TW201019591A - Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits - Google Patents

Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits Download PDF

Info

Publication number
TW201019591A
TW201019591A TW97144027A TW97144027A TW201019591A TW 201019591 A TW201019591 A TW 201019591A TW 97144027 A TW97144027 A TW 97144027A TW 97144027 A TW97144027 A TW 97144027A TW 201019591 A TW201019591 A TW 201019591A
Authority
TW
Taiwan
Prior art keywords
capacitor
circuit
output
differential
integrator
Prior art date
Application number
TW97144027A
Other languages
Chinese (zh)
Other versions
TWI335130B (en
Inventor
Soon-Jyh Chang
Jin-Fu Lin
Chih-Haur Huang
Original Assignee
Himax Media Solutions Inc
Ncku Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Media Solutions Inc, Ncku Res & Dev Foundation filed Critical Himax Media Solutions Inc
Priority to TW97144027A priority Critical patent/TWI335130B/en
Publication of TW201019591A publication Critical patent/TW201019591A/en
Application granted granted Critical
Publication of TWI335130B publication Critical patent/TWI335130B/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

A pseudo-differential switched-capacitor circuit using integrator-based common-mode stabilization technique is disclosed. A pseudo-differential switched-capacitor circuit with the differential floating sampling (DFS) technique has a common-mode gain value of one (1). An integrator is electrically coupled to the differential positive/negative outputs of the DFS circuit, and the integrator feeds back integrator output to the DFS circuit by detecting common-mode voltage disturbance at the differential positive output (Vout+) and negative output (Vout-), thereby stabilizing output common-mode level of the differential positive output (Vout+) and negative output (Vout-) at a desirable level.

Description

201019591 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201019591 V. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:

六、發明說明: Ο 【發明所屬之技術領域】 本發明係有關一種偽差動切換電容式電路,涉及積分 形式共模電壓穩定技術。 .. 【先前技術】 201019591 在高精確度切換電容式電路中,通常需要高增益及高 線性度之放大器’而系統效能往往決定於該放大器的效 能。然而’在先進製程中,為了確保電路的可靠度,電路 的操作電壓必須隨之下降,因此,造成放大器的訊號範圍 嚴重被壓縮,增加放大器的設計困難度。為了維持足夠的 信號雜訊比(signal-to-noise ratio),甚至會增加放大 器的消耗功率。 ❹ 第一 A圖顯示傳統全差動(fully differential)放大 器電路10,其可增加電路對抗雜訊能力和增加電路訊號振 幅。全差動放大器電路10使用共模迴授電路 • ί _ (common-mode feedback circuit, CMFB) 102 來穩 定(輸出端〇ut+/Out-的)輸出共模電壓。由於電路的總 電流係由尾(tail)電流金氧半(MOS)電晶體Mcl所控 ❹制’因此’輸入端In+/In-的共模擾動+( common-mode disturbance)將不會影響電路的效能。因此,全差動放 大器電路10具有極高的共模雜訊拒斥比(commOn-madb rejection ratio, CMRR)。然而,電晶體Mcl會壓縮電 路的輸出訊號範圍’因此不利於低壓電路的操作。為了增 加電路的訊號輸出範圍,因此使用如第一B圖所示的偽差 動(pseudo-differential)放大器電路12。偽差動放大器 電路12免除了第一 A圖的尾電流金氧半電晶體Mcl,但 201019591 是,此電路將無共模雜訊拒斥功能。因此,輸入端In+/In-的共模雜訊將會被偽差動放大器電路12放大,嚴重影響 電路的效能《全差動放大器電路1〇 (第一 A圖)及偽差動 放大器電路1¾第一 B圖)的操作將於以下段落依序說明。 第一圖顯示使用全差動放大器1〇4之切換電容式電路 20的操作。在這裡僅考慮共模電壓擾動(AVcm),不考 ❹慮其他父流#號。於取樣相位(sample phase)時(如圖 式的左端所示),共模電壓擾動(AVcm)被兩個電容C 取樣。在放大相位(amplify phase)時(如圖式的右端 所示),由於有共模迴授電路(CMFB)的關係,因此輸 出共模電壓會維持於VCtt^根據電荷守恆原理,可以得到 如圖所不之放大器104輸入端的共模電壓νχβ輸入丘模電 壓擾動(Δν<^)會反映到電壓Vx。然而,只要放大器1〇4 ❹具有足夠大的輸入共模範圍’將可容許此共模電壓擾動(△ Vcm)之漂移。 第三圖顯示使用偽差動放大器124之切換電容式電路 30的操作。由於偽差動放大器124並無共模迴授電路 (CMFB),所以其輸出缺少一強制力量以控制其輸出位 準。因此,電路30會對於輸入共模電壓擾動(產 生二倍的共模增益,其中,共模增益和差模增益是相同的。 201019591 一旦電路30應用於串接電路中’如第四圖所示的管路式 類比至數位轉換器(pipelined analog-to-digital converter),由於每一級具有二倍的共模增益,因此後級 電路將會飽和掉,電路將會脫離正常操作。上述管路式類 比至數位轉換器之細節可參考同一申請人的另一專利申請 案中(題為「適用於管路式或循環式類比至數位轉換器之 前後級解析度可調的共享運算放大器技術」)。 上述偽差動切換電容式電路需要一有效穩定共模電壓 之電路機制’才能夠在低壓製程下維持足夠大的訊號振 幅。目前文獻中有數種方法可達到此目的,分別介紹如下。 一、共模迴授電路(CMFB) «直觀的的方式便是採用全差動電路常用之共模迴授 電路(CMFB)以穩定輸出共模電壓。第五圖顯示使用共 模迴授電路102之偽差動切換電容式電路5〇,其為第三 圖之放大相位的示意圖。由於共模迴授的關係,輸出共模 位準可維持在理想的共模電壓Vcm。·由於沒有尾^,流源, 因此任何的輸入共模電壓擾動(△、)將會造成電路5〇 的電流變化,導致電路效能隨著輸入共模電壓而變化,造 成電路效能嚴重衰減。 201019591 . 二、差動浮接取樣(differential floating sampling,DFS ) 機制VI. Description of the Invention: Ο Technical Field of the Invention The present invention relates to a pseudo differential switched capacitor circuit involving an integral form common mode voltage stabilization technique. .. [Prior Art] 201019591 In high-accuracy switched capacitive circuits, high-gain and high-linearity amplifiers are often required, and system performance is often determined by the efficiency of the amplifier. However, in advanced processes, in order to ensure the reliability of the circuit, the operating voltage of the circuit must be reduced. Therefore, the signal range of the amplifier is severely compressed, which increases the design difficulty of the amplifier. In order to maintain a sufficient signal-to-noise ratio, the power consumption of the amplifier is increased. ❹ The first A diagram shows a conventional fully differential amplifier circuit 10 that increases the circuit's ability to combat noise and increase the amplitude of the circuit signal. The fully differential amplifier circuit 10 uses a common-mode feedback circuit (CMFB) 102 to stabilize the output common-mode voltage (output 〇ut+/Out-). Since the total current of the circuit is controlled by the tail current MOS transistor Mcl, the common-mode disturbance of the input terminal In+/In- will not affect the circuit. Performance. Therefore, the fully differential amplifier circuit 10 has an extremely high common mode noise rejection ratio (CMRR). However, the transistor Mcl compresses the output signal range of the circuit' and is therefore detrimental to the operation of the low voltage circuit. In order to increase the signal output range of the circuit, a pseudo-differential amplifier circuit 12 as shown in Fig. B is used. The pseudo differential amplifier circuit 12 eliminates the tail current MOS transistor Mcl of the first A picture, but 201019591 means that this circuit will have no common mode noise rejection function. Therefore, the common mode noise of the input terminal In+/In- will be amplified by the pseudo differential amplifier circuit 12, which seriously affects the performance of the circuit. "Full differential amplifier circuit 1" (first A picture) and pseudo differential amplifier circuit 13⁄4 The operation of Figure 1B will be explained in the following paragraphs. The first figure shows the operation of the switched capacitor circuit 20 using a fully differential amplifier 1〇4. Only common mode voltage perturbations (AVcm) are considered here, and other parent flow # numbers are not considered. At the sample phase (shown at the left end of the figure), the common mode voltage disturbance (AVcm) is sampled by two capacitors C. In the amplification phase (shown at the right end of the figure), due to the relationship of the common mode feedback circuit (CMFB), the output common mode voltage will be maintained at VCtt^ according to the principle of charge conservation, which can be obtained as shown in the figure. The common mode voltage ν χ β input to the input voltage of the amplifier 104 is reflected by the voltage of the common mode voltage (Δν < ^). However, this common mode voltage perturbation (ΔVcm) drift can be tolerated as long as the amplifier 1〇4 ❹ has a sufficiently large input common mode range. The third diagram shows the operation of the switched capacitor circuit 30 using the pseudo differential amplifier 124. Since the pseudo differential amplifier 124 does not have a common mode feedback circuit (CMFB), its output lacks a forced force to control its output level. Thus, circuit 30 will perturb the input common mode voltage (which produces twice the common mode gain, where the common mode gain and differential mode gain are the same. 201019591 Once circuit 30 is applied to the series circuit as shown in the fourth figure) The pipeline analog-to-digital converter, since each stage has twice the common-mode gain, the latter circuit will be saturated and the circuit will be out of normal operation. For details of the analog-to-digital converter, refer to another patent application of the same applicant (titled "shared operational amplifier technology with adjustable resolution of the stage before the pipeline or cyclic analog to digital converter") The above pseudo-differential switched capacitor circuit requires a circuit mechanism that effectively stabilizes the common-mode voltage to maintain a sufficiently large signal amplitude in a low-voltage process. Several methods are currently available in the literature for the purpose, as described below. Common mode feedback circuit (CMFB) «Intuitive way is to use the common mode feedback circuit (CMFB) commonly used in fully differential circuits to stabilize the output common mode The fifth figure shows a pseudo-differential switched capacitive circuit 5〇 using a common mode feedback circuit 102, which is a schematic diagram of the amplified phase of the third figure. Due to the common mode feedback relationship, the output common mode level can be maintained at The ideal common mode voltage Vcm. · Since there is no tail ^, the current source, any input common mode voltage disturbance (△,) will cause the current change of the circuit 5〇, resulting in the circuit performance changing with the input common mode voltage. The circuit performance is seriously attenuated. 201019591 . 2. Differential floating sampling (DFS) mechanism

