TW201019195A - Proximity sensing apparatus and method therefor - Google Patents

Proximity sensing apparatus and method therefor Download PDF

Info

Publication number
TW201019195A
TW201019195A TW97143422A TW97143422A TW201019195A TW 201019195 A TW201019195 A TW 201019195A TW 97143422 A TW97143422 A TW 97143422A TW 97143422 A TW97143422 A TW 97143422A TW 201019195 A TW201019195 A TW 201019195A
Authority
TW
Taiwan
Prior art keywords
signal
capacitive sensor
capacitive
test
response
Prior art date
Application number
TW97143422A
Other languages
Chinese (zh)
Inventor
Jei-Jung Shen
Wei-Jen Cheng
Original Assignee
Mosart Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mosart Semiconductor Corp filed Critical Mosart Semiconductor Corp
Priority to TW97143422A priority Critical patent/TW201019195A/en
Publication of TW201019195A publication Critical patent/TW201019195A/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Abstract

A capacitive touch sensing apparatus comprises a signal generator and a signal processor. The signal generator can provide at least one test signal for a capacitive sensor, thereby the capacitive sensor responses at least one response signal. The signal processor can analyze the change of the electrical field of the response signal according to the response signal.

Description

201019195 九、發明說明·· 【發明所屬之技術領域】 . 本發明是有關於一種感測裝置,且特別是一種電容式 觸控裝置。 【先前技術】 觸控螢幕的應用非常廣泛,例如自動櫃員機、銷售點 終端機、工業控制系統等。由於這種介面使用方便、經久 • 耐用’而且花費不高,因此市場還在持續成長中。 觸控螢幕可依其偵測觸控點的物理原理,分為三種: 電阻式螢幕、電容式螢幕以及波動式螢幕。電阻式螢幕, 用手指或其他觸頭輕按就會產生電壓。電容式螢幕,手指 會吸取微小的電流(常用於筆記型電腦的觸控板至於第 二種波動式螢幕,則是用聲波或紅外線覆蓋整個表面,而 手指或觸頭會阻斷這些駐波圖樣。 電容式觸控產品具防塵、防火、防刮、強固耐用及具 % 有高解析度等優點,深受消費者喜愛。目前市場上所見的 電容式觸控產品’其感應方式均採用充放電的時間或變異 來偵測電容量變化,但是對於鄰近感測的微小變化無法判 別。換言之’在帶電體不觸及電容式觸控產品之狀態下, 一般的電容式觸控產品無法作出感應。 有鑑於此’業界無不殷殷期盼一種新的電容式觸控裝 置,可用來感測更低的感應電容甚至隔空感應帶電體。 【發明内容】 201019195 本發明的目的就是提供一種電容式觸控裝置,可達到 隔空感應帶電體之效果。 〇依照本發明一實施例,一種電容式觸控裝置,包含信 號產生器與信號處理器。信號產生器可提供至少一測試訊 號給一電容感應器,使得電容感應器在接收到測試訊號之 後,回應至少一回應訊號。信號處理器可根據回應訊號, 解析電容感應器之電場變化。 如此,根據電容耦合之效應,當帶電體接近電容感應 φ 器時,會造成電容感應器之電場變化。本實施例之鄰近感 測裝置可用來分析電容感應器之電場變化,藉以感知帶電 體接近電容感應器之信息。 本發明的另一目的就是提供一種電容式觸控方法,可 感測到更低的感應電容甚至達到隔空感應帶電體之效果。 依照本發明另一實施例,一種電容式觸控方法,包含 下列步驟: (1)提供至少一測試訊號給一電容感應器,使得電容 Φ 感應器在接收到測試訊號之後,回應至少一回應訊號;以 及 (2)根據回應訊號,解析電容感應器之電場變化。 如此’根據電容耦合之效應,當帶電體接近電容感應 器時’會造成電容感應器之電場變化。本實施例之鄰近感 測方法可用來分析電容感應器之電場變化,藉以感知帶電 體接近電容感應器之信息。 以下將以各種實施例,對上述之說明以及接下來的實 施方式做詳細的描述,並對本發明進行更進一步的解釋。 201019195 【實施方式】 為了使本發明之敘述更加詳盡與完備’可參照所附圖 式及以下所述各種實施例,圖式中相同之號碼代表相同或 相似之元件。另一方面,眾所週知的元件與步驟並未描述 於實施例中,以避免造成本發明不必要的限制。 本發明之技術態樣是一種電容式觸控裝置,其可應用 在電容式觸控螢幕,或是廣泛地運用在觸控之技術環節。 值得一提的是,本技術態樣之觸控裝置可感測到更低的感 應電容甚至達到隔空感應帶電體之效果。以下將搭配第1 圖一第2圖來說明觸控裝置之具體實施方式。 請參照第1圖,第1圖是依照本發明一實施例的一種 電容式觸控裝置100的功能方塊圖。如圖所示,鄰近感測 裝置100包含信號產生器110與信號處理器120。 於本實施例中,信號產生器110可提供至少一測試訊 號給電容感應器190,使得電容感應器190在接收到測試訊 號之後,回應至少一回應訊號。信號處理器120可根據回 應訊號,解析電容感應器190之電場變化。 如此,根據電容耦合之效應,當帶電體(例如手指) 接近電容感應器190時,會造成電容感應器190之電場變 化。電容式觸控裝置100可用來分析電容感應器190之電 場變化’藉以感知帶電體接近電容感應器19〇之信息。 在電容式觸控裝置100之初始狀態,可對於電容感應 器190做「觸發電壓」掃瞄》為了對於掃瞄觸發電壓作更 進一步的描述,請繼續參照第1圖。如圖所示,電容式觸 7 201019195 控裝置100還可包含計數器130、偵測器14〇、調節器15〇 與設定器160。 於本實施例中,計數器13〇可統計測試訊號之數量。 j貞測益140可债測回應訊號之數量。調節器15〇可當回應 訊號之數量4於測试訊號之數量時,降低測試訊號之電 壓。設定器160可當回應訊號之數量小於測試訊號之數量 時,將測試訊號之電壓預設為觸發電壓。 決定觸發電壓之後’即可週期性地或不定時地對電容 感應器190做偵測的動作。若對電容感應器19〇發送多個 脈波,作為多個測試訊號。根據電容耗合之效應,若帶電 體接近電容感應器190時’帶電體與電容感應器19〇之間 會產生耦合電容。造成電容感應器190之電場變化,進而 改變電容感應器190充放電觸發次數。使得電容感應器19〇 根據多個測試訊號所回應之多個回應訊號中,某些回應訊 號之電壓降低。而且,由於電容量與距離成反比,因此, 當帶電體愈接近電容感應器190時,帶電體與電容感應器 190之間的耦合電容愈顯著,造成愈多的回應訊號其電壓降 低0 有鑑於此’請繼續參照第1圖。如圖所示,信號產生 器110可包含脈波寬度調變模組112。另外,信號處理器 120可包含偵測模組121、計算模組122與數量解析模組 123 〇 於本實施例中,波寬度調變模組112可產生至少一脈 波’作為測試訊號,其中測試訊號之電壓高於觸發電壓。 接著’電容感應器190在接收到測試訊號之後,回應至少 201019195 一回應訊號。接著,偵測模組121可在回應訊號中,偵測 電壓咼於觸發電壓者,作為取樣訊號。計算模組122可統 計取樣訊號之數量。數量解析模組123可根據取樣訊號之 數量,解析電容感應器190之電場變化。 如此’波寬度調變模組112可對電容感應器190發送 多個脈波’作為多個測試訊號。若帶電體愈接近電容感應 器190時,計算模組122所統計之取樣訊號之數量愈少。 數量解析模組123即可根據取樣訊號之數量的多寡,分析 帶電體與電容感應器190之間的距離。 另外’波寬度調變模組112所產生之脈波,其電壓應 高於觸發電壓。而且’脈波之電壓愈接近觸發電壓,則電 容式觸控裝置100的靈敏度愈高。換言之,若脈波之電壓 略高於觸發電壓,當帶電體接近電容感應器190時,電容 感應器190所釋放之回應訊號之電壓愈容易低於觸發電 壓。因此’計算模組122所統計之取樣訊號之數量明顯地 下降。數量解析模組123即可根據取樣訊號之數量的多募, 解析電容感應器190之電場變化。 請參照第2圖,第2圖是依照本發明另一實施例的一 種電容式觸控裝置200的功能方塊圖。如圖所示,電容式 觸控裝置200包含信號產生器210與信號處理器22〇。 於本實施例中,信號產生器210可提供至少一測試訊 號給電容感應器190,使得電容感應器190在接收到測試訊 號之後,回應至少一回應訊號。信號處理器220可根據回 應訊號,解析電容感應器190之電場變化。 如此,根據電容耦合之效應’當帶電體(例如手指) 201019195 接近電容感應器190時,會造成電容感應器190之電場變 化。電容式觸控裝置200可用來分析電容感應器190之電 場變化’藉以獲得帶有靜電的物體接近電容感應器190之 信息。 若對電容感應器190發送弦波,作為測試訊號。根據 電容輕合之效應,當帶電體接近電容感應器190時,帶電 體與電容感應器190之間會產生耦合電容。造成電容感應 器190之電場變化,進而改變電容感應器19〇充放電觸發 次數。使得電容感應器190釋放之回應訊號之強度降低。 而且’由於電容量與距離成反比’因此,當帶電體愈接近 電谷感應器190時,帶電體與電容感應器19〇之間的搞合 電容愈顯著’造成回應訊號之強度愈低。 有鑑於此,請繼續參照第2圖。如圖所示,信號產生 器210可包含弦波調變模組212。另外,信號處理器22〇 可包含強度量測模組222與強度解析模組224。 於本實施例中,弦波調變模組212可產生弦波,作為 測試訊號。接著,強度量測模組222可量測回應訊號之強 度。強度解析模組224可根據回應訊號之強度,解析電容 感應器之電場變化。 如此,電容式觸控裝置200可根據回應訊號之強度高 低’分析帶電體與電容感應器之間的距離。 另一方面,若對電容感應器190發送弦波,作為測試 訊號。根據電容輕合之效應,當帶電體接近電容感應器19〇 時,帶電體與電容感應H 190之間會產生耦合電容。造成 電容感應胃190之電場變化,進而改變電容感應器19〇充 201019195 放電觸發次數。使得電容感應器19〇釋放之回應訊號之頻 率改變。而且,由於電容量與距離成反比,因此,當帶電 體愈接近電容感應器190時,帶電體與電容感應器19〇之 間的麵合電容愈顯著’造成回應訊號之頻率改變愈大。 有鑑於此,請繼續參照第2圖。如圖所示,信號處理 器220可包含頻率量測模組226與頻率解析模組228。 於本實施例中’弦波調變模組212可產生弦波,作為 測試訊號。接著,頻率量測模組226可量測回應訊號之頻 率。頻率解析模組228可根據回應訊號之頻率,解析電容 感應器之電場變化。 如此,電容式觸控裝置200可根據回應訊號之頻率變 化’分析帶電體與電容感應器之間的距離。 本發明之技術態樣是一種鄰近感測方法,其可應用在 電容式觸控螢幕’或是廣泛地運用在觸控之技術環節。值 得長·的疋’本技術態樣之觸控方法可達到隔空感應帶電 體之目的。以下將搭配第3圖一第5圖來說明觸控裝置之 具想實施方式。 請參照第3圖’第3圖是依照本發明一實施例的一種 電谷式觸控方法300的一流程圖。如圖所示’電容式觸控 方法300包含下列步驟310_步驟320 (應瞭解到,在本實 施例中所提及的步驟,除特別敘明其順序者外,均可依實 際需要調整其前後順序,甚至可同時或部分同時執行)。 步驟310 :提供至少一測試訊號給一電容感應器,使得 電容感應器在接收到測試訊號之後,回應至少一回應訊號。 步驟320:根據回應訊號,解析電容感應器之電場變化。 11 201019195 如此,根據電容耦合之效應,當帶電體(例如手指) 接近電容感應器時’會造成電容感應器之電場變化。電容 式觸控方法300可用來分析電容感應器之電場變化,藉以 感知帶電體接近電容感應器之信息。 在初始狀態,電容式觸控方法300可對於電容感應器 190做「觸發電壓」掃瞄。為了對於掃瞄觸發電壓作更進一 步的描述,請參照第4圖。第4圖是依照本發明—實施例 的一種電容式觸控方法300的另一流程圖。如圖所示,電 谷式觸控方法300包含下列步驟330—步驟360。 步驟330 :統計測試訊號之數量。 步驟340 :偵測回應訊號之數量。 步驟345:判斷回應訊號之數量是否等於測試訊號之數 量。 步驟350.當回應訊號之數量等於測試訊號之數量時, 降低測試訊號之電壓。 步驟360 ·當回應訊號之數量小於測試訊號之數量時, 將測試訊號之電壓預設為觸發電壓。 決定觸發電壓之後,即可週期性地或不定時地對電容 感應器做偵測的動作。即可週期性地或不定時地對電容感 的動作。若對電容感應器發送多個脈波,作為 夕個測試訊號。根據電容耦合之效應,若帶電體接近電容 感應器時’帶電體與電容感應器之間會產生耦合電容。造 成電容感應器之電場變化,進而改變電容感應器充放電之 觸發次數。使得電容隸H根據多_試減所回應之多 個回應訊號中,某些回應訊號之電壓降低。而且,由於電 12 201019195 容量與距離成反比’因此,當帶電體愈接近電容感應器時, 帶電體與電容感應器之間的耦合電容愈顯著,造成愈多的 回應訊號其電壓降低。 有鑑於此,請繼續參照第4圖。如圖所示,步驟310 可包含子步驟410。另外’步驟320可包含子步驟420、子 步驟430與子步驟440。 子步驟410 :產生至少一脈波,作為測試訊號,其中測 試訊號之電壓高於觸發電壓。 ❿ 子步驟420 :在回應訊號中,偵測電壓高於觸發電壓 者’作為取樣訊號。 子步驟430 :統計取樣訊號之數量。 子步驟440:根據取樣訊號之數量,解析電容感應器之 電場變化。 如此’在子步驟410中,可對電容感應器發送多個脈 波’作為多個測試訊號。若帶電體愈接近電容感應器時, 在子步驟430中所統計之取樣訊號之數量愈少。接著,在 φ 子步驟440中,即可根據取樣訊號之數量的多寡,分析帶 電體與電容感應器之間的距離。 另外’在子步驟410中所產生之脈波,其電壓應高於 觸發電壓。而且,脈波之電壓愈接近觸發電壓,則電容式 觸控方法300的靈敏度愈高。換言之,若脈波之電壓略高 於觸發電壓,當帶電體接近電容感應器時,電容感應器所 釋放之回應訊號之電壓愈容易低於觸發電壓。