TW201017977A - A planar antenna - Google Patents

A planar antenna Download PDF

Info

Publication number
TW201017977A
TW201017977A TW97140499A TW97140499A TW201017977A TW 201017977 A TW201017977 A TW 201017977A TW 97140499 A TW97140499 A TW 97140499A TW 97140499 A TW97140499 A TW 97140499A TW 201017977 A TW201017977 A TW 201017977A
Authority
TW
Taiwan
Prior art keywords
antenna
balanced
receiver
substrate
transmitter
Prior art date
Application number
TW97140499A
Other languages
Chinese (zh)
Other versions
TWI497821B (en
Inventor
Rokhsareh Zarnaghi
Original Assignee
Sibeam Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sibeam Inc filed Critical Sibeam Inc
Priority to TW097140499A priority Critical patent/TWI497821B/en
Publication of TW201017977A publication Critical patent/TW201017977A/en
Application granted granted Critical
Publication of TWI497821B publication Critical patent/TWI497821B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna is disclosed. In one embodiment, the antenna comprises a driver comprising a folded dipole and an integral balun coupled to the folded dipole.

Description

201017977 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種在一寬頻寬上以高效率及低VSWR接 收/發送電磁波之裝置,更特定言之,其可用於無線傳輸 之領域中。 【先前技術】 通信系統中日漸使用毫米波頻率(特定言之具有高資料 率者)要求有效天線。天線指向性及輻射效率必須相當地 高’以克服依毫米波頻率之高自由空間損失。 咼度有效平面式輻射元件可具有各種應用。其可用作一 陣列上之輻射元件(特定言之具有電子操縱類型)^在要求 高增益輻射器之情況中,該等高增益輻射器可用作一非陣 列天線(例如一號角或反射器天線)之饋送元件,以避免例 如像毫米波中之可觀饋送損失。毫米及次毫米波裝置經常 利用與波導組件組合之積體電路。此要求波導與不同平面 式傳輸線間之轉變。此外,對於裝置特徵化及測試,經常 需要至波導測量系統之轉變。有效平面式輻射元件可對於 此類應用加以調諧。 美國專利第4,825,220號(Edward等人)揭示一種提供寬頻 寬之平面式天線。圖1解說該平面式天線。參考圖1,該結 構利用一二層組態,就製作方面而言,其係一缺點。此 外’ VSWR並非極低,而且該增益係不高。 圖2A及2B中所描述之另一先前技術天線係單面Yagi狀 類型’其由已截斷接地平面及一微帶至共面條(以下將術 135579.doc 201017977 語「共面條」縮寫成「CPS」)平衡非平衡適配器之二個偶 極元件組成。該二個偶極元件包含一引導器及一驅動器。 該天線之引導器及驅動器係放置在該基板之相同平面,以 便將該天線所產生之表面波引導至該端射方向。 【發明内容】 揭示一種天線《在一具體實施例中,該天線包括一驅動 器,其包括一摺疊偶極;以及一整合平衡非平衡適配器, 其柄合至該摺疊偶極。 【實施方式】 描述一種已改良緊密平面式輻射射頻(RF)元件。該平面 式元件之具體實施例具有寬頻高效能,而且對於微波及毫 米波頻率係有用《在一具體實施例中,該輻射元件包括當 作該主驅動器的一摺疊偶極、一或多個引導器,及遵從小 型化並且具有一低VSWR的一已平衡饋送結構。