偽差動切換電容式電路之所以會產生放大共模增益,其 主要原因在取樣相位時,電容會取樣到輸入共模電壓擾動 (A Vcm>。當電容C大小相同,如此將有2xCxA Vcm的 共模電壓變化電荷被電容取樣,造成二倍的共模增益。若 能減少電容對共模電壓擾動(AVcm)取樣,將可減少共模 ❹增益,減輕共模電壓變化對於電路的影響程度。此目的之 達到可使用第六圖之差動浮接取樣(DFS)電路60,其揭 露於 J. Li 及 U. K. Moon, “A 1.8-V 67-mW 10-bit 100MS/S pipelined ADC using time-shifted CDS technique, ΛIEBE J. SoZid-Siaie Circuits, vol. 39, pp. 1468 - 1476, Sep. 2004 ° 電路60於正、負路徑使用兩個單端放大器602A/602B, 其功能和第三圖相似。不同的是,於取樣相位時(主動0 ❿ 1),電容C1及C4的上板(連接至放大器602A/602B 的輸入端)經由01控制開關而接收共模電壓,而電容C2 及C3的上板則因虛線所示的浮接開關形成浮接狀態。一 旦有輸入共模電壓擾動(△Vcm)時,只有電容C1或C4 會取樣到共模電壓變化電荷(lxCx^vcm),而電容C2 或C3由於上板處於浮接狀態’因而越過(bypass)輸入 共模電壓擾動。藉此,電路60的共模增益將為一,不會 放大輸入共模電壓擾動。差動浮接取樣(DFS)電路60 201019591 不需使用額外的主動電路(例如共模迴授電路),因而可 以減少電路的功率消耗。但是’電路60當中的開關會造 成電荷注入(charge injection)效應,造成額外的共模 電壓漂移。當電路60應用於如管路式類比至數位轉換器 (第四圖)之串接電路中,後級電路將會存在極大的共模 電壓漂移,造成電路效能衰減。 ❹三、共模前授(common-mode feed-forward, CMFF) 機制 第七A圖顯示共模前授(CMFF)電路70,其穩定概 念類似於第六圖,但可進一步使共模增益降為0。第七A 圖至第七C圖揭露於Τ· Ueno, Τ· Ito等人,“A 1.2 V,24 mW/ch, 10 bit, 80 MSample/s pipelined A/D converters,w JVoc. O/aCC,pp.501-504, Sep· 2006。使用共模(CM) Φ 偵測器702感測輪入共模電壓,之後藉由一個類比加/減 法器704將共模電壓擾動反映至電容的上板。如此,將不 會有任何的共模電壓擾動(Δνεπι)被電容取樣,且電路 70將不會有任何的共模增益,可更有效消除電路的共模電 壓漂移問題。然而,電路70仍然存在有因開關的電荷注 入(charge injection)效應造成共模電壓漂移的問題。 201019591 第七B圖顯示第七a圖的共模偵測器702之詳細電路 圖,而第七C圖則顯示第七A圖的類比加/減法器7〇4之 詳細電路圖。類比加/減法器7〇4係為二級放大器,其中 第一級電路7041為四個輸入的單端放大器,而第二級 7042則為共源極放大器。類比加/減法器7〇4採用米勒 (Miller)補償法進行頻率補償◊電路7〇4的輸出和輸入 接成單增益放大器,電路的開迴路增益將影響類比加/減法 ❹器704的精確度。由於CMFF電路7〇沒有使用迴授控制 以降低電路之共模電壓,因此,類比加/減法器7〇4的有 限增益誤差及穩定誤差(settling error)仍會被電路7〇 所放大。為了減低共模電壓誤差,必須設法增加類比加/ 減法器704的開迴路增益和頻寬,但是如此將會消耗較大 的功率。 經於上述偽差動切換電容式電路的共模穩定先前技術 之缺點,因此亟需提出一種新穎的技術,以有效降低因電 荷注入(charge injection)效應造成的共模電壓漂移。 【發明内容】 鑑於上述,本發明的目的之一為提供一種應用於偽差 動切換電容式電路之共模穩定技術’特別是積分形式技 201019591 術,用以大幅降低因電荷注入(charge injection)效應 造成的共模電壓漂移。 根據本發明實施例,使用差動浮接取樣( DFS)技術 使得偽差動切換電容式電路之增益值為一,因而越過 (bypass)輸入共模電壓擾動。藉此,輸入共模擾動及因 電荷注入效應所造成的共模誤差可以於切換電容式電路的 ❹輸出端被感測到。使用積分器以感測總輸出共模擾動,並 回饋積分輸出至該使用差動浮接取樣(DFS)技術之偽差 動切換電容式電路,藉此可穩定輸出共模位準於一要求位 準。當處於放大相位(¢2)時,積分器偵測差動正輸出 (V0Ut+)及負輸出(V〇ut_)的共模電壓擾動。當處於取樣 相位(4 1)時,積分器進行積分並將積分放大器的輸出回 饋至該切換電容式電路,因而形成一共模負迴授迴路,用 ® 以調整差動正輸出(V〇ut+)及負輸出(V0Ut-)。 【實施方式】 第八圖顯示本發明實施例之偽差動 (pseudo-differential)切換電容式電路80,其使用積分 形式共模電壓穩定(integrator-based common-mode stabilization, IB-CMS)技術》在本實施例中,電路80 11 201019591 包含一使用差動浮接取樣(dfs)技術之偽差動切換電容 式電路802及一積分器804。於圖式中,控制信號0 1代 表取樣相位控制信號,亦即,主動之01表示電路80正處 於取樣相位。另一控制信號¢2代表放大相位控制信號, 亦即’主動之0 2表示電路80正處於放大相位。一般來 說’取樣相位控制信號¢1及放大相位控制信號¢2可以 為不互相重疊之方波。 在本實施例’使用差動浮接取樣(DFS)技術之偽差動 切換電谷式電路802包含一正路徑及一負路徑。於正路徑 中,第一單端放大器8021的輸入端電性耦接至第一電容 Cl及第二電容C2的第一端,且此電容C1/C2互為電性 併聯。在本實施例中,”電性(electricaUy) ”一詞係指一 π件/二端點藉由導線直接相連,或者是經由開關而間接連 ❹接在一起,其連接關係可由圖式及說明描述得知。第一放 大器8021的輸出端提供正轉出v〇ut+。第一電容〇1及第 二電容C2的二端電性連接至正輸.入Vin+。第一電容^ 經由0 1、0 2控制開關而電性連接於正輸入%針與第一放 大器8〇21的輸入端之間,其連接狀態如下:於取樣相位 時,第-電容cn直接連接於正輸入Vin+與積分器8〇4的 輪出端(cmi)之間;於放大相位時,第一電容的下板 連接至正輸出vGUt+,且第—電容C1的上板與積分器 12 201019591 的輸出端(cmi)分離。第二電容C2經由必丨、0 2控制 開關而電性連接於正輸入Vin+與第一放大器8〇21的輸入 端之間,其連接狀態如下:於取樣相位時,第二電容C2 的下板連接至正輸入Vin+,而上板則為浮接,其表示該節 點不具有直流路徑;於放大相位時’第二電容C2的下板 連接至參考電壓VR’且上板連接至第一放大器8021的輸 入端。 於負路徑中,第二單端放大器8022、第三電容C3及 第四電容C4的連接狀態類似於第一單端放大器8021、第 二電容C2及第一電容C1。亦即,第二單端放大器8022 的連接類似於第一單端放大器8021,第三電容C3的連接 狀態類似於第二電容C2 ’且第四電容C4的連接狀態類似 於第一電容C1。上述元件的連接狀態如下表一所述。 魯 表一 取樣相位 放大相位 C1 介於和cmi之間 下板至上板至第 一放大器輸入 C2 下板至Vu+;上板浮接 下板至Vr;上板至第一 放大器輸入 C3 下板至Vin_;上板浮 下板至Vr;上板至竿- 13 201019591 * 差」上板 1大器輸入 C4 介於Vin-及Cmi之間 下板至Vout-;上板至第 大器輸入 換5之’於取樣相位時(主動01),第一電容Cl及第 四電容C4 (經由0 χ控制開關)取樣輸入共模擾動,而第 二電容C2及第三電容C3的上板因為虛線所示之浮接開關 ❿的緣故係處於浮接狀態。第一電容C1或第四電容將取 樣共模電壓擾動(△Vcm),因而取樣到共模電壓變化電荷 (lxCxAVcm),而浮接之第二電容或第三電容C3 則不會取樣到電荷。因此,電路80的增益值為一,因而 輸入共模電壓擾動將不會被放大。DFS電路802類似於第 六圖的電路60,不需使用額外的主動電路(例如共模迴授 電路)’因而可以減少電路的功率消耗。如第六圖所述, φ 開關會造成電荷注入(charge injection)效應,造成額 外的共模電壓漂移。 積分器804在本實施例中係作為非反向積分器,用以克 服電荷注入效應。積分器804具二輸入,其分別連接至 DFS電路802的輸出Vout+及Vout-。積分放大器8040的 負輸入端經由¢1控制開關而連接至併聯的取樣電容Cil 及Ci2,而積分放大器8040的正輸入端則接收輸入偏壓 201019591The reason why the pseudo-differential switching capacitor circuit generates the amplified common-mode gain is that the main reason is that when sampling the phase, the capacitor will sample the input common-mode voltage perturbation (A Vcm>. When the capacitor C is the same size, there will be 2xCxA Vcm The common mode voltage change charge is sampled by the capacitor, resulting in twice the common mode gain. If the capacitor can reduce the common mode voltage disturbance (AVcm) sampling, the common mode gain can be reduced, and the influence of the common mode voltage change on the circuit can be reduced. For this purpose, the differential floating sampling (DFS) circuit 60 of the sixth diagram can be used, which is disclosed in J. Li and UK Moon, "A 1.8-V 67-mW 10-bit 100 MS/S pipelined ADC using time- Shifted CDS technique, ΛIEBE J. SoZid-Siaie Circuits, vol. 39, pp. 1468 - 1476, Sep. 2004 ° Circuit 60 uses two single-ended amplifiers 602A/602B in the positive and negative paths, which function similarly to the third diagram The difference is that at the sampling phase (active 0 ❿ 1), the upper plates of capacitors C1 and C4 (connected to the input of amplifier 602A/602B) receive the common-mode voltage via the 01 control switch, while capacitors C2 and C3 The upper plate is floated by the dotted line The switch is in a floating state. Once there is