因此,在子 步驟430中所統計之取樣訊號之數量明顯地下降。接著, 在子步驟440中’即可根據取樣訊號之數量的多寡,解析 13 201019195 電容感應器之電場變化。 若對電容感應器發送弦波,作為測試訊號。根據電容 耦合之效應,當帶電體接近電容感應器時,帶電體與電容 感應器之間會產生耗合電容。造成電容感應器之電場變 化,進而改變電容感應器充放電觸發次數。使得電容感應 器釋放之回應訊破之強度降低。而且’由於電容量與距離 成反比’因此’當帶電體愈接近電容感應器時,帶電體與201019195 IX. INSTRUCTIONS · TECHNICAL FIELD OF THE INVENTION The present invention relates to a sensing device, and more particularly to a capacitive touch device. [Prior Art] Touch screens are widely used, such as ATMs, point-of-sale terminals, industrial control systems, and the like. The market continues to grow due to its ease of use, durability, durability, and low cost. The touch screen can be divided into three types according to the physical principle of detecting touch points: a resistive screen, a capacitive screen, and a wave screen. Resistive screens, which are lightly pressed with your fingers or other contacts. Capacitive screen, the finger will absorb a small amount of current (usually used in the touchpad of a notebook computer. The second type of wave screen covers the entire surface with sound waves or infrared rays, and the fingers or contacts block these standing wave patterns. Capacitive touch products are popular with consumers due to their advantages of dustproof, fireproof, scratch-resistant, strong and durable, and high resolution. The capacitive touch products currently on the market use charge and discharge. Time or variation to detect changes in capacitance, but for small changes in proximity sensing cannot be discerned. In other words, in the state where the charged body does not touch the capacitive touch product, the general capacitive touch product cannot be sensed. In view of the fact that the industry is eagerly awaiting a new capacitive touch device, it can be used to sense lower sensing capacitance or even insulate the charged body. SUMMARY OF THE INVENTION 201019195 The object of the present invention is to provide a capacitive touch The device can achieve the effect of the space-sensing charged body. According to an embodiment of the invention, a capacitive touch device includes a signal The signal generator can provide at least one test signal to a capacitive sensor, so that the capacitive sensor responds to the at least one response signal after receiving the test signal. The signal processor can analyze the capacitive sensing according to the response signal. Therefore, according to the effect of capacitive coupling, when the charged body approaches the capacitive sensing φ device, the electric field of the capacitive sensor changes. The proximity sensing device of this embodiment can be used to analyze the electric field change of the capacitive sensor. In order to perceive the information that the charged body is close to the capacitive sensor. Another object of the present invention is to provide a capacitive touch sensing method, which can sense a lower sensing capacitance or even an effect of the space-inductive charged body. For example, a capacitive touch method includes the following steps: (1) providing at least one test signal to a capacitive sensor, so that the capacitance Φ sensor responds to at least one response signal after receiving the test signal; and (2) According to the response signal, the electric field change of the capacitive sensor is analyzed. The effect, when the charged body is close to the capacitive sensor, will cause the electric field of the capacitive sensor to change. The proximity sensing method of this embodiment can be used to analyze the electric field change of the capacitive sensor, thereby sensing the information of the charged body approaching the capacitive sensor. The above description and the following embodiments will be described in detail with reference to the various embodiments, and the present invention is further explained. 201019195 [Embodiment] In order to make the description of the present invention more detailed and complete, The drawings and the various embodiments described below, like numerals represent the same or similar elements in the drawings. On the other hand, well-known elements and steps are not described in the embodiments to avoid unnecessary limitation of the present invention. The technical aspect of the present invention is a capacitive touch device, which can be applied to a capacitive touch screen or widely used in the technical aspect of touch. It is worth mentioning that the touch of the technical aspect is The device can sense a lower inductive capacitance or even an effect of a gap-inductive charged body. Hereinafter, a specific embodiment of the touch device will be described with reference to FIG. 1 and FIG. Please refer to FIG. 1. FIG. 1 is a functional block diagram of a capacitive touch device 100 according to an embodiment of the invention. As shown, proximity sensing device 100 includes signal generator 110 and signal processor 120. In this embodiment, the signal generator 110 can provide at least one test signal to the capacitance sensor 190, so that the capacitance sensor 190 responds to the at least one response signal after receiving the test signal. The signal processor 120 can resolve the electric field change of the capacitance sensor 190 according to the response signal. Thus, according to the effect of capacitive coupling, when a charged body (e.g., a finger) approaches the capacitive sensor 190, the electric field of the capacitive sensor 190 changes. The capacitive touch device 100 can be used to analyze the electric field change of the capacitive sensor 190 by sensing the proximity of the charged body to the capacitive sensor 19〇. In the initial state of the capacitive touch device 100, a "trigger voltage" scan can be performed on the capacitive sensor 190. To further describe the scan trigger voltage, please continue to refer to FIG. As shown, the capacitive touch device 7 201019195 can also include a counter 130, a detector 14A, a regulator 15A, and a setter 160. In this embodiment, the counter 13 can count the number of test signals. j贞Measurement 140 can measure the number of response signals. The regulator 15 can reduce the voltage of the test signal when the number of signals is 4 in the number of test signals. The setter 160 can preset the voltage of the test signal as the trigger voltage when the number of response signals is less than the number of test signals. After the trigger voltage is determined, the action of detecting the capacitive sensor 190 can be performed periodically or irregularly. If a plurality of pulse waves are transmitted to the