally generated RF signals) can usually be through a terminalless connector, a mishandled device, a damaged coaxial electrical glimpse and / or a damaged splitter is allowed to enter the CATV system. As mentioned above, for most distances between the user and the headend, the downlink/upstream bandwidth is transmitted over a specific type of signal transmission line (ie coaxial cable) of. The coaxial cable is shielded from undesirable interference signals by a conductive layer disposed radially outward from the center conductor and disposed coaxially with the center conductor. Similarly, devices connected to coaxial cables typically provide a mask for unwanted interfering signals. "However, when there are no additional coaxial cables or no devices attached to the raft, such as in a room in a house. In the case of an unused crucible, the central conductor of the crucible will be exposed to any undesirable interfering signals present in the room, and the central conductor of the crucible will act as a small antenna to collect those undesirable interfering signals. Similar to 201019731, a damaged or masked coaxial cable or device may also collect unwanted interference signals. Undesirable interfering signals place an additional burden on the upstream bandwidth portion of the CATV system. When a user uploads a large image file to a photo sharing website, the image file is broken down into a number of data packages that can be generated by other users on a specific signal transmission line located in the CATV system. The other sections of the wide specific section are mixed. In order to optimize the total data throughput on a specific signal transmission line, the user may not be aware of or cause inconvenience to the user, which may result in a large delay in the data packet and/or reorganization of the data package. When the user uses the ν〇ιρ telephone service, the user's voice is converted into a packet of a form similar to that used to upload the image slot. Because a typical conversation is instantaneous, which means continuous and complete packet flow is required, so anyone who is talking to the user will quickly notice delays in the delivery of packets that cause audio distortion of the user's voice and/or Reorganization of the package. Transfer v(10) telephony services :: Any such re-organizations and/or delays in the upload are based on the signal. Because of its important service quality characteristics, it is closely monitored. Undesirable interfering signals can easily cause additional k-number instability, as u is an undesirable interfering signal that often corrupts, replaces, and/or destroys individual packets. According to the foregoing, the bandwidth should be clear to be susceptible to any (four) sub-institutions that cause the upstream bandwidth to be turned on and for example, although the downstream bandwidth is not affected by the user. Engineer % H .  It is monitored and maintained by a skilled network engineer, but the upper bandwidth is maintained by users who do not have the technology or knowledge needed to reduce the interference signal and reduce the interference signal into the upstream bandwidth. This problem has been further increased by many users connected in a specific decentralized network, especially knowing that one user can easily affect users of all other users. Efforts to improve the overall signal quality of the upstream bandwidth using traditional methods have not been successful. The measure of the integrity of the signal quality includes elements such as the signal strength_signal noise ratio (i.e., the ratio of the desired information signal to the undesirable interference signal 0). As mentioned, a power split type amplifier employed in or near a specific user's house has achieved an increase in the strength of the downlink bandwidth. The success of suitable power split amplifiers is mainly due to the fact that there is a very low level of undesirable interfering signals in the downlink bandwidth due to the more comprehensive reasons below. The inherent presence of undesirable interfering signals generated by individual users' upstream bandwidths often prevents the use of these typical power divider amplifiers to amplify the upstream bandwidth because undesirable interfering signals are amplified and desirable information. The same amount of signal. Therefore, the signal © noise ratio remains almost the same, or worse, so that when this typical power divider amplifier is implemented, the overall signal quality of the upstream bandwidth is not improved. One attempt to solve these problems associated with upstream bandwidth is to increase the width of the upstream bandwidth to accommodate more information, thereby making the upstream bandwidth less susceptible to undesirable interfering signals. Traditionally, due to the nature of the services provided, the size of the downlink bandwidth far exceeds the size of the upstream bandwidth. For example, although the downstream bandwidth must accommodate all TV and music programming as well as Internet and VOIP downloads, the upstream bandwidth only needs to accommodate the 201019731 transmission, system control signals, and VOIP uploads on the Internet. Several CATV vendors have planned to increase the width of the upstream bandwidth from 5.42 MHz to 5-85 MHz' to allow for larger upstream content streams. Along with this improvement, the size of the downstream bandwidth must be correspondingly reduced because the total bandwidth is relatively fixed. But this change is difficult to achieve. Traditional practice will require each of the power amplifier and bidirectional (dual) filters in the nodes of the network amplifier and CATV system to be changed as part of increasing the size of the upstream bandwidth, all changes must be made at a single specific time. Implemented at various locations in the CAT V system, which increases the difficulty of implementing this change. Therefore, this implementation is time consuming, costly, and difficult to coordinate. What's more, increasing the size of the upstream bandwidth forces vendors to push their downstream valleys into the increasingly higher frequency portion of the downlink bandwidth. As noted above, these higher frequencies are more susceptible to parasitic losses of signal strength caused by devices connected to the signal transmission line, the connector on the user's premises, to the signal transmission line on the user's premises. Therefore, the quality of the content of the higher frequency, which is increased by the upstream bandwidth, can be significantly reduced, so that the customer satisfaction is lowered and the expensive maintenance telephone is increased. In addition, although increasing the size of the uplink bandwidth allows the uplink packet to be streamed, the uplink bandwidth is still susceptible to the inherent integrity of the uplink bandwidth and the uplink bandwidth is susceptible to any single user. The impact of reliability/crowding problems caused by system defects. For at least the foregoing reasons, it is apparent that there is a need for an apparatus that can improve the quality of the downlink bandwidth, improve the overall quality of the uplink bandwidth, and/or provide the ability to increase the width of the upstream bandwidth. SUMMARY OF THE INVENTION According to one embodiment of the present invention, an upstream bandwidth adjustment apparatus that can be inserted in a signal transmission line of a CATV system at, near or adjacent to a user's premises is provided. The apparatus includes a variable signal leveling device and a signal measuring circuit 'variable signal leveling device configured to produce a certain amount of signal level adjustment for the upstream bandwidth, the signal measuring circuit being configured to measure an additional signal level in an applied amount of increase The first signal strength value of the previous upstream bandwidth is adjusted and the second signal strength is adjusted after applying a certain amount of additional signal level adjustment. The apparatus further includes circuitry configured to (1) to compare the first signal strength to the second signal strength, and (Η) to remove the increased amount of additional signal level adjustment when the first signal strength is greater than the second signal strength At least part. In accordance with an embodiment of the present invention, a method for adjusting an upstream bandwidth transmitted over a transmission line of a catv system using means located near, near or adjacent to a user's premises is provided. The method comprises the steps of: (4) providing a device having a user side and a supplier ;; (b) providing a variable signal level adjustment device between the user side and the supplier side; and (4) measuring a position downstream of the variable signal level adjustment device a first level value of the upstream bandwidth; (d) an additional signal level adjustment applied to the upstream bandwidth; (e) a second level value; (f) a first level value compared to the second level value And (4) repeating the step (cHf) by a predetermined number of cycles. When the second level value is less than the 11th 201019731 level value, at least a portion of the additional signal level adjustment of the increase is removed. An embodiment in accordance with the present invention provides a method for adjusting the upstream bandwidth transmitted over a transmission line of a CATV system using means located at, near or adjacent to the user's premises. The method comprises the steps of: (&) providing a device having a user side and a supplier side; (b) providing a variable signal level adjusting device between the user side and the supplier side; (c) measuring the variable signal level adjusting device a first level value of the upstream bandwidth at the downstream location; (d) an additional signal level adjustment applying an increased amount to the upstream bandwidth (6) measuring the second level after applying the additional signal level adjustment of the increment © (f) comparing the first level value with the second level value; (g) proceeding to step (i) when the second level value is less than the first level value; (h) repeating step (c) _ ( g) in a predetermined number of cycles, and when a predetermined number of cycles are completed, proceeding to step (1) reducing the amount of increase in the additional signal level adjustment by a predetermined amount, and proceeding to step ("); and (j) providing an upstream bandwidth Continuous signal level adjustment. In accordance with an embodiment of the present invention, a downstream bandwidth output level and/or output level tilt compensation device is provided that can be inserted into a signal transmission line of a CATV system at, near or adjacent to a user's premises. The apparatus includes a tuner and a channel analyzer 'tuner configured to scan the downstream bandwidth to identify the low frequency channel and the high frequency channel, and the channel analyzer is configured to determine a modulation format for each of the low frequency channel and the high frequency channel. The apparatus further includes a signal level measuring device configured to measure a low frequency channel level and a high frequency channel level, and the apparatus further includes an offset circuit configured to perform one or more of the following steps: (i When the low-frequency channel is 12 201019731 f-bit format, 'add an offset value to the low-frequency channel level; (ii) when the low-frequency channel is in the class of the class, 'subtract the offset value from the low-frequency channel level; (iii) when the high-frequency In the bit format, an offset value is added to the frequency of the frequency channel; and (iv) when the high frequency channel is in a class format, the gain offset value is subtracted from the high band signal strength. The apparatus further includes a microprocessor configured to compare the low frequency channel level and the high frequency channel level including any offset values to a predetermined signal (four) degree gain/loss curve = line. The device further comprises: (4) providing an output level compensation Shaw variable output level compensation device for the downlink bandwidth and a variable slope adjustment circuit for providing a certain amount of slope adjustment for the downlink bandwidth, according to the present invention One embodiment of the invention provides a method for adjusting the downlink bandwidth at or near the premises of a user of CATV service #. The method includes receiving a downlink bandwidth from a CATV provider, scanning the downstream bandwidth to obtain a low frequency channel and a high frequency channel, and measuring a low frequency channel level of the low frequency channel and a high frequency channel level of the high frequency channel. The method of determining the method includes determining the modulation mode of the low frequency channel, the modulation format of the high frequency channel, and when one of the low frequency channel and the high frequency channel is a class modulation format, and in the low frequency channel and the high frequency channel. One is the digital modulation format, which shifts one of the low frequency channel level and the high frequency channel level by a predetermined offset value. The method further includes comparing the low frequency channel level and the high frequency channel level including any offset values to a predetermined signal strength gain/loss curve. The method further includes providing a certain amount of output level compensation for the downlink bandwidth' and providing a certain amount of slope adjustment for the downlink bandwidth. In accordance with an embodiment of the present invention, a band selection device is provided that can be inserted in a signal transmission line of a CATV system at, near or adjacent to a user's office, 201019731. The apparatus includes at least two signal path groups between a supplier side and a user side. Each signal path group includes two separate signal paths, a forward path that allows the downlink bandwidth to pass from the provider side to the user side, and a reverse path that allows the upstream bandwidth to pass from the user side to the provider side. The forward path and the reverse path are separated by different truncated switching frequencies for each signal path group. The apparatus further includes a switch controller having at least two discrete switch positions "the switch controller selects one of the switch positions due to the information signal. Each switch position corresponds to a corresponding one of the signal path groups. Q In accordance with an embodiment of the present invention, a method for changing a CATV band at, near or adjacent to a user of a CATV service is provided. The method includes providing a band selection device at, near or adjacent to the house. The device includes at least two sets of commission signal paths between the supplier side and the user side. Each signal path group includes two separate signal paths, a forward path that allows the downlink bandwidth to pass from the provider side to the user side, and a reverse path that allows the upstream bandwidth to pass from the user side to the supplier side. The reverse path is separated by a different truncated switching frequency for each signal path group. The device © further includes a switch controller having at least two discrete switch positions. The switch controller selects one of the switch positions due to the information signal. Each switch position corresponds to a corresponding one of the signal path groups. The method further includes actuating the switch controller due to the information signal. In accordance with an embodiment of the present invention, a downstream bandwidth adjustment device is provided that can be inserted into a transmission line of a CATV system at, near or adjacent to a user's premises. The apparatus includes a forward path extending at least a portion of the distance between the supplier side connector and the user side connector 14 201019731. The coupler is connected in a forward path, the coupler provides a secondary path "tuner connected to the coupler" and the tuner is tunable based on input from the microprocessor. The spectrometer provides a modulator output for the selected channel. The selected channel is at least one of a high frequency channel and a low channel channel. The channel analyzer is connected to the output of the tuner. The channel analyzer provides a modulation format output for the microprocessor. The modulation format output when the selected channel is a class-like modulation format is different from the modulation format output when the selected channel is a digital modulation format. The slope adjustment circuit is connected in the forward path between the coupler and the supplier side connector. The slope adjustment device can be adjusted based on the slope control output provided by the microprocessor. The output compensation circuit is electrically connected in the forward signal path between the coupler and the supplier side connector. The output compensation device can be adjusted based on the level control output from the microprocessor. In accordance with an embodiment of the present invention, a method for adjusting the downstream bandwidth at, near, or adjacent to a user of a service is provided. The method includes initiating a first mode. The first mode includes tuning from the downstream bandwidth to the initial high frequency channel, and obtaining a high channel modulation format and high channel level from the initial high frequency channel. The method further includes adjusting the low frequency channel from the downstream bandwidth = the initial low frequency channel, and obtaining the low channel modulation cell = and the low channel level from the initial low frequency channel. The method further includes providing a predetermined level adjustment for the downlink bandwidth and a slope adjustment for the amount of downlink bandwidth provided. Wide application of poetry (4) total frequency,. The device includes a reverse path to a portion of the distance between the supplier-side connector and the user-side connector, and a distance between the extension supplier 15 201019731 side connector and the user-side connector At least part of the positive, control. The upstream zone includes variable signal leveling means connected between the reverse paths. The downstream zone includes a forward coupler that is connected within the forward path. The apparatus further includes at least one microprocessor. The microprocessor is electrically coupled upstream of the variable signal leveling device. The microprocessor reduces the amount of signal level adjustment applied to the reverse path in response to a decrease in the level of the downlink bandwidth at the forward coupler. In accordance with an embodiment of the present invention, a method for adjusting an upstream bandwidth is provided. The method includes adding at least one increment of attenuation to the upstream bandwidth. The method further includes measuring a first level of downlink bandwidth. The method further includes removing at least a portion of the attenuation of the at least one increase in response to the first level of the downlink bandwidth. According to an embodiment of the invention, a measuring device for measuring an upstream bandwidth is provided. The apparatus includes a reverse path that extends at least a portion of the distance between the supplier side connector and the user side connector. The coupler is connected in the reverse path and the coupler provides a secondary path. The detection circuit is electrically connected downstream of the coupler. The level detector is electrically connected downstream of the detection circuit and the microprocessor is electrically connected downstream of the level detector. The microprocessor includes a first buffer and a second buffer. In accordance with an embodiment of the present invention, a method for obtaining level information for an upstream bandwidth is provided. The method includes converting a frequency dependent voltage stream into a time dependent voltage flow comprising an increased voltage for a plurality of time periods. The method further includes using a low pass amplifier and a peak detector to amplify and maintain the increased voltage for the plurality of time periods. The method further includes 16 201019731 including recording peaks of a plurality of voltage sequences from the round-trip power flow, each sequence beginning at a measured voltage level exceeding a high voltage interval and ending at a low power threshold The level of electricity you get. The method further includes placing the peak value in the first buffer and periodically calculating the first buffer average. The improvement includes placing each of the first-buffer averages in the second buffer and periodically calculating the second buffer average. The method further includes outputting at least one of the first-buffer average and the second buffer average ❹ 到 to the output device for storage, inspection or analysis by the technician to optimize adjustment of the upstream bandwidth . According to one embodiment of the invention, the apparatus can be used to adjust the upstream bandwidth. The apparatus includes a reverse path that extends at least a portion of the distance between the supplier side connector and the user side connector, and the coupler is coupled within the reverse path, the coupler providing a secondary path. The detection circuit is electrically connected downstream of the coupler and the level detector is electrically connected downstream of the probe circuit. The microprocessor is electrically connected downstream of the level detector. The microprocessor includes a first buffer and a first buffer. The variable signal leveling device is coupled in a reverse path that is electrically connected upstream of the coupler. The variable signal level adjustment device is controlled by a microprocessor. In accordance with another embodiment of the present invention, a method for adjusting the upstream bandwidth is provided. The method includes converting a frequency dependent voltage stream into a time dependent voltage stream comprising an increased voltage for a plurality of time periods, and using a low pass amplifier and a peak detector to amplify and maintain the increase in the plurality of time periods Big eDonkey. The method further includes recording peaks from a plurality of voltage sequences within the round-trip money, each sequence beginning at a measured electric grinder level that exceeds the high power magic value 17 201019731 and ending below a low voltage threshold. The measured voltage level. The method further includes placing the peak in the first buffer and periodically calculating the first buffer average. The method further includes placing each of the first buffer averages in the second buffer and determining whether the first buffer average is above one of a range of values and below a range of values, the range of values being placed One of the first buffer averages in the two buffers adds (+) the amount of change and subtracts (a) the change. The method further includes adding an increased amount of attenuation to the upstream bandwidth when the first buffer is greater than the value range, and reducing the attenuation of the increasing amount to the upstream bandwidth when the first buffer is less than the range of values. [Embodiment] As shown in FIG. 1, a CATV system generally includes a vendor 2, and a provider 20 transmits a downlink bandwidth such as an RF signal, a digital signal, and/or an optical signal to a user through a primary distributed system 30, and passes The same main signal decentralized system 30 receives upstream bandwidths from the user such as rf signals, digital signals, and/or optical signals. The tap 90 is located at the main signal decentralized system 30 to allow the downstream bandwidth from the main signal decentralized system 3〇 to pass, and to allow the upstream bandwidth to pass to the main signal decentralized system. The split transmission line 120 is then used to connect the taps 90 to the house 1, 〇, the apartment building 50, 70, the coffee shop 80, and the like. As shown in FIG. 1, the total bandwidth adjustment apparatus 100 ('' adjustment apparatus 100') of the present invention can be connected in series between the power split transmission line 120 and the user's house decentralized system 13A. The adjustment apparatus 100 is provided. In the "supplier side of the adjustment device 1", the setting 201019731 is more than the adjustment device 1" "user side" is electrically closer to the tap 90 ° so the 'adjustment device 100 is set such that the adjustment device is just" The user side is set to be closer to the user's house decentralized system 130 than the "vendor side" of the adjustment device 100. Still referring to circle 1, it should be understood that the adjustment device 1 can be placed anywhere between the tap 9 〇 and the user's house decentralized system 130. This location can be conveniently located in a house (e.g., a house, an apartment building, etc.) or in a house (e.g., house 60, apartment building 50, etc.). It should be understood that the adjustment device 100 can be placed at any location, e.g., a coffee shop 80 or other merchant that uses a CATV service including Internet services, VOIP services, or other one-way/two-way services. As shown in FIG. 2, the splitter 19 can be used to separate the user's house decentralized system 130 such that downstream bandwidth can be passed to the television 150 and the data machine 14 according to conventions known in the art, or The upstream bandwidth is transmitted from the television 15 and the data machine 140. The modem 14 may include voiP capabilities to provide telephone 服务 〇 φ services, and may include, for example, routers that provide Internet services to the desktop 16 〇 and the laptop 180. In addition, it is common practice to provide a set top box ("STB") or a set top unit ("STU") for use directly with the television set 150. However, for the sake of clarity, the representation of STB or STU is not included in 囷2. The STB and STU are mentioned in this paper due to the fact that many models use upstream bandwidth to transmit information related to pay-per-view purchases, invoicing, utilization and other user interactions. All of this may require information from The STB or STU is sent to the supplier 20. Therefore, it should be understood that even though FIG. 2 shows 19 201019731 that there is only one adjustment device 100 for one house device (ie, data machine 140), each adjustment device 1 can be connected with an uplink that is desirable for uplink bandwidth transmission. More than one house device (ie, data machine, STB, STU, and/or dedicated VOIP server) for information signals is used together. The term "housing device" is used throughout to describe any one or more of the various devices that produce the desired portion of the upstream bandwidth. More specifically, the term housing device is used to describe a device located on or near a user's premises, The device receives the downlink bandwidth, transmits information to the provider 20 through the upstream bandwidth, or both. These housing devices include Internet access data machines, STBs, STUs, televisions, home security monitoring devices, and may need to pass upstream frequencies. Any future device that is wide to report or otherwise provide information. Further 'although not explicitly shown in Figure 2, there may be more than one adjustment device 100 located at, near or adjacent to a single house. For example 'can exist An adjustment device located between the data machine 140 and the splitter 190! 〇〇' and another adjustment device 100 between the STB or STU on the television set 150 and the splitter 190. Similarly, there may be an upstream frequency Widely distributed through the house decentralized system 130 (eg, from a data machine, STB, STU, VOIP service, etc.) The adjustment device 100 at any point 〇 additionally 'although not explicitly shown in Figure 2, but when a splitter cable 120 is used to connect the tap 90 to two (or more) user premises' There may be one adjustment device 100 located near the two (or more) user premises. Although this arrangement is not considered to be ideal, because 201019731 comes from two (or more) users of the 耔 扪 扪 仃 bandwidth It may be possible before the adjustment is made, so this arrangement may be necessary when the two (岑客伽-multiple) houses are too far apart from each other due to the physical layout of the individual adjustment devices 1〇〇. It should be understood that the goal of placing the adjustment device (10) in one of the above-described locations is to increase the upstream bandwidth of the house leaving the user before combining the upstream bandwidth of the particular user with the upstream bandwidth of the other user. The letter ^ noise ratio is used to improve the overall bandwidth of the main decentralized system % (6), and only the amplification of the upstream bandwidth fails to achieve the desired result 'because it exists in The undesirable interfering signals in the upstream bandwidth are also amplified. Referring now to Figure 3, the description of the adjustment device 1〇〇 will be divided into four general discussion topics: (1) general components; (ii) optional upstream regions 1〇 5; (丨(1) optional downlink zone 108; (iv) interaction between upstream zone 105 and downlink zone 1〇8; and (v) band selection means. The general components will be discussed first to derive terms that will always be used And help to explain how the uplink bandwidth is transmitted to the uplink area G 105 'and how the downlink bandwidth is transmitted to the downlink area 1 〇 8. The uplink area 105, the downlink area 108, and the frequency band will be based on hardware, operation, and control. Each of the selection devices is discussed. (1) General Components Still referring to FIG. 3, the adjustment device 1A may include a user side connector 21A and a supplier side connector 215. Each of these connectors 210, 215 can be any connector used in the art to connect signals to the device. For example, each of the 'user side connector 210 and the supplier side connector 215' may be a conventional recessed "F type" connector. 21 201019731 The user side surge protector 220 and the supplier side surge protector 225 may be electrically disposed near the user side connector 21A and the supplier side connector 215, respectively. This arrangement of surge protectors 22, 225 allows for the protection of electrically fragile components disposed between surge protectors 220, 225 (discussed more fully below). Each of the user side surge protector 22A and the supplier side surge protector 225 can be any surge protector known in the art of electronic applications. The user side switch 250 and the supplier side switch 255 each have two positions. In the first default position (shown in circle 3), switches 250, 255 ® pass signals through bypass path 230. In the second position, the user side switch 250 and the supplier side switch 255 electrically connect the user side connector 21 to the user side main path 240, respectively, and electrically connect the supplier side connector 215 to the supplier side main. On path 242. As will be discussed further below, the primary components of the adjustment device 100 are electrically coupled in series between the user side main path 240 and the supplier side main path 242. In the event of a fault (e.g., a power failure) within the regulating device 100, the 'switches 250, 255 allow the total bandwidth to pass through the bypass path 230. Switches 250, 255 can be any SPDT (single pole double throw) switch known in the art. For example, the switches 250, 255 can be selected and mounted such that when no power is supplied to the adjustment device 1 , the switches 250, 255 automatically select the first default position to pass the total bandwidth through the bypass path 230. Conversely, when there is power, the switches 25〇, 255 move to their second position, thereby causing the total bandwidth to pass to the main paths 24〇, 242. In the event of a short circuit in the regulating device ι〇〇, the short circuit may generate additional currents. This additional current will eventually damage the fuse or open the 2010 20101 road type device (not shown). Therefore, such a short circuit may cause a power loss to the switch, thereby allowing the total bandwidth to pass through the bypass path 230. When a fault other than power loss is detected within the adjustment device 100, the microprocessor 310 (which will be discussed more fully below) can also be used to move the switches 250, 255 to their first position (ie, motion) Go to bypass path 230). Although the circuit for such a connection is not shown in FIG. 3, it should be understood that the control by the microprocessor 31A should be attached to the automatic control switch 25G, 255 'as described above' in the event of a power failure. In the case of the 'switches 250, 255 will be automatically positioned. The term "microprocessor," as used throughout, shall be understood to include all active circuits capable of performing the functions described herein. For example, a microprocessor, a system-specific digital controller, or a complex class circuit may be substituted for the microprocessor. The bypass path 230 can be a coaxial cable, an unmasked wire, and/or a metal trace on the circuit board. All of these options can reduce the total bandwidth with a small signal degradation φ. The consumer 260 and the vendor side duplexer 265 are electrically coupled to the user side main path 240 and the supplier side main path 242, respectively. The duplexers 260, 265 are arranged and configured to generate a forward path 244 and a reverse therebetween. The paths 246, 248. Each of the duplexers 260, 265 can function as a combination of a splitter, a high pass filter, a wave filter and a low pass filter, the splitter splitting the respective main paths 240, 242 into two Each of the signal path, the low pass filter and the local pass data filter. Using the combination of terms, each high pass filter transmits the downlink bandwidth, and each low pass filter transmits the upstream bandwidth. 23 201019731 In this In the example, the downlink bandwidth is transmitted along the forward path 244 between the guards 26G, 265. The upstream bandwidth is transmitted along the duplexer, such as the reverse path 246, 248. (1)) Upstream area ❹ The following discussion lays the groundwork for a very general description of hard competition, operation, and control of the up zone 105. It is known that typical house installations will increase their transmission bandwidth (ie, If the power of the portion of the required uplink bandwidth is to account for additional attenuation, the upstream region selectively attenuates the upstream bandwidth in an incremental manner, with the result that the proportion of the desired upstream bandwidth will be greater than the remainder (ie, Undesirable upstream bandwidth To achieve these goals, the upstream region i accurately measures the level of the desired upstream bandwidth. The precise measurement allows the process to increase the attenuation without adding too much attenuation. The device can no longer increase the attenuation by increasing its output power. ❹ Due to the inherent functional characteristics of the house device, it may be difficult to measure the desired upstream bandwidth. For example ' Only when the house device is requested to transmit information, the house device usually transmits the desired upstream bandwidth. For example, only when the user sends the information to the Internet, the house device, such as the Internet access data machine, usually transmits information. Predict when such information will be sent' so it must be assumed that the desired upstream bandwidth established by the house is not time dependent and discontinuous in time. In addition, the continuity of the transmitted information is for example simple There is a wide variation between pay-per-view purchase requests and Internet uploads of large detailed photos. In other words, the portion of the upstream bandwidth established by the house device may appear at any time and may last for any length of time, 2010 20101. 105 includes a coupler 34A that is coupled within reverse path 246, 268 to pass a portion of the upstream bandwidth through a secondary path from coupler output 342 (FIG. 4) depending on power and/or frequency range. Subsequent devices that pass to the 1st 5th order in the upstream zone. Based on this description and the large J requirements of the mounting, those skilled in the art will readily understand which type of coupling is suitable for this purpose. For example, simple resistors, power splitters, directional couplers, and/or splitters can be used with careful consideration of the possible impact of these alternatives on the characteristic impedance of the regulating device ❹100. A separate component present in one embodiment of the coupler 340 is shown in FIG. The term "connected," is used throughout to mean optionally or electrically set such that current, voltage and/or light is transmitted between the connected components. It should be understood that the street language "connects, does not exclude connected components. There is a possibility of inserting a member or device between them. For example, although it is shown that the high pass filter 35 is disposed between the coupler 340 and the RF amplifier in an interposed relationship, the coupler 340 is connected to the RF amplifier 365. The terms "electrical connection downstream," and "electrical connection upstream" may also be used throughout to assist in describing where or how the two components are connected. As an example, when the second device is electrically connected downstream of the first device The second device receives the signal from the first device. The same arrangement can also be described as electrically connecting the first device upstream of the second device. Referring again to Figure 3, the high pass filter 350 is electrically coupled to the coupler 34 Downstream' thus causes the coupler output 342 to be electrically coupled to the high pass filter input 352 (Fig. 5). In this example, a high pass filter 35 is used to pass the Qualcomm 25 201019731 filter output 354 (Fig. 5), only the upstream frequency The wide segment is transmitted to the remaining devices described below. Such a high pass filter 350 may not be required in all instances, but such a high pass filter 35 may be beneficial because it makes known that no transmission is desirable The upstream bandwidth of the upstream bandwidth is attenuated. For example, if the house device is known to provide its desired upstream bandwidth in a particular upstream bandwidth segment, it may be beneficial to filter the high pass. 35〇 is configured to attenuate the upstream bandwidth segment below a specific upstream bandwidth segment in which the premises device transmits. Based on the description and the size requirements of the particular installation, those skilled in the art will readily understand which type of high pass filtering is readily understood. The apparatus is adapted for this purpose. A separate component present in one embodiment of the high pass filter 35A is shown in Figure 5. The RF detection circuit 360 is electrically coupled downstream of the high pass filter 35A, thereby enabling the pass filter Output 354 is electrically coupled to RF detector output 362 (Fig. 6). RF detection circuit 360 includes an RF amplifier 365, an RF detector 366, and a low pass amplifier 367. RF amplifier 365 amplifies the downstream bandwidth of the high pass filter 350. Part of 'takes the rf detector 366 in preparation. The q RF detector 366 acts as a Laplace inverse transform (Laplace transform is a widely used integral transform) to pass a portion of the downstream bandwidth from the frequency domain voltage Switch to time domain voltage flow. The Laplace inverse is a complex integral known for its various names, Bromwich integral, Fourier-Merlin integral, and Merlin's inverse formula. The alternative formula for the inverse of the Plass transform is given by the inversion formula of p〇st. Then the time domain voltage is passed to the low-pass amplifier 367, which amplifies the voltage flow' while distinguishing the large signal with the appropriate signal duration. The longer region of the voltage level and the shorter region of the increased voltage level that is too short to be used in the subsequent circuit 26 201019731 platform. As an example, Figure 8 shows the pass from the RF detector to the low pass amplifier 367. The time domain voltage flow output is 4. The time domain voltage flow includes the area of the increased electric dust level that is continuously increased by the amount of time. The longer area of the increased power is usually expressed by the house device. Important information, while the shorter area of the increased power 420 usually means "network connection search - gS"" 'Internet connection search is a very short pulse of a little information. Increase