an input common mode voltage disturbance (ΔVcm), only the capacitor C1 or C4 will sample the common mode voltage change charge (lxCx^vcm), and the capacitor C2 or C3 is floating due to the upper plate. The state 'bypasses the input common mode voltage disturbance. Thus, the common mode gain of circuit 60 will be one and will not amplify the input common mode voltage disturbance. Differential Floating Sampling (DFS) circuit 60 201019591 does not require additional The active circuit (such as the common mode feedback circuit) can reduce the power consumption of the circuit. However, the switch in the circuit 60 causes a charge injection effect, causing additional common mode voltage drift. When the circuit 60 is applied In the series circuit of the pipeline analog to digital converter (figure 4), the latter circuit will have a large common mode voltage drift, resulting in circuit performance degradation. ❹3, common mode pre-grant (common-mode feed -forward, CMFF) Mechanism Figure 7A shows a common mode pre-application (CMFF) circuit 70 whose stability concept is similar to the sixth picture, but can further reduce the common mode gain to 0. Seventh A to seventh C Expose Τ · Ueno, Τ · Ito et al., "A 1.2 V, 24 mW / ch, 10 bit, 80 MSample / s pipelined A / D converters, w JVoc. O / aCC, pp.501-504, Sep · 2006. The common mode voltage is sensed using a common mode (CM) Φ detector 702, and then the common mode voltage disturbance is reflected to the upper plate of the capacitor by an analog adder/subtracter 704. In this way, there will be no common mode voltage disturbance (Δνεπι) sampled by the capacitor, and the circuit 70 will not have any common mode gain, which can effectively eliminate the common mode voltage drift problem of the circuit. However, circuit 70 still suffers from the problem of common mode voltage drift due to the charge injection effect of the switch. 201019591 FIG. 7B shows a detailed circuit diagram of the common mode detector 702 of the seventh diagram, and the seventh C diagram shows a detailed circuit diagram of the analog adder/subtracter 7〇4 of the seventh diagram. The analog adder/subtracter 7〇4 is a two-stage amplifier, wherein the first stage circuit 7041 is a four-input single-ended amplifier, and the second stage 7042 is a common source amplifier. The analog adder/subtractor 7〇4 uses the Miller compensation method for frequency compensation. The output and input of the circuit 7〇4 are connected to a single gain amplifier. The open loop gain of the circuit will affect the accuracy of the analog add/subtracter 704. degree. Since the CMFF circuit 7 does not use feedback control to reduce the common mode voltage of the circuit, the finite gain error and settling error of the analog adder/subtracter 7〇4 are still amplified by the circuit 7〇. In order to reduce the common mode voltage error, it is necessary to try to increase the open loop gain and bandwidth of the analog adder/subtractor 704, but this will consume a large amount of power. The common mode of the above-described pseudo-differential switching capacitor circuit stabilizes the shortcomings of the prior art, and therefore it is urgent to propose a novel technique to effectively reduce the common mode voltage drift caused by the charge injection effect. SUMMARY OF THE INVENTION In view of the above, one of the objects of the present invention is to provide a common mode stabilization technique applied to a pseudo differential switched capacitor circuit, particularly an integral form technique 201019591, for substantially reducing charge injection. Common mode voltage drift caused by effects. In accordance with an embodiment of the invention, the differential floating-sampling (DFS) technique is used to cause the pseudo-differential switched capacitive circuit to have a gain value of one, thereby bypassing the input common mode voltage disturbance. Thereby, the input common mode disturbance and the common mode error caused by the charge injection effect can be sensed at the chirp output of the switched capacitor circuit. An integrator is used to sense the total output common mode disturbance, and the integrated output is fed back to the pseudo differential switching capacitive circuit using differential floating sampling (DFS) technology, thereby stabilizing the output common mode level to a required position quasi. When in the amplified phase (¢2), the integrator detects the common mode voltage disturbance of the differential positive output (V0Ut+) and the negative output (V〇ut_). When in the sampling phase (4 1), the integrator integrates and feeds the output of the integrating amplifier back to the switched capacitor circuit, thus forming a common mode negative feedback loop, using ® to adjust the differential positive output (V〇ut+) And negative output (V0Ut-). [Embodiment] The eighth figure shows a pseudo-differential switched capacitor circuit 80 according to an embodiment of the present invention, which uses an integral-mode common-mode stabilization (IB-CMS) technique. In the present embodiment, circuit 80 11 201019591 includes a pseudo differential switched