capacitance sensor 19, it is used as a plurality of test signals. According to the effect of capacitance consumption, if the charged body approaches the capacitive sensor 190, a coupling capacitance is generated between the charged body and the capacitive sensor 19A. The electric field of the capacitive sensor 190 changes, thereby changing the number of times the capacitive sensor 190 is charged and discharged. The capacitance sensor 19 turns the voltage of some of the response signals in the plurality of response signals that are responded to by the plurality of test signals. Moreover, since the capacitance is inversely proportional to the distance, when the charged body is closer to the capacitance sensor 190, the coupling capacitance between the charged body and the capacitance sensor 190 becomes more pronounced, resulting in more response signals whose voltage is lowered by 0. Please continue to refer to Figure 1. As shown, signal generator 110 can include pulse width modulation module 112. In addition, the signal processor 120 can include a detection module 121, a calculation module 122, and a quantity analysis module 123. In this embodiment, the wave width modulation module 112 can generate at least one pulse wave as a test signal, wherein The voltage of the test signal is higher than the trigger voltage. Then, the capacitance sensor 190 responds to at least the 201019195 response signal after receiving the test signal. Then, the detecting module 121 can detect, in the response signal, that the voltage is at the trigger voltage as a sampling signal. The calculation module 122 can count the number of sampled signals. The quantity analysis module 123 can analyze the electric field change of the capacitance sensor 190 according to the number of sampling signals. Thus, the 'wave width modulation module 112 can transmit a plurality of pulse waves' to the capacitance sensor 190 as a plurality of test signals. The closer the charged body is to the capacitive sensor 190, the less the number of sampled signals counted by the computing module 122. The quantity analysis module 123 can analyze the distance between the charged body and the capacitance sensor 190 according to the number of sampling signals. In addition, the pulse wave generated by the wave width modulation module 112 should have a voltage higher than the trigger voltage. Moreover, the closer the voltage of the pulse wave is to the trigger voltage, the higher the sensitivity of the capacitive touch device 100. In other words, if the voltage of the pulse wave is slightly higher than the trigger voltage, the voltage of the response signal released by the capacitance sensor 190 is lower than the trigger voltage when the charged body approaches the capacitance sensor 190. Therefore, the number of sampled signals counted by the computing module 122 is significantly reduced. The quantity analysis module 123 can analyze the electric field change of the capacitance sensor 190 according to the number of sampling signals. Referring to FIG. 2, FIG. 2 is a functional block diagram of a capacitive touch device 200 according to another embodiment of the present invention. As shown, the capacitive touch device 200 includes a signal generator 210 and a signal processor 22A. In this embodiment, the signal generator 210 can provide at least one test signal to the capacitance sensor 190, so that the capacitance sensor 190 responds to the at least one response signal after receiving the test signal. The signal processor 220 can resolve the electric field change of the capacitive sensor 190 based on the response signal. Thus, when the charged body (e.g., finger) 201019195 approaches the capacitive sensor 190 according to the effect of capacitive coupling, the electric field of the capacitive sensor 190 changes. The capacitive touch device 200 can be used to analyze the electric field change of the capacitive sensor 190 to obtain information about the electrostatically charged object approaching the capacitive sensor 190. If the sine wave is sent to the capacitance sensor 190, it is used as a test signal. According to the effect of the light-weight coupling, when the charged body approaches the capacitive sensor 190, a coupling capacitance is generated between the charged body and the capacitive sensor 190. This causes a change in the electric field of the capacitive sensor 190, which in turn changes the number of times the capacitive sensor 19 is charged and discharged. The intensity of the response signal released by the capacitive sensor 190 is reduced. Moreover, since the capacitance is inversely proportional to the distance, the closer the charged body is to the electric valley sensor 190, the more pronounced the capacitance between the charged body and the capacitive sensor 19 is, which results in a lower intensity of the response signal. In view of this, please continue to refer to Figure 2. As shown, signal generator 210 can include a sine wave modulation module 212. In addition, the signal processor 22A may include an intensity measurement module 222 and an intensity analysis module 224. In this embodiment, the sine wave modulation module 212 can generate a sine wave as a test signal. Then, the intensity measurement module 222 can measure the strength of the response signal. The intensity analysis module 224 can analyze the electric field change of the capacitance sensor according to the strength of the response signal. Thus, the capacitive touch device 200 can analyze the distance between the charged body and the capacitive sensor according to the intensity of the response signal. On the other hand, if the sine wave is transmitted to the capacitance sensor 190, it is used as a test signal. According to the effect of the light-weight coupling, when the charged body approaches the capacitive sensor 19〇, a coupling capacitor is generated between the charged body and the capacitive sensing H 190 . The capacitance induces a change in the electric field of the stomach 190, thereby changing the capacitance sensor 19 to charge the number of discharges of the 201019195 discharge. The frequency of the response signal that causes the capacitive sensor 19 to be released changes. Moreover, since the capacitance is inversely proportional to the distance, the closer the charged body is to the capacitive sensor 190, the more pronounced the capacitive capacitance between the charged body and the capacitive sensor 19', resulting in a greater change in the frequency of the response signal. In view of this, please