G 大的電I的這些較長區具有可能對於具體房屋裝置典型的 持續時間。換句話說,增大的電壓41〇的較長區在增大的 電壓41G的較長區之間可具有較短或較長的較低電壓區。 當對水準檢測n 37G進行論料,可基於存在的房屋裝置 類型而改變的這個持續時間將是重要的。 現在參看圖9,低通放大器367產生電壓流4〇2,其中 增大的電壓410的較長區(圖8)產生較高的電麼412,而增 大的電壓420的較短區(囷8)產生較低的電壓422。然後此 電壓流402從RF探測電路輸自364輸出到水準檢測器 370。基於具體安裝的本描述和大小要求,本領域技術人員 將容易地理解應該使用何種類型的構件來建立RF探測電 路360。圖6中表示了存在於RF探測電路36〇的一個實施 例中的單獨的構件。 水準檢測器370電速接在RF探測電路36〇的下游,從 而使得RF探測電路的輸出電連接到水準檢測器輸入 372(圖7)上。水準檢測器37〇基於由RF探測電路36〇提供 的電壓流而產生額外的電流,且水準檢測器37〇包括至少 27 201019731 -個二極體和用以儲存所提供的電流的至少一個相對較大 的電合器376 °從大電容器376提供到水準檢測器輸出⑺ 的電磨流4〇4(囷1〇)與由RF探測電路州在水準檢測器輸 入372處提供的電壓流4〇2有關不同的是使任何增大的 電壓412、422保持的持續時間比來自RF探測電路360的 電壓流402持續時間更長。任何增大的電壓所保持的持續 時間量嚴格來說是確定至少一個電容器的大小確定相關 聯的電阻器的大小,以及由後續裝置得到的電流的因素。 現在參看圖10,水準檢測器370產生電壓流404,其 © 中較長持續時間的增大的電壓412(圖9)較一致,從而使得 所得較長持續時間的增大的電壓414之間電壓下降得較 少。然後此電壓流404從水準檢測器輸出374輪出到非線 性放大器380。 圖7中表示了存在於水準檢測器37〇的一個實施例中 的單獨的構件。雖然大多數構件對本領域技術人員是顯而 易見的,但值得注意的是,根據一個實施例製作的水準檢 測器370包括足以使電壓保持高達六秒的不止一個卟電 © 容器376 »已經發現這個時間量足以使消息電壓412加在 電壓流402(圖9)中,以由以下更全面地描述的微處理器31〇 進行測量。取決於被發送的消息的一致性和處理器3ι〇的 速度’持續時間量可以更短或更長。 更一般來說,本實施例的保持電壓所需的持續時間是 由房屋裝置提供的增大的電壓41〇的較長區的持續時間的 大約十倍。因此,持續時間可取決於當前房屋裝置而改變。 28 201019731 另外’應當理解,在此處大致結合“十倍,,乘數來使用術 語’是因為如果低電壓閾值(“ VIL”)相應地減小,以允許 在增大的電壓41〇較長區之間有較大的壓降,則少於十倍 也可以很好地起作用❶不止十倍可能導致太長的持續時 間’其中電壓可能不會下降得快得足以超過VIL而適當地 停止序列。一旦在以下更全面地論述VIL及其對序列的作 用’就可理解這些語句。如基於本描述本領域技術人員將 ❽理解的’ 一個大電容器或多個較小的電容器可實現具體的 持續時間量所期望的電容量。 再參看圖3,非線性放大器380電連接在水準檢測器 370的下游,從而使得水準檢測器輸出374電連接到非線 性放大器輸入382(圖11)上。非線性放大器38〇對由水準檢 測器370提供的電壓流404進行壓縮,以對較低的電壓提 供額外的分辨度。特別地,非線性放大器38〇對較低的電 壓提供額外的細節,而無需不必要地對較高的電壓提供額 © 外的分辨度。這在上行頻寬調節裝置的本實施例中是重要 的,因為微處理器310接受來自非線性放大器輸出384(圖 Π)處的非線性放大器380的電壓流,且將其轉換成在〇_255 的範圍内的數位值。應用於來自水準檢測器37〇的整個電 壓流的額外的分辨度會需要不止255個數位值,且來自水 準檢測器370的電壓流的線性分辨度可能會導致對上行頻 寬的劣質測量。圖11中表示了存在於非線性放大器_的 -個實施例中的單獨的構件。應當理解,當可利用微處理 器310内的額外的分辨度時,可能不需要非線性放大器 29 201019731 380。 圖11中顯示了包括設置在非線性放大器輸入3 82附近 的電阻器386的非線性放大器380。此電阻器386允許來 自水準檢測器370的電壓流404流出,而不是不確定地保 持具體電壓。因此’應當理解,此電阻器386可認為是水 準檢測器370和非線性放大器380中的任何一個的一部分。 可在圖12中看到線性地改變的輸入電壓流430以及非 線性地改變的輸出電壓流440的實例。如圖所示,在相對 低的輸入電壓水準處,相對於輸入電壓流430中的任何變 ® 化’輸出電壓流440改變得多得多。然而,在相對高的電 壓水準處,相對於輸入電壓流430中的任何變化,輸出電 壓流440改變得少得多。 圖13表示了響應於圖1〇中表示的電壓流4〇4而產生 的示例性輸出電壓流4〇5。如圖所示’非線性放大器380 的作用是要加強存在於較低的電壓中的細節,同時降低較 高的電壓的重要性。如上所述,非線性放大器38〇的這種❹ 作用有助於出於測量的目的而對較低的電壓提供額外的分 辨度。 再次參看圖3,微處理器310可電連接在非線性放大 器380的下游,從而使得微處理器31〇連接到非線性放大 器輸出384上。微處理器31〇測量來自非線性放大器 的單獨的電壓,且微處理器31〇可將這些電壓轉換成〇_255 的數位範圍。應當理解,僅因為微處理器310的性能,才 本實施例中選擇〇_255的當前範圍。取決於微處理器31〇 30 201019731 的性能’許多其他範圍,包括實際電壓量度,也可起作用。 因為量度值範圍中的這些可能的差異,將始終使用術語 水準值’,來描述賦予輸入到微處理器310的具體電壓輪 入以進行進一步的處理的值。另外,如上所述,如果所使 用的微處理器310包括比本實施例更大的分辨能力,則可 能不需要非線性放大器380。 現在將參照圖14中顯示的流程圖來詳細描述上行區 ❹ 105的操作和控制。如上所述,在知道大多數房屋裝置將 使其輸出水準自動增大,以抵消任何添加的衰減的作用的 情況下,上行區105可有意地使上行頻寬衰減。因此就 添加的各個量的衰減而言,上行頻寬的信號雜訊比率增 大,因為雜訊衰減了,且房屋裝置使其合乎需要的頻率的 輸出增加。信號雜訊比的這個增大的極限是可由房屋裝置 添加的合乎需要的上行頻寬的增加量。因此,必須檢查和 監視上行頻寬的水準,以確保添加的衰減量不會持續地超 © 過可由房屋裝置提供的額外輸出量。 現在參看圖14,微處理器310完成一系列的過程步驟 600,以確定由房屋裝置產生的合乎需要的上行頻寬的水準 值。作為此確定過程的一部分,微處理器使用了兩個緩衝 器,缓衝器0和緩衝器1。 緩衝器0在本實施例中具有八個輸入位置在過 程600中,可按兩種單獨的方式來引用緩衝器0輪入位置過 第一,緩衝器0輸入位置可明確地稱為緩衝器(0 0)、 衝器(0,1)、緩衝器(0’ 2)、緩衝器(0,3)、緩衝器⑺緩 31 201019731 4)、緩衝器(0’ 5)、緩衝器(0,6)和緩衝器…,7)。第二, 緩衝器0輸入位置可稱為緩衝器(0,χ),其中χ是作為過 程600的一部分而增加和重定的變數。緩衝器0輸入位置 的平均值在本文中可稱為當前平均值(“ cav”)。 緩衝器1在本實施例中具有八個輸入位置(0 7)。在過 程_中,緩衝器W入位置可明確地稱為緩衝器〇,0)、 緩衝器(1,1)、緩衝器(1,2)、緩衝器(1,3)、緩衝器(1, 4)緩衝器(1 ’ 5)、緩衝器〇 ’ 6)和緩衝器,7)。另外, 緩衝器W人位置可稱為緩衝器(0,γ),其中γ是作為過〇 程600的部分而增加、減小和重定的變數。 緩衝器0和緩衝器i中的各個均可包括不止八個或不 到八個輸入位置。雖然已經發現對於獲得上行頻寬的水準 的預定目%,八個輸入位置也工作良好,但是較多的輪入 位置可以較小的易變性提供較平滑的水準值。 在對調節裝置100通電之後,微處理器31〇執行初始 化常式,初始化常式包括步驟6〇2、6〇4、_和6〇8。根 據步驟602’將緩衝器0輸入位置χ設定為0,且將緩衝❹ 器1輸入位置Υ設定為0。 進一步根據步驟602,微處理器31〇啟動反復計時器, 反復計時器在本實施例中被設定為運行十分鐘。如在以下 描述過程中將變得更加顯而易見的,當在這十分鐘内沒有 檢測到來自房屋裝置的活動時,此十分鐘計時器意囷釋放 置於上行頻寬上的衰減。此處使用術語“活動”來描述在 VIH以上的CAV的存在。取決於用戶在具鱧的catv網路 32 201019731 方面的經驗’十分鐘的時間可以更短或更長。十分鐘時間 是根據使用互聯網、VOIP和/或STB/STU的大多數人都會 在十分鐘跨度内執行至少一個功能的這一假定而為本實施 例選擇的。假定比十分鐘更長的時間跨度通常意味著用戶 當前正在使用互聯網、VOIP和/或STB/STU。 進一步根據步驟602,將反向衰減器320(圖3)設定為 4 dB的衰減。此衰減量是由調節裝置ι〇〇的本實施例提供 ❿的基礎衰減。基於具體的CATV系統的經驗,此基礎衰減 量可增加或減少。選擇此4 dB的基礎量是因為該基礎量提 供一些量的有益雜訊降低,但是當該房屋裝置起初就被開 啟且運行正常時,該基礎量足夠低到不會干擾任何經測試 的房屋裝置。 根據步驟604’微處理器310檢查緩衝器0輸入位置χ 疋否等於8。步驟604的目的是要砵定緩衝器0是否是滿 的。使用為8的值是因為在將種子值(在以下論述)置於最 © 近的緩衝器位置(即緩衝器(0,7))中之後,X增加了 1。因 此,儘管沒有位置“8” ,但是為8的值與本確定過程有 關。應當理解,如果增加值“X”的步驟出現在過程6〇〇 中的不同位置處,也可使用值“7” 。如果對步驟604的回 答為“否”,則微處理器31〇移到步驟6〇6。否則,微處 理器3 10就移到步驟6〇8。 根據步驟606’微處理器310將種子值置入緩衝器(0, X)中’緩衝器(0,X)在第一個實例中是緩衝器(0,0)。種 子值是按經驗得來的值,該值與期望找到的水準值相對接 33 201019731 近。換句話說,本實施例中的種子值是基於在具體的catv 系統中觀察到的實際值用實驗方法確定的。種子值必須與 上行頻寬的初始水準值相對接近,以允許調節裝置1〇〇啟 動穩定過程。在緩衝器(0,X)裝有種子值之後,微處理器 310返回到步驟604,以檢査緩衝器0是否是滿的。步驟 604和606之間的過程繼續使緩衝器0輸入位置裝滿種子 值。一旦裝滿,微處理器310就移到步驟608。 根據步驟608’微處理器31〇將獲得緩衝器0的cAV, 且將該值置於緩衝器(1,Y)中,緩衝器(1,γ)在此第一個1 實例中是緩衝器(1,0)。微處理器31〇使緩衝器0輸入位 置X復位到0,但卻使種子值留在緩衝器0輸入位置中。 本領域技術人員將理解,如果緩衝器0中的值被删除或使 其像是要在隨後的時間裏被改寫,本過程將正常運行。 進一步根據步驟008,高電壓極限(“VIH”)和低電壓 極限(“VIL”)基於置入緩衝器(1,γ)中的CAV值來計算, 緩衝器(1 ’ Y)當前為緩衝器(1,0)。注意,這也可表達成 基於CAV來計算VIH和VIL。無論如何,vih和是計 Ο 算值’在後面的步驟中使用該計算值來排除不接近期望水 準值的大多^水準值。此排除通過避免遠低於期望值的 錯誤峰值量度來有助於使本調節裝置1〇〇更加穩定。因為 在確疋了每個新CAV之後就確定了 VIH和vil兩者,所以 在接收到水準值的有巨大變化的情況下允許V识和饥 浮動。在本實例中,VIH將為緩衝器(1,Y)的大約94%, VIL將為緩衝器〇,γ)的大約81%。vih和yiL兩者均可 34 201019731 為允許更大或更小的水準值包括a 括在任何峰值確定中的其他 比率。將在以下進一步論述峰值墟 ▼值確疋,但有利的是在此處 闡明’ VIH設定高的初始閾值,袁 具中排除考慮在VIH以下 的水準值。類似地’机是低的輔助閣值,其中直到具趙 序列(當水準值超過谨時開始的序列)的水準值在爪以 下才考慮水準值。換句話說,將拾杏— 將檢查一序列的水準值以獲 得單個峰值,該㈣始於超過彻的水準值,且結束於降 ❺ 到VIL以下的水準值。因為最近的CAv是為51魏子值, 所以VIH計算出為48,且VIL外笪山A ,上 m 算出為41。當然,在獲 得實際水準值之後,這些值會隨著CAV的改變將改變。在 完成當前步驟之後,微處理器31〇就移到步驟61〇。 310獲得當前水準值 38〇(圖3)在當前時間提 微處理器310就進行到 根據_步驟610,微處理器 (“CLV” p CLV是非線性放大器 供的電壓的值。一旦獲得了 C LV, 步驟612。 © 根據步驟612,微處理器310注意最近獲得的CLV是 否大於vm,以開始考慮一序列的水準值。如上所述如 果具趙# CLV是首先獲得的大於VIH的值(自從具有降到 VIL之下的值以來),則此CLV是一個序列的第一個。因此, 如果CLV在VIH以下,則微處理器31〇進行到步驟614, 以確定CLV是否小於VIL,如果CLV小於,則微處理 器310將停止該序列。如果CLV大於vm,則下一個步驟 是步驟618。 根據步驟614,微處理器310注意近來獲得的CLV是 35 201019731 否小於VIL。如上所述,不考慮所獲得的降到VIL以下的 所有水準值。當CLV小於VIL時,過程6〇〇移到步驟61。 因此,如果CLV大於VIL,則下一個步驟就回到步驟61〇, 以獲得新CLV來繼續通過具有大於VIH的CLV而開始的 序列。應當理解,任何這些與VIH和VIL的比較關係可為 等於或小於/大於,而非僅僅是小於/大於。所使用或未使用 的額外的值不會顯著地改變結果。 一旦微處理器31〇進行了步驟616,使緩衝器0輸入 位置X增加了足夠數量的次數,步驟622將得到滿足從 而表明緩衝器0已經準備好被取平均值。因此,一旦滿足 了步驟622 ’微處理器310就移到步驟624。 根據步驟624,微處理器310計算CAV,CAv是緩衝These longer zones of G-large electricity I have a typical duration that may be typical for a particular house installation. In other words, the longer region of the increased voltage 41 可 may have a shorter or longer lower voltage region between the longer regions of the increased voltage 41G. When the leveling test n 37G is being discussed, this duration, which may vary based on the type of building device present, will be important. Referring now to Figure 9, low pass amplifier 367 produces a voltage stream 4 〇 2 in which a longer region of the increased voltage 410 (Figure 8) produces a higher power 412 and a shorter region of the increased voltage 420 (囷8) A lower voltage 422 is produced. This voltage stream 402 is then output from 364 to the level detector 370 from the RF detection circuit. Based on this description and size requirements for a particular installation, those skilled in the art will readily understand what type of components should be used to establish RF detection circuitry 360. A separate component present in one embodiment of the RF detection circuit 36A is shown in FIG. The level detector 370 is electrically coupled downstream of the RF detection circuit 36A such that the output of the RF detection circuit is electrically coupled to the level detector input 372 (Fig. 7). Level detector 37A generates additional current based on the voltage flow provided by RF detection circuit 36A, and level detector 37 includes at least 27 201019731 diodes and at least one relative to store the supplied current. The large commutator 376 ° is supplied from the large capacitor 376 to the level detector output (7) of the electric grinder 4〇4 (囷1〇) and the RF detection circuit state provides the voltage flow at the level detector input 372 4〇2 The difference is that any increased voltage 412, 422 is held for a longer duration than the voltage flow 402 from the RF detection circuit 360. The amount of duration that any increased voltage is maintained is strictly determined by determining the size of at least one capacitor to determine the size of the associated resistor, as well as the current drawn by the subsequent device. Referring now to Figure 10, level detector 370 produces a voltage stream 404 whose longer duration of increased voltage 412 (Fig. 9) is more consistent, resulting in a voltage between the increased duration 414 of the resulting longer duration. Falling less. This voltage stream 404 is then rotated from the level detector output 374 to the non-linear amplifier 380. A separate component present in one embodiment of the level detector 37A is shown in FIG. While most of the components will be apparent to those skilled in the art, it is worth noting that the level detector 370 made in accordance with one embodiment includes more than one charge that is sufficient to maintain the voltage for up to six seconds. © Container 376 » This amount of time has been found Sufficient to apply message voltage 412 to voltage stream 402 (Fig. 9) for measurement by microprocessor 31A, described more fully below. Depending on the consistency of the message being sent and the speed of the processor 3', the amount of duration can be shorter or longer. More generally, the duration required to maintain the voltage of the present embodiment is about ten times the duration of the longer zone of the increased voltage 41 提供 provided by the house device. Therefore, the duration may vary depending on the current house device. 28 201019731 In addition, it should be understood that the term "ten times, the multiplier is used here" is generally used because if the low voltage threshold ("VIL") is correspondingly reduced to allow for an increase in the voltage 41 〇 longer There is a large pressure drop between the zones, and less than ten times can also work well. More than ten times may result in too long durations. 'The voltage may not fall too fast enough to exceed the VIL and stop properly. Sequences. These statements can be understood once the VIL and its effect on the sequence are discussed more fully below. As will be appreciated by those skilled in the art based on this description, a large capacitor or multiple smaller capacitors can achieve specific The desired amount of capacitance is continued. Referring again to Figure 3, the non-linear amplifier 380 is electrically coupled downstream of the level detector 370 such that the level detector output 374 is electrically coupled to the non-linear amplifier input 382 (Figure 11). The linear amplifier 38A compresses the voltage stream 404 provided by the level detector 370 to provide additional resolution to the lower voltage. In particular, the non-linear amplifier 38〇 The lower voltage provides additional detail without unnecessarily providing a higher resolution for the higher voltage. This is important in this embodiment of the upstream bandwidth adjustment device because the microprocessor 310 accepts from The non-linear amplifier outputs a voltage current of the non-linear amplifier 380 at 384 (Fig. Π) and converts it to a digital value in the range of 〇 255. Applied to the entire voltage flow from the level detector 37 的 an additional Resolution may require more than 255 digit values, and the linear resolution of the voltage flow from level detector 370 may result in poor quality measurements of the upstream bandwidth. An embodiment of the non-linear amplifier _ is shown in FIG. A separate component in it. It should be understood that the non-linear amplifier 29 201019731 380 may not be needed when additional resolution within the microprocessor 310 is available. Figure 11 shows the inclusion of a non-linear amplifier input 3 82 A non-linear amplifier 380 of resistor 386. This resistor 386 allows the voltage flow 404 from the level detector 370 to flow out rather than maintaining a specific voltage indefinitely. It should be understood that this resistor 386 can be considered part of any of the level detector 370 and the non-linear amplifier 380. A linearly varying input voltage stream 430 and a non-linearly varying output voltage stream can be seen in FIG. An example of 440. As shown, at a relatively low input voltage level, the output voltage stream 440 changes much more with respect to any of the input voltage streams 430. However, at a relatively high voltage level The output voltage stream 440 changes much less with respect to any change in the input voltage stream 430. Figure 13 shows an exemplary output voltage stream 4〇5 generated in response to the voltage stream 4〇4 represented in Figure 1A. . As shown, the function of the non-linear amplifier 380 is to enhance the details present in the lower voltage while reducing the importance of higher voltages. As noted above, this ❹ effect of the non-linear amplifier 38〇 helps provide additional resolution for lower voltages for measurement purposes. Referring again to FIG. 3, microprocessor 310 can be electrically coupled downstream of non-linear amplifier 380 such that microprocessor 31 is coupled to non-linear amplifier output 384. The microprocessor 31 measures the individual voltages from the non-linear amplifiers and the microprocessor 31 can convert these voltages into a digital range of 〇 255. It should be understood that the current range of 〇_255 is selected in this embodiment only because of the performance of the microprocessor 310. Depending on the performance of the microprocessor 31〇 30 201019731 many other ranges, including actual voltage measurements, may also work. Because of these possible differences in the range of metric values, the term level value' will always be used to describe the value that is assigned to a particular voltage input to the microprocessor 310 for further processing. Additionally, as noted above, the non-linear amplifier 380 may not be needed if the microprocessor 310 used includes greater resolving power than the present embodiment. The operation and control of the up region ❹ 105 will now be described in detail with reference to the flowchart shown in FIG. As noted above, the upstream region 105 can intentionally attenuate the upstream bandwidth, knowing that most of the building devices will automatically increase their output levels to counteract the effects of any added attenuation. Therefore, in terms of the attenuation of the added quantities, the signal-to-noise ratio of the upstream bandwidth is increased because the noise is attenuated, and the output of the housing device to the desired frequency is increased. This increased limit of the signal to noise ratio is an increase in the desired upstream bandwidth that can be added by the house device. Therefore, the level of the upstream bandwidth must be checked and monitored to ensure that the amount of attenuation added does not continuously exceed the additional output that can be provided by the house unit. Referring now to Figure 14, microprocessor 310 performs a series of process steps 600 to determine the desired level of upstream bandwidth produced by the premises unit. As part of this determination process, the microprocessor uses two buffers, buffer 0 and buffer 1. Buffer 0 has eight input locations in process 600 in the present embodiment. The buffer 0 rounding position may be referenced first in two separate ways, and the buffer 0 input position may be explicitly referred to as a buffer ( 0 0), buffer (0, 1), buffer (0' 2), buffer (0, 3), buffer (7) buffer 31 201019731 4), buffer (0' 5), buffer (0, 6) and buffers..., 7). Second, the buffer 0 input location can be referred to as a buffer (0, χ), where χ is a variable that is incremented and re-defined as part of process 600. The average of the buffer 0 input locations may be referred to herein as the current average ("cav"). The buffer 1 has eight input positions (0 7) in this embodiment. In process_, the buffer W-in position can be explicitly referred to as buffer 〇, 0), buffer (1, 1), buffer (1, 2), buffer (1, 3), buffer (1). , 4) buffer (1 '5), buffer 〇 '6) and buffer, 7). In addition, the buffer W human position may be referred to as a buffer (0, γ), where γ is a variable that is increased, decreased, and reset as part of the overrun 600. Each of buffer 0 and buffer i can include more than eight or no more than eight input locations. Although it has been found that the eight input positions also work well for a predetermined target % of the level of the upstream bandwidth, more rounded positions provide a smoother level of value with less variability. After powering up the adjustment device 100, the microprocessor 31 executes an initialization routine that includes steps 6〇2, 6〇4, _, and 6〇8. The buffer 0 input position χ is set to 0 according to step 602', and the buffer buffer 1 input position Υ is set to 0. Further in accordance with step 602, the microprocessor 31 initiates an iteration timer, which in the present embodiment is set to run for ten minutes. As will become more apparent in the following description process, this ten minute timer intentionally releases the attenuation placed on the upstream bandwidth when no activity from the premises device is detected within the ten minutes. The term "activity" is used herein to describe the presence of CAV above VIH. Depending on the user's experience with the catv network 32 201019731, the ten minutes can be shorter or longer. The ten minute time is selected for this embodiment based on the assumption that most people using the Internet, VOIP, and/or STB/STU will perform at least one function within a ten minute span. It is assumed that a longer time span than ten minutes usually means that the user is currently using the Internet, VOIP and/or STB/STU. Further in accordance with step 602, the inverse attenuator 320 (Fig. 3) is set to an attenuation of 4 dB. This amount of attenuation is the fundamental attenuation provided by the present embodiment of the adjustment device ι〇〇. Based on the experience of a specific CATV system, this base attenuation can be increased or decreased. The base amount of 4 dB is selected because the base amount provides some amount of beneficial noise reduction, but when the house device is initially turned on and operating normally, the base amount is low enough to not interfere with any of the tested house devices. . In accordance with step 604' microprocessor 310 checks if the buffer 0 input position χ 疋 is equal to eight. The purpose of step 604 is to determine if buffer 0 is full. The value of 8 is used because X is incremented by 1 after placing the seed value (discussed below) in the most recent buffer location (i.e., buffer (0, 7)). Therefore, although there is no position "8", the value of 8 is related to the determination process. It should be understood that the value "7" can also be used if the step of adding the value "X" occurs at a different position in the process 6". If the answer to step 604 is "NO", the microprocessor 31 moves to step 6-6. Otherwise, the microprocessor 3 10 moves to step 6〇8. The microprocessor 310 places the seed value into the buffer (0, X) according to step 606'. The buffer (0, X) is the buffer (0, 0) in the first instance. The seed value is an empirically derived value that is associated with the expected level of value. 33 201019731 Near. In other words, the seed values in this example were experimentally determined based on the actual values observed in a particular catv system. The seed value must be relatively close to the initial level of the upstream bandwidth to allow the adjustment device 1 to initiate the stabilization process. After the buffer (0, X) is loaded with the seed value, the microprocessor 310 returns to step 604 to check if the buffer 0 is full. The process between steps 604 and 606 continues to fill the buffer 0 input location with the seed value. Once full, microprocessor 310 moves to step 608. According to step 608', the microprocessor 31 will obtain the cAV of the buffer 0, and place the value in the buffer (1, Y), which is the buffer in the first 1 instance. (1,0). The microprocessor 31 resets the buffer 0 input position X to 0, but leaves the seed value in the buffer 0 input position. Those skilled in the art will appreciate that if the value in buffer 0 is deleted or if it appears to be overwritten at a later time, the process will operate normally. Further according to step 008, the high voltage limit ("VIH") and the low voltage limit ("VIL") are calculated based on the CAV value placed in the buffer (1, γ), the buffer (1 'Y) is currently the buffer (1,0). Note that this can also be expressed as calculating VIH and VIL based on CAV. In any case, vih and calculus 'are used in subsequent steps to exclude most of the level values that are not close to the desired level value. This exclusion helps to make the adjustment device 1〇〇 more stable by avoiding false peak measurements that are much lower than expected. Since both VIH and vil are determined after each new CAV is confirmed, V and hunger float are allowed in the case of receiving a large change in the level value. In this example, VIH will be approximately 94% of the buffer (1, Y) and VIL will be approximately 81% of the buffer 〇, γ). Both vih and yiL can be used. 34 201019731 To allow larger or smaller levels to include other ratios included in any peak determination. The peak market value will be further discussed below, but it is advantageous to clarify here that the initial threshold of the VIH setting is high, and the level value below VIH is excluded from the specification. Similarly, the machine is a low auxiliary value, in which the level value is not considered until the level of the Zhao sequence (when the level value exceeds the sequence started by the time). In other words, the picking apricot will check a sequence of levels to obtain a single peak, which begins at a level above the full level and ends at a level below the VIL. Since the most recent CAv is 51 meson values, the VIH is calculated to be 48, and the VIL is outside the mountain A, and the upper m is calculated as 41. Of course, these values will change as the CAV changes after the actual level is obtained. After completing the current step, the microprocessor 31 moves to step 61. 310 obtains the current level value 38 〇 (Fig. 3). At the current time, the microprocessor 310 proceeds to step 610 according to the microprocessor ("CLV" p CLV is the value of the voltage supplied by the non-linear amplifier. Once the C LV is obtained Step 612. © According to step 612, the microprocessor 310 notifies whether the recently obtained CLV is greater than vm to begin to consider a sequence of levels. As described above, if Zhao #CLV is the first value obtained greater than VIH (since The CLV is the first of a sequence since the value falls below the VIL. Therefore, if the CLV is below VIH, the microprocessor 31 proceeds to step 614 to determine if the CLV is less than VIL, if the CLV is less than The microprocessor 310 will stop the sequence. If the CLV is greater than vm, the next step is step 618. According to step 614, the microprocessor 310 notices that the recently obtained CLV is 35 201019731 is less than VIL. As mentioned above, regardless of All levels obtained below VIL are obtained. When CLV is less than VIL, process 6 moves to step 61. Therefore, if CLV is greater than VIL, the next step returns to step 61〇 to obtain a new CLV. Continue with the sequence beginning with a CLV greater than VIH. It should be understood that any of these comparisons with VIH and VIL may be equal to or less than/greater than, not just less than/greater than. Additional values used or not used are not The result will be significantly changed. Once the microprocessor 31 has performed step 616 to increase the buffer 0 input position X by a sufficient number of times, step 622 will be satisfied to indicate that buffer 0 is ready to be averaged. Once the step 622 is satisfied, the microprocessor 310 moves to step 624. According to step 624, the microprocessor 310 calculates the CAV, and the CAv is buffered.

器0的平均值,而且微處理器31〇將緩衝器0輸入位置χ 設定為0。然後微處理器310進行到步驟626。The average value of the device 0, and the microprocessor 31 sets the buffer 0 input position χ to zero. The microprocessor 310 then proceeds to step 626.

根據步驟626,微處理器31〇確定CAV是否大於緩衝 器(1 ’ y)+6的值。為了使此步驟更清楚,如果緩衝器(ι , Υ)是51 ’則微處理器31〇將確定CAV是否大於$卜6,或 57。添加到緩衝器(1,γ)的這個為“ 6,,的值會對過程6〇〇 添加穩定性,因為CAV必須足夠高,以便在步驟⑶中添 加額外的衰減。因此,使用大於“6”的值來添加更大的穩 定性會帶來降低精確性的風險。類似地,使用小於“6,的 值來添加更大的精確性會帶來降低穩定性的風險。如果步 驟626:答為責定的話,微處理_⑽就移到步驟⑵, 以添加衰減。否則’微處理器1〇移到步驟_。 36 201019731 根據步驟629,微處理器3 1〇添加額外的衰減步驟, 此衰減在本實施例中為1 dB。另外,微處理器31〇使緩衝 器1輸入位置γ增加,以準備將CAV置入緩衝器i中。之 後,微處理器3 10移到步驟6 3 1。 根據步驟631 ’微處理器31〇確定緩衝器i輸入位置 是否是滿的。因為緩衝器卜(0_7)中僅有八個輪入位置, 為8的值將表明緩衝器i是滿的。其原因在以下將變得很 ❺月顯。如果緩衝器1是滿的,則下一個步驟是步驟…。 否則’下一個步驟是步驟632。 根據㈣632, CAV被置於下一個打開的緩衝器^輸 入位置中,即緩衝器(1,γ)。然後過程進行到步驟636。 如果緩衝器1是滿的,則微處理器3 1〇就會進行到步 驟634,而不是步驟632。根據步驟㈣,當前在緩衝器i 中的所有的值都向下移1個位置,從而使得原本(即在步驟 634之前)在緩衝器(1’ 0)中的值從緩衝器ι中移除。然後 ❿C_AV被置於緩衝器(1,7)中。進一步在㈣㈣中將緩 衝器1輸入位置Y設定為7。如同步驟632 一樣,過程6〇〇 進行到步驟036 〇 根據636,微處理器310基於緩衝器(1,γ)為vm和 VIL計算新值,如果之前就完成了步驟364 ,則煖衝器(1, Y)可為緩衝器(1,7)。在步驟636之後,過程6〇〇返回到 步驟610,以獲得新CLV,且重複過程6〇〇的有關位置。 現在再參看步驟628,微處理器31〇確定CAV是否小 於緩衝器緩衝器(卜Y)-4 t的值。對緩衝器(卜γ)使用為 37 201019731 51的值’微處理器310會碟定CAV是否小於51—5,或47e 在此實例中,過程_將移到步驟63〇。否則過程_將 移到步驟638,隨後將對步驟㈣進行論述。 根據步驟630,微處理器31〇確定反復計時器是否已 經到時間了。如果回答為否’則微處理器31〇進行到步驟 在該步驟中’使反復計時器復位。否則,微處理器 3 10就移到步驟642。According to step 626, the microprocessor 31 determines if the CAV is greater than the value of the buffer (1 ' y) + 6. To make this step clearer, if the buffer (ι, Υ) is 51 ', the microprocessor 31 〇 will determine if the CAV is greater than $Bu 6, or 57. The value added to the buffer (1, γ) of "6," adds stability to the process 6〇〇 because the CAV must be high enough to add additional attenuation in step (3). Therefore, use greater than "6" The value of "to add greater stability leads to a risk of reduced accuracy. Similarly, using a value less than "6" to add greater accuracy leads to a reduced risk of stability. If step 626: is answered as a result, the microprocessor _(10) moves to step (2) to add the attenuation. Otherwise 'Microprocessor 1 moves to step _. 36 201019731 According to step 629, the microprocessor 3 1〇 adds an additional attenuation step, which is 1 dB in this embodiment. In addition, the microprocessor 31 causes the buffer 1 input position γ to increase in preparation for the CAV to be placed in the buffer i. Thereafter, the microprocessor 3 10 moves to step 613. According to step 631', the microprocessor 31 determines whether the buffer i input position is full. Since there are only eight rounding positions in the buffer (0_7), a value of 8 will indicate that the buffer i is full. The reason for this will become very obvious in the following. If buffer 1 is full, the next step is step... Otherwise 'the next step is step 632. According to (4) 632, the CAV is placed in the next open buffer ^ input position, namely the buffer (1, γ). The process then proceeds to step 636. If buffer 1 is full, then microprocessor 3 1 进行 proceeds to step 634 instead of step 632. According to step (4), all the values currently in buffer i are shifted down by 1 position, so that the value in the buffer (1'0) is removed from the buffer (i.e., before step 634). . Then ❿C_AV is placed in the buffer (1, 7). Further, in (4) (4), the buffer 1 input position Y is set to 7. As in step 632, process 6 proceeds to step 036. According to 636, microprocessor 310 calculates a new value for vm and VIL based on buffer (1, γ), and if step 364 is completed before, the warmer ( 1, Y) can be a buffer (1, 7). After step 636, process 6 returns to step 610 to obtain a new CLV and repeats the relevant location of process 6〇〇. Referring now again to step 628, the microprocessor 31 determines if the CAV is less than the value of the buffer buffer (Bu Y)-4t. The buffer (Bu γ) is used as the value of 37 201019731 51. The microprocessor 310 will determine whether the CAV is less than 51-5, or 47e. In this example, the process_ will move to step 63. Otherwise process _ will move to step 638, which will be discussed later. According to step 630, the microprocessor 31 determines if the iteration timer has elapsed. If the answer is no 'the microprocessor 31 〇 proceeds to step in this step' to reset the iteration timer. Otherwise, microprocessor 3 10 moves to step 642.

