TW201018728A - Excitation light source for inducing fluorescent signal - Google Patents

Excitation light source for inducing fluorescent signal Download PDF

Info

Publication number
TW201018728A
TW201018728A TW97143788A TW97143788A TW201018728A TW 201018728 A TW201018728 A TW 201018728A TW 97143788 A TW97143788 A TW 97143788A TW 97143788 A TW97143788 A TW 97143788A TW 201018728 A TW201018728 A TW 201018728A
Authority
TW
Taiwan
Prior art keywords
light source
exciting
fluorescent signal
excitation light
emitting diode
Prior art date
Application number
TW97143788A
Other languages
Chinese (zh)
Inventor
Jheng-Jhong Liou
Cheng Su
Original Assignee
Genereach Biotechnology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genereach Biotechnology Corp filed Critical Genereach Biotechnology Corp
Priority to TW97143788A priority Critical patent/TW201018728A/en
Publication of TW201018728A publication Critical patent/TW201018728A/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An excitation light source for exciting fluorescent signals comprises at least one light-emitting diode module. The excitation light is applied to processes and devices related to nucleic acid testing for inducing target nucleic acids that have been hybridized and fluorescence-labelled to express their optical signals (fluorescent signals).

Description

201018728 六、發明說明: 【發明所屬之技術領域】 本發明係關於螢光染劑之激發光源,更詳而言之,該激發光源係應用 在核酸檢測過程及設備中,使經由雜合作用而帶有螢光標記之目標核酸表 - 現其光學訊號(螢光訊號)。 【先前技術】 進行遺傳學、分子生物學等基因研究或動植物疫病之檢測時,需先以 擴增核酸的手段(例如聚合酶連鎖反應,p〇lymerase Chain Reaction, PCR) ’將少量的核酸樣本在短時間内複製擴增到可以被偵測到的量。上述 核酸擴增產物可進一步經由雜合作用(Hybridization)而使目標核酸片段與 帶有螢光 '放射物質或呈色酵素的核酸探針(probe)連結,產生螢光、放 射影像或呈色反應。目前在許多的生物晶片上採用螢光染劑做為標識物, 主要因為螢光染劑能夠提供較好的分析結果,若與傳統的呈色劑方法相 較,螢光染劑可提供高約1000倍至50萬倍的靈敏度。 可利用螢光顯微鏡技術(F丨uorescence Microscopy)、螢光分析儀、流 式細胞儀、或使用相機(Camera)或影像擷取裝置擷取螢光影像來觀察、偵 測及分析上述的螢光反應。這些技術都涉及到激發光源之選用,因為特定 的螢光染劑需要使用特定波長範圍的光來當作激發光源,當一個適當波長 的光照射具有螢光性質的分子時,分子會吸收光的能量而被激發至高能量 狀態,並在極短時間(ΙΟ-β-ΙΟ·4秒)内回復至低能量狀態,同時以放光的形式 將多餘能量釋出’因此必需依照螢光染劑的性選擇與之匹配的激發光源, 始能得到最佳染劑激發效果(Excitation)。 3 0 201018728 已知許多螢光染劑都使用較短波長的紫外光來當作激發光源,但是, 紫外光極易散射(high UV-scattering),且傳輸與穿透不易,所以必須使用特 別製作的光學元件,這使得檢測分析儀器之設備造價昂貴,但光源品質控 制仍不易達到理想的標準。此外,紫外光會沈降在樣品的表面層,對樣品 會造成熱傷害’而其輻射作用對核酸樣品亦有毒害作用,因此不適用於活 體細胞或長時間的檢測。 除了紫外光之外’高壓汞燈、高壓氙燈及雷射亦已應用為螢光之激發 〇 光源°高壓汞燈一般都用於綠色或藍色的螢光光譜範圍,高壓氙燈用於紫 色、綠色、藍色或一般可見光之光譜範圍。但此等燈泡式的激發光源的缺 點是光源都是全光譜分佈’每一波長的光源強度並非恆定不變,能量較低 : 且分佈不均’光源強度無法調整,螢光激發難以達到理想的控制,以致降 ^ 低檢測分析的正確率。而雷射與傳統激發光源相較,因具有波長純一、高 強度、高能量及同調性等特點,容易以透鏡聚焦,其單位面積上的強大能 量’能有效提高靈敏度’因此螢光激發的效能較佳,可有效提昇檢測分析 ❷的正埃率。但是’電射激發光源系統必需配合激發光濾鏡、分光鏡、釋放 光濾鏡等配置’設備造價高昂,且占據頗大的光學桌空間,以致於難以推 廣應用。 【發明内容】 本發明之主要目的係在提供一種用以激發螢光訊號之激發光源,該激 發光源具有以下特性: 該激發光源可經調整而產生各種特定波長,可用於大多數的螢光光譜 範圍,並達到最佳螢光激發效果。 4 201018728 該激發光源不會傷害核酸樣本。 該激發光源可使影像對比表現度提昇,增進螢光訊號分析結果之正率。 該激發光源適合長聘間的螢光影像觀察、擷取或分析。 該激發光源的使用壽命長,並可依照需要彈性組合出符合螢光光譜範 ' 圍之陣列光源。 本發明上述之激發光源係以發光二極髏(LED)實現,以複數個二極體光 源在同一平面上交錯陣列排列構成一發光二極體模組。該複數二極體光源 φ 為各種波長及光色之組合,並可依螢光光譜範圍調整控制該發光二極體模 組之光源強度'各等波長及各色照射光束為同時表現或獨立表現,以求達 到最佳螢光激發效果。 ' 【實施方式】 ; 為便於說明本案於上述發明内容一攔中所表示的中心思想,茲以具體 實施例表達。實施例中各種不同物件係按適於說明之比例、尺寸、變形量 或位移量而描繪’而非按實際元件的比例予以繪製,合先敘明。且以下的 Φ 說明中,類似的元件是以相同的編號來表示。 <硬艘設備〉 如第一囷’本發明用以激發螢光訊號之激發光源,包括: 至少一發光二極體模組10,該發光二極體模組10至少包括複數個二極 體光源11,該二極體光源11可為一種特定波長,較佳的是,該複數二極雜 光源11為各種波長。該複數二極體光源11之照射光束係選自白光、紅光、 藍光、綠光、紫光、黃光、橘紅光之擇一或其等之組合。該等二極體光源 11係在同一平面上交錯陣列排列。 5 201018728 一集光透鏡、或一具有集光效果的折射鏡、或一濾鏡可相對於該二極 體光源11的方向設置,用以增進光源強度、改變光源角度、或者是使特定 光波的光源通過。所述之濾鏡可為帶通(band path)渡鏡或長光程(丨0叩path) 濾鏡。 J 一控制單元30,用以控制該發光二極體模組之光源強度,及/或控制該 發光二極體模組之二極體光源之各等波長為同時表現或獨立表現,及/或控 制該發光二極體模組之二極體光源之各色照射光束為同時表現或獨立表 φ 現;該控制單元亦可選擇切換上述濾鏡以供特定光色通過之功能。 <應用> 已知利用核酸擴增手段而產生的核酸擴增產物可進一步經由雜合作用 . 而使目標核酸片段與帶有螢光、放射物質或呈色酵素的核酸探針(pr〇be) . 連結’產生螢光、放射影像或呈色反應。可利用螢光顯微鏡技術 (Fluorescence Microscopy卜螢光分析儀、流式細胞儀、或使用影像擷取 裝置擷取榮光影像來觀察、偵測及分析上述的螢光反應。本發明以發光二 Q 極體模組為主的激發光源可應用於上述設備中,以二極體光源做為螢光之 激發光,以表現出帶有螢光標記的目標核酸。 