continue to refer to Figure 2. As shown, the signal processor 220 can include a frequency measurement module 226 and a frequency resolution module 228. In the present embodiment, the sine wave modulation module 212 can generate a sine wave as a test signal. Then, the frequency measurement module 226 can measure the frequency of the response signal. The frequency analysis module 228 can resolve the electric field change of the capacitance sensor according to the frequency of the response signal. Thus, the capacitive touch device 200 can analyze the distance between the charged body and the capacitive sensor according to the frequency change of the response signal. The technical aspect of the present invention is a proximity sensing method, which can be applied to a capacitive touch screen or widely used in the touch technology. The touch method of the present invention can achieve the purpose of sensing the charged body by the space. The following is a description of the preferred implementation of the touch device with reference to Fig. 3 and Fig. 5. Referring to FIG. 3, FIG. 3 is a flow chart of an electric valley touch method 300 according to an embodiment of the invention. As shown in the figure, the capacitive touch method 300 includes the following steps 310_step 320 (it should be understood that the steps mentioned in this embodiment can be adjusted according to actual needs except for the order in which the sequence is specifically stated. The order is sequential, and can even be performed simultaneously or partially simultaneously). Step 310: Provide at least one test signal to a capacitive sensor, so that the capacitive sensor responds to the at least one response signal after receiving the test signal. Step 320: Analyze the electric field change of the capacitance sensor according to the response signal. 11 201019195 As such, depending on the effect of capacitive coupling, when a charged body (such as a finger) approaches the capacitive sensor, the electric field of the capacitive sensor changes. The capacitive touch method 300 can be used to analyze the electric field change of the capacitive sensor to sense the proximity of the charged body to the capacitive sensor. In the initial state, the capacitive touch method 300 can perform a "trigger voltage" scan on the capacitive sensor 190. For a more detailed description of the scan trigger voltage, please refer to Figure 4. FIG. 4 is another flow diagram of a capacitive touch method 300 in accordance with an embodiment of the present invention. As shown, the touch screen method 300 includes the following steps 330 - 360. Step 330: Count the number of test signals. Step 340: Detect the number of response signals. Step 345: Determine whether the number of response signals is equal to the number of test signals. Step 350. When the number of response signals is equal to the number of test signals, reduce the voltage of the test signal. Step 360: When the number of response signals is less than the number of test signals, the voltage of the test signal is preset as the trigger voltage. After the trigger voltage is determined, the capacitive sensor can be detected periodically or irregularly. The action of the capacitive sense can be performed periodically or irregularly. If multiple pulse waves are sent to the capacitive sensor, it is used as a test signal. According to the effect of capacitive coupling, if the charged body is close to the capacitive sensor, a coupling capacitor is generated between the charged body and the capacitive sensor. The electric field of the capacitive sensor changes, which in turn changes the number of times the capacitive sensor is charged and discharged. The voltage of the response signal is lowered in the plurality of response signals that the capacitor H is responding to according to the multi-test reduction. Moreover, since the capacity of the power supply 12 201019195 is inversely proportional to the distance, the closer the charged body is to the capacitive sensor, the more significant the coupling capacitance between the charged body and the capacitive sensor, resulting in more voltage response to the response signal. In view of this, please continue to refer to Figure 4. As shown, step 310 can include sub-step 410. Additionally, step 320 can include sub-step 420, sub-step 430, and sub-step 440. Sub-step 410: Generate at least one pulse as a test signal, wherein the voltage of the test signal is higher than the trigger voltage. ❿ Sub-step 420: In the response signal, the detection voltage is higher than the trigger voltage as the sampling signal. Sub-step 430: Count the number of sampled signals. Sub-step 440: Resolving the electric field change of the capacitive sensor based on the number of sampled signals. Thus, in sub-step 410, a plurality of pulses can be transmitted to the capacitive sensor as multiple test signals. The closer the charged body is to the capacitive sensor, the less the number of sampled signals counted in sub-step 430. Next, in the φ sub-step 440, the distance between the charged body and the capacitive sensor can be analyzed based on the number of sampled signals. In addition, the pulse generated in sub-step 410 should have a voltage higher than the trigger voltage. Moreover, the closer the voltage of the pulse wave is to the trigger voltage, the higher the sensitivity of the capacitive touch method 300. In other words, if the voltage of the pulse wave is slightly higher than the trigger voltage, the voltage of the response signal released by the capacitance sensor is lower than the trigger voltage when the charged body approaches the capacitance sensor. Therefore, the number of sampled signals counted in sub-step 430 is significantly reduced. Then, in sub-step 440, the electric field change of the capacitor sensor of 201019195 can be analyzed according to the number of sampling signals. If a sine wave is sent to the capacitive sensor, it is used as a test signal. According to the effect of capacitive coupling, when the charged body approaches the capacitive sensor, a capacitive capacitance is generated between the charged body and the capacitive sensor. This causes the electric field of the capacitive sensor to change, which in turn changes the number of charge and discharge triggers of the capacitive sensor. This reduces the strength of the response of the capacitive sensor release. And 'because the capacitance is inversely proportional to the distance', so when the charged body is closer to the capacitive sensor, the charged body