8根據步驟642,微處理g 310注意緩衝㈣i輸入位置γ 疋否大於或等於4。如果是的話,微處理$則就移到步 驟644 ’在步冑644中’由可變衰減器似應用的衰減量 減小了 4 ’且緩衝器i輸入位置γ減小了 4。如果基於時間 期望更多或更少的衰減減小,則可使用除了 “4”之外的 值。已經發現為4的值在應用足夠的衰減減小來減輕房屋 裝置上的任何額外負載和對房屋裝置的非使用狀態反應太 快之間是適當的折衷。然後,微處理器31〇移到步驟646, 在步驟646中,使反復計時器復位。8 According to step 642, the microprocessor g 310 notes that the buffer (4) i input position γ 疋 is greater than or equal to 4. If so, the microprocessor $ moves to step 644 'in step 644' by the variable attenuator-like application of the attenuation by 4 ' and the buffer i input position γ by 4 . If more or less attenuation reduction is expected based on time, a value other than "4" can be used. It has been found that a value of 4 is a suitable compromise between applying sufficient attenuation reduction to mitigate any additional load on the house device and reacting too quickly to the non-use state of the house device. The microprocessor 31 then moves to step 646 where it resets the iteration timer.

再參看步驟648,如果γ在步驟642中不大於或不等 於5,則由可變衰減器32〇應用的衰減量將減小到步驟6们 中設定的基礎量4,且緩衝器1輸入位置γ將被設定為0。 然後,微處理器310就移到步驟646,在步驟646中,使 反復計時器復位。 再參看步驟638,如果微處理器310確定緩衝器!輸 入位置Y為0,則微處理器310直接移到步驟636,以計 算新VIH和VIL。否則,顯而易見的是,可變衰減器32〇 38 201019731 會在步驟640中減小一步,這 同樣在步驟640中,緩衝器1 微處理器310移到步驟636。 一步在本實施例中為丨dB 〇 輸入位置Y減小一。然後, 在過程_在步驟61G處在缺少初始化過程的情況下 ]。之前步驟630是過程600中的最後的步驟。微 處理器3 10可像處理時間允許的那樣連續地進行過程綱。 ❹ ❹ 現在再參看圖3,可使用可變衰減器32G來添加和減 少由過程600確定的衰減量,可變衰減器32〇由微處理器 31〇控制。基於本公開,本領域技術人員應當理解,有可 提供可變衰減的許多不同的硬髏構造。例如,調節裝置1〇〇 的實施例可包括固定衰減器和可變放大器,可變放大器由 微處理器310連接和控制。預想了包括可變放大器和可變 衰減器兩者的其他實施例,另外,可變信號水準調節裝置 也可為自動增益控制電路(“AGC”),且可變信號水準調節 裝置在當前裝置中運行良好。換句話說,還應當理解,可 通過任何各種放大和/或衰減裝置來實現信號水準調節量 和任何增量的額外信號水準調節。 根據前述,本文所用的術語“可變信號水準調節裝 置”應當理解為不僅包括可變衰減裝置,而且還包括包含 可變放大器、AGC電路、其他可變放大器/衰減電路,以及 可用來降低上行頻寬上的信號強度的有關的光電路的電 路0 現在參看圖15’設想了一個備選的上行區105。在本 實例中是可變衰減器320和固定放大器330的可變信號水 39 201019731 準調節裝1:由微處理!! 31〇基於來自水準檢測胃375的輸 入來控制°水準檢測器375通過聯接器340和高通濾波器 355來測量和保持上行頻寬的當前峰值信號強度。本實施 例的微處理器310包括計數電路、閾值比較電路和水準比 較電路°應當理解’儘管本實施例中使用了微處理器310, 疋預想了使用傳統的邏輯電路或微控制器按以在下面描 述的方式來控制可變信號水準調節裝置。 現在參看圖16,顯示了包括可變放大器335和固定衰 減裝置325的可變信號水準調節裝置,可變放大器335由 微處理器310連接和控制。預想了包括可變放大器335和 可變衰減器320兩者的其他實施例。 術語當刖信號強度”意圖描述當前的或現在的信號 強度,這相對於在過去(例如在應用信號水準調節或應用額 外量的k號水準調節之前)的時間裏測量到的信號強度(即 先前的信號強度)。基於以下,關於這一點的原因應該很清 楚。 在運行中,圖16和17所示的實施例内的微處理器 執行信號水準設置常式1000,圖17中表示了確定通過可 變信號水準調節裝置而應用於上行頻寬的適當量的信號水 準調節的信號水準設置常式1000。信號水準設置常式1〇〇〇 可以預定的時間間隔連續地運行,以及/或者由於供應商20 傳輸的資訊信號而依命令連續地運行。一旦啟動,微處理 器310或邏輯電路就根據圖17所示的流程圖來執行信號水 準設置常式1000。 201019731 現在參看圖17,在信號水準設置常式1000的啟動1010 之後’例如在步驟1〇2〇中,使微處理器31〇中的計數電路 重定到零(0)。接下來,微處理器31〇重複執行步驟1〇3〇、 1040 ' 1050、1〇60、1〇7〇、1〇8〇 和 1〇9〇 ’ 直到計數器達到 預定數字(例如25),或者對步驟1〇8〇的回答為否定的為止。 ❹ 特別地’在步驟1〇3〇中,微處理器31〇從信號水準檢 測器375中讀取當前信號強度,且計數器增加預定增量, 例如在步驟1 〇4〇中增加一(丨)。然後微處理器3丨〇注意計 數器是否大於預定數字(即25)。如果是的話,微處理器31〇 就使常式終止’但如果不是的話,微處理器31〇就進行到 步驟1060。在步驟1060中,微處理器310將當前信號強 度與預疋閾值進行比較。如果當前信號強度大於預定閾 值,微處理器310就指示可變信號調節裝置進行一定量的 額外信號水準調節(例如1犯),但是如果當前信號強度低 於預定閾值,微處理器31〇就返回到步驟1〇3〇。 在添加了額外信號水準調節量之後,微處理器310在 步驟1080中讀取新的當前信號強度’同時將之前讀取的當 =信號強度(即從步驟刪中讀取到的)保存為先前信號強 度,以為步驟1〇9〇做準備。在步驟1〇9〇中,微處理器3ι( 將在步驟刪中測得的當前信號強度和在步驟刪中浪 =先前信號強度相互進行比較。如果當前信號強度^ 先m強度,則微處理器31G返回到步驟刪,但是如 ,當前信號強度小於先前信號強度,則微處理器31〇 到步驟謂,在步驟_中,微處理器31g指示可 201019731 水準調節裝置使信號水準調節量減小預定量(例如在步驟 1070中添加的額外信號水準㈣量或大於在步驟職 中添加的額外信號水準調節量)。在步驟謂之後,微處 理器310在步驟iiioa 保存k號水準調節總量,且在步称 1120處停止常式。 〇 如上所述,當前信號水準設置常式的一個重要方面是 步驟刪中進行㈣較㈣。在㈤以統中㈣的傳統 的電缆數據機14〇(圖2)可基於從下行頻寬中的供應商處接 收到的資訊信號來調節其輸出水準。特別地,如果由供應 商20接收到的數據機信號較弱,則供應商2〇指示 _提高其傳輸信號水準。因為這與本發明有關,所以由 =加量的上行頻寬信號水準調節,數據冑⑽會不斷地 ^间信號水準’直到數據機14()不再能夠提高其傳輸信號 度為止。因此,如果數據冑14〇能夠補償額外的信號水 準調節’則在步驟顧中添加額外的信號水準調節之後在 ❹ ^驟_中測得的當前信號強度應當等於先前信號強 。但是,如果數據機M0已經提供了其最大信號強度, 應用額外量的上行頻寬信號水準調節時,則當前信號強 度將小於先前信號強度。 因為由於在數據機14〇的最大輸出(即:當數據機“Ο 大水準上運行錢近最大水準運行時,信號失真可能 大^以及/或者當數據機14〇在最大水準上運行或接近最 準運行時,可能要犧牲數據機140的耐用性)下運行可 會對數據機140產生問題,所以一旦識別了數據機14〇 42 201019731 的最大輪出強度,就可在步驟1100中使信號水準調節量減 j足夠的量,以確保由數據機14〇產生的輸出信號的品質 和數據機14〇的耐用性。 注意,在有不止一個將資料包傳入上行頻寬中的裝置 的系統中,上行區105可識別一個裝置而不是其他裝置的 最大輸出強度 '換句話說,上行區105可識別實現其最大 輸出強度的第一裝置,而不需要繼續識別任何其他裝置的 q 最大輪出強度。如果上行區105未能識別首先觀察到的最 大輸出強度,該裝置就可繼續在其最大輸出強度下運行, 直到另一個確定循環啟動為止。 在步驟1050中比較的預定數量可與信號水準調節量 直接相關。例如,如果可變信號水準調節裝置是包括25步 (每步ldB的衰減)的步進衰減器,如囷16中表示的實施例 的情形那樣,預定數量可設定為25,以允許最佳分辨度(即 1 dB)以及對具鱧步進衰減器的範圍(即25 dB)的最廣泛使 ® 用。應當理解,如果期望較快的整體運行,則可減少步進 的數量,且可降低分辨度(即5步,每步5 dB)。還可預測 的是,如果使用了具有較好的分辨度(即小於ldB)或更寬的 範圍(即大於25 dB)的可變信號水準調節裝置,則可使預定 數量增加《此處所述的與計數器和預定數量有關的增量為 一(1),其使得當預定數量為25時,有25次重複(即25步)。 取決於所期望的預定數量和總步數(如上所述,預定數量和 總步數是基於信號水準調節的期望分辨度和期望範圍 的)’此增量無疑地可為任何數字(即丨、5、1〇、_卜·1〇等)。 43 201019731 在步驟1070中添加的額外衰減量,以及在步驟u〇〇 中減小的衰減的預定量都是變數,這些變數當前至少部分 地基於硬體設計限制,且取決於硬體,這些變數可由本領 域技術人員基於具體CATV系統中經歷的條件和使用具體 CATV裝備來調整。如上所述,本發明中的一個實施例的可 變信號水準調節裝置包括具有ldB的分辨度和25 dB的範 圍的步進衰減器。因此,使用當前硬體在步驟1070中添加 的額外衰減量可為i dB或ldB的倍數。類似地,在步驟 1100中減小的衰減的預定量可為ldB或1 dB的倍數.應❹ 當理解,如果在步驟1〇7〇中添加的額外衰減量是! dB的 倍數’例如5 dB,則在步驟1100中減小的衰減量可為粟少 的量,例如2 dB或4 dB。由於以上關於保持來自數據機 140的輸出的品質和數據機14〇的耐用性所述的原因,在 步驟1100中減小的衰減量也可大於在步驟1070中添加的 額外衰減量。 在步驟1060中比較的預定閾值是足以將上行頻寬中 的上行資料包的存在與干擾信號區別開的信號水準。這個 〇 值將取决於系統中的任何電窥數據機14〇、STB、STU等的 輸出功率和干擾信號的平均觀測水準而改變。目標例如是 要碟定是否存在通過上行頻寬發送上行資料包的裝置。如 果預定閾值設定得太低’則干擾信號可能看起來像是上行 資料包’但是如果預定閾值設定得太高,上行資料則可能 看起來像是干擾信號。 (iii)下行區 44 201019731 再參看圖3,且現在參看 調節裝置_進—步8’_本實關製作的 1〇8。 匕括連接在正向路徑244内的下行區 大體上’下行區1〇8 使用兩個不同運行模式模 理器310來尋找和觀察 料。在模由, 式0和模式1)的通道水準資 ❿ φ 個低頻通;,根攄I處理器.310僅使用單個高頻通道和單 型的修正。在模式! ^和斜率來進行相對路線(C〇UrSe)/大 高頻通、首知 ? 微處理器310使用平均不止一個 杆相槲知細低頻通道,根據水準和斜率來進 g 在本實施例内的各個模式中,使用高 — 放大率’料使用低頻通道的水準來 2疋斜率。應當理解,可使用高頻通道的水準來設定放大 、和使用低頻通道的水準來設定斜率的方式類似於以下所 逑的方式。以下將對下行區1G8的硬艘、控制和運行進行 更加詳細的論述。 在本實施例中,微處理器31〇是與上行1 1〇5中使用 的微處理器相同的微處理器310。但是如果有諸如成本、 空間或複雜性的好處,可能有益的是使用兩個或多個單獨 的微處理器310。如果使用了兩個單獨的微處理器310,其 之間可有連接,以允許傳送資訊。如以下將論述的,使下 行區108對上行區105提供資訊有有利的原因。這些原因 包括例如如果/當調節裝置100和供應商20之間的信號傳 輸線有損壞時,降低了可抑制通過上行頻寬的資訊流的上 行頻寬的任何衰減。這將在以下進一步闡明。 45 201019731 首先從硬體開始,聯接器502連接在正向路徑244内, 以通過二級路徑504使下行頻寬(本文稱為聯接的下行頻寬) 的一部分傳到調諧器506。聯接器502連接到用戶侧雙工 器260和用於通過修正下行银寬的水準和斜率來調節下行 頻寬的功能構件(例如放大器508、5 10、可變衰減器512 和斜率調整裝置514,均在以下進一步詳細論述)之間的正 向路徑244内*聯接器5〇2的這種佈置允許在下行頻寬被 調節之後’對下行頻寬進行取樣和分析。本實施例中使用 的聯接器502是用以忍受持續的特性阻抗的傳統的定向聯 © 接器。在考慮這些備選方案可能對裝置的特性阻抗產生的 影響的情況下可使用其他裝置,例如簡單的電阻器和/或分 路器。 固定信號水準調節裝置516可設置在聯接器502和調 諸器506之間。可使用固定信號水準調節裝置516來防止 聯接器502從下行頻寬中抽入過多功率。另外,固定信號 水準調節裝置5 16可大小設置成以便為調諧器5〇6提供具 ◎ 有用於調諧器5〇6和後續裝置的適當量的功率的聯接的下 行頻寬。因此,基於本公開,本領域技術人員將理解任何 具體聯接器502和調諧器506組合是否需要固定信號水準 調節裝置516,以及任何具體聯接器5〇2和調諧器5〇6組 合需要何種大小的固定信號水準調節裝置516。 調譜器506是基於來自微處理器3 1〇的輸入可“調 諧到選定通道的傳統調諧器裝置。特別地,在本實施例 中使用的具體調諧器506設有對應於CATV通道的目標索 46 201019731 引號(索引#),如以下的表1所示。指出這些索引號的目的 是為了顯示還沒有按順序的方式弓丨入catv通道。例如, CAT通道95(索引#5)的頻率比cATV通道14(索引#1〇)Referring again to step 648, if γ is not greater than or equal to 5 in step 642, the amount of attenuation applied by variable attenuator 32A will be reduced to the base amount 4 set in step 6, and buffer 1 input position γ will be set to zero. The microprocessor 310 then moves to step 646 where the iteration timer is reset. Referring again to step 638, if the microprocessor 310 determines the buffer! When the input position Y is zero, the microprocessor 310 moves directly to step 636 to calculate the new VIH and VIL. Otherwise, it will be apparent that the variable attenuator 32 〇 38 201019731 will be reduced by one step in step 640, again in step 640, the buffer 1 microprocessor 310 moves to step 636. One step in this embodiment is 丨dB 〇 the input position Y is decreased by one. Then, in the case of the process_in the absence of the initialization process at step 61G]. The previous step 630 is the last step in the process 600. The microprocessor 3 10 can continuously execute the process as allowed by the processing time. Referring now to Figure 3, a variable attenuator 32G can be used to add and reduce the amount of attenuation determined by process 600, which is controlled by microprocessor 31. Based on this disclosure, those skilled in the art will appreciate that there are many different hard raft configurations that provide variable attenuation. For example, an embodiment of the adjustment device 1A can include a fixed attenuator and a variable amplifier that is connected and controlled by the microprocessor 310. Other embodiments including both variable amplifiers and variable attenuators are envisioned. Additionally, the variable signal leveling device can also be an automatic gain control circuit ("AGC"), and the variable signal leveling device is in the current device. Running well. In other words, it should also be understood that signal level adjustments and any incremental additional signal level adjustments can be achieved by any of a variety of amplification and/or attenuation devices. In accordance with the foregoing, the term "variable signal leveling device" as used herein shall be understood to include not only variable attenuation devices but also variable amplifiers, AGC circuits, other variable amplifier/attenuation circuits, and for reducing upstream frequencies. Circuit 0 of the associated optical circuit for signal strength over a wide range of upstream regions 105 is now envisioned with reference to Figure 15'. In this example, the variable attenuator 320 and the fixed amplifier 330 are variable signal water. 39 201019731 Quasi-adjustable assembly 1: by microprocessing! ! The 水 level detector 375 controls the current peak signal strength of the upstream bandwidth through the coupler 340 and the high pass filter 355 based on the input from the level detection stomach 375. The microprocessor 310 of the present embodiment includes a counting circuit, a threshold comparison circuit, and a level comparison circuit. It should be understood that although the microprocessor 310 is used in the present embodiment, it is envisioned that a conventional logic circuit or a microcontroller is used. The variable signal leveling device is controlled in the manner described below. Referring now to Figure 16, a variable signal leveling device including a variable amplifier 335 and a fixed attenuator 325 is shown. The variable amplifier 335 is coupled and controlled by a microprocessor 310. Other embodiments including both variable amplifier 335 and variable attenuator 320 are envisioned. The term “刖 signal strength” is intended to describe the current or current signal strength, which is relative to the signal strength measured in the past (eg, before applying signal level adjustment or applying an additional amount of k-level adjustment) (ie, previously Signal strength). Based on the following, the reason for this should be clear. In operation, the microprocessors in the embodiment shown in Figures 16 and 17 perform signal level setting routine 1000, which is determined in Figure 17 The variable signal leveling device is applied to a signal level setting routine 1000 of an appropriate amount of signal level adjustment of the upstream bandwidth. The signal level setting routine 1 连续 can be continuously operated at predetermined time intervals, and/or due to supply The information signal transmitted by the quotient 20 is continuously operated according to the command. Once activated, the microprocessor 310 or the logic circuit executes the signal level setting routine 1000 according to the flowchart shown in Fig. 17. 201019731 Referring now to Fig. 17, at the signal level After setting the startup 1010 of the routine 1000, for example, in step 1〇2, the counting circuit in the microprocessor 31〇 is reset to (0) Next, the microprocessor 31 repeatedly performs steps 1〇3〇, 1040 '1050, 1〇60, 1〇7〇, 1〇8〇, and 1〇9〇' until the counter reaches a predetermined number (for example, 25), or the answer to step 1〇8〇 is negative. ❹ In particular, in step 1〇3〇, the microprocessor 31〇 reads the current signal strength from the signal level detector 375, and the counter is incremented. The predetermined increment, for example, adds one (丨) to step 1 〇 4. The microprocessor 3 then pays attention to whether the counter is greater than a predetermined number (ie 25). If so, the microprocessor 31 causes the routine to terminate. 'But if not, the microprocessor 31 proceeds to step 1060. In step 1060, the microprocessor 310 compares the current signal strength to the pre-threshold threshold. If the current signal strength is greater than the predetermined threshold, the microprocessor 310 The variable signal conditioning device is instructed to perform a certain amount of additional signal level adjustment (eg, 1 spoof), but if the current signal strength is below a predetermined threshold, the microprocessor 31 返回 returns to step 1 〇 3 〇. Additional signal levels are added. Tune After the amount, the microprocessor 310 reads the new current signal strength ' in step 1080 while saving the previously read when = signal strength (ie, read from the step deletion) as the previous signal strength, as step 1 9〇 Prepare. In step 1〇9〇, the microprocessor 3ι (the current signal strength measured in the step deletion and the step-by-step wave = previous signal strength are compared with each other. If the current signal strength ^ first m Intensity, the microprocessor 31G returns to the step deletion, but if the current signal strength is less than the previous signal strength, the microprocessor 31 proceeds to the step, in which the microprocessor 31g indicates that the 201019731 leveling device can make the signal. The level adjustment amount is decreased by a predetermined amount (e.g., an additional signal level (four) amount added in step 1070 or greater than an additional signal level adjustment amount added in the step operation). After the step, the microprocessor 310 saves the k-level level adjustment amount in step iiioa and stops the routine at step 1120. 〇 As mentioned above, an important aspect of the current signal level setting routine is that the steps are deleted (4) compared to (4). The conventional cable modem 14 (Fig. 2) in (5) can be adjusted based on the information signal received from the supplier in the downlink bandwidth. In particular, if the modem signal received by the supplier 20 is weak, the vendor 2 indicates _ to increase its transmission signal level. Since this is relevant to the present invention, the level of the upstream bandwidth signal is adjusted by =, and the data 胄(10) will continue to be at the signal level until the data machine 14() is no longer able to increase its transmission signal level. Therefore, if the data 胄14〇 can compensate for additional signal level adjustments, then the current signal strength measured in _^_ after adding additional signal level adjustments in the step should be equal to the previous signal strength. However, if the modem M0 has provided its maximum signal strength, the current signal strength will be less than the previous signal strength when an additional amount of upstream bandwidth signal level adjustment is applied. Because of the maximum output at the data machine 14 (ie, when the data machine is running at a large level, the signal distortion may be large and/or when the data machine 14 is operating at or near the maximum level) In quasi-running, the durability of the data machine 140 may be sacrificed. The operation may cause problems to the data machine 140, so once the maximum wheeling strength of the data machine 14〇42 201019731 is identified, the signal level can be made in step 1100. The amount of adjustment is reduced by a sufficient amount to ensure the quality of the output signal produced by the data machine 14 and the durability of the data unit. Note that in systems where there is more than one device that passes packets into the upstream bandwidth. The upstream region 105 can identify the maximum output strength of one device other than the other devices. In other words, the upstream region 105 can identify the first device that achieves its maximum output strength without continuing to identify the q-maximum wheeling strength of any other device. If the upstream zone 105 fails to identify the maximum output intensity observed first, the device can continue to operate at its maximum output intensity until another determination The predetermined number of comparisons in step 1050 can be directly related to the amount of signal level adjustment. For example, if the variable signal level adjustment device is a step attenuator that includes 25 steps (attenuation of ldB per step), such as 囷16 As in the case of the embodiment shown, the predetermined number can be set to 25 to allow for the best resolution (i.e., 1 dB) and the most extensive use of the range of step attenuators (i.e., 25 dB). Understand that if a faster overall operation is desired, the number of steps can be reduced and the resolution can be reduced (ie 5 steps, 5 dB per step). It is also predictable that if a better resolution is used ( That is, a variable signal leveling device that is less than ldB) or wider (i.e., greater than 25 dB) can increase the predetermined number by one increment (1) associated with the counter and the predetermined number, It is such that when the predetermined number is 25, there are 25 repetitions (i.e., 25 steps). Depending on the desired predetermined number and total number of steps (as described above, the predetermined number and the total number of steps are based on the desired resolution of the signal level adjustment) And expected range of '' This increment can undoubtedly be any number (ie 丨, 5, 1〇, _卜·1〇, etc.) 43 201019731 The amount of additional attenuation added in step 1070, and the attenuation reduced in step u〇〇 The predetermined quantities are all variables, which are currently based, at least in part, on hardware design constraints, and depending on the hardware, these variables can be adjusted by those skilled in the art based on the conditions experienced in a particular CATV system and using specific CATV equipment. The variable signal leveling device of one embodiment of the present invention includes a step attenuator having a resolution of ldB and a range of 25 dB. Therefore, the amount of additional attenuation added in step 1070 using the current hardware can be i. A multiple of dB or ldB. Similarly, the predetermined amount of attenuation that is reduced in step 1100 can be a multiple of 1 dB or 1 dB. It should be understood that if the additional amount of attenuation added in step 1〇7〇 is! A multiple of dB', e.g., 5 dB, then the amount of attenuation reduced in step 1100 can be a small amount of millet, such as 2 dB or 4 dB. Due to the above reasons regarding maintaining the quality of the output from the data machine 140 and the durability of the data unit 14 ,, the amount of attenuation reduced in step 1100 can also be greater than the amount of additional attenuation added in step 1070. The predetermined threshold compared in step 1060 is a signal level sufficient to distinguish the presence of the upstream packet from the upstream bandwidth from the interference signal. This value will vary depending on the output power of any of the systems, the STB, the STU, etc., and the average observed level of the interfering signal. The target is, for example, to determine whether there is a device that transmits an upstream packet through the upstream bandwidth. If the predetermined threshold is set too low' then the interfering signal may appear to be an upstream packet' but if the predetermined threshold is set too high, the upstream data may appear to be an interfering signal. (iii) Downstream area 44 201019731 Referring again to Fig. 3, and now refer to the adjustment device _in the step 8'_1⁄8 of the actual production. The downstream region connected in the forward path 244 is generally "downstream region 1"8 using two different operating mode modules 310 to find and view the material. In the mode, the channel level of Equation 0 and Mode 1) is φ low frequency pass; the root I processor .310 uses only a single high frequency channel and a single type correction. In mode! ^ and the slope to carry out the relative route (C〇UrSe) / high frequency pass, the first knowledge? The microprocessor 310 uses an average of more than one rod to know the fine low frequency channel, and according to the level and slope, g is used in each mode in the present embodiment, using the high-magnification rate to use the level of the low frequency channel to 2 疋 slope. It should be understood that the level of the high frequency channel can be used to set the amplification, and the level of the low frequency channel can be used to set the slope in a manner similar to that described below. The hard ship, control and operation of the downstream zone 1G8 will be discussed in more detail below. In the present embodiment, the microprocessor 31A is the same microprocessor 310 as the one used in the upstream 1 1〇5. But if there are benefits such as cost, space or complexity, it may be beneficial to use two or more separate microprocessors 310. If two separate microprocessors 310 are used, there may be connections between them to allow for the transfer of information. As will be discussed below, there is a beneficial reason for the downstream zone 108 to provide information to the upstream zone 105. These reasons include, for example, if/when the signal transmission line between the adjustment device 100 and the supplier 20 is damaged, any attenuation that suppresses the upstream bandwidth of the information stream through the upstream bandwidth is reduced. This will be further clarified below. 45 201019731 First, starting with the hardware, the coupler 502 is coupled within the forward path 244 to pass a portion of the downstream bandwidth (referred to herein as the coupled downstream bandwidth) to the tuner 506 via the secondary path 504. Coupler 502 is coupled to user side duplexer 260 and functional components (e.g., amplifiers 508, 510, variable attenuator 512, and slope adjustment device 514) for adjusting the downstream bandwidth by correcting the level and slope of the downside silver width, This arrangement of the coupler 5〇2 in the forward path 244 between each of which is discussed in further detail below allows the downstream bandwidth to be sampled and analyzed after the downstream bandwidth is adjusted. The coupler 502 used in this embodiment is a conventional directional joint for resisting continuous characteristic impedance. Other devices, such as simple resistors and/or splitters, may be used in consideration of the effects that these alternatives may have on the characteristic impedance of the device. A fixed signal level adjustment device 516 can be disposed between the coupler 502 and the adjuster 506. Fixed signal leveling device 516 can be used to prevent connector 502 from drawing excessive power from the downstream bandwidth. Additionally, the fixed signal leveling device 5 16 can be sized to provide the tuner 5 〇 6 with a downstream bandwidth having a suitable amount of power for the tuner 5 〇 6 and subsequent devices. Thus, based on the present disclosure, those skilled in the art will appreciate whether any particular coupler 502 and tuner 506 combination requires a fixed signal level adjustment device 516, and what size is required for any particular coupler 5〇2 and tuner 5〇6 combination. Fixed signal level adjustment device 516. The spectrometer 506 is a conventional tuner device that can "tune to a selected channel based on input from the microprocessor 31. In particular, the particular tuner 506 used in this embodiment is provided with a target cable corresponding to the CATV channel. 46 201019731 Quotation marks (index #), as shown in Table 1 below. The purpose of these index numbers is to show that the catv channel has not been inserted in a sequential manner. For example, the frequency ratio of CAT channel 95 (index #5) cATV channel 14 (index #1〇)

低/因此’當前微處理H 31()基於隨索引號所表示的頻率 起以昇裏L a加的索引號來控制調諧器506。這些索引號 的目的在以下將變得更加明顯。除了通道的索引之外,更 強大微處理器3丨〇和/或更複雜的軟體控制可使用備選方 ,如下所示。Low/thus 'Current Micro-Processing H 31() controls the tuner 506 based on the index number incremented by the frequency indicated by the index number. The purpose of these index numbers will become more apparent below. In addition to the index of the channel, more powerful microprocessors and/or more complex software controls can use alternatives, as shown below.

Φ ❹ 47 201019731 12 C (16) 132 138 13 D (17) 138 144 14 E (18) 144 150 15 F (19) 150 156 16 G (20) 156 162 〜"· • · 〜". • · · 94 C91 624 630 95 C92 630 636 96 C93 636 642 97 C94 642 648 98 C100 648 654 99 C101 654 660 100 C102 660 666 101 C103 666 672 102 C104 672 678 103 C105 678 684 104 C106 684 690 105 C107 690 696 106 C108 696 702 107 C109 702 708 108 C110 708 714 109 cm 714 720 • · · • · · 〜.Φ ❹ 47 201019731 12 C (16) 132 138 13 D (17) 138 144 14 E (18) 144 150 15 F (19) 150 156 16 G (20) 156 162 ~"· • · ~" · 94 C91 624 630 95 C92 630 636 96 C93 636 642 97 C94 642 648 98 C100 648 654 99 C101 654 660 100 C102 660 666 101 C103 666 672 102 C104 672 678 103 C105 678 684 104 C106 684 690 105 C107 690 696 106 C108 696 702 107 C109 702 708 108 C110 708 714 109 cm 714 720 • · · • · · ~.