capacitor circuit 802 and an integrator 804 using differential floating sampling (dfs) techniques. In the figure, control signal 0 1 represents the sampling phase control signal, i.e., active 01 indicates that circuit 80 is in the sampling phase. Another control signal ¢2 represents the amplified phase control signal, i.e., the active 0 2 indicates that the circuit 80 is in the amplified phase. Generally, the sampling phase control signal ¢1 and the amplification phase control signal ¢2 may be square waves that do not overlap each other. The pseudo-differential switching electric valley type circuit 802 using the differential floating sampling (DFS) technique in the present embodiment includes a positive path and a negative path. In the positive path, the input end of the first single-ended amplifier 8021 is electrically coupled to the first ends of the first capacitor Cl and the second capacitor C2, and the capacitors C1/C2 are electrically connected in parallel with each other. In the present embodiment, the term "electricaUy" means that a π piece/two end point is directly connected by a wire, or is indirectly connected by a switch, and the connection relationship can be illustrated and illustrated. Description is known. The output of the first amplifier 8021 provides forward rotation out of v〇ut+. The two ends of the first capacitor 〇1 and the second capacitor C2 are electrically connected to the positive input. The first capacitor ^ is electrically connected between the positive input % pin and the input end of the first amplifier 8〇21 via the 0 1 and 0 2 control switches, and the connection state is as follows: when sampling the phase, the first capacitor cn is directly connected. Between the positive input Vin+ and the rounder (cmi) of the integrator 8〇4; when the phase is amplified, the lower plate of the first capacitor is connected to the positive output vGUt+, and the upper plate of the first capacitor C1 and the integrator 12 201019591 The output (cmi) is separated. The second capacitor C2 is electrically connected between the positive input Vin+ and the input end of the first amplifier 8〇21 via a control switch, and the connection state is as follows: when sampling the phase, the lower plate of the second capacitor C2 Connected to the positive input Vin+, and the upper board is floating, which means that the node does not have a DC path; when the phase is amplified, the lower plate of the second capacitor C2 is connected to the reference voltage VR' and the upper plate is connected to the first amplifier 8021. Input. In the negative path, the connection state of the second single-ended amplifier 8022, the third capacitor C3, and the fourth capacitor C4 is similar to that of the first single-ended amplifier 8021, the second capacitor C2, and the first capacitor C1. That is, the connection of the second single-ended amplifier 8022 is similar to that of the first single-ended amplifier 8021, and the connection state of the third capacitor C3 is similar to that of the second capacitor C2' and the connection state of the fourth capacitor C4 is similar to that of the first capacitor C1. The connection state of the above components is as follows in Table 1. Lu meter-sampling phase amplification phase C1 is between the lower board and the upper board to the first amplifier input C2 lower board to Vu+; the upper board floats the lower board to Vr; the upper board is connected to the first amplifier input C3 lower board to Vin_ Upper plate floats down to Vr; upper plate to 竿- 13 201019591 * Poor" upper plate 1 large input C4 between Vin- and Cmi lower plate to Vout-; upper plate to the first input to 5 'At the sampling phase (active 01), the first capacitor C1 and the fourth capacitor C4 (via the 0 χ control switch) sample the input common mode disturbance, and the upper plates of the second capacitor C2 and the third capacitor C3 are indicated by the broken lines. The reason for the floating switch 处于 is in the floating state. The first capacitor C1 or the fourth capacitor will sample the common mode voltage perturbation (ΔVcm) and thus sample to the common mode voltage change charge (lxCxAVcm), while the floating second or third capacitor C3 will not sample the charge. Therefore, the gain value of circuit 80 is one, so the input common mode voltage disturbance will not be amplified. The DFS circuit 802 is similar to the circuit 60 of Figure 6, without the need for additional active circuitry (e.g., common mode feedback circuitry)' thus reducing the power consumption of the circuitry. As described in Figure 6, the φ switch causes a charge injection effect, causing additional common mode voltage drift. Integrator 804 is used as a non-inverting integrator in this embodiment to overcome the charge injection effect. Integrator 804 has two inputs that are coupled to outputs Vout+ and Vout- of DFS circuit 802, respectively. The negative input of the integrating amplifier 8040 is connected to the parallel sampling capacitors Cil and Ci2 via the ¢1 control switch, while the positive input of the integrating amplifier 8040 receives the input bias.