如第二圖所示,表現一可觀察、偵測及分析上述螢光反應的儀器5〇, 該儀器50大致具有一平台51,供一進行雜合反應的反應管52放置;上述發 光二極體模組10設於平台51的下方,其照射光束對應著該反應管52,一影 像摘取裝置53設於該反應管52的上方,用以拍攝該反應管中螢光反應的影 像,傳輸至一台可呈像、顯示檢測結果的影像分析裝置54。該影像分析裝 置中具有一套控制該發光二極體模組10的軟體,用以控制該發光二極體模 201018728 組之光源強度’及/或控制該發光二極體模組之二極體光源之各等波長為同 時表現或獨立表現,及/或控制該發光二極體模組之二極體光源之各色照射 光束為同時表現或獨立表現;該控制單元亦可選擇切換上述濾鏡以供特定 光色通過之功能。 如第三圖及第四圖’該平台51上以陣列方式排列複數的反應管52,在 該等反應管52與該影像擷取裝置53之間設一折射透鏡55,將該等反應管52 中直射的螢光光束向該影像擷取裝置53偏折匯聚,使影像擷取裝置53可榻 0 取到每一反應管52中的螢光影像。 關於該發光二極體模組10之排列設置,主要與該反應管52呈一對一的 對應。依據反應管52的排列樣態(例如八連排、反應盤矩陣排列)而做相對應 , 的一對一的排列設置。 <效能及優點> 已知特定的螢光染劑需要使用特定波長範圍的光來當作激發光源,因 此必需依照螢光染劑的特性選擇與之匹配的激發光源。本發明以複數個二 極體光源構成發光二極體模組’複數二極體光源包括各種波長及各種光 色’利用控制單元控制該二極體光源強度、各光色之同時或獨立表現,使 其適用大多數的螢光染劑’符合螢光染劑調節出匹配的激發光源,而能得 到最佳染劑激發效果。 二極體光源為低能量激發光’無熱能產生,可避免對核酸樣品造成熱 傷害或毒害作用’亦可避免傷害活細胞樣本,因此適合用於長時間觀察螢 光反應。 β 201018728 二極體光源信嗓比(signal noise ratio)高,可大量降低螢光影像背景雜 訊’提昇螢光反應訊號影像之對比表現度,增進螢光訊號分析結果之正率。 二極體光源穩定度高,容易被控制而達到理想的螢光激發效果。 複數二極體光源可依照需要彈性組合成陣列光源之二極體模組。 ' 二極體光源的使用壽命長,可減少激發光源系統的維修或更換光源的 成本。 發光二極體模組易整合於螢光顯微鏡、螢光分析儀、流式細胞儀、或 φ 使用相機及影像擷取裝置擷取螢光影像的設備中,做為該等設備之螢光激 發光源。 雖然本案是以一個最佳實施例做說明,但精於此技藝者能在不脫離本 案精神與範疇下做各種不同形式的改變。以上所舉實施例僅用以說明本案 • 而已’非用以限制本案之範圍。舉凡不違本案精神所從事的種種修改或變 化,俱屬本案申請專利範圍。 【圖式簡單說明】 φ 第一圖為本案激發光源之配置方塊圖之一。 第二圖為本案激發光源配置於核酸檢測儀器之示意圖之一。 第三圖為本案激發光源之配置方塊圊之二。 第四圖為本案激發光源配置於核酸檢測儀器之示意圖之二。 【主要元件符號說明】 10- 發光二極體模組 11- 二極體光源 30-控制單元 8 201018728 50- 可觀察、偵測及分析上述螢光反應的儀器 51- 平台 52- 反應管 53- 影像擷取裝置 • 54-影像分析裝置 55-折射透鏡201018728 VI. Description of the Invention: [Technical Field] The present invention relates to an excitation light source for a fluorescent dye, and more particularly, the excitation light source is applied in a nucleic acid detection process and equipment to enable hybridization Target nucleic acid table with fluorescent label - now optical signal (fluorescent signal). [Prior Art] When performing genetic research such as genetics or molecular biology or detection of animal and plant diseases, a small amount of nucleic acid samples must be taken by means of amplifying nucleic acids (eg, polymerase chain reaction, PCR). The amplification is amplified in a short time to an amount that can be detected. The nucleic acid amplification product may further bind a target nucleic acid fragment to a nucleic acid probe with a fluorescent 'radiation substance or a coloring enzyme to generate a fluorescence, radiographic image or color reaction via hybridization (hybridization). . Fluorescent dyes are currently used as markers on many biochips, mainly because fluorescent dyes provide better analytical results. Fluorescent dyes provide high yields compared to conventional color formers. 1000 to 500,000 times sensitivity. Fluorescence microscopy (F丨uorescence Microscopy), fluorescence analyzer, flow cytometry, or use of a camera or image capture device to capture, detect, and analyze the above-mentioned fluorescence reaction. These techniques all involve the choice of excitation source, because a particular fluorescent dye requires the use of light of a specific wavelength range as the excitation source. When a light of the appropriate wavelength illuminates a molecule with fluorescent properties, the molecule absorbs light. The energy is excited to a high-energy state, and returns to a low-energy state in a very short time (ΙΟ-β-ΙΟ·4 seconds), while releasing excess energy in the form of light emission, so it is necessary to follow the fluorescent dye The excitation light source that matches the choice of the first choice can get the best dye excitation effect (Excitation). 