48 201019731 來自調諧器506的輸出電壓流對調諧器來說是典型 的’因為電壓流佈置在頻域中,而且因為電壓流是標準電 視通道格式,在本實施例申,標準電視通道格式是與NTSC 標準類類電視通道格式一致的6 MHz頻譜。 相對窄的帶通濾波器518電連接到調諧器506的輸出 上。帶通濾波器518移除在由調諧器506提供的期望頻率 q (例如垂直同步頻率)以上和以下的無關信號。或者,當在 與NTSC —致的頻率的範圍内將垂直同步頻率調制成較低 時’帶通濾波器518可由低通濾波器代替。類似地,帶通 遽波器518可由高通濾波器代替,高通濾波器移除在由調 諧器提供的其他期望頻率以下的無關信號,例如水準同步 頻率。應當理解,取決於期望的類類調制方案(例如NTSC、 PAL、SECAM等)’可能需要選擇不同的頻率。然後所得頻 域電壓流被傳到RF檢測器520。 ® RF檢測器520使從帶通濾波器5 1 8傳到的頻域電壓流 轉換成時域電壓流。更具體地,RF檢測器52〇執行拉普拉 斯逆變換(拉普拉斯變換是被廣泛使用的積分變換)的作用 來進行從頻域到時域的轉換。如上所述,拉普拉斯逆變換 疋複雜的積分’已知其有多種名稱,Bromwich積分、傅立 葉一梅林積分、梅林的逆公式。同樣如上所述,拉普拉斯 逆變換的備選公式由P〇St的反演公式給出。因此,可使用 能夠進行這種從頻域到時域的轉換的任何其他裝置來代替 RF檢測器520。然後,時域電壓流傳到同步檢測器522( “同 49 201019731 步檢測器522”)和低頻水準檢測器524 同步檢測器522與具右;^ 土 丹丹有相對連續的重複性的電壓流同 步,例如連續的30 Ηζ音階。在沒有這種連續音階的情況 下,同步檢測器522就提供隨機的輸出電麼流。然後隨機 或同步的電壓流輸出就傳到低通濾波器526。 ❹ 可提供低通濾波器526來使高頻衰減,高頻對峰值檢 測器⑵來說看起來像是同步頻率。低㈣波器…可構 造成使其允許高達至少3G Ηζ @頻率包括期望的同㈣ 率’且排除在期望頻率以上的那些。低通漶波器526還可 包括輸入隔離電容器,以排除非常低的頻率。 當從同步檢測器522和低通濾波器526中提供包括同 步電壓的電壓流時,峰值檢測器528產生相對恒定的電壓 流。在存在包括隨機非同步電壓的電壓流時,峰值檢測器 528不能夠產生一直遠高於接地電壓的電壓流。峰值檢測 器528也可為執行類似功能的積分器。48 201019731 The output voltage flow from tuner 506 is typical for the tuner' because the voltage flow is placed in the frequency domain, and because the voltage flow is in the standard TV channel format, in this embodiment, the standard TV channel format is The NTSC standard class TV channel format is consistent with the 6 MHz spectrum. A relatively narrow bandpass filter 518 is electrically coupled to the output of tuner 506. Bandpass filter 518 removes extraneous signals above and below the desired frequency q (e.g., vertical sync frequency) provided by tuner 506. Alternatively, the band pass filter 518 can be replaced by a low pass filter when the vertical sync frequency is modulated to be lower in the range of frequencies that are consistent with the NTSC. Similarly, bandpass chopper 518 can be replaced by a high pass filter that removes extraneous signals below other desired frequencies provided by the tuner, such as level synchronization frequencies. It will be appreciated that depending on the desired class modulation scheme (e.g., NTSC, PAL, SECAM, etc.), it may be desirable to select a different frequency. The resulting frequency domain voltage stream is then passed to RF detector 520. The ® RF detector 520 converts the frequency domain voltage stream passed from the bandpass filter 5 1 8 into a time domain voltage stream. More specifically, the RF detector 52 performs the inverse of the Laplace transform (the Laplace transform is a widely used integral transform) to perform the conversion from the frequency domain to the time domain. As mentioned above, the Laplace inverse transformation 疋 complex integrals are known to have multiple names, Bromwich integrals, Fourier-Meillin integrals, and Merlin's inverse formulas. As also mentioned above, the alternative formula for the inverse Laplace transform is given by the inversion formula of P〇St. Therefore, the RF detector 520 can be replaced with any other device capable of such a conversion from the frequency domain to the time domain. Then, the time domain voltage is passed to sync detector 522 ("same as 49 201019731 step detector 522") and low frequency level detector 524 sync detector 522 with right; ^ Tudandan has relatively continuous repetitive voltage flow synchronization , for example, a continuous 30-degree scale. In the absence of such a continuous scale, the sync detector 522 provides a random output stream. The random or synchronized voltage stream output is then passed to low pass filter 526.低 A low pass filter 526 can be provided to attenuate the high frequency, which appears to the peak detector (2) as a synchronous frequency. The low (four) wave filter ... can be constructed such that it allows up to at least 3G Ηζ @frequency to include the desired same (four) rate' and excludes those above the desired frequency. Low pass chopper 526 may also include an input isolation capacitor to reject very low frequencies. Peak detector 528 produces a relatively constant voltage current when a voltage stream comprising a synchronous voltage is provided from sync detector 522 and low pass filter 526. Peak detector 528 is not capable of generating a voltage stream that is always much higher than the ground voltage when there is a voltage flow that includes a random asynchronous voltage. Peak detector 528 can also be an integrator that performs similar functions.

作為區別類類調制通道和數位調制通道的信號,從峰 值檢測器528得到的電壓流被沿著路徑53〇輸入到微處理 器310。更具艎地,來自峰值檢測器528的電壓流表明, 當電壓流是一直遠大於接地電壓的電壓時,將調諧器5〇6 調到類類調制通道。相反,來自峰值檢測器528的電壓流 表明’當電壓流是一直在接地電壓附近時,將調諧器 調到數位調制通道。 如上所述,來自RF檢測器520的電壓流還傳到水準檢 測器524,水準檢測器524有助於使來自rf檢測器的電壓 50 201019731 水準保持較長的一段時間。換名話說,使電壓流内的電壓 比傳到入水準檢測器524中的原始電壓流的電壓在其具體 比率上保持更長的持績時間。然後將來自RF檢測器520 的電壓流輸入DC偏移放大器532中。水準檢測器524還 已知為峰值檢測器。 DC偏移放大器532可用作低通放大器,以提供電廢 流’該電壓流已經按比例偏移已知的量,以使信號電壓適 ❹ 於微處理器310。電壓偏移量和/或放大量由通過可調衰減 器536連接到DC偏移放大器532上的電壓源534確定。 因此,DC偏移放大器532也已知為低通放大器。來自DC 偏移放大器532的電壓.流的一部分作·為控制傳回到調諧器 506。同樣,來自DC偏移放大器532的電壓流的一部分傳 _到尚增益放大器538’且來自DC偏移放大器532的電麼流 的一部分傳到低增益放大器540。 對放大器538提供有來自DC偏移放大器532的電壓 〇 流’以使其起到電壓比較器的作用。此佈置在路徑542中 對微處理器310提供了電壓流,以標識存在於由調諧器5〇6 調諧的索引號處的傳輸通道的存在。 還對低增益放大器540提供有從DC偏移放大器532 傳到的電壓流。由低增益放大器540產生的電壓流響應於 電壓源544而偏移,電壓源544可通過可調衰減器546連 接到低增益放大器540上。從低增益放大器540得到的電 壓流與在經調諸的索引號處的通道的水準有關。此佈置在 路徑548中對微處理器310提供了電壓流,以識別存在於 51 201019731 由調諧器506調諧的索引號處的經傳輸的通道的水準。 下行區108的以下所述的剩餘部分有助於按微處理器 31〇的指示執行實際的下行調節功能。以下將更加充分地 論述這些裝置的實際控制序列,但是首先將在此處詳細描 述硬艘的功能性。 ❹ ❹ 根據下行頻寬流’放大器508可設置在下行區中 的第一位置處或附近。放大器508可執行至少兩種功能。 第一,放大器508可對下行頻寬添加額外的水準,以解決 雙工器265、開關255等中的内在衰減。第二,放大器5〇8 可作為輸出補償電路的一部分來添加一些或所有放大以 修正下行頻寬的水準和斜率《例如,在所示實施例中放 大器508是固定輸出設計(即不由微處理器31〇控制),而 鄰近的可變衰減器512是由微處理器31〇控制的。如本領 域技術人員將理解的,可通過包括固定的24 db放大器和 14 db的衰減來實現10db的增益。按照此方式,應當理解, 放大器508和可變衰減器512的組合僅是構造可用於改變 放大率/水準的輸出補償電路的一種方&。有許多其他構造 可導致可變的放大率。例如,可能是可行的是使用可變放 大器而不使用後續衰減裝置來獲得相同的期望放大。另 外’任何已知的可調增益控制(“AGC”)電路均可代替放大 器508和可變衰減器512。 還提供了斜率調整電路514。斜率調整電路514響應 於從整流器550中提供的電壓而改變下行頻寬的斜率。斜 率調整電$514提供非線性量的衰減’非線性量的衰減類 52 201019731 似於由於下行頻寬通過傳統的信號電纜傳送而產生的内在 衰減曲線。更具體地’斜率調整電路514提供非線性衰減, 其中較高頻率比較低頻率衰減得少,非線性曲線類似於由 信號電纜產生的衰減曲線。因此,可使傳送通過信號電纜 一定長度後具有特性斜率的(斜率是具有較高頻率的較大 哀減的非線性曲線)下行頻寬變平,或者可用斜率調整電路 514使該下行頻寬具有略微向上的斜率。 Q 重要的是’斜率調整電路514不對下行頻寬提供放 大,以便使整個下行頻寬的水準變平。相反,斜率調整電 路514使具有較高水準的頻率衰減。因此,將需要存在至 少一個放大器508、510和存在對放大器5〇8、51〇的一些 形式的控制(例如可變衰減器512)來根據斜率和水準來調 節下行頻寬。 圖18中表示的實施例中使用的斜率調整電路514基於 電壓來改變斜率。因為實施例中使用的微處理器31〇並不 〇精確地輸出變化的電壓,所以使用脈衝寬度調制(PWM)來 控制斜率調整514。由微處理器31〇輸出的pwM信號由整 流器550轉換成相應地變化的電壓,整流器55〇也可為積 刀器。電壓源522對斜率調整電路514提供參考電壓。如 得到本描述的本領域技術人員將理解的,信號可用具 有類類輸出的數位控制器來代替。 。現在,進一步的描述涉及微處理器310,以及微處理 器310如何使用提供的資訊來修正下行頻寬的水準和斜 率〇 53 201019731 最初的步驟是對下行區108進行校準❶雖然校準本身 可能不重要,但是校準的描述有助於介紹對本描述的剩餘 部分有用的許多術語。可通過將調節裝置lGG附連到矩陣 產生器上來完成校準,矩陣產生器在每個索引號處為下游 裝置提供至少兩個6知水準’例如G dBmV和2G犯鮮。 校準序列在調請器506增加所有各個索引號(來自以上提供 的曲線圖),且獲得各個索引號的校準水準的情況下進行。 © =本實施例中,將校準水準保存為介於w之間的數 子值。以下是簡單的校準水準的料圖冑出於示例性的 目的而選擇這些值: 表2 索引#As a signal that distinguishes between the class-like modulation channel and the digital modulation channel, the voltage stream obtained from the peak detector 528 is input to the microprocessor 310 along the path 53. More specifically, the voltage flow from peak detector 528 indicates that tuner 5〇6 is tuned to a class-like modulation channel when the voltage flow is a voltage that is much greater than the ground voltage. Conversely, the voltage flow from peak detector 528 indicates that the tuner is tuned to the digital modulation channel when the voltage flow is always near ground. As noted above, the voltage flow from RF detector 520 is also passed to level detector 524, which helps maintain the voltage 50 201019731 level from the rf detector for a longer period of time. In other words, the voltage within the voltage stream is maintained at a higher ratio of the voltage of the original voltage stream that is passed to the level detector 524 at a particular ratio. The voltage stream from RF detector 520 is then input into DC offset amplifier 532. Level detector 524 is also known as a peak detector. The DC offset amplifier 532 can be used as a low pass amplifier to provide an electrical waste stream. This voltage stream has been scaled by a known amount to accommodate the signal voltage to the microprocessor 310. The voltage offset and/or amplification is determined by a voltage source 534 connected to the DC offset amplifier 532 by an adjustable attenuator 536. Therefore, DC offset amplifier 532 is also known as a low pass amplifier. A portion of the voltage. stream from the DC offset amplifier 532 is passed back to the tuner 506 for control. Similarly, a portion of the voltage flow from the DC offset amplifier 532 is passed to the gain amplifier 538' and a portion of the current from the DC offset amplifier 532 is passed to the low gain amplifier 540. The amplifier 538 is supplied with a voltage 〇 current ' from the DC offset amplifier 532 to function as a voltage comparator. This arrangement provides a voltage flow to microprocessor 310 in path 542 to identify the presence of a transmission channel present at the index number tuned by tuner 5〇6. The low gain amplifier 540 is also provided with a voltage stream that is passed from the DC offset amplifier 532. The voltage flow generated by low gain amplifier 540 is offset in response to voltage source 544, which may be coupled to low gain amplifier 540 via adjustable attenuator 546. The voltage current drawn from the low gain amplifier 540 is related to the level of the channel at the indexed index. This arrangement provides a voltage flow to microprocessor 310 in path 548 to identify the level of the transmitted channel present at the index number tuned by tuner 506 at 51 201019731. The remainder of the downstream zone 108 described below facilitates performing the actual downstream adjustment function as indicated by the microprocessor 31A. The actual control sequence of these devices will be discussed more fully below, but the functionality of the hard ship will first be described in detail first.放大器 ❹ The amplifier 508 can be placed at or near the first position in the down zone according to the downstream bandwidth stream. Amplifier 508 can perform at least two functions. First, amplifier 508 can add an additional level to the downstream bandwidth to account for the inherent attenuation in duplexer 265, switch 255, and the like. Second, amplifier 5〇8 can be added as part of the output compensation circuit to add some or all of the amplification to correct the level and slope of the downstream bandwidth. For example, in the illustrated embodiment amplifier 508 is a fixed output design (ie, not by microprocessor) 31〇 control), and the adjacent variable attenuator 512 is controlled by the microprocessor 31. As will be appreciated by those skilled in the art, a gain of 10 db can be achieved by including a fixed 24 db amplifier and 14 db attenuation. In this manner, it should be understood that the combination of amplifier 508 and variable attenuator 512 is merely one way of constructing an output compensation circuit that can be used to vary the amplification/level. There are many other configurations that can result in variable magnification. For example, it may be feasible to use a variable amplifier without using a subsequent attenuation device to achieve the same desired amplification. Alternatively, any known adjustable gain control ("AGC") circuit can be substituted for amplifier 508 and variable attenuator 512. A slope adjustment circuit 514 is also provided. The slope adjustment circuit 514 changes the slope of the downlink bandwidth in response to the voltage supplied from the rectifier 550. The slope adjustment $514 provides a non-linear amount of attenuation. The attenuation of the non-linear amount 52 201019731 is similar to the inherent attenuation curve produced by the traditional signal cable transmission due to the downlink bandwidth. More specifically, the slope adjustment circuit 514 provides a non-linear attenuation in which the higher frequency is less attenuated than the lower frequency, and the non-linear curve is similar to the attenuation curve produced by the signal cable. Therefore, it is possible to flatten the downlink bandwidth with a characteristic slope after the signal cable has a certain length (the slope is a large sinusoidal nonlinear curve with a higher frequency), or the slope adjustment circuit 514 can be used to make the downlink bandwidth have Slightly upward slope. Q It is important that the 'slope adjustment circuit 514 does not provide an amplification of the downstream bandwidth to flatten the level of the entire downstream bandwidth. Conversely, slope adjustment circuit 514 attenuates frequencies having a higher level. Therefore, there will be a need for at least one amplifier 508, 510 and some form of control (e.g., variable attenuator 512) for the amplifiers 5〇8, 51〇 to adjust the downstream bandwidth based on slope and level. The slope adjustment circuit 514 used in the embodiment shown in Fig. 18 changes the slope based on the voltage. Since the microprocessor 31 used in the embodiment does not accurately output the varying voltage, pulse width modulation (PWM) is used to control the slope adjustment 514. The pwM signal outputted by the microprocessor 31 is converted by the rectifier 550 into a correspondingly varying voltage, and the rectifier 55A can also be a toolizer. Voltage source 522 provides a reference voltage to slope adjustment circuit 514. As will be understood by those skilled in the art from this description, the signals can be replaced with digital controllers with class outputs. . Now, a further description relates to the microprocessor 310, and how the microprocessor 310 uses the information provided to correct the level and slope of the downlink bandwidth. 53 201019731 The initial step is to calibrate the downstream region 108, although the calibration itself may not be important. However, the description of the calibration helps to introduce many terms that are useful for the remainder of this description. Calibration can be accomplished by attaching the adjustment device lGG to the matrix generator, which provides at least two levels of knowledge, such as G dBmV and 2G, for the downstream device at each index number. The calibration sequence is performed in the case where the interpolator 506 adds all of the individual index numbers (from the graph provided above) and obtains the calibration level of each index number. © = In this embodiment, the calibration level is saved as a number between w. The following is a simple calibration level plot. These values are chosen for exemplary purposes: Table 2 Index#

通道標誌 校準水準 低端0 dBmV高端20dBmVChannel Marker Calibration Level Low End 0 dBmV High End 20dBmV

Λ^(95) 148 205 ❹ Λΐ1(96) 168 224Λ^(95) 148 205 ❹ Λΐ1(96) 168 224

54 20101973154 201019731

G 11 B (15) 150 213 12 C (16) 163 226 13 D (17) 167 224 14 E (18) 167 228 15 F (19) 161 224 16 G (20) 149 220 r·^ • · · • · · • · · • · * 94 C91 163 231 95 C92 166 220 96 C93 162 219 97 C94 148 208 98 C100 175 218 99 C101 162 212 100 C102 163 211 101 C103 172 235 102 C104 172 231 103 Cl 05 158 202 104 C106 162 218 105 C107 151 209 106 C108 161 217 107 C109 163 213 108 C110 168 215 109 cm 159 216 • · 〜·. · r·^ • · · 〜." 55 201019731 儘管以下為各個通道顯示了兩個校準值,但可行的是 在至少一個假設的情況下對各個通道僅使用一個校準值。 例如,如果/當假定增量用於電壓變化時,僅可使用一個校 準值。或者,可使用不止兩個校準值來確保甚至更精確的 測量和修正,但是以更大的複雜性為代價。G 11 B (15) 150 213 12 C (16) 163 226 13 D (17) 167 224 14 E (18) 167 228 15 F (19) 161 224 16 G (20) 149 220 r·^ • · · • · · · · · · * 94 C91 163 231 95 C92 166 220 96 C93 162 219 97 C94 148 208 98 C100 175 218 99 C101 162 212 100 C102 163 211 101 C103 172 235 102 C104 172 231 103 Cl 05 158 202 104 C106 162 218 105 C107 151 209 106 C108 161 217 107 C109 163 213 108 C110 168 215 109 cm 159 216 • · ~·· · r·^ • · · ~." 55 201019731 Although the following shows two channels for each channel The calibration value, but it is possible to use only one calibration value for each channel under at least one hypothesis. For example, if / when assuming an increment for a voltage change, only one calibration value can be used. Alternatively, more than two calibration values can be used to ensure even more accurate measurements and corrections, but at the expense of greater complexity.

© 基於獲得的校準值,可通過校準值的插補來獲得水準 和斜率的目標。例如,如果CATV提供商確定對於沒有向 上斜率的通道來說水準必須為12 dBm V(或14 dBm V),則 個通道的目標可為以下: ❹ 56 201019731© Based on the obtained calibration values, the level and slope targets can be obtained by interpolation of the calibration values. For example, if the CATV provider determines that the level must be 12 dBm V (or 14 dBm V) for a channel without an upward slope, the target for each channel can be the following: ❹ 56 201019731

12 c (16) 201 207 13 D (17) 201 207 14 Ε (18) 204 210 15 F (19) 199 205 16 G (20) 192 199 〜". 〜·" 〜"· 94 C91 204 211 95 C92 198 204 96 C93 196 202 97 C94 184 190 98 C100 201 205 99 C101 192 197 100 C102 192 197 101 C103 210 216 102 C104 207 213 103 C105 184 189 104 C106 196 201 105 C107 186 192 106 C108 195 200 107 C109 193 198 108 C110 196 201 109 cm 193 199 〜· Η 〜"· 〜"· 類似地,如果CATV提供商確定他們希望下行頻寬在 57 201019731 介於54 MHz和1000 MHz之間具有12 dBmV至14 dBm V 的向上斜率,則以下值可插補作為目標:12 c (16) 201 207 13 D (17) 201 207 14 Ε (18) 204 210 15 F (19) 199 205 16 G (20) 192 199 ~". 〜"〜"· 94 C91 204 211 95 C92 198 204 96 C93 196 202 97 C94 184 190 98 C100 201 205 99 C101 192 197 100 C102 192 197 101 C103 210 216 102 C104 207 213 103 C105 184 189 104 C106 196 201 105 C107 186 192 106 C108 195 200 107 C109 193 198 108 C110 196 201 109 cm 193 199 ~· Η 〜"· ~"· Similarly, if the CATV provider determines that they want the downlink bandwidth to be 57 201019731 between 54 MHz and 1000 MHz with 12 dBmV To an upward slope of 14 dBm V, the following values can be interpolated as targets:

表4 dBmV 介於54 MHz和1000 MHz之 間的 12 dBmV 至 14 dBm V 的向上斜率的插補的目標 12.0000 12.0127 12.0255 12.0382 12.0510 12.0637 12.0764 12.0892 12.1019 12.1146 12.1274 12.1401 12.1529 12.1656 12.1783 12.1911Table 4 Targets for the interpolation of the upward slope of 12 dBmV to 14 dBm V between 54 MHz and 1000 MHz 12.0000 12.0127 12.0255 12.0382 12.0510 12.0637 12.0764 12.0892 12.1019 12.1146 12.1274 12.1401 12.1529 12.1656 12.1783 12.1911

Value 188 201 ❹ 193 198 191 182 202 206 194 200 203 188 201 202 204 199 ❹ 58 201019731Value 188 201 ❹ 193 198 191 182 202 206 194 200 203 188 201 202 204 199 ❹ 58 201019731

16 G (20) 12.2038 192 • · • · · 〜.H 94 C91 13.2102 208 95 C92 13.2229 202 96 C93 13.2357 200 97 C94 13.2484 188 98 C100 13.2611 204 99 C101 13.2739 195 100 C102 13.2866 195 101 C103 13.2994 214 102 C104 13.3121 211 103 C105 13.3248 187 104 C106 13.3376 199 105 Cl 07 13.3503 190 106 C108 13.3631 198 107 C109 13.3758 196 108 C110 13.3885 199 109 cm 13.4013 197 〜Η · 〜·. · • · · 〜"· 應當理解,這些插補的目標可由微處理器30在任何時 候計算,或者可以表格形式提供給微處理器310。在這裏 描述是為了協助闡明目標值的使用,以及這些目標值是如 59 201019731 何獲得的。取決於軟體策略和微處理器31〇,根據目標的 插補的數位標度值來使用目標是不必要的。例如,具體通 道的數位標度水準值可轉換成有代表性的dBmV標度從 而使得目標可保持為dBmV標度。另外,應當理^,許多 剩餘構件’例如斜率調整裝置514,可校準成以便根據來 自微處理器310的輸入量來確定該裝置的響應量。 在校準之後’當在用戶的房屋上或附近使用時,微處 理器31〇啟動模式0,模式0是以相對快的方式修正通道 的水準和斜率的初始過程。將使用圖19所示的流程圖以及 囷21-24中的有關實例來對模式0進行論述。 根據步驟562’微處理n 310試囷識別高頻通道81〇(圖 川。微處理器3H)首先試圖識別索引簡處的高頻通道 如果在索引㈣3處沒有發現通道,微處理器31〇則 =始在索_處掃描,且向下檢査,直到有高頻通道81〇 識別為存在為止。所使料具體索㈣在其他實施例中 ^是不同的。但是’重要的是將通道識別為存在因為 CAT=精麵水準值,通道應該存在。在有代表性的 系統t ’發現通常有通道存在於索引#iQi至⑻的 範圍内。因此,如果需要的話 播、s冰士丄 哎—家与丨號應變成其中通 存在於具體CATV系統中的位置。 然後微處理器310獲得關於已標識的通道 量 處理器310通過以上所述的方法碎定已標識的 位,則微處理器310就針對該通道將10 dBm^ 加到測得的水康π Α 表中顯不了關於1G dBm V的偏移的 201019731 〇16 G (20) 12.2038 192 • · • · · ~.H 94 C91 13.2102 208 95 C92 13.2229 202 96 C93 13.2357 200 97 C94 13.2484 188 98 C100 13.2611 204 99 C101 13.2739 195 100 C102 13.2866 195 101 C103 13.2994 214 102 C104 13.3121 211 103 C105 13.3248 187 104 C106 13.3376 199 105 Cl 07 13.3503 190 106 C108 13.3631 198 107 C109 13.3758 196 108 C110 13.3885 199 109 cm 13.4013 197 ~Η ·~·. · • · · ~"· It should be understood that these interpolations The target can be calculated by the microprocessor 30 at any time, or can be provided to the microprocessor 310 in tabular form. The description here is to help clarify the use of target values, and how these target values are obtained as in 59 201019731. Depending on the software strategy and the microprocessor 31, it is not necessary to use the target based on the digitized scale value of the interpolation. For example, the digital scale level value for a particular channel can be converted to a representative dBmV scale so that the target can remain on the dBmV scale. Additionally, it should be noted that a number of remaining components, such as slope adjustment means 514, can be calibrated to determine the amount of response of the device based on the amount of input from microprocessor 310. After calibration, when used on or near the user's premises, microprocessor 31 initiates mode 0, which is the initial process of correcting the level and slope of the channel in a relatively fast manner. Mode 0 will be discussed using the flowchart shown in Figure 19 and the related examples in 囷 21-24. According to step 562' microprocessing n 310, the high frequency channel 81 is identified. (Microprocessor 3H) first tries to identify the high frequency channel at the index pin. If no channel is found at index (4) 3, the microprocessor 31 is = Start scanning at cable _ and check down until high frequency channel 81 〇 is identified as being present. The material (4) is different in other embodiments. But it is important to identify the channel as being present because the channel should be present because of the CAT = fine level value. In the representative system t', it is found that there are usually channels existing in the range of indices #iQi to (8). Therefore, if needed, the singer and the nickname should become the locations that exist in the specific CATV system. The microprocessor 310 then obtains for the identified channel amount processor 310 to fragment the identified bits by the method described above, and the microprocessor 310 adds 10 dBm^ to the measured water π Α for the channel. The 201019731 for the offset of 1G dBm V is not shown in the table.

相關聯的數字值。 表5 索引# 通道標諸 每dBmV目標的插補值 1 dBmV 10 dBmV 0 2 2.75 27.5 1 3 3.00 30.0 2 4 3.15 31.5 3 5 3.15 31.5 4 6 2.95 29.5 5 Α-5 (95) 2.85 28.5 6 Α-4 (96) 2.80 28.0 7 Α-3 (97) 3.15 31.5 8 Α-2 (96) 2.90 29.0 9 Α-1 (99) 3.05 30.5 10 A (14) 2.90 29.0 11 B (15) 3.15 31.5 12 C (16) 3.15 31.5 13 D (17) 2.85 28.5 14 E (18) 3.05 30.5 15 F (19) 3.15 31.5 16 G (20) 3.5 5 35.5 • · · • · · • · · • · · 94 C91 3.40 34.0 61 201019731 95 C92 2.70 27.0 96 C93 2.85 28.5 97 C94 3.00 30.0 98 C100 2.15 21.5 99 C101 2.50 25.0 100 C102 2.40 24.0 101 C103 3.15 31.5 102 C104 2.95 29.5 103 C105 2.20 22.0 104 C106 2.80 28.0 105 C107 2.90 29.0 106 C108 2.80 28.0 107 C109 2.50 25.0 108 C110 2.35 23.5 109 cm 2.85 28.5 〜“· • · · • · · • · ·The associated numeric value. Table 5 Index # Channel labeled interpolation value per dBmV target 1 dBmV 10 dBmV 0 2 2.75 27.5 1 3 3.00 30.0 2 4 3.15 31.5 3 5 3.15 31.5 4 6 2.95 29.5 5 Α-5 (95) 2.85 28.5 6 Α- 4 (96) 2.80 28.0 7 Α-3 (97) 3.15 31.5 8 Α-2 (96) 2.90 29.0 9 Α-1 (99) 3.05 30.5 10 A (14) 2.90 29.0 11 B (15) 3.15 31.5 12 C ( 16) 3.15 31.5 13 D (17) 2.85 28.5 14 E (18) 3.05 30.5 15 F (19) 3.15 31.5 16 G (20) 3.5 5 35.5 • · · • · · • · · • · · 94 C91 3.40 34.0 61 201019731 95 C92 2.70 27.0 96 C93 2.85 28.5 97 C94 3.00 30.0 98 C100 2.15 21.5 99 C101 2.50 25.0 100 C102 2.40 24.0 101 C103 3.15 31.5 102 C104 2.95 29.5 103 C105 2.20 22.0 104 C106 2.80 28.0 105 C107 2.90 29.0 106 C108 2.80 28.0 107 C109 2.50 25.0 108 C110 2.35 23.5 109 cm 2.85 28.5 ~ "·· · · · · · · · · ·

一旦應用了任何偏移,微處理器310就確定是否需要 任何調整。在模式0中,閾值設定成以便確定是否要調整 水準,以及調整多少水準。在本實施例中,那些閾值和調 整量如下: 62 201019731Once any offset is applied, microprocessor 310 determines if any adjustments are needed. In mode 0, the threshold is set to determine if the level is to be adjusted and how much level to adjust. In this embodiment, those thresholds and adjustments are as follows: 62 201019731