Vb並經由ς6 2控制開關而連接至併聯的取樣電容Cn及 Cu。再者,正輸入端經由積分電容Ci3連接至輸出(cmi)。 積分放大器8040的輸出(cmi)經由0 1控制開關連接至 放大器8021/8022的輸入端。Vb is connected to the parallel sampling capacitors Cn and Cu via the ς6 2 control switch. Furthermore, the positive input is connected to the output (cmi) via the integrating capacitor Ci3. The output (cmi) of the integrating amplifier 8040 is coupled to the input of the amplifiers 8021/8022 via a 0 1 control switch.

於積分器取樣相位時(主動¢2),積分器804經由¢2 控制開關而連接至DFS電路802,用以偵測輸出端 Vt)Ut+、V<)Ut-的共模電廢擾動’其包含輸入共模擾動及dfs 電路802因電荷注入效應所造成的共模誤差。此時,取樣 電容Cu及Cu的下板連接至DFS電路802,而上板則連 接至放大器8040的正輸入端。於積分相位時(主動必1), 取樣電容Cn及Cu的下板連接至共模電壓乂咖,其為 電路8〇2的要求輸ϋί賴電壓,*上㈣相連接至放大 器8040的負輸人端。此時,積分器綱進行共模擾動積 分,並將輸出電壓cmi回馈至第—電容以及第四電容以 的上板’因而形成一共模負迴授迴路。由於積分器804具 有電荷累積的特性,因而可以逐步調整輸出電壓 V〇ut+/Vout-,使輸出共模位準穩定在理想的共模位準。上 述元件的連接關係如下表二所示。When the integrator samples the phase (active ¢ 2), the integrator 804 is connected to the DFS circuit 802 via the ¢2 control switch for detecting the common mode electrical waste disturbance of the output terminals Vt) Ut+, V<) Ut- The common mode error caused by the input common mode disturbance and the dfs circuit 802 due to the charge injection effect. At this time, the lower plates of the sampling capacitors Cu and Cu are connected to the DFS circuit 802, and the upper plate is connected to the positive input terminal of the amplifier 8040. In the integral phase (active 1), the lower plate of the sampling capacitor Cn and Cu is connected to the common mode voltage, which is the required input voltage of the circuit 8〇2, and the negative input of the upper (four) phase is connected to the amplifier 8040. Human end. At this time, the integrator class performs the common mode disturbance integration, and feeds the output voltage cmi back to the upper capacitor of the first capacitor and the fourth capacitor, thereby forming a common mode negative feedback loop. Since the integrator 804 has a charge accumulation characteristic, the output voltage V〇ut+/Vout- can be gradually adjusted to stabilize the output common mode level at the ideal common mode level. The connection relationship of the above components is shown in Table 2 below.