3 0 201018728 It is known that many fluorescent dyes use shorter wavelength ultraviolet light as the excitation source. However, ultraviolet light is highly UV-scattering, and transmission and penetration are not easy, so special production must be used. The optical components make the equipment for testing and analyzing instruments expensive, but the quality control of the light source is still not easy to achieve the desired standard. In addition, ultraviolet light will settle on the surface layer of the sample, causing thermal damage to the sample, and its radiation effect is also toxic to nucleic acid samples, so it is not suitable for living cells or for long-term detection. In addition to UV light, high-pressure mercury lamps, high-pressure xenon lamps and lasers have also been used as fluorescent excitation sources. High-pressure mercury lamps are generally used in the green or blue fluorescence spectrum range. High-pressure xenon lamps are used in purple and green. , the spectral range of blue or general visible light. However, the disadvantage of these bulb-type excitation sources is that the light source is full spectral distribution. The intensity of the light source at each wavelength is not constant, the energy is low: and the distribution is uneven. The intensity of the light source cannot be adjusted, and the fluorescence excitation is difficult to achieve. Control so that the accuracy of the detection analysis is low. Compared with the traditional excitation source, the laser has the characteristics of pure wavelength, high intensity, high energy and homology. It is easy to focus with the lens, and its powerful energy per unit area can effectively improve the sensitivity. Therefore, the performance of the fluorescent excitation. Preferably, the positive angstrom rate of the detection and analysis enthalpy can be effectively improved. However, the 'electro-excitation excitation light source system must be equipped with an excitation light filter, a spectroscope, a release optical filter, etc.', which is expensive, and occupies a large optical table space, so that it is difficult to promote the application. SUMMARY OF THE INVENTION The main object of the present invention is to provide an excitation light source for exciting a fluorescent signal, the excitation light source having the following characteristics: The excitation light source can be adjusted to generate various specific wavelengths, and can be used for most fluorescent spectra. Range and achieve optimal fluorescent excitation. 4 201018728 The excitation source does not harm the nucleic acid sample. The excitation light source can improve the contrast performance of the image and improve the positive rate of the fluorescence signal analysis result. The excitation source is suitable for viewing, capturing or analyzing fluorescent images between long-term applications. The excitation light source has a long service life and can be flexibly combined to meet the needs of the array spectrum of the fluorescence spectrum. The excitation light source of the present invention is realized by a light-emitting diode (LED), and a plurality of diode light sources are arranged in a staggered array on the same plane to form a light-emitting diode module. The complex diode light source φ is a combination of various wavelengths and light colors, and can control and control the light source intensity of the light-emitting diode module according to the spectral range of the fluorescent light, and the respective wavelengths and the illumination beams of the respective colors are simultaneously or independently expressed. In order to achieve the best fluorescent excitation effect. [Embodiment] The central idea expressed in the above-mentioned summary of the invention is explained in the specific embodiment for convenience of explanation. Various items in the embodiments are depicted in terms of ratios, dimensions, amounts of deformation, or displacements that are suitable for illustration, and are not drawn to the scale of the actual elements. In