狀態 表6. -------^ "一-- 閾值 ,------ 水準調整量 0 0 =以dBmV為單位的、離目標的距 離< 3 dBmV ----— 無變化 1 3=以dBmV為單位的、離目標的距 離 < 12 dBmV ---~~~-- 2 dBmV 2 12 =以dBmV為單位的、離目標的距 離 < 40 dBmV ---- 8 dBmV 3 40 =以dBmV為單位的、離目標的距 離 ----- 24 dBmV 根據步驟564,如果以dBmV4m離目胃_ 離落入狀態1-3的任何-個中,則微處理器31〇移到步驟 566,且根據上表6來調整水準。如果以dBmV為單位的、 離目標的距離落入狀態0巾’則微處理器31〇移到步驟 ❹5.作為水準調整的一個實例,使_ 2ι巾的水準曲線82〇 線性地放大,從而產生類似的水準曲線825(圖22)。水準 曲線820和825之間的差異主要在於水準,在1〇〇〇 MHz 處的水準在圖22中設置在12 dBm V的目標水準處。雖然 在圖21和22中顯示了水準增加了超過2〇 dBm v,但是根 據表6不能一步就實現這種大量的水準調整。僅僅是為了 清楚的目的才在囷21和22中顯示水準的這種大量增加。 根據步驟568’微處理器31〇設法識別低頻通道805(圖 21)。為了做到這一點’微處理器310首先將調諧器506導 63 201019731 向索弓I#M。如果在索引#14處沒有識別通道,則微處理器 310就掃描整個索引#12_16’直到識別通道為止。與以上類 似,重要的是在下行頻寬的較低頻率部分中識別至少一個 通道。在識別了通道之後’微處理器31〇會獲得該通道的 水準,而且如果該通道是數位通道,微處理器31〇會對該 水準添加10 dBm V 〇 根據步驟570,微處理器31〇確定是否需要任何斜率 變化。與以上類似’在模式0中’間值設定成以便確定是 否要調整斜率,以及要調整多少斜率。在本實施例中,那© 些閾值和調整量為如下: 表 7 —~ 狀態 閾值 ________ 斜率調整量 0 〇 =以dBmV為單位的、離目標的距 ------------- 離 < 3 dBmV 無變化 1 3 =以dBmV為單位的、離目標的距 ---—- 離< 12 dBmV 2 dBmV 2 12 =以dBmV為單位的、離目標的距 — _ 離 < 40 dBmV 8 dBmV 3 40 =以dBmV為單位的、離目標的距 —----. 離 ---~~------ 24 dBmV ----- 根據㈣570,如果以dBmV為單位的、離目胃心 離落入狀態1-3的任何一個中,則微處理器31〇移到步驟 5,且根據上表7來調整斜率。如果以dBmV為單位 ^ 離 64 201019731 目標的距離落入狀態0中,則微處理器3i〇移到步驟52〇。 如圖22和23所示,水準曲線825以非線性的方式衰減 以形成在整個54肠至1〇〇〇MHz的頻率範圍上顯示為在 12 dBm V處的水準曲線類似地,水準曲線⑵可按 非線性的方式衰減’以形成在圖24中顯示為在“黯至 1〇〇〇 MHz之間具有2MHz的向上斜率的水準曲線835。雖 然出於清楚的目的將水準曲線83〇、835顯示為直線,但是 這些曲線在54MHz* 1000 MHz之間可具有許多變化。 根據步驟570 ,微處理器31〇確定是否對過程56〇的 本次重複中的水準或斜率中的任何一個進行了任何調整。 如果對水準或斜率中的任何一個進行了調整,微處理器310 就返回到步驟562,且重複過程56〇。如果沒有對水準或斜 率中的任何-個進行調整’微處理器31〇就進行到模式卜 現在參看囷20,模式!與模式0類似,因為高頻通道 ❿ 81〇和低頻通冑8G5都追求設定下行頻寬的水準和斜率的 目標。主要區別在於模< 4法通過使用平均不止一個通 道來對水準和斜率調整進行“細敏調譜,,。由於收集更多 數量的通道f要的f訊所f的時間的原因,這種方法可能 不會在模式0中使用。應當理解,“所需時間,,是調譜器 506改變通道所需的時間量以及獲得量度所需的任何時間 的直接結果。如果不考慮時間和迅速反應,則可用模式/ 代替模式0m步詳細地論料些料間有 方面。 . 根據步驟582,微處理器31〇找到平均不止一個高頻 65 201019731 通道。在下行區108的一個實施例中,微處理器31〇將在 比來自模式0的開始通道低五的索引號處開始,且比來自 模式0的開始通道高五的索引號處停止。換句話說,微處 理器310將在索引#97(即103-5)處開始收集通道資訊,且 在索引#1〇9(即103 + 5)處停止收集通道資訊。如果索引#1〇3 不包含可識別的通道’則微處理器31〇還可基於表示在模 式0中實際識別的通道的索引號來選擇通道。另外,應當 理解,如果更迅速地完成過程是有利的或者需要這麼做的 話,可收集更少的通道。或者,當或如果可允許過程花更 © 多時間(即比更少通道的情況更多的時間),則可收集更多 的通道。換句話說,如果具體CATV系統中的鄰近通道是 一致的(即不以隨機的方式變化),則可收集更少的通道, 因為對更多通道取平均值的好處(例如平滑鄰近通道中隨 機變化的影举)可能會被選擇和測量通道所需的時間超 過。類似地,如果具體CATV系統的鄰近通道以隨機的方 式作很大地改變,則可收集更多的通道,因為選擇和測量 通道所需的額外時間可能會被對更多通道取平均值而獲得° 的額外的精確性超過。 基於在所掃描的索引號内被識別的通道的水準和目標 的平均值,微處理器3 10將移到步驟584,以確定是否需 要任何水準調整。如果有在不包含可識別的通道的範圍中 的索引號’則根據平均水準或平均目標,不會包括那些通 道。另外,如果微處理器3 1〇確定沒有足夠的通道(例如在 -個實施例中為平均5個通道)來獲得合理的平均值,則下 66 201019731 行區108根本就不會進行到模式1中’而是保持在棋式0 中。 根據步驟584,微處理器310確定是否需要任何水準 調整。在模式1中,閾值設定成以便確定是否要調整水準, 以及調整多少水準。在本實施例中,那些閾值和調整量如 下: 表8 ----- 狀態 閾值 -----~~~ 水準調整量 0 0 =以dBmV為單位的、離目標的距 離 < 3 dBmV ---—_ 無變化 1 ------ 3 =以dBmV為單位的、離目標的距 離 < 12 dBmV --- 1 dBmV 2 -------- 12 =以dBmV為單位的、離目標的 距離 返回到 0 進一步根據步驟584,如果以dBinV為單位的、離目 標的距離落入狀態1中的任何一個中,則微處理器移 到步驟588,且根據上表8來調整水準。如果以dBmV為 單位的、離目標的距離落入狀態2中,則微處理器31〇移 到步驟586,步驟586將返回到模式0。在此實例令需要返 回到模式0,因為所需調整量花費太長時間來解決供應商 20和下行區1〇8之間的某處發生的快速變化。因此,這種 返回到模式0是對看起來像是水準的快速變化(例如當電 纜受損或放大器已經快速地失效)的有目的的反應。 67 201019731 然後微處理器3 10可移到步驟59 隹步驟590中, 微處理器310找到平均不止—個低頻 隹下行區1〇8 的一個實施例中,微處理器310將在比來自 木目模式0的起始 通道低·一的索引號處開始,且在比來白描 一 隹比來自模式0的起始通道 高二的索引號處停止。換句話說,微處理器31〇將在索引 #12(即2)處開始收集資訊,且在索引#16(即14+2)處停 止收集資訊。如果索引#14不包含可識別的通道,則微處State Table 6. -------^ "One--threshold, ------ level adjustment 0 0 = distance from the target in dBmV < 3 dBmV ----- No change 1 3 = distance from the target in dBmV < 12 dBmV ---~~~-- 2 dBmV 2 12 = distance from the target in dBmV < 40 dBmV ---- 8 dBmV 3 40 = distance from the target in dBmV ---- 24 dBmV According to step 564, if it is in the range of 1-3 in dBmV4m, then the microprocessor 31〇 Move to step 566 and adjust the level according to Table 6 above. If the distance from the target in dBmV falls into the state 0, then the microprocessor 31 moves to step ❹ 5. As an example of the level adjustment, the level curve 82 of the _ 2 wipe is linearly amplified, thereby generating A similar level curve 825 (Fig. 22). The difference between the level curves 820 and 825 is mainly at the level, and the level at 1 〇〇〇 MHz is set at the target level of 12 dBm V in Figure 22. Although the level has been increased by more than 2 〇 dBm v in Figures 21 and 22, such a large level of adjustment cannot be achieved in one step according to Table 6. This large increase in level is shown in 囷21 and 22 only for the sake of clarity. The microprocessor 31 attempts to identify the low frequency channel 805 (Fig. 21) in accordance with step 568'. In order to do this, the microprocessor 310 first directs the tuner 506 63 201019731 to the cable I#M. If the channel is not identified at index #14, microprocessor 310 scans the entire index #12_16' until the channel is identified. Similar to the above, it is important to identify at least one channel in the lower frequency portion of the downlink bandwidth. After the channel is identified, the microprocessor 31 will obtain the level of the channel, and if the channel is a digital channel, the microprocessor 31 will add 10 dBm V to the level. According to step 570, the microprocessor 31 determines Whether any slope changes are needed. A value similar to the above 'in mode 0' is set to determine whether the slope is to be adjusted and how much slope to adjust. In this embodiment, the thresholds and adjustments are as follows: Table 7 —~ Status threshold ________ Slope adjustment amount 0 〇 = distance from the target in dBmV ----------- --- from < 3 dBmV no change 1 3 = distance from the target in dBmV ----- away from < 12 dBmV 2 dBmV 2 12 = distance from the target in dBmV - _ From < 40 dBmV 8 dBmV 3 40 = distance from the target in dBmV -----.---~~------ 24 dBmV ----- According to (4) 570, if In any of the dBmV units, which are in the state of 1-3, the microprocessor 31 moves to step 5 and adjusts the slope according to Table 7 above. If the distance in the range of dBmV from the 64 201019731 target falls into state 0, the microprocessor 3i moves to step 52. As shown in Figures 22 and 23, the leveling curve 825 is attenuated in a non-linear manner to form a leveling curve shown at 12 dBm V over the entire 54 intestine to 1 〇〇〇 MHz frequency range. Similarly, the leveling curve (2) can be Attenuating 'in a non-linear manner to form a level curve 835 shown in Figure 24 with an upward slope of 2 MHz between 黯 to 1 〇〇〇 MHz. Although the leveling curves 83 〇, 835 are shown for clarity purposes It is a straight line, but these curves can have many variations between 54 MHz * 1000 MHz. According to step 570, the microprocessor 31 determines whether any adjustments have been made to any of the levels or slopes in this iteration of process 56A. If any of the levels or slopes are adjusted, the microprocessor 310 returns to step 562 and repeats the process 56. If no one of the levels or slopes is adjusted 'the microprocessor 31' Go to Mode Bu. Now see 囷20, Mode! Similar to Mode 0, because both the high frequency channel ❿ 81〇 and the low frequency 胄 8G5 pursue the goal of setting the level and slope of the downlink bandwidth. The main difference is that The modulo <4 method performs "fine sensitization" on level and slope adjustment by using an average of more than one channel. This method may not be used in mode 0 due to the time required to collect a larger number of channels f. It should be understood that "the time required is a direct result of the amount of time required for the spectrometer 506 to change the channel and any time required to obtain the metric. If time and rapid response are not considered, then the available mode / instead of the mode 0m step details According to step 582, the microprocessor 31 finds an average of more than one high frequency 65 201019731 channel. In one embodiment of the downstream region 108, the microprocessor 31 〇 will be in mode 0 The start channel starts at the index number of the lower five and stops at an index number five higher than the start channel from mode 0. In other words, the microprocessor 310 will start collecting channels at index #97 (ie, 103-5). Information, and stop collecting channel information at index #1〇9 (ie 103 + 5). If index #1〇3 does not contain an identifiable channel' then the microprocessor 31〇 can also actually identify based on the representation in mode 0 The channel's index number is used to select the channel. In addition, it should be understood that fewer channels can be collected if the process is completed more quickly or if it is needed. Or, if or if the process is allowed to spend more © Time (ie more time than in less channels), more channels can be collected. In other words, if adjacent channels in a particular CATV system are consistent (ie, do not change in a random manner), then Collect fewer channels because the benefits of averaging more channels (such as smoothing random variations in adjacent channels) may be exceeded by the time required to select and measure the channel. Similarly, if the proximity of a specific CATV system By making a large change in the channel in a random manner, more channels can be collected, as the extra time required to select and measure the channel may be averaged over more channels to obtain an additional accuracy of ° over. The level of the identified channel within the scanned index number and the average of the target, microprocessor 3 10 will move to step 584 to determine if any level adjustment is required. If there is a range that does not include an identifiable channel The index number 'is based on the average or average target and will not include those channels. Also, if the microprocessor 3 1 determines that there are not enough channels (for example - an average of 5 channels in one embodiment) to obtain a reasonable average, then the next 66 201019731 row area 108 will not proceed to mode 1 at all, but will remain in the game 0. According to step 584, micro processing The controller 310 determines if any level adjustment is required. In Mode 1, the threshold is set to determine if the level is to be adjusted, and how much level is adjusted. In this embodiment, those thresholds and adjustments are as follows: Table 8 ----- Status Threshold-----~~~ Level adjustment 0 0 = distance from the target in dBmV < 3 dBmV ----_ No change 1 ------ 3 = in dBmV Distance from the target < 12 dBmV --- 1 dBmV 2 -------- 12 = the distance from the target in dBmV returns to 0. Further according to step 584, if in dBinV, The distance from the target falls into any of the states 1, and the microprocessor moves to step 588 and adjusts the level according to Table 8 above. If the distance from the target in dBmV falls into state 2, then microprocessor 31 moves to step 586 and step 586 returns to mode 0. In this example, it is necessary to return to mode 0 because the required adjustment takes too long to resolve the rapid changes that occur somewhere between the supplier 20 and the downstream zone 1〇8. Therefore, this return to mode 0 is a purposeful response to a rapid change that appears to be level (such as when the cable is damaged or the amplifier has failed quickly). 67 201019731 The microprocessor 3 10 can then move to step 59, step 590, where the microprocessor 310 finds an average more than one low frequency 隹 down zone 1 〇 8 in which the microprocessor 310 will be in a ratio from the wood mode. The start channel of 0 starts at the index number of one, and stops at a higher index than the start channel from mode 0. In other words, the microprocessor 31 will begin collecting information at index #12 (i.e., 2) and stop collecting information at index #16 (i.e., 14+2). If index #14 does not contain an identifiable channel, then micro

理器3U)也可基於表示實際上在模式0巾被制的通道的 索引號來選擇通道。考慮到低頻通道看起來更加一貫地存 在且在水準方面更加一致的事實,下行區1〇8試圖僅收集 與十一個高頻通道相反的五個低頻通道。應當理解,如果 有速度問題以及/或如果具體CATV系統中的通道更加一致 或更不一致’則可收集更多或更少的通道。 〇 基於在所掃描的索引號内識別的通道的水準和目標的 平均值,微處理器31〇將移到步驟592,以確定是否需要 任何斜率調整。如果有在不包含可識別通道的範圍中的索 引號’則根據平均水準或平均目標,不會包括那些通道。 根據步驟592 ’微處理器310確定是否需要任何斜率 調整°在模式1中,閾值設定成以便確定是否要調整斜率, 以及調整多少水準。在本實施例中,那些閾值和調整量如 下: 68 201019731 士 Λ ----—, 表9 狀態 閾值 斜率調整量 0 0 =以dBmV為單位的、離目標的距 離 < 3 dBmV ---—-- 無變化 1 3 =以dBmV為單位的、離目標的距 離 < 12 dBmV '--- 1 dBmV 2 12 =以dBmV為單位的、雜目標的 距離 " -------- 返回到模式 0 ---一 根據步驟592,如果以dBmV為單位的、離目標的距 離落入狀態0和狀態丨中的任何一個中,則微處理器3ι〇 移到步驟596,且根據上表8來調整斜率。如果以dBmV 為單位的、離目標的距離落入狀態2中,則微處理器3ι〇 移到步驟594 ’步驟594將返回到模式0。在此實例中需要 返回到模式0,因為所需調整量可能花費太長時間來解決 〇供應商2〇和下行區108之間的某處發生的快速變化。因 此’這種返回到模式0是對看起來像是水準的快速變化(例 如當電纜受損或放大器已經快速地失效)的有目的的反應。 應當理解,在不顯著地改變下行區的設計和/或運 行的情況下,可對以上裝置進行微小的改變。最值得注意 的是’可切換對高頻通道和低頻通道的使用。更異禮地’ 如果使用低頻通道來設定水準,且使用高頻通道來設定斜 率,下行區將正常運行。 在一個備選實施例中,微處理器31〇指示調諧器506 69 201019731 對聯接的下行頻寬進行掃描,企圖定位和識別具有低頻率 的通道(本文稱之為低頻通道805(圖21))和具有高頻率的通 道(本文稱之為高頻通道810(圖21))。在本實例中,微處理 器310指示調諧器506在下行頻寬内的相對低頻處開始, 且朝較高頻率掃描’直到發現低頻通道805為止 '類似地, 微處理器310指示調諧器506在聯接的下行頻寬中的相對 南頻處開始’且朝較低頻率掃描’直到發現高頻通道81〇 為止。因此,低頻通道805可為位於聯接的下行頻寬内的 最低頻附近的通道,而高頻通道81〇可為位於聯接的下行 頻寬内的最高頻附近的通道。儘管在本實施例中出於清楚 目的在囷21中將低頻通道805和高頻通道81〇描讀·成單個 頻率,但是應當理解,通道通常是許多頻率的。還應當理 解,低頻通道805和高頻通道81〇在本實施例中分別不需 要疋最低或最高的低頻通道。但是,有益的是兩個通道彼 此實際隔得越遠越好,以較好地估計在整個下行頻寬上經 歷的寄生損失量》 在用以定位和識別本實施例的低頻通道8〇5和高頻通 道810的掃描過程期間,微處理器31〇可設有三種類型的 資訊,如以上關於下行區10的實施例所述的。第一,表明 將通過路徑542對微處理器31()提供已被識別的通道的信 號。第二’表明將通過路徑548對微處理器則提供被識 別的通道的水準的信號°第〗’表明將通過路徑530對微 處理器310提供被識別的通道的調制的信號。 如上所述,數位格式通道可具有比對應的類類通道更 201019731 小的信號強度。在本實施例中,假定信號強度的差異為6 db。因此,本實施例的微處理器31〇可包括水準偏移計算, 當將低頻通道805的信號強度與高頻通道810的信號強度 進行比較時’水準偏移計算可解決此6 db差異。如果沒有 解決此差異’處於確定有關信號強度的目的而得到的這兩 個通道805、810的任何比較都可能有缺陷。例如如果高頻 通道810是數位的,而低頻通道8〇5是類類的,額外的内 ❹在的6 dB差異可能會錯誤地表明存在比當前實際存在的寄 生損失多的寄生損失。類似地,如果低頻通道81〇是類類 的,低頻通道805是數位的,則任何所得比較會錯誤地表 月存在比當前實際存在的寄生損失少的寄生損失。因此, 應虽理解,對數位格式通道的信號強度添加6dB偏移還是 從類類格式通道的信號強度中減去6dB偏移是無關緊要 的另外,應當理解,如果低頻通道805和高頻通道810 兩者都是類類的,則6 dB偏移可添加到低頻通道8〇5和高 〇頻通道兩者的信號強度上,或者如果低頻通道805和 高頻通道810兩者都是類類的,則可從低頻通道8〇5和高 頻通道810兩者的信號強度中減去6 dB偏移。更有甚者, 應當理解,偏移值由具體供應商所遵守的標準規定,並且 因此,偏移值可為除了 6 dB之外的值,例如以上所述的】〇 dB 〇 在完成掃描過程和添加/移除任何偏移的過程之後,微 處理器310現在具有低頻通道水準(包括任何偏移)、低頻 通道頻率、尚頻通道水準(包括任何偏移),以及高帶通道 71 201019731 頻率 '現在由微處理器3 10比較低頻通道8〇5和高頻通道 81〇的已知資訊(即水準和頻率),以預先確定信號強度增益 /損失曲線(即增益/損失曲線),信號強度増益/損失曲線對應 於與所使用的同軸電纜/光纜的類型相關聯的已知寄生損 失,如圖21所示。此步驟有利地允許已知資訊在整個下行 頻寬上進行插補。通過使用插補曲線,微處理器31〇確定 要應用多少信號水準調節,以及用何種方式將水準調整應 用於整個下行頻寬上,從而使得在整個頻寬寬上的所得増 益/損失曲線(即斜率)幾乎是線性的,且預先考慮到將出現 © 在離調節裝置100的下游的寄生損失,優選地對較高的頻 率略微增加增益。例如,水準量由包括對最高頻率的任何 插補的高頻通道水準確定,且水準減少量由包括對最低頻 率的任何插補的低頻通道水準確定。 應當理解’寄生損失對較高頻率的影響比對較低頻率 的影響更大。因此,如果具有_10 dB信號強度的已知信號 例如在各種頻率下在整個下行頻寬上和同軸電纜/光纜的 ❹ 長度上傳輸,則可描繪出所得斜率的標圖。因為最終目標 是要得到接近原始信號強度的直線的斜率,或者得到具有 遞增斜率-頻率的斜率,所以微處理器310直接控制可變斜 率調整電路,以便以曲線的方式調整下行信號傳輸,從而 使得較低頻率的幅度比較高頻率的幅度低。 例如’如圖21所示,使用低頻通道805和高頻通道 810中的各個的已知的頻率和信號強度’可在整個下行頻 寬上繪製增益曲線820,整個下行頻寬顯示為例如從50 72 201019731 MHz至1000 MHz。然後微處理器310接合將至少代替最高 頻率處的損失的可變衰減器512來確定由放大器508和/或 放大器510添加的水準調整的總量。在本實例中,水準調 整量為至少+24 dB,從而產生圖22所示的增益曲線825。 基於圖21所示的插補增益曲線,微處理器31〇指示斜率調 整裝置514應用類似的但相反地變曲量的修正,以產生圖 23所示的相對平坦的增益曲線(即斜率)83〇β可能合乎需要 © 的是增加所應用的水準調整量,且增大斜率調整的曲率, 以產生增益曲線(即斜率)835,如圖24所示,增益曲線835 具有朝更較高頻率遞增的钭率。 (iv)上行區1〇5和下行區1〇8之間的交互 如上所述,當水準看起來像是有快速變化時,例如當 電纜受損以及/或調節裝置100外部的放大已經失效時下 行區108從模式1轉換到模式0。產生這種從模式1轉換 ©到模式0的變化的原因是下行區1〇8能夠通過快速地增加 用於實現期望水準值的放大量,以及/或通過快速地增加用 於實現期望斜率的斜率補償量來響應這種損害。 本文所用的術語“快速地,,是相對的、已知具體的 CATV系統的實際水準和斜率由於諸如溫度變化、陽光和溫 度的環境差異會在任何時間改變。這些正常差異之外的任 何變化通常表明損害已經發生,或者正在調節裝置ι〇〇和 供應商20之間發生。正常差異通常是針對給定的CATV系 統和/或地理位置而言的,且維護該具體系統的技術 73 201019731 員通常瞭解這些正常差異。因此,術語“快速地增加,,表 明有超過與具體CATV系統的正常差異相關聯的比率的放 大率和/或斜率率。 術语‘放大率’’指的是放大應用於下行頻寬的每單位 時間的比率。類似地,術語“斜率率’,指的是斜率修正應 用於下行頻寬的每單位時間的比率。 雖然下行區108可能能夠補償已經發生的或正在調節 裝置100和供應商2〇之間的CATV系統中發生的損傷,但 是上行區105不能通過測量由房屋裝置產生的合乎需要的 ❹ 上行頻寬來獲知已經發生的任何損傷。事實上,當這種損 傷已經發生時,上行區1〇5可能會產生問題,因為上行區 1 〇5會有效地移除房屋裝置的任何額外容量,以增加其輸 出水準。換句話說’由於損害而引起的任何損失將加重由 上行區105產生的整體衰減,從而使得房屋裝置將不再能 夠與供應商20通信。 為了嘗試使上行區105解決在調節裝置100和供應商 ❹ 20之間的CATV系統中已經發生或者正在發生的任何損 傷,下行區108可為微處理器310提供放大值和/或斜率修 正值正在快速地改變(例如當出現從模式i到模式0的轉換 時)的指示。應當理解,如果使用相同的微處理器來操 作和控制區105、108兩者,則微處理器310就不需要接收 來自下行區108的另一個指示來使微處理器310調整上行 區 105 〇 現在參看圖25,描述了用於響應於從下行區ι〇8觀察 74 201019731 到的異常差異而操作和控制上行區105的過程700。請注 意’出於清楚的目的,僅根據放大(即放大值和放大率)來 呈現和描述過程700’應當理解,如果過程700是基於斜 率(即斜率值和斜率率)或放大和斜率兩者的,則相同的過 程_ 700是相關的。 根據步驟705,微處理器310將下行放大值保留在第 一緩衝器中《術語“保留,,意圖足夠寬泛到能夠允許下行 ❹區108包括其本身的微處理器的可能性,下行區1〇8本身 的微處理器可將下行放大值發送到微處理器31〇,且該術 語意圖足夠寬泛到能夠允許下行區1〇8連同上行區ι〇5 一 起使用微處理器310的可能性。 進一步根據步驟705 ’微處理器31G重新啟動比率計 數器。此處使用比率計數器來提供定時功能,以測量保留 的下行放大值之間經過的時間。因此,微處理器可使用許 ❾ 多其他已知的方法來測量經過的時間。例如,微處理器㈣ 可包括時鐘,從而使得步 昧槪/ ^ 包括下行放大值被保留的 時間。類似地,下杆妨+ U / 下行放大值的保留可發生在特定時間,從 而不需要比率計數器或其他時鐘。 根據步称m,微處理器310注意值是否在- 緩衝器中。當第-镂衝 存在於第一 -冒第—緩衝器中還沒有保存值時 進订啟動調節。如果第二 , 5 吸w 甲及有值,如料 的初始運行中的情況那樣,然後微處理器=程· 器中的值儲存到第二經也 將第一緩衝 一緩衝器,然後返回到步驟7fK , „ 第二緩衝器中已經有佶7 , 驟705。如果 有值了’則微處理器川將進行到步驟 75 201019731 720 〇 根據步驟720’微處理器31〇將使用第一緩衝器中的 值、第二緩衝器中的值和比率計數器來計算放大變化率。 特別地,從第-緩衝器中的值中減去第二緩衝器中的值, 結果除以比率計數器。然後將將計算出的放大率傳到步称 725。 根據步驟725,微處理器31〇確定放大率是否大於閣 值率。此步驟的目標是要確定當前觀察到的放大率是否在 具體CATV系統的典型可變性的限制之外。閾值率也可設❹ 定得很高,例如設定為每分鐘3 db的比率,或者更高。原 因是損傷往往發生得很快,例如當樹枝落到線材上時,或 者當汽車撞到桿上時。另外’正是這些相對快速的變化可 能會不利地影響上行區1G5解決損害的能力。如果放大率 大於閾值率,在步驟730中,使上行區105中的上行衰減 水準復位,以移除添加的衰減。否則,如果放大率小於閾 值率,則不對上行衰減水準進行改變。在任何一種結果之 後’微處理器3 1 〇移到步驟735。 根據步驟735,微處理器310用第一緩衝器中的值代 替第二緩衝器中的值,且返回到步驟705。 在一個備選實施例中,下行區1〇8可能能夠提供直接 來自下行區的正在進行的放大率和/或斜率率資訊。在此類 實施例中,微處理器310僅需要監視放大率和/或斜率率, 且在放大率和斜率率中的至少一個超過閾值率時使上行衰 減水準復位。 76 201019731 如上所述,在一個實施例中,下行區108可包括用於 提供放大和/或斜率調整的兩種模式(即模式0和模式”調 整過程。在第一個模式中,以較大的增量進行調整,而在 第二個模式中,則以較小的增量進行調整。在這種情況下, 可在下行區108確定需要進行大型調整(比在第二狀態中可 用的大和/或快)的任何時候使用第一個模式。因為從第二個 模式到第一個模式的任何切換均表明需要對放大和/或斜 Q 率調整進行較大的調整,所以此相同的切換可用作上行區 1 〇 5使上行衣減水準復位且移除任何添加的衰減的指標。 (v)頻帶選擇裝置 現在參看圖26,調節裝置1〇〇可包括產生頻帶選擇裝 置的電路構件i頻帶選擇裝置可構造成以便在對應於較早 的有線電纜資料服務介面規範(“D〇CSIS”)的構造和對應 用後代規範(例如DOCSIS 3.0)的構造之間進行自動切換。 © 雖然此特徵本身在調節裝置1〇〇中是有利的,但是此特徵 允許諸如上行區105和/或下行區108的其他裝置在兩種規 範之間改變之後還保持相關。特別地,因為這些區1〇5、 1〇8中的各個均需要上行頻寬和下行頻寬之間的精確的信 號分離,所以上行/下行頻寬中的任何必要改變都會使區 105、108不能起作用。應當理解,儘管以上和以下引用了 DOCSIS規範,但是可根據任何協定規範來保持和改變上行 /下行頻寬構造。 已經簡化了囷26所示的實施例的調節裝置^ 〇〇,以僅 77 201019731 顯示頻帶選擇裝置,可選上行區1〇5和下行區1〇8中的各 個均已表示為由虛線限定的框。本實施例的調節裝置丨〇〇 包括限定第一信號路徑組910和第二信號路徑組920的多 個開關902、904、916、918、922和924。各個信號路徑 組包括兩個分立的信號路徑,即正向路徑93〇和反向路徑 940。使用一對第一頻帶分離装置9〇6、9〇8來形成第一信 號路徑組910,且使用一對第二頻帶分離裝置912、914來 形成第二信號路徑組920。由第一對頻帶分離裝置9〇6、9〇8 設定的切斷頻率對應於具有較窄/較小的上行頻寬的 © DOCSIS規範,而由第二對頻帶分離裝置912、914設定的 切斷頻率對應於包括比早先的DOCSIS標準更寬/更大的上 行頻寬的後面的DOCSIS規範。應當理解,切斷頻率可改 變成以便通過僅更換第一對頻帶分離裝置9〇6、9〇8和/或 第二對頻帶分離裝置912、914來適應甚至較新的D〇CSIS 標準或其他標準。任何高品質的可商購獲得的開關和頻帶 分離裝置都將在調節裝置1〇〇内的具體位置内運行良好。 開關902、904、916、918、922、924中的各個均由微 處理器310直接或間接地控制。微處理H 310確定是否要 基於優選地由供應商2〇發送的資訊傳輸信號來使開關 902 904、916、918、922、924運動到第一信號路徑組91〇, 或者運動到第二信號路徑組92〇。信號聯接器85〇允許接 收器845接收可由微處理器31〇理解的用以表明開關位置 的資訊傳輸信號’例如音階、編碼操作信號,或者其他已 知的資訊傳輸。例如’可使用資訊信號的存在來表明微處 78 201019731 理器3 10應該選擇第二信號路徑組920,而沒有資訊信號 則表明微處理器310應該選擇第一信號路徑組910。例如, 可通過將承載此類音階的信號傳送通過帶通濾波器840來 識別在900 MHz處的連續音階的存在,以消除不必要的信 號和比較器855,當/如果音階比由電壓865和有阻力的分 壓器860確定的預定閾值強,比較器855僅對微處理器31〇 提供音階。頻率可由微處理器310選擇,且可由鎖相迴路 控制系統880和放大器870以本領域已知的方式調諸。任 何高品質的可商購獲得的信號聯接器和接收器都將在調節 裝置100内的具體位置内運行良好。 雖然已經參照某些示例性實施例特別地顯示和描述了 本發明’但是本領域技術人員將理解,在不偏離由可由書 面描述和附圖支持的申請專利範圍限定的本發明的精神和 範圍的情況下,可對本發明的細節進行各種改變^另外, 雖然參照一些數量的元件對示例性實施例進行了描述,但 〇 是將理解的是可使用比這些數量的元件更少或更多的元件 來實現示例性實施例0 以下是使用了申請專利範圍的形式的對本發明的各種 實施例進行的描述: A1. —種可插入在用戶的房屋處、附近或鄰近的cATV 系統的信號傳輸線中的上行頻寬調節裝置,所述裴置包括: 構造成以便對上行頻宽產生一定量的信號水準調節的 可變信號水準調節裝置; 信號測量電路,所述信號測量電路構造成以便測量在 79 201019731 應用增加量的額外信號水準調節之前的上行頻寬的第一信 號強度值和應用所述量的額外信號水準調節之後的第二信 號強度;以及 電路,所述電路構造成⑴以便將所述第一信號強度與 所述第二信號強度進行比較,以及(ii)當所述第一信號強度 大於所述第二信號強度時,移除所述增加量的額外信號水 準調節的至少一部分。 A2.根據申請專利範圍A1的所述的裝置,其特徵在 於,所述裝置進一步包括: 位於所述可變信號水準調節裝置和用戶侧之間的第一 頻帶分離裝置;以及 位於所述可變信號水準調節裝置和供應商侧之間的第 二頻帶分離裝置。 A3.根據申請專利範圍A1的所述的裝置,其特徵在 於’所述信號測量電路包括信號水準檢測器,所述信號水 準檢測器構造成以便輸出表示在應用所述量的信號水準調 節和任何增量的額外信號水準調節之後的所述上行頻寬的 水準的信號。 A4 .根據申請專利範圍A3的所述的裝置,其特徵在 於’所述信號水準檢測器構造成以便使表示所述上行頻寬 的所述水準的所述信號保持所述電路讀取所述信號強度所 需的時間量。 A5.根據申請專利範圍A1的所述的裝置,其特徵在 於’所述電路能夠保留所述第一信號強度和所述第二信號 201019731 強度中的至少—個,直到在後面的時間使用為止。 A6·根據申請專利範圍A1的所述的裝置,其特徵在 於’所述電路構造成以便重複地確定是否要應用所述增加 量的額外信號水準調節。 A7 ·板據申請專利範圍A6的所述的裝置,其特徵在 於,所述電路構造成以便停止所述重複的確定,且在所述 第信號強度大於所述第二信號強度時,移除所述增加量 的額外信號水準調節的一部分。 A8根據申請專利範圍A6的所述的裝置,其特徵在 於,所述電路構造成以便在所述第二信號強度小於預定間 值時在確定循環中應用所述增加量的額外信號水準調節。 A9·根據申請專利範圍A1的所述的裝置,其特徵在 於,所述電路是微處理器。 A10根據申請專利範圍A1的所述的裝置,其特徵在 於’所述電路是類類電路。The processor 3U) can also select a channel based on an index number indicating a channel that is actually made in mode 0. Considering the fact that the low frequency channel appears to be more consistent and more consistent in terms of level, the down zone 1 8 attempts to collect only the five low frequency channels opposite the eleven high frequency channels. It will be appreciated that more or fewer channels may be collected if there are speed issues and/or if the channels in a particular CATV system are more consistent or inconsistent.微处理器 Based on the level of the channel identified within the scanned index number and the average of the target, microprocessor 31〇 moves to step 592 to determine if any slope adjustments are needed. If there is an index number in the range that does not contain a identifiable channel, then those channels will not be included according to the average or average target. The microprocessor 310 determines if any slope adjustments are required according to step 592'. In mode 1, the threshold is set to determine if the slope is to be adjusted and how much level to adjust. In this embodiment, those thresholds and adjustments are as follows: 68 201019731 Gentry -----, Table 9 State threshold slope adjustment amount 0 0 = distance from the target in dBmV < 3 dBmV --- —-- No change 1 3 = Distance from the target in dBmV < 12 dBmV '--- 1 dBmV 2 12 = Distance of the target in dBmV" ------- - returning to mode 0 --- according to step 592, if the distance from the target in dBmV falls into any of state 0 and state ,, then microprocessor 3 moves to step 596 and according to Adjust the slope in Table 8 above. If the distance from the target in dBmV falls into state 2, then microprocessor 3 moves to step 594' and step 594 will return to mode 0. In this example, it is necessary to return to mode 0 because the required adjustment may take too long to resolve the rapid changes that occur somewhere between the supplier 2〇 and the downstream zone 108. Therefore, this return to mode 0 is a purposeful response to a rapid change that appears to be level (for example, when the cable is damaged or the amplifier has failed quickly). It will be appreciated that minor changes to the above apparatus may be made without significantly altering the design and/or operation of the down zone. Most notable is the switchable use of high frequency and low frequency channels. More unusually ‘ If the low frequency channel is used to set the level and the high frequency channel is used to set the slope, the down zone will operate normally. In an alternate embodiment, the microprocessor 31 instructs the tuner 506 69 201019731 to scan the downlink bandwidth of the connection in an attempt to locate and identify a channel having a low frequency (referred to herein as the low frequency channel 805 (FIG. 21)) And a channel with a high frequency (referred to herein as high frequency channel 810 (Fig. 21)). In the present example, microprocessor 310 instructs tuner 506 to start at a relatively low frequency within the downlink bandwidth and scans 'higher frequencies until 'low frequency channel 805 is found'. Similarly, microprocessor 310 indicates that tuner 506 is The relative south frequency of the connected downlink bandwidth begins 'and scans toward lower frequencies' until the high frequency channel 81 is found. Thus, the low frequency channel 805 can be a channel near the lowest frequency within the connected downstream bandwidth, and the high frequency channel 81 can be a channel near the highest frequency within the connected downstream bandwidth. Although the low frequency channel 805 and the high frequency channel 81 are depicted as a single frequency in the 囷21 for clarity purposes in this embodiment, it should be understood that the channel is typically of a plurality of frequencies. It should also be understood that the low frequency channel 805 and the high frequency channel 81 are not required to have the lowest or highest low frequency channel, respectively, in this embodiment. However, it is beneficial that the two channels are physically separated from each other as far as possible to better estimate the amount of parasitic loss experienced over the entire downlink bandwidth" in order to locate and identify the low frequency channel 8〇5 of the present embodiment. During the scanning process of the high frequency channel 810, the microprocessor 31 can be provided with three types of information, as described above with respect to the embodiment of the down zone 10. First, it is indicated that the signal to the identified channel will be provided to microprocessor 31() via path 542. The second ' indicates that the level of the identified channel will be provided to the microprocessor via path 548' indicating that the modulated signal of the identified channel will be provided to microprocessor 310 via path 530. As mentioned above, the digital format channel can have a smaller signal strength than the corresponding class channel. In this embodiment, it is assumed that the difference in signal strength is 6 db. Therefore, the microprocessor 31 of the present embodiment may include a level shift calculation that resolves the 6 db difference when comparing the signal strength of the low frequency channel 805 with the signal strength of the high frequency channel 810. Any comparison of the two channels 805, 810 obtained for the purpose of determining the relevant signal strength may be defective if this difference is not resolved. For example, if the high frequency channel 810 is digital and the low frequency channel 8 〇 5 is of a class, the additional internal ❹ 6 dB difference may erroneously indicate that there is more parasitic loss than the current actual lifetime loss. Similarly, if the low frequency channel 81 is class-like and the low frequency channel 805 is digital, any resulting comparison would erroneously exhibit parasitic losses that are less than the current actual parasitic losses. Therefore, it should be understood that it is irrelevant to add a 6dB offset to the signal strength of the digital format channel or subtract the 6dB offset from the signal strength of the class format channel. It should be understood that if the low frequency channel 805 and the high frequency channel 810 Both are class-like, and a 6 dB offset can be added to the signal strength of both the low frequency channel 8〇5 and the high frequency channel, or if both the low frequency channel 805 and the high frequency channel 810 are class-like Then, the 6 dB offset can be subtracted from the signal strength of both the low frequency channel 8〇5 and the high frequency channel 810. What is more, it should be understood that the offset value is specified by the standard that the specific supplier complies with, and therefore, the offset value can be a value other than 6 dB, such as the above described 〇 dB 〇 after completing the scanning process And after adding/removing any offset, the microprocessor 310 now has low frequency channel levels (including any offset), low frequency channel frequencies, still frequency channel levels (including any offset), and high band channels 71 201019731 frequency. 'The known information (ie level and frequency) of the low frequency channel 8〇5 and the high frequency channel 81〇 is now compared by the microprocessor 3 10 to predetermine the signal strength gain/loss curve (ie gain/loss curve), signal strength The benefit/loss curve corresponds to the known parasitic losses associated with the type of coaxial cable/cable used, as shown in FIG. This step advantageously allows known information to be interpolated over the entire downstream bandwidth. By using the interpolation curve, the microprocessor 31 determines how much signal level adjustment to apply, and in what manner the level adjustment is applied to the entire downstream bandwidth, resulting in a resulting benefit/loss curve over the entire bandwidth. That is, the slope) is almost linear, and it is pre-considered that parasitic losses will occur from the downstream of the conditioning device 100, preferably with a slight increase in gain for higher frequencies. For example, the level amount is determined by the high frequency channel level including any interpolation for the highest frequency, and the level reduction is determined by the low frequency channel level including any interpolation for the lowest frequency. It should be understood that the effect of parasitic losses on higher frequencies is greater than on lower frequencies. Thus, if a known signal having a signal strength of _10 dB is transmitted over the entire downlink bandwidth and the ❹ length of the coaxial cable/cable at various frequencies, a plot of the resulting slope can be depicted. Since the ultimate goal is to obtain a slope of the line close to the original signal strength, or to obtain a slope with increasing slope-frequency, the microprocessor 310 directly controls the variable slope adjustment circuit to adjust the downstream signal transmission in a curved manner, thereby The amplitude of the lower frequency is lower than the amplitude of the higher frequency. For example, as shown in FIG. 21, the gain curve 820 can be plotted over the entire downlink bandwidth using the known frequency and signal strengths of each of the low frequency channel 805 and the high frequency channel 810, the entire downlink bandwidth being displayed, for example, from 50. 72 201019731 MHz to 1000 MHz. Microprocessor 310 then engages variable attenuator 512, which will replace at least the loss at the highest frequency, to determine the amount of level adjustment added by amplifier 508 and/or amplifier 510. In this example, the level adjustment is at least +24 dB, resulting in a gain curve 825 as shown in FIG. Based on the interpolation gain curve shown in FIG. 21, the microprocessor 31A instructs the slope adjusting means 514 to apply a similar but inversely varying amount of correction to produce a relatively flat gain curve (i.e., slope) as shown in FIG. 〇β may be desirable to increase the applied level adjustment and increase the curvature of the slope adjustment to produce a gain curve (ie, slope) 835, as shown in Figure 24, with gain curve 835 increasing toward a higher frequency. The rate of exchange. (iv) Interaction between the up zone 1〇5 and the down zone 1〇8, as described above, when the level appears to be rapidly changing, such as when the cable is damaged and/or the amplification outside the adjustment device 100 has expired Downstream zone 108 transitions from mode 1 to mode 0. The reason for this change from mode 1 transition © to mode 0 is that the down zone 1 〇 8 can be quickly increased by the amount of amplification used to achieve the desired level value, and/or by rapidly increasing the slope used to achieve the desired slope. The amount of compensation is in response to this damage. As used herein, the term "quickly, is relative, the actual level and slope of a particular CATV system is known to vary at any time due to environmental differences such as temperature changes, sunlight, and temperature. Any changes other than these normal differences are usually Indicates that damage has occurred, or is occurring between the conditioning device ι and the supplier 20. The normal difference is usually for a given CATV system and/or geographic location, and the technology to maintain that particular system 73 201019731 usually Understand these normal differences. Thus, the term "rapidly increases, indicating a magnification and/or slope rate that exceeds the ratio associated with a normal difference in a particular CATV system. The term 'magnification' refers to the ratio of amplification applied per unit time of the downlink bandwidth. Similarly, the term "slope rate" refers to the ratio of slope correction applied per unit time of the downlink bandwidth. Although the downstream region 108 may be able to compensate for CATV that has occurred or is being adjusted between the device 100 and the supplier 2〇. Damage occurring in the system, but the ascending region 105 cannot know any damage that has occurred by measuring the desired upstream bandwidth generated by the house device. In fact, when such damage has occurred, the upstream region may be 1〇5 This can cause problems because the up zone 1 〇 5 will effectively remove any extra capacity of the house unit to increase its output level. In other words, any loss due to damage will aggravate the overall attenuation caused by the up zone 105. Thus, the house device will no longer be able to communicate with the supplier 20. In an attempt to cause the up region 105 to resolve any damage that has occurred or is occurring in the CATV system between the adjustment device 100 and the supplier ❹ 20, the down zone 108 may be The microprocessor 310 provides an amplification value and/or a slope correction value that is changing rapidly (eg, when mode i to mode 0 occurs) An indication of the transition. It should be understood that if the same microprocessor is used to operate and control both of the zones 105, 108, the microprocessor 310 need not receive another indication from the downstream zone 108 to cause the microprocessor 310. Adjusting the Upstream Area 105 Referring now to Figure 25, a process 700 for operating and controlling the Upstream Zone 105 in response to anomalous differences from the down zone 〇8 to 74 201019731 is depicted. Please note that 'for clarity purposes only The process 700' is presented and described in terms of amplification (ie, amplification value and magnification). It should be understood that if the process 700 is based on both slope (ie, slope value and slope rate) or both amplification and slope, then the same process _ 700 is relevant. According to step 705, the microprocessor 310 retains the downstream amplified value in the first buffer "term" reserved, intended to be broad enough to allow the downstream buffer 108 to include its own microprocessor, down zone The microprocessor of 1〇8 itself can send the downlink amplified value to the microprocessor 31〇, and the term is intended to be broad enough to allow the downstream zone 1〇8 together with the upstream zone 〇5 The possibility to use microprocessor 310. The ratio counter is restarted in accordance with step 705' microprocessor 31G. The ratio counter is used here to provide a timing function to measure the elapsed time between the retained downstream amplification values. Therefore, the microprocessor can measure the elapsed time using many other known methods. For example, the microprocessor (4) may include a clock such that the step / ^ includes the time at which the down-amplified value is retained. Similarly, the retention of the lower rod + U / down amplification value can occur at a specific time, eliminating the need for a ratio counter or other clock. Based on the step m, the microprocessor 310 notes if the value is in the - buffer. When the first-buffer exists in the first-follow-buffer, the value is not saved when the order is started. If the second, 5 sucks w and has a value, as in the case of the initial run of the material, then the value stored in the microprocessor = program to the second pass will also buffer the first buffer, then return to Step 7fK, „ There is already 佶7 in the second buffer, step 705. If there is a value, then the microprocessor will proceed to step 75 201019731 720. According to step 720, the microprocessor 31 will use the first buffer. The value in , the value in the second buffer, and the ratio counter to calculate the amplification rate. Specifically, the value in the second buffer is subtracted from the value in the first buffer, and the result is divided by the ratio counter. The calculated magnification is passed to step 725. According to step 725, the microprocessor 31 determines whether the magnification is greater than the cabinet rate. The goal of this step is to determine whether the currently observed magnification is typical of a particular CATV system. In addition to the limitations of variability, the threshold rate can also be set to a high value, for example, a ratio of 3 db per minute, or higher, because the damage often occurs quickly, for example, when the branches fall on the wire, Or when the car hits On the pole. In addition, it is these relatively rapid changes that may adversely affect the ability of the upstream zone 1G5 to resolve the damage. If the amplification is greater than the threshold rate, in step 730, the upstream attenuation level in the upstream zone 105 is reset to The added attenuation is removed. Otherwise, if the amplification is less than the threshold rate, the upstream attenuation level is not changed. After any of the results, the microprocessor 3 1 moves to step 735. According to step 735, the microprocessor 310 uses The value in a buffer replaces the value in the second buffer and returns to step 705. In an alternate embodiment, the downstream region 1 〇 8 may be capable of providing ongoing magnification directly from the downstream region and/or Slope Rate Information. In such an embodiment, the microprocessor 310 only needs to monitor the amplification and/or slope rate and reset the upstream attenuation level when at least one of the amplification and the slope rate exceeds the threshold rate. 76 201019731 Said, in one embodiment, the downstream zone 108 may include two modes (ie mode 0 and mode) adjustment processes for providing amplification and/or slope adjustment. In the first mode, adjustments are made in larger increments, while in the second mode, adjustments are made in smaller increments. In this case, large adjustments can be made in the downstream zone 108. Use the first mode at any time (larger and/or faster than available in the second state) because any switching from the second mode to the first mode indicates that amplification and/or skew Q rate adjustments are required. A larger adjustment, so this same switch can be used as an indicator that the up zone 1 〇 5 resets the padding level and removes any added attenuation. (v) Band selection device Referring now to Figure 26, the adjustment device 1〇〇 Circuit component i-band selection means, which may include generating band selection means, may be configured to be constructed in response to an earlier wired cable data service interface specification ("D〇CSIS") and to an application descendant specification (eg, DOCSIS 3.0) Automatic switching between. © Although this feature is advantageous in the adjustment device 1〇〇, this feature allows other devices such as the up zone 105 and/or the down zone 108 to remain relevant after changing between the two specifications. In particular, since each of these zones 1〇5, 1〇8 requires precise signal separation between the upstream bandwidth and the downstream bandwidth, any necessary changes in the upstream/downstream bandwidth will result in zone 105, 108 does not work. It should be understood that although the DOCSIS specification is referenced above and below, the upstream/downstream bandwidth configuration can be maintained and changed in accordance with any protocol specification. The adjustment means of the embodiment shown in Figure 26 has been simplified to display only the band selection means at 77 201019731, each of the optional up zone 1 〇 5 and down zone 1 〇 8 has been indicated as being defined by a dashed line frame. The adjustment device 本 of the present embodiment includes a plurality of switches 902, 904, 916, 918, 922, and 924 that define a first signal path group 910 and a second signal path group 920. Each signal path group includes two separate signal paths, a forward path 93A and a reverse path 940. The first signal path group 910 is formed using a pair of first band separating devices 9〇6, 9〇8, and the second signal path group 920 is formed using a pair of second band separating devices 912, 914. The cutoff frequency set by the first pair of band separating means 9〇6, 9〇8 corresponds to the © DOCSIS specification having a narrower/smaller upstream bandwidth, and the cut by the second pair of band separating means 912, 914 The break frequency corresponds to a later DOCSIS specification that includes a wider/larger upstream bandwidth than the earlier DOCSIS standard. It should be understood that the cutoff frequency can be changed to accommodate even the newer D〇CSIS standard or other by replacing only the first pair of band separation devices 9〇6, 9〇8 and/or the second pair of band separation devices 912, 914. standard. Any high quality commercially available switch and band separation device will operate well within the specific location within the adjustment device 1〇〇. Each of the switches 902, 904, 916, 918, 922, 924 is controlled directly or indirectly by the microprocessor 310. The microprocessor H 310 determines whether to move the switch 902 904, 916, 918, 922, 924 to the first signal path group 91 基于 or to the second signal path based on the information transmission signal preferably transmitted by the supplier 2 〇 Group 92〇. The signal coupler 85 〇 allows the receiver 845 to receive an information transmission signal 'e.g., a scale, an encoded operation signal, or other known information transmission that can be understood by the microprocessor 31 to indicate the position of the switch. For example, the presence of an information signal can be used to indicate the micro-location. 2010 20101 The processor 3 10 should select the second signal path group 920, and the absence of an information signal indicates that the microprocessor 310 should select the first signal path group 910. For example, the presence of successive scales at 900 MHz can be identified by passing a signal carrying such scales through a bandpass filter 840 to eliminate unwanted signals and comparator 855 when/if the scale ratio is comprised by voltage 865 and The predetermined voltage threshold determined by the resistive voltage divider 860 is strong and the comparator 855 provides the scale only to the microprocessor 31. The frequency can be selected by microprocessor 310 and can be manipulated by phase locked loop control system 880 and amplifier 870 in a manner known in the art. Any of the high quality commercially available signal couplers and receivers will function well within the specific location within the adjustment device 100. Although the present invention has been particularly shown and described with respect to certain exemplary embodiments of the invention, it will be understood by those skilled in the art In the circumstances, various changes may be made in the details of the invention. In addition, although the exemplary embodiments have been described with reference to a certain number of elements, it will be understood that fewer or more elements may be used than those elements. The following is a description of various embodiments of the present invention in the form of a patented scope: A1. A type that can be inserted in a signal transmission line of a cATV system at, near or adjacent to a user's premises An upstream bandwidth adjustment apparatus, the apparatus comprising: a variable signal level adjustment apparatus configured to generate a certain amount of signal level adjustment for an upstream bandwidth; a signal measurement circuit configured to measure at 79 201019731 Applying an additional amount of additional signal level to adjust the first signal strength value of the previous upstream bandwidth Applying the amount of additional signal level to adjust the second signal strength; and circuitry configured to (1) to compare the first signal strength to the second signal strength, and (ii) when When the first signal strength is greater than the second signal strength, at least a portion of the additional amount of additional signal level adjustment is removed. A device according to claim A1, characterized in that the device further comprises: a first band separating device between the variable signal level adjusting device and a user side; A second band separating device between the signal level adjusting device and the supplier side. A3. The device according to claim A1, characterized in that the signal measuring circuit comprises a signal level detector configured to output a signal level adjustment indicating that the amount is applied and any The level of the upstream bandwidth level after the incremental additional signal level adjustment. A4. The device of claim 3, wherein the signal level detector is configured to cause the signal indicative of the level of the upstream bandwidth to remain in the circuit to read the signal The amount of time required for intensity. A device according to claim A1, characterized in that said circuit is capable of retaining at least one of said first signal strength and said second signal 201019731 intensity until use at a later time. A6. The device according to claim A1, characterized in that said circuit is configured to repeatedly determine whether said increased amount of additional signal level adjustment is to be applied. A7. The device of claim A6, wherein the circuit is configured to stop the determination of the repetition, and when the first signal strength is greater than the second signal strength, remove the A portion of the additional signal level adjustment of the increased amount. A device according to claim A6, wherein the circuit is configured to apply the increased amount of additional signal level adjustment in the determining cycle when the second signal strength is less than a predetermined interval. A9. The device according to claim A1, characterized in that the circuit is a microprocessor. A10 according to the device of claim A1, characterized in that the circuit is a class circuit.