15 201019591 積分相位(主動0 1 ) 積分器取樣相位(主動 02) Cu 下板至Von;上板至放 大器負輸入端 下板至DFS;上板至放 大器正輸入端 Ci2 下板至Voa;上板至放 大器負輸入端 下板至DFS;上板至放 大器正輸入端 於設計積分器804時,有一些重點需要注意: ❹ 1.取樣電容Cii、Cu及積分電容Ci3必須妥善選擇,才能 確保系統穩定。一般來說,取樣電容Cn、Ci2必須小於 積分電容Ci3。 2·放大器8040電路增益將會影響穩定後的輸出端 \^。^+/乂。^-之共模電壓,過小的增益將會增加共模誤 羞》實務上,根據電路模擬結果顯示,2〇dB之積分放 ❿ 大器增益將只會造成30mV的輪出共模電壓誤差,此誤 差將可被容許。當上述的迴授控制機制應用於串接電路 架構時,由於每級均有本發明之迴授調整機制,因此’ 讦控制每級的共模誤差都只僅因積分放大器所造成的诱 差,如此可僅使用單級放大器來實現積分器8〇4。 根據本實施例,積分器804可以僅使用一個單级、够增 益、低消耗功率的放大器。和前述第七A圖相比,本實施 16 201019591 例積分器804的消耗功率遠低於共模前授電路(CMFF) 70的類比加/減法器704。再者,本實施例積分器804只 有一個電容會取樣積分器的輸出電壓(因此增益值為一), 而共模前授電路(CMFF) 70則有兩個電容會取樣類比加 /減法器704的輸出電壓。因此,積分器804的負載及功 率消耗亦可大幅降低。本實施例因此可以大幅降低因電荷 注入(charge injection)效應造成的共模電壓漂移。 以上所述僅為本發明之較佳實施例而已,並非用以限定 本發明之申請專利範圍;凡其它未脫離發明所揭示之精神 下所完成之等效改變或修飾,均應包含在下述之申請專利 範圍内。 【圖式簡單說明】 第一 Α圖顯示傳統全差動(fully differential)放大器電 路。 第一 B圖顯示傳統偽差動(pseudo-differential)放大器 電路。 第二圖顯示使用全差動放大器之切換電容式電路的操作。 第二圖顯示使用偽差動放大器之切換電容式電路的操作。 第四圖顯示傳統管路式類比至數位轉換器。 17 201019591 第五圖顯示使用共模迴授電路之偽差動切換電_ 第六圖顯示差動浮接取樣(DFS)電路。 工電路 第七A圖顯示共模前授(CMFF)電路。 電%圖 <祥細 施例 (pseudo-differential)切換電容式電路 式共模電壓穩定(IB-CMS)技術。 第七B圖顯示第七A圖的共模偵測器之詳衾田 電路圖。 <偽差、 其使用積分形 第七C圖顯示第七A圖的類比加/减法器 第八圖顯示本發明實 ❹ 【主要元件符號說明】 10 全差動放大器電路 12 偽差動放大器電路 20 全差動放大器切換電容式電略 30 偽差動放大器切換電容式電路 50 偽差動切換電容式電路 60 差動浮接取樣(DFS)電路 70 共模前授電路(CMFF) 80 偽差動切換電容式電路 102 共模迴授電路(CMFB) 104 全差動放大器 124 偽差動放大器 602A/602B 放大器 18 201019591 702 共模(cm)偵測器 704 類比加/減法器 802 差動浮接取樣(DFS)電路 804 積分器 7041 (第一級)四輸入的單端放大器 7042 (第二級)共源極放大器 8021 第一單端放大器15 201019591 Integral phase (active 0 1 ) Integrator sampling phase (active 02) Cu lower plate to Von; upper plate to amplifier negative input lower plate to DFS; upper plate to amplifier positive input terminal Ci2 lower plate to Voa; upper plate To the negative input of the amplifier to the DFS; the upper input to the positive input of the amplifier when designing the integrator 804, there are some important points to note: ❹ 1. The sampling capacitor Cii, Cu and the integrated capacitor Ci3 must be properly selected to ensure system stability. . In general, the sampling capacitors Cn, Ci2 must be smaller than the integrating capacitor Ci3. 2. The amplifier 8040 circuit gain will affect the stable output \^. ^+/乂. ^-the common mode voltage, too small gain will increase the common mode error. In practice, according to the circuit simulation results, the 2〇dB integral amplifier gain will only cause 30mV round-out common mode voltage error. This error will be tolerated. When the feedback control mechanism described above is applied to the serial circuit architecture, since each stage has the feedback adjustment mechanism of the present invention, the common mode error of each stage of the control unit is only caused by the induced error caused by the integrating amplifier. In this way, the integrator 8〇4 can be implemented using only a single stage amplifier. According to this embodiment, the integrator 804 can use only a single stage, gaining, low power consumption amplifier. Compared with the aforementioned seventh A diagram, the power consumption of the integrator 804 of the present embodiment 16 201019591 is much lower than that of the analog adder/subtracter 704 of the common mode preamble circuit (CMFF) 70. Furthermore, integrator 804 of the present embodiment has only one capacitor that samples the output voltage of the integrator (and therefore the gain value is one), while the common mode pre-circuit (CMFF) 70 has two capacitors that sample the analog adder/subtracter 704. Output voltage. Therefore, the load and power consumption of the integrator 804 can also be greatly reduced. This embodiment can therefore greatly reduce the common mode voltage drift caused by the charge injection effect. The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application. [Simple description of the diagram] The first diagram shows the traditional fully differential amplifier circuit. The first B diagram shows a conventional pseudo-differential amplifier circuit. The second figure shows the operation of a switched capacitor circuit using a fully differential amplifier. The second figure shows the operation of a switched capacitor circuit using a pseudo differential amplifier. The fourth figure shows a conventional pipeline analog to digital converter. 17 201019591 The fifth figure shows the pseudo-differential switching using the common mode feedback circuit. The sixth figure shows the differential floating sampling (DFS) circuit. Circuitry Figure 7A shows the common mode pre-application (CMFF) circuit. Electricity % map < Xiang fine example (pseudo-differential) switching capacitive circuit common mode voltage stabilization (IB-CMS) technology. Figure 7B shows the detailed circuit diagram of the common mode detector of Figure 7A. <Pseudo-difference, which uses the integral form, the seventh C-picture shows the analogy adder/subtractor of the seventh A diagram. The eighth diagram shows the actual implementation of the present invention. [Main element symbol description] 10 Fully differential amplifier circuit 12 Pseudo-differential amplifier circuit 20 Fully Differential Amplifier Switching Capacitor Modem 30 Pseudo-Differential Amplifier Switching Capacitor Circuit 50 Pseudo-Differential Switching Capacitor Circuit 60 Differential Floating Sampling (DFS) Circuit 70 Common Mode Pre-Circuit Circuit (CMFF) 80 Pseudo-Differential Switched Capacitor Circuitry 102 Common Mode Feedback Circuit (CMFB) 104 Fully Differential Amplifier 124 Pseudo-Differential Amplifier 602A/602B Amplifier 18 201019591 702 Common Mode (cm) Detector 704 Analog Plus/Subtracter 802 Differential Floating Sampling (DFS) Circuitry 804 Integrator 7041 (First Stage) Four Input Single-Ended Amplifier 7042 (Second Stage) Common Source Amplifier 8021 First Single-Ended Amplifier