電容感應器之間的耦合電容愈顯著,造成回應訊號之強度 愈低。 有鑑於此,請參照第5圖,第5圖是依照本發明一實 施例的一種電容式觸控方法300的再一流程圖。如圖所示, 步驟310可包含子步驟51〇。另外,步驟32〇可包含子步驟 520與子步驟530。 子步驟5 10 :產生弦波,作為測試訊號。 子步驟520 :量測回應訊號之強度。 子步驟530:根據回應訊號之強度,解析電容感應器之 電場變化。 如此,可根據回應訊號之強度高低,分析帶電艘與電 容感應器之間的距離。 另一方面,若對電容感應器發送弦波,作為測試訊號。 根據電容耦合之效應,當帶電體接近電容感應器時,帶電 體與電容感應器之間會產线合電I造成電容感應器之 電場變化,進而改變電容感應器充放電觸發次數。使得電 容感應器釋放之回應訊號之頻率改變。而且,由於電容量 與距離成反比,因此,當帶電體愈接近電容感應器時,帶 201019195 電體與電容感應器之間的耦合電容愈顯著,造成回應訊號 之頻率改變愈大。 有鑑於此,請繼續參照第5圖。如圖所示,步驟32〇 還包含子步驟540與子步驟550。 子步驟540 :量測回應訊號之頻率。 子步驟550:根據回應訊號之頻率,解析電容感應器之 電場變化。 如此,可根據回應訊號之頻率變化,分析帶電體與電 容感應器之間的距離。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖是依照本發明一實施例的一種鄰近感測裝置的 功能方塊圖。 第2圖是依照本發明另一實施例的一種鄰近感測裝置 的功能方塊圖。 第3圖是依照本發明一實施例的一種鄰近感測方法的 一流程圖。 第4圖是依照本發明一實施例的一種鄰近感測方法的 另一流程圖。 第5圖是依照本發明一實施例的一種鄰近感測方法的 再一流程圖。 15 201019195The more pronounced the coupling capacitance between the capacitive sensors, the lower the strength of the response signal. In view of the above, please refer to FIG. 5, which is still another flowchart of a capacitive touch method 300 according to an embodiment of the invention. As shown, step 310 can include sub-step 51. Additionally, step 32A can include sub-step 520 and sub-step 530. Sub-step 5 10: A sine wave is generated as a test signal. Sub-step 520: Measure the strength of the response signal. Sub-step 530: Analyze the electric field change of the capacitive sensor according to the strength of the response signal. In this way, the distance between the charged ship and the capacitance sensor can be analyzed according to the strength of the response signal. On the other hand, if a sine wave is sent to the capacitive sensor, it is used as a test signal. According to the effect of capacitive coupling, when the charged body approaches the capacitive sensor, the electric current between the charged body and the capacitive sensor causes the electric field of the capacitive sensor to change, thereby changing the number of times the capacitive sensor is charged and discharged. The frequency of the response signal released by the capacitance sensor is changed. Moreover, since the capacitance is inversely proportional to the distance, the closer the charged body is to the capacitive sensor, the more pronounced the coupling capacitance between the 201019195 electrical body and the capacitive sensor, resulting in a greater change in the frequency of the response signal. In view of this, please continue to refer to Figure 5. As shown, step 32A also includes sub-step 540 and sub-step 550. Sub-step 540: Measure the frequency of the response signal. Sub-step 550: Resolving the electric field change of the capacitive sensor according to the frequency of the response signal. In this way, the distance between the charged body and the capacitance sensor can be analyzed according to the frequency change of the response signal. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a functional block diagram of a proximity sensing device in accordance with an embodiment of the present invention. Fig. 2 is a functional block diagram of a proximity sensing device in accordance with another embodiment of the present invention. Figure 3 is a flow chart of a proximity sensing method in accordance with an embodiment of the present invention. Fig. 4 is another flow chart of a proximity sensing method in accordance with an embodiment of the present invention. Figure 5 is a flow chart of a proximity sensing method in accordance with an embodiment of the present invention. 15 201019195