All根據申請專利範圍A1的所述的裝置,其特徵在 於所述電路進一步構造成以便將所述第一信號強度和所 述第二信號強度與預定閾值進行比較。 A12種用於使用位於用戶的房屋上的裝置來調節傳 輪通過CATV系統的傳輸線的上行頻寬的方法所述方法 包括步驟: ⑷提供具有用戶側和供應商㈣裝置; (b)在所述用戶側和所述供應商側之間提供可變信號 水準調節裝置; 81 201019731 (C)測量所述可變信號水準調節裝置的下游的位置處的 上行頻寬的第一信號強度值; (d) 對所述上行頻寬應用增加量的額外信號水準調節; (e) 測量第二信號強度值; (f) 將所述第一信號強度值與所述第二信號強度值比 較;以及 (g) 重複執行步驟(c)-(f)達預定數量的循環, 其中當所述第二信號強度值小於所述第一信號強度值 時’移除所述増加量的額外信號水準調節的至少一部分。❹ A13·根據申請專利範圍A12所述的方法’其特徵在 於’所述預定數量的循環至少為二(2)<) A14.根據申請專利範圍a12所述的方法,其特徵在 於,所述方法進一步包括將所述第一信號強度和所述第二 信號強度中的至少一個與預定閾值進行比較。 A15· —種用於使用位於用戶的房屋上的裝置來調節通 過CATV系統的傳輸線傳輸的上行頻寬的方法,所述方法 包括步驟: (a) 提供具有用戶侧和供應商側的裝置; (b) 在所述用戶側和所述供應商側之間提供可變信號 水準調節裝置; (c) 測量所述可變信號水準調節裝置的下游的位置處的 上行頻寬的第一信號強度值; (d) 對所述上行頻寬應用増加量的額外信號水準調節; (e) 在應用所述增加量的額外信號水準調節之後測量第 82 201019731 二信號強度值; 二信號強度值進行 (〇將所述第一信號強度值與所述第 比較; 一信號強度值 (g)當所述第二信號強度值小於所述第 時進行到步驟(i); (h)重複執行步驟(cHg)達預定數量的循環,且在完成 所述預定數量的循環時進行到步驟(j); ⑴使所述增加量的額外信號水準調節減小預定量,1 ¥ 進行到步驟⑴;以及 ⑴提供所述上行頻寬的連續的信號水準調節。 A16.根據申請專利範圍A15所述的方法,其特徵在 於,所述预定數量的循環至少為二(2)。 ΑΠ·根據申請專利範圍A15所述的方法,其特徵在 於,所述方法進一步包括將所述第一信號強度和所述第二 信號強度中的至少一個與預定閾值進行比較。The device according to claim A1, characterized in that the circuit is further configured to compare the first signal strength and the second signal strength with a predetermined threshold. A12 method for adjusting the upstream bandwidth of a transmission line passing through a CATV system using means located on a user's premises. The method comprises the steps of: (4) providing a user side and a supplier (4) device; (b) said Providing a variable signal level adjusting device between the user side and the supplier side; 81 201019731 (C) measuring a first signal strength value of an upstream bandwidth at a position downstream of the variable signal level adjusting device; Applying an increased amount of additional signal level adjustment to the upstream bandwidth; (e) measuring a second signal strength value; (f) comparing the first signal strength value to the second signal strength value; and (g Repeating steps (c)-(f) for a predetermined number of cycles, wherein at least a portion of the additional signal level adjustment of the added amount is removed when the second signal strength value is less than the first signal strength value . ❹ A13. The method according to claim A12, characterized in that the predetermined number of cycles is at least two (2) <) A14. The method according to claim a12, characterized in that The method further includes comparing at least one of the first signal strength and the second signal strength to a predetermined threshold. A15. A method for adjusting an upstream bandwidth transmitted over a transmission line of a CATV system using a device located on a user's premises, the method comprising the steps of: (a) providing a device having a user side and a supplier side; b) providing a variable signal level adjustment device between the user side and the supplier side; (c) measuring a first signal strength value of an upstream bandwidth at a position downstream of the variable signal level adjustment device (d) applying an additional signal level adjustment to the upstream bandwidth; (e) measuring the signal strength of the 82nd 201019731 after applying the additional signal level adjustment of the increased amount; Comparing the first signal strength value with the first; a signal strength value (g) when the second signal strength value is less than the first time to proceed to step (i); (h) repeating the step (cHg) Up to a predetermined number of cycles, and proceeding to step (j) upon completion of the predetermined number of cycles; (1) reducing the additional signal level adjustment of the increased amount by a predetermined amount, 1 ¥ proceeds to step (1); and (1) providing Said A method of the present invention, wherein the predetermined number of cycles is at least two (2). The method according to claim A15 And wherein the method further comprises comparing at least one of the first signal strength and the second signal strength to a predetermined threshold.

〇 B1· 一種可插入在用戶的房屋處、附近或鄰近的CATV 系統的信號傳輸線中的下行頻寬輸出水準和/或輸出水準 傾斜補償裝置,所述裝置包括: 構造成以便掃描下行頻寬以識別低頻通道和高頻通道 的調諧器; 構造成以便確定所述低頻通道和所述高頻通道中的各 個的格式的通道分析器; 構造成以便測量所述低頻通道的低頻通道水準和所述 高頻通道的高頻通道水準的信號測量裝置; 201019731 偏移電路’所述偏移電路構造成以便執行以下中的一〇B1· A downstream bandwidth output level and/or output level tilt compensation device insertable in a signal transmission line of a CATV system at, near or adjacent to a user's premises, the apparatus comprising: configured to scan a downlink bandwidth to a tuner identifying a low frequency channel and a high frequency channel; a channel analyzer configured to determine a format of each of the low frequency channel and the high frequency channel; configured to measure a low frequency channel level of the low frequency channel and the High frequency channel level signal measuring device for high frequency channel; 201019731 offset circuit 'the offset circuit is configured to perform one of the following