the following description of Φ, similar components are denoted by the same reference numerals. <Hard ship device> The first light source for exciting the fluorescent signal of the present invention includes: at least one light emitting diode module 10, the light emitting diode module 10 including at least a plurality of diodes The light source 11 and the diode light source 11 can be of a specific wavelength. Preferably, the plurality of two-pole source 11 is of various wavelengths. The illumination beam of the plurality of diode sources 11 is selected from the group consisting of white light, red light, blue light, green light, violet light, yellow light, orange red light, or the like. The diode light sources 11 are arranged in a staggered array on the same plane. 5 201018728 An optical lens, or a refractive mirror having a collecting effect, or a filter may be disposed relative to the direction of the diode light source 11 for enhancing the intensity of the light source, changing the angle of the light source, or making a specific light wave The light source passes. The filter can be a band path or a long path (丨0叩path) filter. a control unit 30 for controlling the intensity of the light source of the light emitting diode module and/or controlling the wavelengths of the diode light sources of the light emitting diode module for simultaneous or independent performance, and/or The illumination beams of the respective colors controlling the diode light source of the LED module are simultaneously expressed or independently displayed; the control unit may also select a function of switching the filters for a specific light color to pass. <Application> It is known that nucleic acid amplification products produced by nucleic acid amplification means can be further subjected to hybridization. The target nucleic acid fragment and the nucleic acid probe with fluorescent, radioactive or coloring enzymes (pr〇) Be) . Link 'generates fluorescence, radiographic or colorimetric reactions. Fluorescence microscopy (Fluorescence Microscopy), flow cytometry, or image capture device can be used to capture, detect, and analyze the above-mentioned fluorescent reactions. The present invention uses a light-emitting Q-electrode model. The group-based excitation light source can be applied to the above device, and the diode light source is used as the fluorescent excitation light to display the target nucleic acid with fluorescent label. As shown in the second figure, the performance is observable, The apparatus for detecting and analyzing the above-mentioned fluorescent reaction, the apparatus 50 has a platform 51 for a reaction tube 52 for performing a hybrid reaction; the light-emitting diode module 10 is disposed below the platform 51, The illuminating beam corresponds to the reaction tube 52. An image capturing device 53 is disposed above the reaction tube 52 for capturing an image of the fluorescent reaction in the reaction tube and transmitting the image to an image capable of displaying and displaying the detection result. An analysis device 54. The image analysis device has a software for controlling the LED module 10 for controlling the intensity of the light source of the LED diode 201018728 group and/or controlling the LED The wavelengths of the diodes of the diodes of the module are simultaneously or independently expressed, and/or the illumination beams of the LEDs controlling the diode source of the LED module are simultaneously or independently performed; the control unit can also The function of switching the above filter for the passage of a specific light color is selected. As shown in the third and fourth figures, the plurality of reaction tubes 52 are arranged in an array on the stage 51, and the