【主要元件符號說明】 100 : 電容式觸控裝置 110 : 信號產生器 112 : 脈波寬度調變模組 120 : 信號處理器 121 : 偵測模組 122 : 計算模組 123 : 數量解析模組 130 : 計數器 140 : 偵測器 150 : 調節器 160 : 設定器 190 : 電容感應器 200 : 電容式觸控裝置 210 : 信號產生器 212 : 弦波調變模組 220 : 信號處理器 222 : 強度量測模組 224 : 強度解析模組 226 : 頻率量測模組 228 : 頻率解析模組 300 : 電容式觸控方法 310 — -360 :步驟 410- -440 :子步驟 510- -550 :子步驟[Main component symbol description] 100 : Capacitive touch device 110 : Signal generator 112 : Pulse width modulation module 120 : Signal processor 121 : Detection module 122 : Calculation module 123 : Quantity analysis module 130 : Counter 140 : Detector 150 : Regulator 160 : Setter 190 : Capacitive sensor 200 : Capacitive touch device 210 : Signal generator 212 : Sine wave modulation module 220 : Signal processor 222 : Intensity measurement Module 224: strength analysis module 226: frequency measurement module 228: frequency analysis module 300: capacitive touch method 310 - -360: step 410 - -440: sub-step 510--550: sub-step