8022 第二單端放大器 8040 積分放大器8022 second single-ended amplifier 8040 integrating amplifier

In+/In_ 輸入In+/In_ input

Out+/Out-輸出 ίOut+/Out-output ί

Me 1 尾電流金氧半電晶體 △Vcm 共模電壓擾動Me 1 tail current MOS semi-transistor △Vcm common mode voltage disturbance

Vcm 共模電壓Vcm common mode voltage

Vx 放大器輸入端的共模電壓 C 電容 C1/C2/C3/C4 電容 01 取樣相位控制信號 Φ2 放大相位控制信號Common mode voltage at the input of the Vx amplifier C Capacitor C1/C2/C3/C4 Capacitor 01 Sampling phase control signal Φ2 Amplifying the phase control signal

Vin+ 正輸入Vin+ positive input

Vin- 負輸入 V〇ut+ 正輸出 201019591 V〇ut_ 負輸出Vin- Negative input V〇ut+ Positive output 201019591 V〇ut_ Negative output

Vr 參考電壓Vr reference voltage

Vb 輸入偏壓Vb input bias

Cil、Ci2取樣電容 Ci3 積分電容 cmi 積分放大器的輸出 ❹Cil, Ci2 sampling capacitor Ci3 integrating capacitor cmi output of the integrating amplifier ❹

Claims (1)

201019591 七、申請專利範圍: 1.一種偽差動切換電容式電路,其應用積分形式共模電壓 穩定技術,該偽差動切換電容式電路包含: 一差動浮接取樣(DFS)電路,其具有偽差動架構且共 模增益值為一,該DFS電路具有一差動正輸入(Vin+)及 一負輸入(Vin-),並具有一差動正輸出(Vout+)及一負輸 出(V〇ut_ ),及 一積分器,電性耦接至該差動正/負輸出,該積分器藉 由偵測該差動正輸出(vout+)及負輸出(vout-)的共模電 壓擾動而回饋積分輸出至該DFS電路,藉此可穩定該差 動正輸出(Vout+)及負輸出(Vout-)的輸出共模位準於一 預期位準。 q 2.如申請專利範圍第1項所述之偽差動切換電容式電路, 其中上述之積分器係為一非反向積分器。 3.如申請專利範圍第1項所述之偽差動切換電容式電路, 其中上述之積分器包含: 一積分放大器,具有一正輸入及一負輸入; 一第一取樣電容及一第二取樣電容,其互相電性併聯; 21 201019591 一積分電容,連接於該積分放大器的輸出及該負輸入之 間; 其中上述之積分放大器經由開關連接至該第一及第二 取樣電容。 4. 如申請專利範圍第3項所述之偽差動切換電容式電路, 其中上述之積分器於積分相位(0 1)時進行積分並將該積 ❹分放大器的輸出回饋至該DFS電路,因而形成一共模負迴 授迴路,用以調整該差動正輸出(Vout+)及負輸出(Vout-)。 5. 如申請專利範圍第4項所述之偽差動切換電容式電路, 其中上述之積分器於積分器取樣相位(¢2)時,偵測該差 動正輸出(Vout+)及負輸出(Vout-)的共模電壓擾動。 © 6.如申請專利範圍第5項所述之偽差動切換電容式電路, 其中上述之積分器更包含積分相位(0 1)控制開關,及包 含積分器取樣相位(¢2)控制開關。 7.如申請專利範圍第6項所述之偽差動切換電容式電路, 當處於積分相位時,該第一及第二取樣電容經由該Φ 1控 制開關而連接至共模電壓,並經由該Ψ1控制開關而連接 至該積分放大器的負輸入。 22 201019591 8.如申請專利範圍第7項所述之偽差動切換電容式電路, 當處於積分ϋ取樣相位時,該第-及第二電紐由該必2 控制開關而分別連接至該差動正輸出(v〇ut+)及負輸出 (V〇ut-)’並經由該0 2控制開關而連接至該積分放大器的 正輸入。 β 9·如巾請專利範圍第8項所述之偽差動切換電容式電路, 其中上述之DFS電路包含: 一正路徑,包含一第一單端放大器、一第一電容及一第 一電谷其中这第一及第二電容互為電性併聯;及 一負路徑,包含一第二單端放大器、一第三電容及一第 四電容’其中該第三及第四電容互為電性併聯; 其中上述積分放大器之輸出經由該0 “制開關而連接 ❹至該第-及第二單端放大器的輸入,且該第一及第二單端 放大器的輸出分別提供該差動正輸出(v〇ut+)及負輸出 (V〇Ut- ) 0 ι〇·如申請專利範圍第9項所述之偽差動切換電容式電 路,於取樣相位時,上述之第—電容連接於該正輸入(Vin+) 及該積分器的輸出之間;於放大相位時,該第一電容的下 板連接至該正輸出(vout+);及 23 201019591 該第二電容經由該01及0 2控制開關而電性連接於該 正輸入(Vin+)及該第一單端放大器的輸入之間,其連接 型態如下: 於取樣相位時,該第二電容的下板連接至該正輸入 (Vin+) ’且該第二電容的上板為浮接; 於放大相位時,該第二電容的下板連接至參考電壓, 且該第二電容的上板連接至該第一單端放大器的輸入。 11.如申請專利範圍第1〇項所述之偽差動切換電容式電 路,於取樣相_,上述之$四電料接於該正輸人 及該積》㈣輸出之間;於放大相位時,該第四電容的下 板連接至該正輪出(vout+);及 ❹ 該第三電容經由該4 1及4 2控賴_紐連接於琴 負輸入(Vin_)及該第二單端放大器的輸人之間,其連接 m叫,該第三電容的下板連接至該負輪人 (ln)該第三電容社板料接; 且該第於’該第三電容的下板連接至參考電壓, “的上板連接至該第二單端放大器的輪入。 24201019591 VII. Patent application scope: 1. A pseudo differential switching capacitor circuit, which uses an integral form common mode voltage stabilization technology, the pseudo differential switching capacitor circuit comprises: a differential floating sampling (DFS) circuit, The pseudo-differential architecture has a common mode gain value of one. The DFS circuit has a differential positive input (Vin+) and a negative input (Vin-), and has a differential positive output (Vout+) and a negative output (V). 〇 ut_ ), and an integrator electrically coupled to the differential positive/negative output, the integrator detecting a common mode voltage disturbance of the differential positive output (vout+) and the negative output (vout−) The integrated output is output to the DFS circuit, thereby stabilizing the output common mode level of the differential positive output (Vout+) and the negative output (Vout-) to an expected level. 2. The pseudo differential switched capacitor circuit of claim 1, wherein the integrator is a non-inverting integrator. 3. The pseudo differential switched capacitor circuit of claim 1, wherein the integrator comprises: an integrating amplifier having a positive input and a negative input; a first sampling capacitor and a second sampling Capacitors, which are electrically connected in parallel; 21 201019591 an integrating capacitor connected between the output of the integrating amplifier and the negative input; wherein the integrating amplifier is connected to the first and second sampling capacitors via a switch. 4. The pseudo differential switched capacitor circuit of claim 3, wherein the integrator integrates at an integrated phase (0 1) and feeds back an output of the integrated split amplifier to the DFS circuit. Thus, a common mode negative feedback loop is formed for adjusting the differential positive output (Vout+) and the negative output (Vout-). 5. The pseudo differential switched capacitor circuit of claim 4, wherein the integrator detects the differential positive output (Vout+) and the negative output when the integrator samples the phase (¢2). Common mode voltage perturbation of Vout-). 6. The pseudo differential switched capacitor circuit of claim 5, wherein the integrator further comprises an integrated phase (0 1) control switch and an integrator sampling phase (¢2) control switch. 7. The pseudo differential switched capacitor circuit of claim 6, wherein, when in the integrated phase, the first and second sampling capacitors are connected to a common mode voltage via the Φ 1 control switch, and The Ψ1 control switch is connected to the negative input of the integrating amplifier. 22 201019591 8. The pseudo-differential switched capacitor circuit according to claim 7, wherein when the phase is integrated, the first and second terminals are respectively connected to the difference by the control switch The positive output (v〇ut+) and the negative output (V〇ut-)' are connected to the positive input of the integrating amplifier via the 0 2 control switch. The pseudo-differential switched capacitor circuit of the invention of claim 8, wherein the DFS circuit comprises: a positive path including a first single-ended amplifier, a first capacitor, and a first power The first and second capacitors are electrically connected in parallel; and a negative path includes a second single-ended amplifier, a third capacitor, and a fourth capacitor, wherein the third and fourth capacitors are electrically connected to each other Parallel; wherein the output of the integrating amplifier is connected to the input of the first and second single-ended amplifiers via the 0" switch, and the outputs of the first and second single-ended amplifiers respectively provide the differential positive output ( 〇 + ) 负 负 如 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪 伪(Vin+) and the output of the integrator; when the phase is amplified, the lower plate of the first capacitor is connected to the positive output (vout+); and 23 201019591 the second capacitor is electrically controlled via the 01 and 0 2 control switches Sexually connected to the positive input (Vin+) and the first Between the inputs of the terminal amplifiers, the connection type is as follows: When sampling the phase, the lower plate of the second capacitor is connected to the positive input (Vin+)' and the upper plate of the second capacitor is floating; when the phase is amplified The lower plate of the second capacitor is connected to the reference voltage, and the upper plate of the second capacitor is connected to the input of the first single-ended amplifier. 11. The pseudo-differential switching capacitor as described in claim 1 The circuit, in the sampling phase _, the above four electric materials are connected between the positive input and the product (4) output; when the phase is amplified, the lower plate of the fourth capacitor is connected to the positive wheel (vout+) And the third capacitor is connected between the input of the piano (Vin_) and the input of the second single-ended amplifier via the 4 1 and 4 2 control, and the connection is called m, the lower of the third capacitor The board is connected to the negative wheel (ln) and the third capacitor is connected; and the lower plate of the third capacitor is connected to the reference voltage, and the upper plate is connected to the wheel of the second single-ended amplifier In. twenty four
TW97144027A 2008-11-14 2008-11-14 Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits TWI335130B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97144027A TWI335130B (en) 2008-11-14 2008-11-14 Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97144027A TWI335130B (en) 2008-11-14 2008-11-14 Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits

Publications (2)

Publication Number Publication Date
TW201019591A true TW201019591A (en) 2010-05-16
TWI335130B TWI335130B (en) 2010-12-21

Family

ID=44217519

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97144027A TWI335130B (en) 2008-11-14 2008-11-14 Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits

Country Status (1)

Country Link
TW (1) TWI335130B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451692B (en) * 2011-08-16 2014-09-01 Himax Tech Ltd Pseudo differential switched capacitor circuit
TWI477067B (en) * 2010-12-24 2015-03-11 Hanergy Technologies Inc Differential amplifier and controlling method for the same
US11063561B1 (en) 2020-07-29 2021-07-13 Amazing Microelectronic Corp. Receiver circuit with input common mode voltage sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083584B2 (en) * 2013-08-16 2015-07-14 Via Technologies, Inc. Common mode modulation with current compensation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477067B (en) * 2010-12-24 2015-03-11 Hanergy Technologies Inc Differential amplifier and controlling method for the same
TWI451692B (en) * 2011-08-16 2014-09-01 Himax Tech Ltd Pseudo differential switched capacitor circuit
US11063561B1 (en) 2020-07-29 2021-07-13 Amazing Microelectronic Corp. Receiver circuit with input common mode voltage sensing

Also Published As

Publication number Publication date
TWI335130B (en) 2010-12-21

Similar Documents

Publication Publication Date Title
US8330537B1 (en) Low noise, high CMRR and PSRR input buffer
CN107104648B (en) amplifying circuit
JP2779267B2 (en) Preamplifier circuit
US7336123B2 (en) Chopper amplifier circuit apparatus operable at low voltage utilizing switched operational amplifier
US7292095B2 (en) Notch filter for ripple reduction in chopper stabilized amplifiers
TWI382669B (en) Comparator for a pipelined analog to digital converter and related signal sampling method
TWI451692B (en) Pseudo differential switched capacitor circuit
CN103414442B (en) High accuracy fully-differential amplifier based on wave chopping technology
TWI695580B (en) Switched-capacitor input circuit, switched-capacitor amplifier, and switched-capacitor voltage comparator
US10911004B2 (en) Sampled moving average notch filter for ripple reduction in chopper stabilized operational amplifiers
Lee et al. A 10-bit 400-MS/s 160-mW 0.13-/spl mu/m CMOS dual-channel pipeline ADC without channel mismatch calibration
TW201019591A (en) Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits
Wang et al. A micropower delta-sigma modulator based on a self-biased super inverter for neural recording systems
CN103259493A (en) Method for realizing low power consumption switch amplifying circuit by utilizing asymmetric capacitors
US20070120595A1 (en) Increasing the common mode range of a circuit
CN101753104B (en) Pseudo-differential motion switching capacitance circuit
TW200847631A (en) Circuit arrangement and method for limiting a signal voltage
TWI819565B (en) Signal amplifying circuit and signal processing system and analog-to-digital converting system comprising the same
US8941438B2 (en) Bandwidth limiting for amplifiers
JP2024518859A (en) Single-ended differential conversion microphone circuit and electronic device
Lee et al. Two 1-V fully differential CMOS switched-capacitor amplifiers
CN111969963B (en) Pre-amplifier
CN116260467A (en) Modulator for high-precision low-power consumption A/D converter
Venkatram et al. Parallel gain enhancement technique for switched-capacitor circuits
Yoshida et al. A 1 V low-noise CMOS amplifier using autozeroing and chopper stabilization technique