reaction tubes 52 and the image capturing device 53 are arranged in the array. A refractive lens 55 is disposed between the fluorescent tubes of the reaction tubes 52 to be deflected and concentrated by the image capturing device 53 so that the image capturing device 53 can be taken to the fluorescent tubes in each of the reaction tubes 52. The arrangement of the light-emitting diode modules 10 is mainly in a one-to-one correspondence with the reaction tube 52. The arrangement of the reaction tubes 52 (for example, eight rows, array of reaction disks) is performed. Corresponding, one-to-one arrangement. <Efficiency and Advantages> It is known that a specific fluorescent dye needs to use light of a specific wavelength range as an excitation light source, and therefore it is necessary to select according to the characteristics of the fluorescent dye. The matched excitation source. The invention comprises a plurality of diode light sources to form a light-emitting diode module. The plurality of diode light sources comprise various wavelengths and various light colors. The control unit controls the intensity of the two-pole light source and the simultaneous or independent performance of the light colors. It is suitable for most fluorescent dyes' to meet the matching excitation source of fluorescent dyes, and to get the best dye excitation effect. The diode source is low-energy excitation light, no heat is generated, can avoid Nucleic acid samples cause thermal damage or toxic effects' to avoid harming live cell samples, so they are suitable for long-term observation of fluorescence reactions. β 201018728 Diode light source has high signal-to-noise ratio and can greatly reduce fluorescence images. Background noise 'increasing the contrast performance of fluorescent response signal images and increasing the positive rate of fluorescent signal analysis results. The diode light source has high stability and is easily controlled to achieve the desired fluorescent excitation effect. The plurality of diode light sources can be elastically combined into a diode module of the array light source as needed. The long life of the diode source reduces the cost of repairing or replacing the source of the excitation source system. The light-emitting diode module is easily integrated into a fluorescent microscope, a fluorescent analyzer, a flow cytometer, or a device that captures fluorescent images using a camera and an image capturing device as a fluorescent excitation of the devices. light source. Although the present invention is described in terms of a preferred embodiment, those skilled in the art can make various changes in the form without departing from the spirit and scope of the invention. The above examples are for illustrative purposes only and are not intended to limit the scope of the present invention. All kinds of modifications or changes that are not in violation of the spirit of this case are the scope of patent application in this case. [Simple description of the figure] φ The first figure is one of the block diagrams of the excitation light source in this case. The second figure is one of the schematic diagrams of the excitation light source disposed in the nucleic acid detecting instrument. The third picture is the second configuration block of the excitation light source in this case. The fourth figure is the second schematic diagram of the excitation light source disposed in the nucleic acid detecting instrument. [Description of main component symbols] 10-LED module 11-diode source 30-control unit 8 201018728 50- Instrument for observing, detecting and analyzing the above fluorescence reaction 51- Platform 52- Reaction tube 53- Image capture device • 54-image analysis device 55-refractive lens