Claims (1)

201019195 十、申請專利範圍: 1. 一種電容式觸控裝置,包含: 一信號產生器,用以提供至少一測試訊號給一電容感 應器,使得該電容感應器在接收到該測試訊號之後,回應 至少一回應訊號;以及 一信號處理器,用以根據該回應訊號,解析該電容感 應器之電場變化。 2. 如請求項1所述之電容式觸控裝置,更包含: 一計數器,用以統計該測試訊號之數量; 一偵測器,用以偵測該回應訊號之數量; 一調節器,用以當該回應訊號之數量等於該測試訊銳 之數量時,降低該測試訊號之電壓;以及 一設定器,用以當該回應訊號之數量小於該測試訊就 之數量時,將該測試訊號之電壓預設為一觸發電壓。 3·如請求項2所述之電容式觸控裝置,其中該信號產 生器包含: 一脈波寬度調變模組,用以產生至少一脈波’作為該 測試訊號,其中該測試訊號之電壓高於該觸發電壓》 4.如請求項3所述之電容式觸控裝置,其中該信號處 理器包含: 17 201019195 一偵測模級,用以在該回應訊號中’偵測電壓高於該 觸發電壓者’作為一取樣訊號; 一計算模級,用以統計該取樣訊號之數量;以及 一數量解析模組,用以根據該取樣訊號之數量,解析 該電谷感應之電場變化。 5. 如請求項1所述之電容式觸控裝置’其中該信號產 生器包含: 一弦波調變模組,用以產生一弦波’作為該測試訊號。 6. 如請求項5所述之電容式觸控裝置,其中該信號處 理器包含: 一強度量測模組,用以量測該回應訊號之強度;以及 一強度解析模組,用以根據該回應訊號之強度,解析 該電容感應器之電場變化。201019195 X. Patent application scope: 1. A capacitive touch device comprising: a signal generator for providing at least one test signal to a capacitive sensor, such that the capacitive sensor responds after receiving the test signal At least one response signal; and a signal processor for analyzing the electric field change of the capacitance sensor according to the response signal. 2. The capacitive touch device of claim 1, further comprising: a counter for counting the number of the test signals; a detector for detecting the number of the response signals; and a regulator for Decreasing the voltage of the test signal when the number of the response signal is equal to the number of the test signal sharps; and a setting device for using the test signal when the number of the response signals is less than the number of the test signals The voltage is preset to a trigger voltage. The capacitive touch device of claim 2, wherein the signal generator comprises: a pulse width modulation module for generating at least one pulse wave as the test signal, wherein the voltage of the test signal 4. The capacitive touch device of claim 3, wherein the signal processor comprises: 17 201019195 a detection mode for detecting a voltage higher than the detection signal The trigger voltage is used as a sample signal; a calculation mode is used to count the number of the sample signals; and a quantity analysis module is configured to analyze the electric field change induced by the electricity valley according to the number of the sample signals. 5. The capacitive touch device of claim 1, wherein the signal generator comprises: a sine wave modulation module for generating a sine wave as the test signal. 6. The capacitive touch device of claim 5, wherein the signal processor comprises: an intensity measurement module for measuring the intensity of the response signal; and an intensity analysis module for Respond to the strength of the signal and resolve the electric field change of the capacitive sensor. 7.如請求項5所述之電容式觸控裝置,其中該信號處 理器包含: 一頻率量測模組,用以量測該回應訊號之頻率;以及 一頻率解析模組’用以根據該回應訊號之頻率,解析 該電容感應器之電場變化。 8_ —種電容式觸控方法’包含: 提供至少一測試訊號給一電容感應器,使得該電容感 應器在接收到該測試訊號之後,回應至少一回應訊號;以 18 201019195 及 根據該回應訊號’解析該電容感應器之電場變化。 9·如請求項8所述之電容式觸控方法,更包含: 統計該測試訊號之數量; 偵測該回應訊號之數量; 當該回應訊號之數量等於該測試訊號之數量時,降低 該測試訊號之電壓;以及 _ 當該回應訊號之數量小於該測試訊號之數量時,將該 測試訊號之電壓預設為一觸發電壓。 10.如請求項9所述之電容式觸控方法,其中提供該 測試訊號給該電容感應器,包含: 產生至少一脈波,作為該測試訊號,其中該測試訊號 之電壓高於該觸發電壓。 φ 11.如請求項9所述之電容式觸控方法,其中根據該 回應訊號,解析該電容感應器之電場變化,包含: 在該回應訊號中,偵測電壓高於該觸發電壓者,作為 一取樣訊號, 統計該取樣訊號之數量·,以及 根據該取樣訊號之數量’解析該電容感應器之電場變 化0 12.如請求項8所述之電容式觸控方法,其中提供該 201019195 測試訊號給該電容感應器,包含: 產生一弦波’作為該測試訊號。 13. 如請求項12所述之電容式觸控方法,其中根據該 回應訊號,解析該電容感應器之電場變化,包含: X 量測該回應訊號之強度;以及 根據該回應訊號之強度,解析該電容感應器之電場變 化。 14. 如請求項12所述之電容式觸控方法,其中根據該 回應訊號’解析該電容感應器之電場變化,包含: 量測該回應訊號之頻率;以及 根據該回應訊號之頻率,解析該電容感應器之電場變 化0 ❿ 207. The capacitive touch device of claim 5, wherein the signal processor comprises: a frequency measurement module for measuring a frequency of the response signal; and a frequency analysis module 'for Responding to the frequency of the signal, analyzing the electric field change of the capacitive sensor. 8_ a capacitive touch method includes: providing at least one test signal to a capacitive sensor, such that the capacitive sensor responds to at least one response signal after receiving the test signal; to 18 201019195 and according to the response signal Analyze the electric field change of the capacitive sensor. The capacitive touch method of claim 8, further comprising: counting the number of the test signals; detecting the number of the response signals; and reducing the test when the number of the response signals is equal to the number of the test signals The voltage of the signal; and _ when the number of the response signals is less than the number of the test signals, the voltage of the test signal is preset to a trigger voltage. 10. The capacitive touch method of claim 9, wherein the providing the test signal to the capacitive sensor comprises: generating at least one pulse as the test signal, wherein the voltage of the test signal is higher than the trigger voltage . The capacitive touch method of claim 9, wherein the electric field change of the capacitive sensor is analyzed according to the response signal, comprising: detecting, in the response signal, a voltage higher than the trigger voltage, as a sampling signal, counting the number of the sampling signals, and analyzing the electric field change of the capacitive sensor according to the number of the sampling signals. 12. The capacitive touch method according to claim 8, wherein the 201019195 test signal is provided. The capacitive sensor includes: generating a sine wave 'as the test signal. 13. The capacitive touch method of claim 12, wherein the electric field change of the capacitive sensor is analyzed according to the response signal, comprising: X measuring the intensity of the response signal; and analyzing according to the strength of the response signal The electric field of the capacitive sensor changes. 14. The capacitive touch method of claim 12, wherein the analyzing the electric field change of the capacitive sensor according to the response signal comprises: measuring a frequency of the response signal; and parsing the frequency according to the response signal The electric field change of the capacitive sensor is 0 ❿ 20
TW97143422A 2008-11-10 2008-11-10 Proximity sensing apparatus and method therefor TW201019195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143422A TW201019195A (en) 2008-11-10 2008-11-10 Proximity sensing apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143422A TW201019195A (en) 2008-11-10 2008-11-10 Proximity sensing apparatus and method therefor