在一具體 實施例中,該摺疊偶極係Yagi狀平面式天線的一直接饋送 元件,亦即驅動器。 因此,本發明之具體實施例提供一種用作另一天線之饋 送元件之已改良輻射元件。該輻射元件可用於一陣列,而 且可使用印刷電路技術加以製造。 為了充分解釋本發明,在下面的說明中提出許多的特定 細卽。然而,熟知本技術人士應清楚知道,在不運用這此 特定細節的情況下’仍然可實施本發明。在其他例子中, 熟知的結構及裝置係以方塊圖形式顯示,而非以細節顯 示’以避免使本發明模糊不清。 135579.doc -6 - 201017977 概覽 本發明之具體實施例提供一種有效但易於實施之途徑, 以提供一或多個上述目標。圖3A及3B分別解說根據本發 明之一具鱧實施例之一已改良平面式天線之俯視及等角視 圖。參考圖3A,一摺疊偶極301當作一 Yagi狀平面式天線 之驅動器或主輻射部分而操作。因此,雖然具有已改良 VSWR及已改良阻抗匹配,仍將達成該先前技術天線之所 有利益。 更具體言之,摺疊偶極301係經由共面條3〇4耦合至平衡 非平衡適配器302。因此,該結構係一準Yagi,其中其平 衡非平衡適配器與一摺疊偶極組合。在操作中,電磁能量 係從摺疊偶極301透過空間而耦合至該等寄生偶極中,而 且然後加以輻射’以形成一定向波束。 在具體實施例中,摺疊偶極301及平衡非平衡適配器 302係在一基板(例如圖⑶中之基板31〇)上。在另一具體實 施例中,平衡非平衡適配器302不在該基板上。 該天線包含一引導器303。雖然僅顯示一引導器,但該 天線可具有一個以上引導器(例如,二個引導器、三個引 導器等)。錢用-個以上引導器,則其料係平行,而 且在該驅動之相同側上。 該天線亦包含饋送結構305。在—具體實施例中,饋送 結構305係-已平衡饋送結構,纟包括—饋送傳輸線。該 饋送傳輸線可包括(但不限於)一共面波導(下文稱為 「CPW」)或一微帶線。與平衡非平衡適配器赚合之饋 135579.doc 201017977 送結構305使用共面條304提供至摺疊偶極3〇1的一差分輸 入0 參考圖3B,驅動器301、平衡非平衡適配器3〇2、引導器 303及饋送結構305(微帶線)係定位在基板31〇之一側上,同 時接地平面311係定位在基板31〇之另一側上。在一具體實 施例中,接地平面3 11係僅定位在平衡非平衡適配器3〇2及 饋送結構305下方,而且不在驅動器3〇1及引導器3〇3下 方。因此,接地平面311係一已截斷接地平面。在一具體 實施例中’接地平面311係一微帶接地平面。在此一情況 中’該已截斷微帶接地平面311係用作該反射元件,藉此 消除對於一反射器偶極之需要。 接地平面311具有在該基板之底部的一接地邊緣312,其 當作該反射器而操作,用以反射該電磁波。在一具體實施 例中’接地邊緣3 12係一直的邊緣;然而,此並非必要, 而且在其他具體實施例中,接地邊緣312可能並非直的。 例如’在另一具體實施例中,接地邊緣3 12可係鋸齒狀。 在一具體實施例中,基板310包括具有一高介電常數的 一平面式材料。例如,可使用具有一 10或10以上之介電常 數的一平面式材料,例如氧化鋁。因為其平面式本質,該 天線並非报難製作,而且可使用印刷電路板(PCB)製造技 術加以製作。 因此,結合圖3A及3B所述之天線係緊密、具有一極寬 頻寬且具有低VSWR。 本文所述天線已用於各式各樣應用,包含要求極寬頻寬 135579.doc 201017977 或尚增益者。在一具體實施例中,該天線係用於線性相位 陣列’例如(但不限於)毫米波應用,及使用具有高介電常 數之基板之應用中。若用於該線性相位 可提供至少百分之15之頻寬用於一優於2之卿:二線 優於10 dB的一回波損失、接近百分之90之效率及一極寬 波束。 存在使用本文所述天線之具體實施例之數個優點。例 φ 相較於上述先前技術天線,胃天線之一具體實施例的 一優點係在至少相同或較寬頻寬上,其具有一較低 VSWR。在該天線之另一具體實施例中該輻射元件係較 小,對於相同元件間距離,其在輻射元件間導致較小耦 合0 一通信系統之一範例 圖4係一通信系統之一具體實施例的一方塊圖,其包含 以上揭不之天線。參考圖4,該系統包括媒體接收器4〇〇、 φ 一媒體接收器介面402、一發送裝置440、一接收裝置 441、一媒體播放器介面413、一媒體播放器414及一顯示 器 415 〇 - 媒體接收器400接收來自一來源(未顯示)之内容。在一 - 具體實施例中,媒體接收器4〇〇包括一視訊轉換器。該内 容可包括基頻數位視訊’例如像(但不限於)依附在Hdmi 或DVI標準之内容。在此一情況中,媒體接收器4〇〇可包含 用以轉遞該已接收内容的一發射器(例如,一 HDMI發射 器)。 