Claims (1)

201018728 七、申請專利範圍: 1. 一種用以激發螢光訊號之激發光源’其特徵在於: 該激發光源係至少一發光二極體模組,用以激發螢光染劑。 .· 2·如申請專利範圍第1項所述用以激發螢光訊號之激發光源,其中,該發 ; 光二極體模組與具有上述螢光染劑的反應管呈一對一的對應。 3_如申請專利範圍第2項所述用以激發螢光訊號之激發光源’其中’複數 的該發光二極體模組與八連排設置的複數反應管呈一對一的對應。 4_如申請專利範圍第2項所述用以激發螢光訊號之激發光源,其中,複數 的該發光二極艘模組與設置於一反應盤中而呈矩陣排列的複數反應管 呈一對一的對應。 5·如申請專利範圍第2項所述用以激發螢光訊號之激發光源,其中,單一 τ : 的該發光二極體模組與單一的反應管對應。 6.如申請專利範圍第2項所述用以激發螢光訊號之激發光源,其中,該發 光二極體模組的二極體光源可為一種特定波長。 ^ 7.如申請專利範圍第2項所述用以激發螢光訊號之激發光源’其中,複數 該發光二極體模組的二極體光源具有各別的波長。 8. 如申請專利範圍第7項所述用以激發螢光訊號之激發光源,其中,該二 極體光源之照射光束係選自白光、紅光、藍光、綠光、紫光、黃光、橘 紅光之擇一或其等之組合。 9. 如申請專利範圍第8項所述用以激發螢光訊號之激發光源,其中,該複 數的發光二極體模組係在同一平面上交錯排列。 10.如申請專利範圍第8項所述用以激發螢光訊號之激發光源,其中,其更 201018728 * 包含一控制單元’用以控制複數發光二極體模組之二極體光源之各等波 長為同時表現或獨立表現。 11.如申請專利範圍第8項所述用以激發螢光訊號之激發光源,其中,其更 4 * 包含一控制單元,用以控制該發光二極體模組之二極體光源之各色照射 ' 光束為同時表現或獨立表現。 12·如申請專利範圍第彳項所述用以激發螢光訊號之激發光源,其更包括一 相對於該發光二極體模組之光束方向而設的集光透鏡。 13·如申請專利範圍第1項所述用以激發螢光訊號之激發光源,其更包括一 ^ 相對於該發光二極體模組之光束方向而設具有集光效果的折射鏡。 14.如申請專利範圍第12項所述用以激發螢光訊號之激發光源,其更包括一 相對於該發光二極體模組之光束方向而設的濾鏡。 ' 15.如申請專利範圍第14項所述用以激發螢光訊號之激發光源,該濾鏡為帶 - 通(band path)遽鏡。 16_如申請專利範圍第14項所述用以激發螢光訊號之激發光源,該濾鏡為長 光程(丨ong path)濾鏡。 φ 17_如申請專利範圍第《η項所述用以激發螢光訊號之激發光源,其中,其更 包含一控制單元,用以控制該濾鏡以供特定光色通過之功能。 18. 如申請專利範圍第1項所述用以激發螢光訊號之激發光源,其更包含一 控制單元,用以控制該發光二極體模組之光源強度。 19. 如申請專利範圍第1項所述用以激發螢光訊號之激發光源,其中,該激 發光源使用於一種偵測及分析蛋白質或核酸螢光訊號之分析儀。 20.如申請專利範圍第1項所述用以激發螢光訊號之激發光源,其中,該激 發光源使用於以相機或影像棟取裝置擷取該螢光標記訊號之儀器。201018728 VII. Patent Application Range: 1. An excitation light source for exciting a fluorescent signal. The excitation light source is at least one light emitting diode module for exciting a fluorescent dye. 2. The excitation light source for exciting a fluorescent signal according to the first aspect of the patent application, wherein the light-emitting diode module has a one-to-one correspondence with the reaction tube having the fluorescent dye. 3_ The light-emitting diode module for exciting the light source of the fluorescent signal as described in item 2 of the patent application has a one-to-one correspondence with the plurality of reaction tubes provided in eight rows. 4_ The excitation light source for exciting a fluorescent signal according to item 2 of the patent application scope, wherein the plurality of light-emitting diode modules are paired with a plurality of reaction tubes arranged in a matrix and arranged in a matrix The correspondence of one. 5. The excitation light source for exciting a fluorescent signal according to item 2 of the patent application scope, wherein the single τ: the light emitting diode module corresponds to a single reaction tube. 6. The excitation light source for exciting a fluorescent signal according to claim 2, wherein the diode light source of the light emitting diode module is a specific wavelength. ^ 7. The excitation light source for exciting a fluorescent signal as described in claim 2, wherein the plurality of diode light sources of the light emitting diode module have respective wavelengths. 8. The excitation light source for exciting a fluorescent signal according to the seventh aspect of the patent application, wherein the illumination beam of the diode light source is selected from the group consisting of white light, red light, blue light, green light, purple light, yellow light, orange red. A choice of light or a combination thereof. 