項或多項· (1)當所述低頻通道是數位格式時,對所述低S 通道水準添加偏移值;(ii)當所述低頻通道是類類格式時, 從所述低頻通道水準中減去偏移值;(iii)當所述高頻通道是 數位格式時,對所述高頻通道水準添加偏移值;以及(iv) 當所述高頻通道是類類格式時’從所述高頻通道水準中減 去增益偏移值; 構造成以便將包括任何偏移值的所述低頻通道水準和 所述高頻通道水準與預定信號強度損失曲線進行比較的微 〇 處理器; 可變輸出水準補償裝置添加功能;以及 可變斜率調整電路添加功能。 B2··根據申請專利範圍Bi所述的裝置,其特徵在於, 所述可變輸出水準補償裝置和所述可變斜率調整電路構造 成使得與所述局頻通道相關聯的增益大於與所述低頻通道 相關聯的增益。 ❹ B3·根據申請專利範圍Bi所述的裝置,其特徵在於, 所述預定的信號強度損失曲線是表示用於所述Catv用戶 的所述房屋上或附近的所述傳輸線的標準損失曲線。 B4·根據申請專利範圍β1所述的裝置,其特徵在於, 所述調諧器構造成以便從最大頻率朝更低的頻率掃描以 尋找所述高頻通道,且所述調諧器構造成以便從最小頻率 朝更高的頻率掃描,以尋找所述低頻通道。 B5·根據申請專利範圍所述的裝置,其特徵在於, 84 201019731 基於所述高頻通道水準來確定由所述可變輸出水準補償裝 置提供的信號水準調節量。 B6·根據申請專利範圍B1所述的裝置’其特徵在於, 基於所述低頻通道水準來確定由所述可變斜率調整電路提 供的斜率調整量。 B7·根據申請專利範圍B1所述的裝置,其特徵在於, 所述信號測量電路設置成以便測量所述可變輸出水準補償 ❹ 裝置的下游的所述高頻通道水準和所述低頻通道水準。 Β8 · —種用於調節CATV服務的用戶的房屋上的下行 頻寬的方法,所述方法包括: 接收來自CATV供應商的下行頻寬; 掃描所述下行頻寬,以獲得低頻通道和高頻通道; 測量所述低頻通道的低頻通道水準和所述高頻通道的 高頻通道水準; 確定所述低頻通道描述格式的格式; © 確定所述高頻通道描述格式的格式; 當所述低頻通道和所述高頻通道中的一個是類類格 式’且所述低頻通道和所述高頻通道中的一個是數位格式 時’使所述低頻通道和所述高頻通道中的一個偏移預定的 偏移值; 將包括任何偏移值的所述低頻通道水準和所述高頻通 道水準與預定的信號強度損失曲線進行比較; 對所述下行頻寬提供一定量的輸出水準補償;以及 對所述下行頻寬提供一定量的斜率調整。 85 201019731 B9 ·根據申請專利範圍B8所述的裝置,其特徵在於, 所述量的斜率調整使得與所述高頻通道相關聯的增益大於 與所述低頻通道相關聯的增益。 Β1〇·根據申請專利範圍B8所述的裝置,其特徵在於, 所述預定的信號強度損失曲線是表示用於用戶的所述房屋 處、附近或鄰近的信號傳輸線的標準損失曲線。 B11·根據申請專利範圍B8所述的裝置,其特徵在於, 執行所述掃描’使得掃描從最大頻率開始,且朝更低的頻 率延伸,以尋找所述高頻通道。 B12·根據申請專利範圍B8所述的裝置,其特徵在於, 執行所述掃描’使得掃描從最小頻率開始,且朝更高的頻 率延伸,以尋找所述低頻通道。 B13·根據申請專利範圍B8所述的裝置,其特徵在於, 基於所述高頻通道水準來確定所述量的輸出水準補償。 B14.根據申請專利範圍B8所述的裝置,其特徵在於, 基於所述低頻通道水準來確定所述量的斜率調整。 C1 種可插入用戶的房屋上的CATV系統的信號傳 輸線辛的頻帶選擇裝置,所述裝置包括: 在供應商侧和用戶側之間的至少兩個信號路徑組,各 個所述信號路徑組包括兩個分立的信號路徑、允許下行頻 寬從所述供應商側傳到所述用戶側的正向路徑,以及允許 上行頻寬從所述用戶側傳到所述供應商側的反向路徑,所 述正向路徑和所述反向路徑由對各個所述信號路徑組不同 的載斷轉換頻率分開;以及 86 201019731 具有至少二個分立的開關位置的開關控制器,所述開 關控制器由於資訊信號而選擇所述開關位置中的一個。所 述開關位置中的各個均對應於所述信號路徑組中相應的一 個。 C2.根據申請專利範圍C1所述的裝置,其特徵在於, 所述裝置進一步包括: 包括可由供應商側開關組選擇的至少兩個頻帶分離裝 ^ 置的供應商側濾波器組;以及 包括可由用戶侧開關組選擇的至少兩個頻帶分離裝置 的用戶側濾波器組, 其中所述供應商侧開關組和所述用戶側開關組由所述 開關控制器促動。 C3·根據中請專利範圍C2所述的裝置,其特徵在於, 所述供應商側開關組包括供應商側下行開關和供應商側上 行開關,並且其中所述用戶開關組包括用戶側下行開關和 〇 用戶側上行開關。 C4·根據申請專利範圍C1所述的裝置,其特徵在於, 所述資訊信號是連績的音階。 C5.根據申請專利範圍〇所述的裝置,其特徵在於, 所述資訊信號包含編碼操作信號。 C6·根據f請專利範圍C2所述的裝置,其特徵在於, 在所述供應商側遽波器組和所述用戶側遽波器組中的各個 中的所述頻帶分離裝置中的一個構造成以便根捸 DOCSIS·!使所述上行頻寬與所述下行頻寬分離。 87 201019731 C7 .根據申請專利範圍C2所述的裝置,其特徵在於, 在所述供應商側濾波器組和所述用戶側濾波器組中的各個 中的所述頻帶分離裝置中的一個構造成以便根據 DOCSIS-2使所述上行頻寬與所述下行頻寬分離。 C8.根據申請專利範圍C2所述的裝置,其特徵在於, 在所述供應商側濾波器組和所述用戶侧濾波器組中的各個 中的所述頻帶分離裝置中的一個構造成以便根據 DOCSIS-3使所述上行頻寬與所述下行頻寬分離。 C9·根據申請專利範圍ci所述的裝置,其特徵在於,© 所述裝置進一步包括三個或多個信號路徑組,以及三個或 多個分立的開關位置資料傳送協定。 C10 · —種用於改變在CATV服務的用戶的房屋上的 CATV頻帶的方法’所述方法包括: 在房屋上提供頻帶選擇裝置,所述裝置包括: 在所述頻帶選擇裝置的供應商側和用戶側之間的至少 兩個信號路徑組,各個所述信號路徑組包括兩個分立的信❹ 號路徑、允許下行頻寬從所述供應商側傳到所述用戶側的 向路徑,以及允許上行頻寬從所述用戶側傳到所述供應 J的反向路徑,所述正向路徑和所述反向路徑由對各個 所述k號路徑組不同的截斷轉換頻率分開;以及 具有至少二個分立的開關位置的開關控制器,所述開 、關控制器由於資訊信號而選擇所述開關位置中的一個,所 述開關位置中的各個均對應於所述信號路徑組中相應的一 個;以及 ^ 88 201019731 由於所述資訊信號而使所述開關控制器移動到相應的 所述信號路徑組中期望的一個。 C11·根據申請專利範圍C10所述的裝置,其特徵在 於,所述裝置進一步包括: 包括可由供應商側開關組選擇的至少兩個頻帶分離裝 置的供應商側濾波器組;以及 包括可由用戶側開關組選擇的至少兩個頻帶分_裝置 的用戶侧濾波器組, 其中由所述開關控制器使所述供應商侧開關組和所述 用戶側開關組移動到相應的所述信號路徑组中期望的所述 一個。 C12·根據申請專利範圍C11所述的裝置,其特徵在 於,所述供應商侧開關組包括供應商側下行開關和供應商 侧上行開關,並且其中所述用戶開關組包括用戶側下行開 關和用戶側上行開關。 O C13·根據申請專利範圍cio所述的裝置,其特徵在 於’所述資訊信號是連續的音階。 C14 .根據申請專利範圍cl〇所述的裝置,其特徵在 於’所述資訊信號包含編碼操作信號。 C15·根據申請專利範圍cil所述的裝置,其特徵在 於,在所述供應商側濾波器組和所述用戶側濾波器組中的 各個中的所述頻帶分離裝置中的一個構造成以便根據 DOCSIS-1使所述上行頻寬與所述下行頻寬分離。 C16.根據申請專利範圍cil所述的裝置,其特徵在 89 201019731 於,在所述供應商側濾波器組和所述用戶侧濾波器組中的 各個中的所述頻帶分離裝置中的一個構造成以便根據 DOCSIS-2使所述上行頻寬與所述下行頻寬分離。 C17·根據申請專利範圍cil所述的裝置,其特徵在 於,在所述供應商侧濾波器組和所述用戶侧濾波器組中的 各個中的所述頻帶分離裝置中的一個構造成以便根據 DOCSIS-3使所述上行頻寬與所述下行頻寬分離。 C18.根據申請專利範圍ci〇所述的裝置,其特徵在 於,所述裝置包括三個或多個信號路徑組,以及三個或多 個分立的開關位置’以允許更大數量的資料傳送協定。 D1 · —種可插入在用戶的房屋上或附近的c ATv系統 的傳輸線中的下行頻寬調節裝置,所述裝置包括: 延伸供應商側連接器和用戶側連接器之間的距離的至 少一部分的正向路徑; 連接在所述正向路徑内的聯接器,所述聯接器提供二 級路徑; 連接到所述聯接器上,且基於來自微處理器的輸入可 調諧的調諧器,所述調諧器提供選定通道的調諧器輸出, 所述選定通道是高頻通道和低通道通道t的至少一個; 連接到所述調諧器的輸出上的通道分析器,所述通道 分析器為所述微處理器提供調制輸出,當所述選定通道是 類類調制與當所述選定通道是數位調制時,所述調制輪出 不同; 連接在所述聯接器和所述供應商側連接器之間的所述 201019731 正向路徑内的斜率調整電路,可基於由所述微處理器提供 的斜率控制輸出來調整來所述斜率調整電路;以及 電連接在所述聯接器和所述供應商侧連接器之間的所 述正向信號路徑内的輸出補償電路,可基於來自微處理器 的水準控制輸出來調整所述輸出補償裝置。 D2 ·根據申請專利範圍D1所述的裝置,其特徵在於, 所述微處理器包括用以改變所述斜率控制輸入和所述水準 q 控制輸入的至少一個控制模式1 D3·根據申請專利範圍〇2所述的裝置,其特徵在於, 第一控制模式基於至少一個低頻通道中的各個的低通道水 準和來自至少一個高頻通道中的各個的高通道水準來改變 所述斜率控制輸入和所述水準控制輸入中的至少一個。 D4 ·根據申請專利範圍〇2所述的裝置,其特徵在於, 所述第一控制模式基於單個低頻通道的低通道水準和來自 單個高頻通道的高通道水準來改變所述斜率控制輸入和所 ® 述水準控制輸入中的至少一個。 D5·根據申請專利範圍〇3所述的裝置,其特徵在於, 第一控制模式基於多個所述低通道水準的平均值來改變所 述斜率控制輸入和所述水準控制輸入中的至少一個。 D6 ·根據申請專利範圍〇3所述的裝置,其特徵在於, 第一控制模式基於多個所述高通道水準的平均值來改變所 述斜率控制輸入和所述水準控制輸入中的至少一個。 D7 ·根據申請專利範圍〇5所述的裝置,其特徵在於, 第一控制模式以比第二控制模式更快的速率改變所述斜率 201019731 控制輸入和所述水準控制輸入中的至少一個。 D8·根據中請專利範圍⑴所述的襄置’其特徵在於, 所述微處理器包括至少一個控制模式’所述至少一個控制 模式將所述低通道水準和所述高通道水準中的一個與相應 的目標水準進行比較,以改變所述斜率控制輸入。 D9·根據申請專利範圍D8所述的裝置其特徵在於, 所述控制模式將所述低通道水準和所述高通道水準中的一 個與相應的目標水準進行比較,以改變所述水準控制輪入。 D10.根據申請專利範圍D9所述的裝置其特徵在於,◎ 所述控制模式在將所述低通道水準和所述高通道水準中的 所述一個與所述相應的目標水準進行比較之前,選擇性地 將數位通道偏移添加到所述第一水準和所述相應的目標水 準中的一個。 DU·根據申請專利範圍D9所述的裝置,其特徵在於, 所述控制模式在將所述低通道水準和所述高通道水準中的 所述-個與所述相應的目標水準進行比較之前,選擇性地 從所述相應的目標水準中減去數位通道偏移。 D12 ·根據中請專利範圍D丨所述的裝置,其特徵在於, 所述微處S胃包括至少一個控制模<,所述至少一個控制 模式將來自所述至少一個低頻通道的低通道水準與相應的 目標水準進行比較’以改變對斜率調整電路的所述斜率控 制輸入。 D13.根據申請專利範圍D12所述的裝置,其特徵在 於’所述微處理器包括至少一個控制模式,所述至少一個 92 201019731 控制模式將所述至少一個高頻通道的高通道水準與相應的 目標水準進行比較,以改變所述水準控制輸入。Item or multiple (1) when the low frequency channel is in a digital format, adding an offset value to the low S channel level; (ii) when the low frequency channel is in a class format, from the low frequency channel level Subtracting the offset value; (iii) adding an offset value to the high frequency channel level when the high frequency channel is in a digital format; and (iv) when the high frequency channel is in a class format Subtracting the gain offset value from the high frequency channel level; configured to compare the low frequency channel level including any offset value and the high frequency channel level to a predetermined signal strength loss curve; Variable output level compensation device addition function; and variable slope adjustment circuit addition function. B2. The device of claim Bi, wherein the variable output level compensation device and the variable slope adjustment circuit are configured such that a gain associated with the local frequency channel is greater than The gain associated with the low frequency channel. ❹ B3. The device according to the patent application scope Bi, characterized in that the predetermined signal strength loss curve is a standard loss curve indicating the transmission line on or near the house for the Catv user. B4. The device of claim 1, wherein the tuner is configured to scan from a maximum frequency toward a lower frequency to find the high frequency channel, and the tuner is configured to be minimal The frequency is scanned towards a higher frequency to find the low frequency channel. B5. The device according to the scope of the patent application, characterized in that 84 201019731 determines a signal level adjustment amount provided by the variable output level compensation device based on the high frequency channel level. B6. The device according to claim B1, wherein the slope adjustment amount provided by the variable slope adjustment circuit is determined based on the low frequency channel level. B7. The device of claim B1, wherein the signal measuring circuit is configured to measure the high frequency channel level and the low frequency channel level downstream of the variable output level compensation device. Β8 - A method for adjusting a downlink bandwidth on a home of a user of a CATV service, the method comprising: receiving a downlink bandwidth from a CATV provider; scanning the downlink bandwidth to obtain a low frequency channel and a high frequency a channel; measuring a low frequency channel level of the low frequency channel and a high frequency channel level of the high frequency channel; determining a format of the low frequency channel description format; eg determining a format of the high frequency channel description format; And one of the high frequency channels is a class-like format 'and when one of the low frequency channel and the high frequency channel is a digital format, 'offset one of the low frequency channel and the high frequency channel is predetermined Offset value; comparing the low frequency channel level including any offset value with the predetermined signal strength loss curve; providing a certain amount of output level compensation for the downlink bandwidth; The downstream bandwidth provides a certain amount of slope adjustment. 85 201019731 B9. The device of claim B8, wherein the slope of the amount is adjusted such that a gain associated with the high frequency channel is greater than a gain associated with the low frequency channel. The apparatus according to claim B8, wherein the predetermined signal strength loss curve is a standard loss curve indicating a signal transmission line at the house, in the vicinity or adjacent to the user. B11. The device of claim B8, wherein the scanning is performed such that scanning begins at a maximum frequency and extends toward a lower frequency to find the high frequency channel. B12. The device of claim B8, wherein the scanning is performed such that scanning begins at a minimum frequency and extends toward a higher frequency to find the low frequency channel. B13. The device of claim B8, wherein the amount of output level compensation is determined based on the high frequency channel level. B14. The device of claim B8, wherein the slope adjustment of the amount is determined based on the low frequency channel level. C1 a band selection device for a signal transmission line of a CATV system that can be inserted into a user's house, the device comprising: at least two signal path groups between a supplier side and a user side, each of the signal path groups including two a separate signal path, a forward path allowing the downlink bandwidth to pass from the vendor side to the user side, and a reverse path allowing the upstream bandwidth to pass from the user side to the vendor side, The forward path and the reverse path are separated by different load switching frequencies for each of the signal path groups; and 86 201019731 is a switch controller having at least two discrete switch positions due to information signals One of the switch positions is selected. Each of the switch positions corresponds to a respective one of the signal path groups. C2. The apparatus according to claim C1, wherein the apparatus further comprises: a supplier side filter bank including at least two band separation devices selectable by a supplier side switch group; A user side filter bank of at least two band separation devices selected by the user side switch group, wherein the supplier side switch group and the user side switch group are actuated by the switch controller. C3. The device according to the patent application scope C2, wherein the supplier side switch group includes a supplier side downlink switch and a supplier side uplink switch, and wherein the user switch group includes a user side downlink switch and 〇 User side uplink switch. C4. The apparatus according to claim C1, wherein the information signal is a scale of a succession. C5. The device according to the scope of the patent application, characterized in that the information signal comprises an encoding operation signal. C6. The device according to the invention of claim C, characterized in that: one of the band separating means in each of the supplier side chopper group and the user side chopper group The root bandwidth is separated from the downlink bandwidth by the DOCSIS. 87. The apparatus of claim C2, wherein one of the band separating means in each of the supplier side filter bank and the user side filter bank is configured to be In order to separate the upstream bandwidth from the downstream bandwidth according to DOCSIS-2. C8. The device according to claim C2, characterized in that one of the band separating means in each of the supplier side filter bank and the user side filter bank is configured to DOCSIS-3 separates the upstream bandwidth from the downstream bandwidth. C9. The device according to claim ci, wherein the device further comprises three or more signal path groups and three or more discrete switch position data transfer protocols. C10 - A method for changing a CATV band on a house of a user of a CATV service', the method comprising: providing a band selection device on a house, the device comprising: on a supplier side of the band selection device and At least two signal path groups between user sides, each of said signal path groups comprising two separate signal path paths, a path to allow downlink bandwidth to be transmitted from said provider side to said user side, and allowing An upstream bandwidth is transmitted from the user side to a reverse path of the supply J, the forward path and the reverse path being separated by different truncated switching frequencies for each of the k-path groups; and having at least two a switch controller of discrete switch positions, wherein the on/off controller selects one of the switch positions due to an information signal, each of the switch positions corresponding to a corresponding one of the signal path groups; And ^ 88 201019731 move the switch controller to a desired one of the corresponding set of signal paths due to the information signal. C11. The apparatus of claim 10, wherein the apparatus further comprises: a supplier side filter bank including at least two band separation devices selectable by a supplier side switch group; and including a user side At least two frequency bands selected by the switch group are user-side filter banks of the device, wherein the supplier-side switch group and the user-side switch group are moved by the switch controller into the corresponding signal path group The one expected. The apparatus of claim 11, wherein the supplier side switch group includes a supplier side downlink switch and a supplier side uplink switch, and wherein the user switch group includes a user side downlink switch and a user Side up switch. O C13. The device according to the scope of application cio, characterized in that said information signal is a continuous scale. C14. The apparatus of claim 5, wherein the information signal comprises an encoded operational signal. C15. The apparatus according to the application scope cil, characterized in that one of the band separating means in each of the supplier side filter group and the user side filter group is configured to The DOCSIS-1 separates the upstream bandwidth from the downstream bandwidth. C16. The apparatus according to claim cil, characterized in that one of the band separation means in each of the supplier side filter bank and the user side filter bank is constructed at 89 201019731 The uplink bandwidth is separated from the downlink bandwidth according to DOCSIS-2. C17. The apparatus according to the application scope cil, characterized in that one of the band separating means in each of the supplier side filter bank and the user side filter bank is configured to DOCSIS-3 separates the upstream bandwidth from the downstream bandwidth. C18. The device according to the scope of the patent application, characterized in that the device comprises three or more signal path groups and three or more discrete switch positions 'to allow a larger number of data transfer protocols . D1 - a downstream bandwidth adjustment device insertable in a transmission line of a c ATv system on or near a user's premises, the device comprising: extending at least a portion of a distance between a supplier side connector and a user side connector a forward path connected to the forward path, the coupler providing a secondary path; connected to the coupler, and based on an input tunable tuner from the microprocessor, The tuner provides a tuner output of the selected channel, the selected channel being at least one of a high frequency channel and a low channel channel t; a channel analyzer coupled to the output of the tuner, the channel analyzer being the micro The processor provides a modulated output, the modulation is different when the selected channel is a class-like modulation and when the selected channel is digitally modulated; connected between the coupler and the supplier-side connector a slope adjustment circuit in the forward path of the 201019731, which may be adjusted based on a slope control output provided by the microprocessor; and the electrical connection Output compensating circuit in said forward signal path between the coupler and the supplier-side connector can be controlled based on the output from the microprocessor to adjust the level of said output compensating means. D2. The apparatus according to claim D1, characterized in that the microprocessor comprises at least one control mode 1 D3 for changing the slope control input and the level q control input. The device of claim 2, wherein the first control mode changes the slope control input and the low channel level based on each of the at least one low frequency channel and the high channel level from each of the at least one high frequency channel At least one of the level control inputs. D4. The device of claim 2, wherein the first control mode changes the slope control input and the channel based on a low channel level of a single low frequency channel and a high channel level from a single high frequency channel. ® At least one of the level control inputs. D5. The apparatus of claim 3, wherein the first control mode changes at least one of the slope control input and the level control input based on an average of the plurality of low channel levels. D6. The apparatus of claim 3, wherein the first control mode changes at least one of the slope control input and the level control input based on an average of the plurality of high channel levels. D7. The device of claim 5, wherein the first control mode changes the slope 201019731 at least one of a control input and the level control input at a rate that is faster than the second control mode. D8. The device of claim 1, wherein the microprocessor includes at least one control mode, the at least one control mode, one of the low channel level and the high channel level A comparison is made with the corresponding target level to change the slope control input. D9. The apparatus according to claim D8, wherein the control mode compares one of the low channel level and the high channel level with a corresponding target level to change the level control wheel . D10. The apparatus according to claim D9, characterized in that: ???said control mode selects before comparing said one of said low channel level and said high channel level with said corresponding target level The digital channel offset is optionally added to one of the first level and the corresponding target level. The apparatus according to the patent application scope D9, wherein the control mode compares the one of the low channel level and the high channel level with the corresponding target level, The digital channel offset is selectively subtracted from the respective target level. D12. The device of claim 3, wherein the micro-S stomach comprises at least one control mode <the at least one control mode will be from a low channel level of the at least one low frequency channel Compare with the corresponding target level to change the slope control input to the slope adjustment circuit. D13. The device of claim D12, wherein the microprocessor comprises at least one control mode, the at least one 92 201019731 control mode correlating a high channel level of the at least one high frequency channel with a corresponding The target levels are compared to change the level control input.

Dl4·根據申請專利範圍D1所述的裝置,其特徵在於, 所述微處理器包括針對所述至少一個低頻通道中的各個和 針對所述至少—個高頻通道中的各個的至少一個校準記憶 體位置。The device of claim D1, wherein the microprocessor includes at least one calibration memory for each of the at least one low frequency channel and for each of the at least one high frequency channel Body position.

Dl5·根據申請專利範圍D12所述的裝置,其特徵在 ® 、’所述微處理器包括針對所述至少一個低頻通道中的各 個和針對所述至少一値高頻通道中的各個的至少一個的目 標記憶體位置。Dl5. The device according to claim D12, characterized in that: the microprocessor comprises at least one for each of the at least one low frequency channel and for each of the at least one high frequency channel The target memory location.

Dl6.用於調節在CATV服務的用戶的房屋上或附近的 下行頻寬的方法,所述方法包括: 啟動第一模式’所述第一模式包括: 將下行頻寬調諧到初始高頻通道; _ 獲得所述初始高頻通道的高通道調制和高通道水準; 將所述下行頻寬調諧到初始低頻通道; 獲得所述初始低頻通道的低通道調制和低通道水準; 對所述下行頻寬提供一定量的水準調整;以及 對所述下行頻寬提供一定量的斜率調整。 d17•根據申請專利範圍D16所述的方法其特徵在 於’所述第一模式進一步包括: 獲得所述高通道水準和相應的高通道目標水準之間的 第—差異;以及 獲得所述低通道水準和相應的低通道目#水準之間的 93 201019731 第二差異。 D18 .根據申請專利範圍D17所述的方法,其特徵在 於,所述第一模式進一步包括: 基於所述高通道調制和所述低通道調制之間的指示差 異來改變所述第一差異和所述第二差異中的至少一個。 D19.根據申請專利範圍D17所述的方法,其特徵在 於,所述方法進一步包括: 在完成所述第一模式步驟的至少一個重複之後啟動第 二模式,所述第二模式包括: 獲得多個高頻通道中的各個的高通道調制和高通道水 準; 獲得所述高通道水準的平均值; 獲得多個低頻通道中的各個的低通道調制和低通道水 準; 獲得所述低通道水準的平均值; 對所述下行頻寬提供一定量的水準調整;以及 對所述下行頻寬提供一定量的斜率調整。 D20·根據申請專利範圍D19所述的方法其特徵在 於,所述第二模式進—步包括: 獲得所述高通道水準的所述平均值和相應的高通道目 標水準的平均值之間的第三差異;以及 獲得所述低通道水準的所述平均值和相應的低通道目 標水準的平均值之間的第四差異。 D21 ·根據中請專利範圍⑽所述的方法其特徵在 94 201019731 於,所述第二模式進一步包括: 當所述第二差異和所述第四差異中的至少一個超過相 應的預定閾值時’返回到所述第一模式。 D22·根據中請專利範圍叫所述的方法其特徵在 於,所述方法進一步包括: 為所述微處理器提供關於所述多個高頻通道中的各個 和所述多個低頻通道中的各個的標識,所述標識表明相應 ❹的通道是否是從供應商傳輸的, 其巾所述高ϋ道水準的所述平均值包括僅被標識為從 所述供應商傳輸的那些高頻通道的所述高通道水準,以及 纟巾所述低ϋ道水準的所辭均值包括僅被標識為從 所述供應商傳輸的那些低頻通道的所述高通道水準。 F1 · —種用於測量上行頻寬的測量裝置,所述裝置包 括: 延伸供應商側連接器和用戶側連接器之間的距離的至 〇 少一部分的反向路徑; 《接在所述反向路徑内的聯接器,所述聯接器提供二 級路徑; 電連接在所述聯接器的下游的探測電路; f連接在所述探測電路的下游的水準檢測器;以及 電連接在所述水準檢測器的下游的微處理器,所述微 處理器包括第一緩衝器和第二缓衝器。 F2·根據中請專利範圍F1所述的測量裝置其特徵在 於,所述裝置進-步包括電連接在所述水準檢測器的下游 95 201019731 且電連接在所述微處理器的上游的非線性放大器。 F3·根據申請專利範圍^所述的測量裝置,其特徵在 於,所述第一緩衝器是包括與所述水準檢測器的電壓輪出 有關的值的序列峰值緩衝器,且所述第二緩衝器是包括置 於所述序列峰值緩衝器中的所述值的至少一個平均值的平 均值緩衝器。 F4·根據申請專利範圍F1m述的測量裝置,其特徵在 於,所述測量裝置進一步包括電連接在所述聯接器和所述 RF探測電路之間的高通濾波器。 F5 ·根據申請專利範圍jq所述的測量裝置,其特徵在 於,所述探測電路包括放大器和檢測器,所述檢測器將頻 率依賴性的電壓流轉換成第一時間依賴性的電壓流。 F6 ·根據申請專利範圍F5所述的測量裝置,其特徵在 於,所述探測電路進一步包括電連接在所述檢測器的下游 的低通放大器,所述低通放大器使所述第一電壓流内的較 長持續時間電壓比較短持續時間電廢放大更大的量。 F7 ·根據申請專利範圍F1所述的測量裝置,其特徵在 於,所述水準檢測器包括至少一個二極體、至少一個電阻 器和電連接在所述至少一個二極體的下游的至少電容器, 所述電容器具有比對應於期望的合乎需要的上行頻寬的增 大的電壓的最低持績時間大至少十倍的放電時間常數。 F8 ·根據申請專利範圍F3所述的測量裝置,其特徵在 於,所述序列峰值緩衝器最初是裝有種子值的,所述種子 值在與所述非線性放大器的所述電壓輸出有關的期望值的 201019731 範圍内。 F9 .根據申請專利範圍F2所述的測量裝置,其特徵在 於,所述非線性放大器對來自所述水準檢測器的電壓流的 較高電壓提供比對來自所述水準檢測器的所述電壓流的較 低電壓更少的放大》 F10 ·根據申請專利範圍fi所述的測量裝置,其特徵 在於,所述聯接器電連接在用戶側雙工器濾波器和供應商 側雙工器濾波器之間。 F11 ·根據申請專利範圍F1所述的測量裝置,其特徵 在於’所述測量裝置進一步包括輸出裝置,以允許技術員 進行儲存、檢查或分析,以優化調節所述上行頻寬,所述 輸出裝置是監視器、儲存裝置、網路監視位置、手持裝置 和印表機中的至少一個。 F12 ·根據申請專利範圍pi所述的測量裝置,其特徵 在於’所述微處理器進一步包括針對高電壓閾值和低電壓 ® 閾值的儲存位置’所述電壓閾值中的各個和所述低電壓閾 值中的各個是根據置於所述平均值緩衝器中的值計算出 的。 F13· —種獲得上行頻寬的水準資料的方法,所述方法 包括: 將頻率依賴性的電壓流轉換成包括多個時間段的增大 的電壓的時間依賴性的電壓流; 使用低通放大器和峰值檢測器來放大和保持所述多個 時間段的增大的電壓; 97 201019731 值,自所述輸出電壓流内部的多個電壓序列的峰 结走w外始於超過兩電壓閾值的測得的電壓水準,且 束於經過低電壓閣值以下的測得的電壓水準; 將所述峰值置於第—緩衝器中; , ::計算第一緩衝器平均值,所述第一緩衝器平均值 疋所述第一緩衝器中的所述峰值的平均值; 將所述第一緩衝器平均值中 中; 町谷個置於第二緩衝器 © 疋期計算第二緩衝器平均值, _ 暑所、ΐ筮城 所述第二緩衝器平均值 疋所通第二緩衝器中的所述第一緩衝器平均值的平均值; 以及 將所述第-緩衝器平均值中的至少一個和所述第二緩 衝器平均值中的至少一個輸 ' 、 出到輸出裝置,以由技術員檢 查,以調節所述上行頻寬。 f14‘_中請專利範圍Fu所述的方法,其特徵在 於,所述方法進一步包括: ❹ 在將所述峰值置於所述第一緩衝器中之前,使所述第 一緩衝器裝有種子值,所述種子值是在所述峰值的期望範 圍内的值。 F15.根據申請專利範圍m所述的方法其特徵在 於,所述方法進一步包括: 基於置於所述第二緩衝器中的所述第一緩衝器的所述 平均值來計算所述高電Μ值和所述低電㈣值中的各 個。 98 201019731 F16.根據申請專利範圍F13所述的方法,其特徵在 於,所述方法進一步包括: 以較電壓比較頻率增大更多量以產生輸出電壓流的非 線性方式來放大所述多個時間段的增大的電壓。 G1 . —種用於調節上行頻寬的裝.置,所述裝置包括: 延伸供應商侧連揍器和用戶側連接器之間的距離的至 少一部分的反向路徑; 連接在所述反向路徑内的聯接器,所述聯接器提供二 〇 y、一 級路徑; 電連接在所述聯接器的下游的探測電路; 電連接在所述探測電路的下游的水準檢測器;以及 電連接在所述水準檢測器的下游的微處理器,所述微 處理器包括第一緩衝器和第二緩衝器;以及 連接在電連接在所述聯接器的上游的所述反向路徑内 的可變信號水準調節裝置,所述可變信號水準調節裝置由 ❹所 述微處理器控制。 G2·根據申請專利範圍gi所述的調節裝置,其特徵 在於,所述調節裝置進一步包括電連接在所述水準檢測器 的下游且電連接在所述微處理器的上游的非線性放大器。 G3.根據申請專利範圍G1所述的調節裝置,其特徵 在於,所述第一緩衝器是包括與所述水準檢測器的電壓輸 出有關的值的序列峰值緩衝器,且所述第二緩衝器是包括 置於所述序列峰值緩衝器令的所述值的至少一個平均值的 平均值緩衝器。 99 201019731 G4 •根據申請專利範圍G1所述的調節裝置,其特徵 在於’所述調節裝置進一步包括電連接在所述聯接器和所 述RF探測電路之間的高通濾波器。 G5·根據申請專利範圍G1所述的調節裝置,其特徵 在於,所述探測電路包括放大器和檢測器,所述檢測器將 頻率依賴性的電壓流轉換成第一時間依賴性的電壓流。 G6·根據申請專利範圍G5所述的調節裝置,其特徵 在於’所述探測電路進一步包括電連接在所述檢測器的下 游的低通放大器,所述低通放大器使所述第一電壓流内的 〇 較長持續時間電壓比較短持續時間電壓放大更大的量。 G7·根據申請專利範圍gi所述的調節裝置,其特徵 在於,所述水準檢測器包括至少一個二極體、至少一個電 阻器和電連接在所述至少一個二極體的下游的至少電容 器’所述電容器具有比對應於期望的合乎需要的上行頻寬 的增大的電壓的最低持續時間大至少十倍的放電時間常 數。 ❹ G8.根據申請專利範圍G3所述的調節裝置,其特徵 在於,所述序列峰值緩衝器最初是裝有種子值的,所述種 子值在與所述非線性放大器的所述電壓輸出有關的期望值 的範圍内。 G9 ·根據申請專利範圍G2所述的調節裝置,其特徵 在於’所述非線性放大器對來自所述水準檢測器的電廢流 的較高電壓提供比對來自所述水準檢測器的所述電壓流的 較低電壓更少的放大。 100 201019731 GIO ·根據申請專利範圍G1所述的調節裝置,其特徵 在於,所述聯接器電連接在用戶側雙工器濾波器和供應商 侧雙工器濾波器之間。 G11 .根據申請專利範圍G1所述的調節裝置,其特徵 在於’所述微處理器進一步包括針對高電壓閾值和低電壓 閾值的儲存位置,所述高電壓閾值和所述低電壓閣值中的 各個是根據置於所述平均值緩衝器中的值計算出的。 G12 ·根據申請專利範圍G1所述的調節裝置,其特徵 在於,所述調節裝置進一步包括反復計時器。 G13 · —種調節上行頻寬的方法,所述方法包括: 將頻率依賴性的電壓流轉換成包括多個時間段的增大 的電壓的時間依賴性的電壓流; 使用低通放大器和峰值檢測器來放大和保持所述多個 時間段的增大的電壓; 〇 記錄來自所述輸出電壓流内部的多個電壓序列的峰 值,各個序列始於超過高電壓閾值的測得的電壓水準,且 結束於經過低電壓閾值以下的測得的電壓水準; 將所述峰值置於第一緩衝器中; 定期計算第一緩衝器平均值; t 將所述第 一緩衝器平均值令的各個 置入第二緩衝器 定所述第一緩衝器平均值是否是在值範圍以上 和在值範圍以下的值中的一個所述值範圍是置於所 緩衝器加上(+)上變化量和減去㈠下變化中的所述 101 201019731 緩衝器平均值中的一個; 當所述第一援衝器大於所述值範圍時,對所述上行頻 寬添加增量的衰減; 當所述第一緩衝器小於所述值範圍時,對所述上行頻 寬減小增量的衰減。Dl6. A method for adjusting a downlink bandwidth on or near a user of a CATV service, the method comprising: initiating a first mode, wherein the first mode comprises: tuning a downlink bandwidth to an initial high frequency channel; Obtaining high channel modulation and high channel level of the initial high frequency channel; tuning the downlink bandwidth to an initial low frequency channel; obtaining low channel modulation and low channel level of the initial low frequency channel; Providing a certain amount of level adjustment; and providing a certain amount of slope adjustment to the downlink bandwidth. D17. The method of claim 16, wherein the first mode further comprises: obtaining a first difference between the high channel level and a corresponding high channel target level; and obtaining the low channel level And the corresponding low channel ## level between 93 201019731 second difference. D18. The method of claim 17, wherein the first mode further comprises: changing the first difference and the location based on an indication difference between the high channel modulation and the low channel modulation Said at least one of the second differences. D19. The method of claim 17, wherein the method further comprises: initiating a second mode after completing at least one repetition of the first mode step, the second mode comprising: obtaining a plurality of High channel modulation and high channel level for each of the high frequency channels; obtaining an average of the high channel levels; obtaining low channel modulation and low channel levels for each of the plurality of low frequency channels; obtaining an average of the low channel levels a value; providing a certain amount of level adjustment to the downlink bandwidth; and providing a certain amount of slope adjustment to the downlink bandwidth. D20. The method of claim 19, wherein the second mode further comprises: obtaining a comparison between the average of the high channel level and an average of a corresponding high channel target level a third difference; and obtaining a fourth difference between the average of the low channel levels and the average of the corresponding low channel target levels. D21 The method according to the above-mentioned patent scope (10) is characterized in that it is 94 201019731, the second mode further comprising: when at least one of the second difference and the fourth difference exceeds a corresponding predetermined threshold Return to the first mode. The method of claim 22, wherein the method further comprises: providing the microprocessor with each of the plurality of high frequency channels and each of the plurality of low frequency channels An identifier indicating whether the corresponding channel of the channel is transmitted from a supplier, the average of the high-risk level of the towel including those identified only as those high-frequency channels transmitted from the supplier The high channel level, as well as the mean value of the low ramp level of the towel, includes the high channel level identified only as those low frequency channels transmitted from the supplier. F1 - a measuring device for measuring an upstream bandwidth, the device comprising: a reverse path extending from a distance between a supplier side connector and a user side connector to a reduced portion; To a coupler within the path, the coupler providing a secondary path; a detection circuit electrically coupled downstream of the coupler; f a level detector coupled downstream of the probe circuit; and an electrical connection at the level A microprocessor downstream of the detector, the microprocessor including a first buffer and a second buffer. F2. The measuring device according to the patent claim F1, characterized in that the device further comprises a non-linearity electrically connected downstream of the level detector 95 201019731 and electrically connected upstream of the microprocessor Amplifier. F3. The measuring device according to the scope of the patent application, wherein the first buffer is a sequence peak buffer including a value related to a voltage rounding of the level detector, and the second buffer The averaging buffer is an averaging buffer that includes at least one average of the values placed in the sequence peak buffer. F4. The measuring device according to the patent application scope F1m, characterized in that the measuring device further comprises a high-pass filter electrically connected between the coupler and the RF detecting circuit. F5. The measuring device according to the patent application scope jq, characterized in that the detecting circuit comprises an amplifier and a detector, the detector converting a frequency-dependent voltage stream into a first time-dependent voltage stream. F6. The measuring device of claim 5, wherein the detecting circuit further comprises a low pass amplifier electrically connected downstream of the detector, the low pass amplifier causing the first voltage to flow The longer duration voltage is a shorter amount of electrical waste than the shorter duration. F7. The measuring device according to claim F1, characterized in that the level detector comprises at least one diode, at least one resistor and at least a capacitor electrically connected downstream of the at least one diode. The capacitor has a discharge time constant that is at least ten times greater than the lowest performance time of the increased voltage corresponding to the desired desired upstream bandwidth. F8. The measuring device according to claim F3, wherein the sequence peak buffer is initially loaded with a seed value, the seed value being at an expected value related to the voltage output of the non-linear amplifier Within the scope of 201019731. F9. The measuring device of claim F2, wherein the non-linear amplifier provides a higher voltage to a voltage flow from the level detector to align the voltage flow from the level detector The lower voltage has less amplification. F10. The measuring device according to the patent application scope, characterized in that the connector is electrically connected to the user side duplexer filter and the supplier side duplexer filter. between. F11. The measuring device according to claim F1, characterized in that the measuring device further comprises an output device for allowing a technician to perform storage, inspection or analysis to optimally adjust the upstream bandwidth, the output device being At least one of a monitor, a storage device, a network monitoring location, a handheld device, and a printer. F12. The measuring device according to the patent application scope pi, characterized in that the microprocessor further comprises a storage location for a high voltage threshold and a low voltage threshold, and each of the voltage thresholds and the low voltage threshold Each of these is calculated based on the value placed in the average buffer. F13. A method for obtaining level data of an upstream bandwidth, the method comprising: converting a frequency dependent voltage stream into a time dependent voltage stream comprising an increased voltage of a plurality of time periods; using a low pass amplifier And a peak detector to amplify and maintain the increased voltage for the plurality of time periods; 97 201019731 value, the peak of the plurality of voltage sequences from the output voltage stream is w outside the test beyond the two voltage thresholds The resulting voltage level, and the measured voltage level below the low voltage threshold; placing the peak in the first buffer; , :: calculating the first buffer average, the first buffer The average value 疋 the average of the peaks in the first buffer; the middle of the first buffer average; the valleys are placed in the second buffer © the period to calculate the second buffer average, _ The average value of the second buffer average value of the second buffer in the second buffer, and the average of the first buffer average value in the second buffer; and at least one of the average value of the first buffer The second buffer is flat At least one of the means is outputted to the output device for inspection by a technician to adjust the upstream bandwidth. The method of claim fi, wherein the method further comprises: ??? placing the first buffer with a seed before placing the peak in the first buffer A value, the seed value being a value within a desired range of the peak. F15. The method of claim m, wherein the method further comprises: calculating the high power based on the average of the first buffers placed in the second buffer Each of the value and the low power (four) value. 98. The method of claim 13, wherein the method further comprises: amplifying the plurality of times by a non-linear manner of increasing a greater amount of voltage comparison frequency to generate an output voltage stream. The increased voltage of the segment. G1. A device for adjusting an upstream bandwidth, the device comprising: a reverse path extending at least a portion of a distance between a supplier side switch and a user side connector; connecting in the reverse a coupler in the path, the coupler providing a second y, a first path; a detection circuit electrically connected downstream of the coupler; a level detector electrically connected downstream of the probe circuit; and an electrical connection a microprocessor downstream of the level detector, the microprocessor including a first buffer and a second buffer; and a variable signal coupled in the reverse path electrically connected upstream of the coupler A leveling device, the variable signal level adjusting device being controlled by the microprocessor. G2. The adjustment device of claim gi, wherein the adjustment device further comprises a non-linear amplifier electrically coupled downstream of the level detector and electrically coupled upstream of the microprocessor. G3. The adjustment device of claim G1, wherein the first buffer is a sequence peak buffer including a value related to a voltage output of the level detector, and the second buffer Is an average buffer that includes at least one average of the values placed in the sequence peak buffer order. 99 201019731 G4. The adjustment device of claim 1, wherein the adjustment device further comprises a high pass filter electrically coupled between the coupler and the RF detection circuit. G5. The adjustment device of claim G1, wherein the detection circuit comprises an amplifier and a detector, the detector converting the frequency dependent voltage flow into a first time dependent voltage flow. G6. The adjustment device of claim 5, wherein the detection circuit further comprises a low pass amplifier electrically connected downstream of the detector, the low pass amplifier causing the first voltage to flow The longer duration of the voltage is compared to the shorter duration voltage amplification of a larger amount. G7. The adjustment device of claim gi, wherein the level detector comprises at least one diode, at least one resistor, and at least a capacitor electrically connected downstream of the at least one diode The capacitor has a discharge time constant that is at least ten times greater than a minimum duration of an increased voltage corresponding to a desired desired upstream bandwidth.调节 G8. The adjustment device of claim 3, wherein the sequence peak buffer is initially loaded with a seed value, the seed value being related to the voltage output of the non-linear amplifier Within the range of expected values. G9. The conditioning device of claim 2, wherein the non-linear amplifier provides a higher voltage to the electrical waste stream from the level detector than the voltage from the level detector The lower voltage of the stream is less amplified. 100 201019731 GIO. The adjustment device according to the patent application scope G1, characterized in that the coupling is electrically connected between the user side duplexer filter and the supplier side duplexer filter. G11. The adjustment device of claim G1, wherein the microprocessor further comprises a storage location for a high voltage threshold and a low voltage threshold, the high voltage threshold and the low voltage threshold Each is calculated based on the value placed in the average buffer. G12. The adjustment device according to the patent application scope G1, characterized in that the adjustment device further comprises an iteration timer. G13 - A method of adjusting an upstream bandwidth, the method comprising: converting a frequency dependent voltage stream into a time dependent voltage stream comprising an increased voltage of a plurality of time periods; using a low pass amplifier and peak detection To amplify and maintain an increased voltage for the plurality of time periods; 〇 recording peaks from a plurality of voltage sequences internal to the output voltage stream, each sequence beginning at a measured voltage level that exceeds a high voltage threshold, and Ending at a measured voltage level below a low voltage threshold; placing the peak in a first buffer; periodically calculating a first buffer average; t placing each of the first buffer averages The second buffer determines whether the first buffer average value is above a value range and a value range below the value range is placed in the buffer plus (+) the amount of change and subtracted (1) one of the 101 201019731 buffer average values in the next change; when the first buffer is greater than the value range, adding an incremental attenuation to the uplink bandwidth; When the rusher is less than the range of values, the incremental attenuation is reduced for the upstream bandwidth.