Publications (1)

Publication Number Publication Date
TW201019195A true TW201019195A (en) 2010-05-16

Family

ID=44831643

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143422A TW201019195A (en) 2008-11-10 2008-11-10 Proximity sensing apparatus and method therefor

Country Status (1)

Country Link
TW (1) TW201019195A (en)

Similar Documents

Publication Publication Date Title
EP2486475B1 (en) Multi-touch touch device with multiple drive frequencies and maximum likelihood estimation
CN102043508B (en) Method and device for signal detection
GB2574588A (en) Pressure sensing apparatus and method
US7714848B2 (en) Touch sensing apparatus
CN103389805A (en) Coordinate indicating apparatus and coordinate measurement apparatus for measuring input position of coordinate indicating apparatus
JP5122560B2 (en) Fingertip touch recognition for digitizers
CN108733246A (en) Physiology detection apparatus and its operating method
WO2008058047A1 (en) Touch location sensing system and method employing sensor data fitting to a predefined curve
US9606670B2 (en) Real-time spectral noise monitoring for proximity sensing device
TW201044241A (en) Two-dimensional position sensor
EP2482173B1 (en) Minute impedance variation detection device
MX2007008732A (en) Touch detection method and system for a touch sensor.
DE602004027705D1 (en) TOUCH DETECTION FOR A DIGITIZER
JP6956056B2 (en) Ohm meter for sensor electrodes
CN102135828B (en) Method and device for signal detection
KR20170101478A (en) Touch system, touch sensing controller and stylus pen adapted thereto
TWI512569B (en) Touch sensitive control device and electronic apparatus and method thereof
CN112601966A (en) Capacitance detection circuit, touch detection device, and electronic apparatus
CN115454275A (en) Quality detection method and device of capacitive touch screen and computer equipment
CN105117078A (en) Systems and methods for capacitive touch detection
US7170301B1 (en) Touch sensing apparatus
TWI474245B (en) Touch control device, sensing circuit and sensing method thereof
CN103246397B (en) Touch control inducing method, touch-control sensing microprocessor and touch control liquid crystal display device
TW201019195A (en) Proximity sensing apparatus and method therefor
JP6203023B2 (en) Multi-touch tactile device with multi-frequency and centroid capacitance detection