9. The excitation light source for exciting a fluorescent signal according to claim 8 of the patent application, wherein the plurality of light emitting diode modules are staggered on the same plane. 10. The excitation light source for exciting the fluorescent signal according to item 8 of the patent application scope, wherein the 201018728* includes a control unit for controlling the plurality of diode light sources of the plurality of light emitting diode modules. The wavelength is either simultaneous or independent. 11. The excitation light source for exciting a fluorescent signal according to item 8 of the patent application scope, wherein the 4* comprises a control unit for controlling the illumination of the color of the diode light source of the light emitting diode module. 'The beam is either simultaneous or independent. 12. The excitation light source for exciting a fluorescent signal according to the invention of claim 2, further comprising a collecting lens disposed relative to a beam direction of the light emitting diode module. 13. The excitation light source for exciting a fluorescent signal according to the first aspect of the patent application, further comprising: a refractor having a light collecting effect with respect to a beam direction of the light emitting diode module. 14. The excitation light source for exciting a fluorescent signal according to claim 12, further comprising a filter disposed relative to a beam direction of the light emitting diode module. 15. The excitation light source for exciting a fluorescent signal as described in claim 14 of the patent application is a band path frog mirror. 16_ As shown in claim 14, the excitation light source for exciting the fluorescent signal is a long path filter. Φ 17_ is an excitation light source for exciting a fluorescent signal as described in the item η of the patent application, wherein the control unit further includes a control unit for controlling the filter for a specific light color to pass through. 18. The excitation light source for exciting a fluorescent signal according to claim 1, further comprising a control unit for controlling the intensity of the light source of the light emitting diode module. 19. The excitation light source for exciting a fluorescent signal as described in claim 1 of the patent application, wherein the excitation light source is used in an analyzer for detecting and analyzing protein or nucleic acid fluorescent signals. 20. The excitation light source for exciting a fluorescent signal according to claim 1, wherein the excitation light source is used for an instrument for capturing the fluorescent marking signal by a camera or an image capturing device.
TW97143788A 2008-11-13 2008-11-13 Excitation light source for inducing fluorescent signal TW201018728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143788A TW201018728A (en) 2008-11-13 2008-11-13 Excitation light source for inducing fluorescent signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143788A TW201018728A (en) 2008-11-13 2008-11-13 Excitation light source for inducing fluorescent signal