Gl4 ·根據申請專利範圍G13所述的方法,其特徵在 於,所述方法進一步包括: 在將所述峰值置於所述第一緩衝器中之前,使所述第 一緩衝器裝有種子值,所述種子值是在所述峰值的期 望範® 圍内的值。 G15·根據申請專利範圍g.1 3所述的方法,其特徵在 於’所述方法進一步包括: 基於置於所述第二緩衝器中的所述第一緩衝器的所述 平均值來計算所述高電壓閾值和所述低電壓閾值中的各 個。Gl4. The method of claim 13, wherein the method further comprises: causing the first buffer to be loaded with a seed value before placing the peak in the first buffer, The seed value is a value within a desired range of the peak. The method of claim g.13, wherein the method further comprises: calculating the average based on the average value of the first buffer placed in the second buffer Each of the high voltage threshold and the low voltage threshold is described.

G16·根據申請專利範圍G13所述的方法,其特徵在 於,所述方法進一步包括: 以較低電壓比較高頻率壻大更多量以產生輪出電壓流 的非線性方式來放大所述多個時間段的增大的電壓。 G17 ♦根據申請專利範圍G13所述的方法,其特徵在 於’所述方法進一步包括當自從完成記錄峰值的所述步驟 以及計算第一緩衝器平均值的所述步驟中的至少—加 /一個以來 已經過去預定時間時,對所述上行頻寬減小增量的衰咸 102 201019731 【圖式簡單說明】 為了進一步理解本發明的性質和目的,應該結合附圖 來參照實踐本發明的優選模式的以下詳細描述,其中: 囷1是根據本發明的一個實施例佈置的CATV系統的 圖不; 圖2是根據本發明的一個實施例佈置的用戶的房屋的 囷示; Q 圖3是表示根據本發明的一個實施例製作的包括上行 區的調節裝置的電路圖,虛線表明可選下行區的位置,例 如圖18中表示的下行區; 圖4是表示用於根據本發明的一個實施例製作的調節 裝置t的聯接器的電路圖; 圖5是表示用於根據本發明的一個實施例製作的調節 裝置中的高通濾波器的電路囷; 囷6是表示用於根據本發明的一個實施例製作的調節 Ο 裝置中的RF探測電路的電路圖; 圖7是表示用於根據本發明的一個實施例製作的調節 裝置中的水準檢測器的電路囷; 圖8是用於根據本發明的一個實施例製作的調節裝置 中的RF探測電路内的從RF檢測器流到低通放大器的電壓 流的圖示 圓9是用於根據本發明的一個實施例製作的調節裝置 中的從RF探測電路内的低通放大器流到水準檢測器的電 壓流的圖示; 103 201019731 圖ι〇是用於根據本發明的一個實施例製作的房屋裝 置中的從水準檢測器流到非線性放大器的電壓流的圓示; 圖11是用於根據本發明的一個實施例製作的調節裝置 中的非線性放大器的電路圖; 囷12是響應於線性地増大的電壓的非線性放大器的 理論反應的圖示; 圖13是用於根據本發明的一個實施例製作的調節裝 置中的從非線性放大器流到微處理器的電壓流的圖示; 圖14是表示由用於根據本發明的一個實施例製作的❹ 調節裝置中的微處理器執行的上行頻寬調節常式的流程 na 參 園, 圖15是表示根據本發明的一個實施例製作的、包括上 行區的調節裝置的電路囷,虛線表明可選下行區的位置, 例如圖18中表示的下行區; 囷16是表示根攄太蘇 本發明的一個實施例製作的、包括上 行區的調節裝置的電路蘭 ❹ 1路圖,虛線表明可選下行區的位置, 例如囷18中表示的下行區. 囷17是表示由用於扳 、根據本發明的一個實施例製作的 調節裝置中的微處理器热〜 羝埋器執仃的上行頻寬調節常式的流 ®· ** 圖18是表示根據太 ^ 發月的一個實施例製作的、包括下 行區的調節裝置的電路 ’虛線表明可選上行區的仇置, 例如囷3、15和16中的也, 何一個表示的上行區中的任何— 個; 104 201019731 / 19是表示由用於根據本發明的-個實施例製作的 調節裝置中的微虚理 處器執仃的信號水準測量常式的流程 圖20 X表不由用於根據本發明的一個實施例製作的 調節裝置中的微處理器勃 器執仃的信號水準測量常式的流程 Β· 9 圓21是表示在進行水準調整和斜率調整之前的下行 ❿頻寬的水準曲線的曲線圖; 圖22疋表不在進行水準調整之後和斜率調整之前的 下行頻寬的水準曲線的曲線圖; 圖23是表不在進行水準調整之後和斜率調整之後的 下行頻寬的水準曲線的曲線圖,斜率調整產生恒定的」2 dBmV水準曲線; 圖24是表示在進行水準調整之後和斜率調整之後的 下行頻寬的水準曲線的曲線圖,斜率調整產生介於 ❹和1000 MHz之間的2 dBmV的向上斜率; 圖25是表示由用於根據本發明的一個實施例製作的 調節裝置中的微處理器執行的衰減降低常式的流程囷;以 及 圖26是表示可選地包括圖3、15和16中表示的上行 區中的任何一個且可選地包括圖18中表示的下行區的頻 帶選擇裝置的電路圖。 105 201019731 【主要元件符號說明】 10、50、60、70、80..房子;20..供應商;30、130..分散式 系統;90..分接頭;100、516..調節裝置;120.·傳輸線; 140·.數據機;150..電視;160..對臺式機;170..電話; 180.. 膝上型電腦;190..分路器;210、215..連接器;220、 225.. 保護器;230、240、242、244、246、248、504、530、 542、548、930、940··路徑;250、255、902、904、916、 918、922、924..開關;260、265..雙工器;108·.下行區; 310.. 微處理器;320、512、536、546..衰減器;105..上行 區;350、3 55、518、526、840·.濾波器;365..RF 放大器; 366、520..RF 檢測器;330、367、380、508、510、538、 540、870..放大器;370、375、522、524、528..檢測器; 340、502..聯接器;342·.聯接器輸出;352..濾波器輸入; 354.. 濾波器輸出;360..RF探測電路;362..RF檢測器輸出; 364.. RF探測電路輸出;372..檢測器輸入;374..檢測器輸 出;376..電容器;400..電壓流輸出;410、412、414、420、 422、865·.電壓;402、404、405、430、440..電壓流; 382.. 放大器輸入;384..放大器輸出;386..電阻器; 550…整流器;506..調譜器;514..調整裝置; 534、544..電壓源;532.. DC偏移放大器;805..低頻通道; 810.·高頻通道;820、825、830、835..水準曲線; 850.. 信號聯接器;910..第一信號路徑組;906、908、912、 914.. 分離裝置;920.·第二信號路徑組;880..控制系統; 845·.接收器;855..比較器;860..分壓器; 106G16. The method of claim 13, wherein the method further comprises: amplifying the plurality of non-linear ways of generating a higher frequency by comparing a higher frequency to a higher frequency to generate a round-trip voltage flow. The increased voltage of the time period. G17. The method of claim 13, wherein the method further comprises, since at least one of the steps of completing the recording of the peak value and calculating the first buffer average value. When the predetermined time has elapsed, the attenuation of the upstream bandwidth is reduced. 102 201019731 [Schematic Description of the Drawings] In order to further understand the nature and purpose of the present invention, reference should be made to the preferred mode The following detailed description, wherein: 囷 1 is a diagram of a CATV system arranged in accordance with one embodiment of the present invention; FIG. 2 is a representation of a user's house arranged in accordance with an embodiment of the present invention; Q FIG. 3 is a representation of A circuit diagram of an adjustment device including an upstream zone made by an embodiment of the invention, the dashed line indicating the location of the optional downstream zone, such as the downstream zone shown in Figure 18; and Figure 4 is a representation of the adjustments made in accordance with one embodiment of the present invention. Circuit diagram of the coupler of device t; Figure 5 is a view of Qualcomm used in an adjustment device made in accordance with one embodiment of the present invention Circuit breaker of the wave device; 囷6 is a circuit diagram showing an RF detecting circuit for use in an adjusting device according to an embodiment of the present invention; and Fig. 7 is a view showing an adjusting device for manufacturing according to an embodiment of the present invention. Figure 8 is a diagram of a voltage flow from an RF detector to a low pass amplifier in an RF detection circuit in an adjustment device made in accordance with an embodiment of the present invention. An illustration of a voltage flow from a low pass amplifier in an RF detection circuit to a level detector in an adjustment device made in accordance with an embodiment of the present invention; 103 201019731 Figure 1 is an illustration for use in accordance with an embodiment of the present invention A circular representation of the voltage flow from the level detector to the non-linear amplifier in the fabricated house arrangement; Figure 11 is a circuit diagram of a non-linear amplifier in an adjustment apparatus made in accordance with one embodiment of the present invention; Graphical representation of the theoretical response of a linear amplifier with a linearly large voltage; Figure 13 is a representation of a non-linear amplifier for use in an adjustment device made in accordance with one embodiment of the present invention. Figure 24 is a diagram showing the flow of a voltage flowing to a microprocessor; Figure 14 is a flow chart showing the upstream bandwidth adjustment routine performed by a microprocessor in a 调节 adjusting device made in accordance with one embodiment of the present invention. Figure 15 is a circuit diagram showing an adjustment device including an upstream zone, the dotted line indicating the position of the optional down zone, such as the down zone shown in Figure 18, in accordance with an embodiment of the present invention; A circuit diagram of a circuit made by an embodiment of the present invention, including an adjustment device of an upstream zone, the dotted line indicating the position of the optional down zone, such as the down zone indicated in 囷18. 囷17 is indicated by The microprocessor of the adjustment device made according to one embodiment of the present invention has a flow rate of the upstream bandwidth adjustment routine of the microprocessor · ** Figure 18 is an implementation according to the taiyue month The circuit 'broken line' of the adjustment device including the down zone indicates the hatch of the optional up zone, for example, any of the 上行3, 15 and 16, and any one of the ascending zones; 104 20101973 1 / 19 is a flow chart 20 showing a signal level measurement routine executed by a micro-virtual device for use in an adjustment device made in accordance with an embodiment of the present invention. X is not used for an implementation in accordance with the present invention. The flow level measurement routine of the microprocessor-operated adjustment device in the example of the adjustment device Β· 9 circle 21 is a graph showing the level curve of the downstream ❿ bandwidth before the level adjustment and the slope adjustment; 22疋The graph of the level curve of the downlink bandwidth after the level adjustment and the slope adjustment is not performed; FIG. 23 is a graph showing the level curve of the downlink bandwidth after the level adjustment and the slope adjustment, and the slope adjustment is generated. Constant "2 dBmV leveling curve; Figure 24 is a graph showing the leveling curve of the downstream bandwidth after leveling and after slope adjustment, the slope adjustment yielding an upward slope of 2 dBmV between ❹ and 1000 MHz; Figure 25 is a flow chart showing the attenuation reduction routine performed by the microprocessor in the adjustment apparatus made in accordance with one embodiment of the present invention; and Figure 2 6 is a circuit diagram representing a band selection device optionally including any one of the upstream regions shown in Figs. 3, 15 and 16, and optionally including the downstream region shown in Fig. 18. 105 201019731 [Description of main components] 10, 50, 60, 70, 80.. house; 20. supplier; 30, 130.. decentralized system; 90.. tap; 100, 516.. 120.·Transmission line; 140·.Data machine; 150..TV; 160.. for desktop; 170..phone; 180.. laptop; 190.. splitter; 210, 215.. 220; 225.. protector; 230, 240, 242, 244, 246, 248, 504, 530, 542, 548, 930, 940 · path; 250, 255, 902, 904, 916, 918, 922 , 924.. switch; 260, 265.. duplexer; 108 ·. Downstream area; 310.. microprocessor; 320, 512, 536, 546.. attenuator; 105.. ascending area; 350, 3 55 , 518, 526, 840.. filter; 365..RF amplifier; 366, 520..RF detector; 330, 367, 380, 508, 510, 538, 540, 870.. amplifier; 370, 375, 522 524, 528.. detector; 340, 502.. coupler; 342.. connector output; 352.. filter input; 354.. filter output; 360.. RF detection circuit; 362.. Output; 364.. RF detection circuit output; 372.. detector input; 374.. detector input Out; 376.. capacitor; 400.. voltage flow output; 410, 412, 414, 420, 422, 865 · voltage; 402, 404, 405, 430, 440.. voltage flow; 382.. amplifier input; .. amplifier output; 386.. resistor; 550...rectifier; 506.. spectrometer; 514.. adjustment device; 534, 544.. voltage source; 532.. DC offset amplifier; 805.. 810.·High frequency channel; 820, 825, 830, 835.. level curve; 850.. signal coupler; 910.. first signal path group; 906, 908, 912, 914.. separating device; 920. Second signal path group; 880.. control system; 845. receiver; 855.. comparator; 860.. voltage divider; 106

Claims (1)

201019731 七、申請專利範圍: 卜一種用於調節CATV系統的總頻寬的裝置,所述裝 置包括: 延伸供應商側連接器和用戶側連接器之間的距離的至 少一部分的反向路徑; 延伸所述供應商側連接器和所述用戶側連接器之間的 距離的至少一部分的正向路徑; 0 包括連接在所述反向路徑内的可變信號水準調節裝置 的上行區; 包括連接在所述正向路徑内的正向聯接器的下行區; 至少一個微處理器,所述微處理器電連接在所述可變 信號水準調節裝置的上游, 其中所述微處理器饗應於在所述正向聯接器處的下行 頻寬的水準的降低而減小應用於所述反向路徑的信號水準 調節量》 2·如申請專利範固第丨項所述的裝置,其中所述上行 區進一步包括: 連接在所述反向路徑内的反向聯接器,所述聯接器提 供二級路徑; 電連接在所述反向聯接器的下游的探測電路;以及 電連接在所述探測電路的下游的水準檢測器, 其中所述微處理器電連接在所述水準檢測器的下游。 107 201019731 其t所述下游 3·如申請專利範圍帛2項所述的裝置, 裝置進一步包括: 連接到所述正向聯接器上,且可基於來自所述微處理 器的輸人㈣的㈣器’所述調輕提供選定通道的調譜 器輸出’所述選^通道是高頻通道和低頻通道中的至少— 置,其中所述微處 一個控制模式將所 Θ 個與相應的目標水 4.如申請專利範圍第3項所述的裝 理器包括至少一個控制模式,所述至少 述低通道水準和所述高通道水準中的一 準進行比.較。 5·如申請專利範圍第4項所述的裝置,其令所述微處 理器包括水準閾值,將所述低通道水準和所述高通道水準 中的一個與所述相應的目標水準之間的差異與所述水準閣 值進行比較。 6 ·如申請專利範圍第1項所述的裝置,其中所述上行 區和所述下游使用它們本身的相應的微處理器,這些微處 理器在它們之間具有通信鏈路。 7·如申請專利範圍第1項所述的裝置,其中所述上行 區和所述下行區使用相同的微處理器。 108 201019731 .一種調節上行頻寬的方法,所述方法包括: 對所述上行頻寬添加至少一個增量的衰減; 測量所述下行頻寬的第一水準;以及 響應於所述下行頻寬的所述第一水準,移除所述至少 一個増量的衰減的至少一部分。 如申請專利範圍第8項所述的方法,其中所述方法 進一步包括: 2量所述下行頻寬的第二水準,在測量所述第一水準 的疋量的時間之前測量所述下行頻寬的述第二水準; 將所述下行頻寬的所述笫二水準與相應的目標水準進 行比較,以獲得第二差異; 將所述下行頻寬的所述第一水準與相應的目標水準進 行比較,以獲得第一差異;以及 *所述第一差異和所述第二差異改變大於預定閾值的 ® ^化量時’指示移除所述至少一個衰減增量的所述部分。 —10 β如中請專利範圍第9項所述的方法其中所述預 、疋至V—定量的期望變化,所述期望變化包括與 期風度、濕度和陽光中的至少一個有關的那些。 ^ 11如申請專利範圍第10項所述的方法,其中所迷 ^ 決於測量所述第二水準和測量所述第一水準之 的時間量而改變。 109 201019731 12 .如申請專利範圍第8項所述的方法,其中所述方 法進一步包括: 啟動第一模式,所述第一模式包括: 將下行頻寬調諧到初始高頻通道; 獲侍所述初始高頻通道的高通道調制和高通道水 準; 將所述下行頻寬調諧到初始低頻通道; 獲得所述初始低頻通道的低通道調制和低通道水 〇 準; 對所述下行頻寬提供一定量的水準調整; 對所述下行頻寬提供一定量的斜率調整; 在完成所述第一模式步驟的至少一次重複之後啟動第 二模式’所述第二模式包括: 獲得多個高頻通道中的各個的高通道調制和高通 道水準; 〇 獲得所述高通道水準的平均值; 獲得多個低頻通道中的各個的低通道調制和低通 道水準; 獲得所述低通道水準的平均值; 對所述下行頻寬提供一定量的水準調整; 對所述下行頻寬提供一定量的斜率調整; 獲得所述高通道水準的所述平均值和相應的高通 道目標水準的平均值之間的第三差異; 110 201019731 獲得所述低通道水準 道目標水準的平均值之間的宽地平均值和相應的低通 當所述第m 差異; 弟一差異和所述第四 過相應的預定閾值時, '中的至少一個超 ^ 回到所述第一模式.u n 當從所述第二模式返 n以及 除所述至少-個增量 ^第一模式時,指示移 的哀減的所述部分。 ❹法進13=請專利範圍第12項所述的方法,其令所述方 法進一步包括: ’i万 A所述微處理^提供關於所述多個高頻通道中的各 和所述多個低頻通道中的各個的標識,所述標識表示相應 的通道是否是從供應商傳輸的,* 其中所述高通道水準的所述平均值包括僅被標識為從 所述供應商傳輪的那些高頻通道的所述高通道水準,以及 其中所述低通道水準的所述平均值包括僅被標識為從 ❹ 所述供應商傳輸的那些低頻通道的所述低通道水準。 111201019731 VII. Patent Application Range: A device for adjusting the total bandwidth of a CATV system, the device comprising: a reverse path extending at least a portion of a distance between a supplier side connector and a user side connector; a forward path of at least a portion of a distance between the supplier side connector and the user side connector; 0 including an upstream region of a variable signal leveling device connected within the reverse path; a downstream region of the forward coupler in the forward path; at least one microprocessor electrically coupled upstream of the variable signal leveling device, wherein the microprocessor is Decreasing the level of the downlink bandwidth at the forward coupler to reduce the amount of signal level adjustment applied to the reverse path. 2. The device as described in the patent application, wherein the uplink The zone further includes: a reverse coupler coupled within the reverse path, the coupler providing a secondary path; and an electrical connection downstream of the reverse coupler Passage; and a level detector electrically connected downstream of the detection circuit, wherein said microprocessor is electrically connected downstream of the level detector. 107 201019731 The apparatus of the invention of claim 3, wherein the apparatus further comprises: is connected to the forward coupler, and is based on (four) of the input (four) from the microprocessor 'The light adjustment provides the output of the selected channel of the selected channel', and the selected channel is at least one of a high frequency channel and a low frequency channel, wherein the control mode of the micro is a corresponding target water 4. The processor of claim 3, comprising at least one control mode, wherein at least one of the low channel level and the high channel level is compared. 5. The apparatus of claim 4, wherein the microprocessor includes a level threshold between one of the low channel level and the high channel level and the corresponding target level The difference is compared to the level value. The apparatus of claim 1, wherein the upstream zone and the downstream use their own respective microprocessors having communication links between them. 7. The device of claim 1, wherein the upstream region and the downstream region use the same microprocessor. 108 201019731. A method of adjusting an upstream bandwidth, the method comprising: adding at least one incremental attenuation to the upstream bandwidth; measuring a first level of the downlink bandwidth; and responsive to the downlink bandwidth The first level removes at least a portion of the attenuation of the at least one amount. The method of claim 8, wherein the method further comprises: 2 measuring a second level of the downlink bandwidth, and measuring the downlink bandwidth before measuring a time of the first level The second level is described; comparing the second level of the downlink bandwidth with a corresponding target level to obtain a second difference; and performing the first level of the downlink bandwidth with a corresponding target level Comparing to obtain a first difference; and * when the first difference and the second difference change are greater than a predetermined threshold value, 'indicating removal of the portion of the at least one attenuation increment. The method of claim 9, wherein the pre-predicted to V-quantitative desired change comprises those relating to at least one of pre-wind, humidity and sunlight. The method of claim 10, wherein the method is changed in accordance with measuring the second level and measuring the amount of time of the first level. The method of claim 8, wherein the method further comprises: initiating a first mode, the first mode comprising: tuning a downlink bandwidth to an initial high frequency channel; High channel modulation and high channel level of the initial high frequency channel; tuning the downlink bandwidth to the initial low frequency channel; obtaining low channel modulation and low channel water level of the initial low frequency channel; providing a certain amount to the downlink bandwidth Level adjustment of the amount; providing a certain amount of slope adjustment to the downlink bandwidth; starting the second mode after completing at least one repetition of the first mode step, the second mode comprising: obtaining a plurality of high frequency channels Each of the high channel modulation and high channel level; 〇 obtaining an average of the high channel levels; obtaining low channel modulation and low channel levels for each of the plurality of low frequency channels; obtaining an average of the low channel levels; The downlink bandwidth provides a certain amount of level adjustment; providing a certain amount of slope adjustment for the downlink bandwidth; a third difference between the average of the high channel levels and the average of the corresponding high channel target levels; 110 201019731 obtaining a broad mean and correspondingly low between the average of the low channel level target levels Passing the mth difference; when the difference between the first one and the fourth predetermined corresponding threshold, at least one of the 'super^ returns to the first mode. When returning n from the second mode and dividing The portion indicating the waning of the shift when the at least one increment is in the first mode. ❹法进13= The method of claim 12, wherein the method further comprises: 'i million A said microprocessing^ providing each of said plurality of high frequency channels An identification of each of the low frequency channels, the identification indicating whether the corresponding channel is transmitted from the supplier, * wherein the average of the high channel levels includes those only identified as being from the supplier The high channel level of the frequency channel, and wherein the average of the low channel levels, includes the low channel levels that are only identified as those low frequency channels transmitted from the supplier. 111
TW98135174A 2008-10-16 2009-10-16 Bandwidth conditioning device TW201019731A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US12/252,850 US8001579B2 (en) 2008-10-16 2008-10-16 Downstream output level and/or output level tilt compensation device between CATV distribution system and CATV user
US12/252,907 US8832767B2 (en) 2008-10-16 2008-10-16 Dynamically configurable frequency band selection device between CATV distribution system and CATV user
US12/252,817 US8464301B2 (en) 2008-10-16 2008-10-16 Upstream bandwidth conditioning device between CATV distribution system and CATV user
US12/576,612 US20110085586A1 (en) 2009-10-09 2009-10-09 Total bandwidth conditioning device
US12/576,502 US8213457B2 (en) 2009-10-09 2009-10-09 Upstream bandwidth conditioning device
US12/576,461 US8516537B2 (en) 2009-10-09 2009-10-09 Downstream bandwidth conditioning device
US12/576,657 US8385219B2 (en) 2009-10-09 2009-10-09 Upstream bandwidth level measurement device

Publications (1)

Publication Number Publication Date
TW201019731A true TW201019731A (en) 2010-05-16

Family

ID=44831874

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135174A TW201019731A (en) 2008-10-16 2009-10-16 Bandwidth conditioning device

Country Status (1)

Country Link
TW (1) TW201019731A (en)

Similar Documents

Publication Publication Date Title
US20110085586A1 (en) Total bandwidth conditioning device
US8516537B2 (en) Downstream bandwidth conditioning device
US10924811B2 (en) Compensation device for maintaining a desired signal quality in transmitted signals
US8213457B2 (en) Upstream bandwidth conditioning device
US8479247B2 (en) Upstream bandwidth conditioning device
US7873322B2 (en) Ingress susceptibility on return path
EP1777851A2 (en) Combination meter for evaluating video delivered via internet protocol
US7489641B2 (en) Data connection quality analysis apparatus and methods
US8385219B2 (en) Upstream bandwidth level measurement device
US8181211B2 (en) Total bandwidth conditioning device
JP5023144B2 (en) Video streaming diagnostics
US8464301B2 (en) Upstream bandwidth conditioning device between CATV distribution system and CATV user
US8325613B2 (en) Characterizing broadband communication networks
US20100100922A1 (en) Downstream output level and/or output level tilt compensation device between catv distribution system and catv user
US7796526B2 (en) Versatile communication network test apparatus and methods
TW200303126A (en) Radio frequency characterization of cable plant and corresponding calibration of communication equipment communicating via the cable plant
US20050286436A1 (en) Signal level measurement and data connection quality analysis apparatus and methods
KR20110094281A (en) Bandwith conditioning device
US20080160973A1 (en) Apparatus for and method of detecting loss of signal in a radio frequency cable
US20090190638A1 (en) Automatic Downstream Calibration
US20110138440A1 (en) Downstream output level tilt compensation device between CATV distribution system and CATV user
US8274566B2 (en) Modulation analyzer and level measurement device
TW201019731A (en) Bandwidth conditioning device
CN108322822B (en) Method, device and system for generating logic topology of cable television network
US20060281424A1 (en) Ingress susceptibility on return path