Publications (1)

Publication Number Publication Date
TW201018728A true TW201018728A (en) 2010-05-16

Family

ID=44831370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143788A TW201018728A (en) 2008-11-13 2008-11-13 Excitation light source for inducing fluorescent signal

Country Status (1)

Country Link
TW (1) TW201018728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044464A1 (en) * 2011-09-28 2013-04-04 瑞基海洋生物科技股份有限公司 Fluorescence generation device
CN103472040B (en) * 2012-06-06 2015-10-28 瑞基海洋生物科技股份有限公司 Fluorescence detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044464A1 (en) * 2011-09-28 2013-04-04 瑞基海洋生物科技股份有限公司 Fluorescence generation device
CN103649725A (en) * 2011-09-28 2014-03-19 瑞基海洋生物科技股份有限公司 Fluorescence generation device
CN103472040B (en) * 2012-06-06 2015-10-28 瑞基海洋生物科技股份有限公司 Fluorescence detection method

Similar Documents

Publication Publication Date Title
US9488571B2 (en) Two-dimensional spectral imaging system
JP4884369B2 (en) Weak light sample imaging unit, weak light sample imaging device, and weak light sample imaging method
JP2023099589A (en) Systems and methods for assessing biological samples
US7817273B2 (en) Two-dimensional spectral imaging system
JP2003514223A (en) Fluorometer with low heat generation light source
CN104267009B (en) Six color real-time fluorescence quantitative PCR analyzers
JP2011022166A (en) Apparatus and method for fluorescent detection in biological sample
US20070196815A1 (en) Positive Selection Procedure for Optically Directed Selection of Cells
CN106092994B (en) A kind of micro-array chip fluorescence detection method of great power LED
US20190094113A1 (en) Cell sorting
CN102341694A (en) Optical system for chemical and/or biochemical reactions
WO2007011549A1 (en) Two-dimensional spectral imaging system
Trampe et al. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging
Jin et al. How to build a time‐gated luminescence microscope
US20120301872A1 (en) System and method for increased fluorescence detection
CN110220872A (en) Portable multicolor fluorescence detection device
CN113466111B (en) Single cell analysis system, method and application
TW201018728A (en) Excitation light source for inducing fluorescent signal
CN115053118A (en) Apparatus and method for circulating flow cytometry using specialized cell identification
JP2008083047A (en) Method for examining structure labeled with by fluorogenic material of specimen at high spatial resolution
US6605813B1 (en) Benchtop fluorescence molecular beacons detector and reader
TWM442362U (en) Excitation light source for inducing fluorescent signal
KR20120129182A (en) Potable hypermulticolor imaging optical module and Microbead colorcoding kinase inhibition drug screening system
TWI498562B (en) Apparatus and method for detecting biochemical reaction
CN212989140U (en) Optical device of quantitative fluorescence PCR instrument