135579.doc 201017977 媒體接收器401經由媒體接收器介面402將内容400傳送 至發射器裝置440。在一具體實施例中,媒體接收器介面 402包含將内容401轉換成HDMI内容之邏輯。在此一情況 中’媒體接收器介面402可包括一 HDMI插塞,而且内容 401係經由一有線連接加以傳送;然而,該轉移可透過一 無線連接發生。在另一具體實施例中,内容4〇 1包括DVI内 容。 在一具體實施例中,媒體接收器介面402與發射器裝置 440間之内容401之轉移發生於一有線連接上;然而,該轉 移可透過一無線連接發生。 發射器裝置440使用二個無線連接將資訊無線地轉移至 接收器裝置441。該等無線連接之一係透過具有適應性波 束成形的一相位陣列天線。其他無線連接係經由無線通信 通道407’本文稱為返回通道。在一具體實施例中,無線 通信通道407係單向。在一替代具體實施例中,無線通信 通道407係雙向。 接收器裝置441經由媒體播放器介面413將接收自發射器 裝置440之内容轉移至媒體播放器414。在一具體實施例 中,接收器裝置441與媒體播放器介面413間之内容之轉移 透過一有線連接發生;然而,該轉移可透過一無線連接發 生。在一具體實施例中,媒體播放器介面413包括一HDMI 插塞。類似地,媒體播放器介面413與媒體播放器414間之 内容之轉移透過一有線連接發生;然而,該轉移可透過一 無線連接發生。 135579.doc •10· 201017977 媒體播放器414造成該内容在顯示器415上播放。在一具 體實施例中,該内容係HDMI内容,而且媒體播放器414經 由一有線連接轉移該媒體内容以便顯示;然而,該轉移可 透過一無線連接發生。顯示器415可包括一電漿顯示器、 一 LCD、一 CRT等。 注意:圖4中之系統可經變更以包含一 dvD播放器/記錄 器,以取代用以接收的一;DVD播放器/記錄器,並且播放 及/或記錄該内容。 在一具體實施例中’發射器440及媒體接收器介面402係 媒體接收器4 0 0之一部分。同樣地,在一具體實施例中, 接收器440、媒體播放器介面413及媒體播放器414全部係 該相同裝置之部分。在一替代具體實施例中,接收器 440、媒體播放器介面413、媒體播放器414及顯示器415全 部係該顯示器之部分。圖6中顯示此一裝置之一範例。 在一具體實施例中,發射器裝置440包括一處理器403、 一可選基頻處理組件404、一相位陣列天線405,及一無線 通信通道介面406 »相位陣列天線4〇5包括一射頻(rf)發射 器’其具有耦合至處理器403並且由其控制的一數位控制 相位陣列天線’用以使用適應性波束成形將内容發送至接 收器裝置441。 在一具體實施例中,接收器裝置441包括一處理器412、 一可選基頻處理組件411、一相位陣列天線41〇,及一無線 通信通道介面409 〇相位陣列天線41〇包括一射頻(RF)發射 器’其具有耦合至處理器412並且由其控制的一數位控制 135579.doc • 11 · 201017977 相位陣列天線’用以使用適應性波束成形接收來自發射器 裝置440之内容。 在一具體實施例中,處理器403產生基頻信號,其係於 藉由相位陣列天線405無線地發送前由基頻信號處理4〇4加 以處理。在此一情況中,接收器裝置441包含基頻信號處 理’用以將相位陣列天線410所接收之類比信號轉換成基 頻信號’以便由處理器412加以處理。在一具體實施例 中,該等基頻信號係正交分頻多工(OFDM)信號。 在一具體實施例中’發射器裝置440及/或接收器裝置 441係分離收發器之部分。 發射器裝置440及接收器裝置441使用相位陣列天線執行 無線通信,該相位陣列天線具有允許波束操縱之適應性波 束成形。波束成形係該技術中已熟知。在一具體實施例 中’處理器403將數位控制資訊傳送至相位陣列天線々Μ, 以指示用以偏移相位陣列天線405中之一或多個相移器的 一數量’以便以該技術中已熟知之一方式操縱藉此形成的 一波束。處理器412亦使用數位控制資訊控制相位陣列天 線410。該數位控制資訊係使用發射器裝置44〇中之控制通 道421及接收器裝置441中之控制通道422加以傳送。在一 具體實施例中’該數位控制資訊包括一組係數。在一具體 實施例中’處理器403及412之每一者包括一數位信號處理 器。 無線通信鍵路介面406係耦合至處理器403,而且提供無 線通k鍵路407與處理器403間的一介面,用以傳達關於該· 135579.doc •12- 201017977 相位陣列天線之使用之天線資訊,及傳達用以促進在另一 定位播放該内容之資訊。在一具體實施例中,用以促進播 放該内容之發射器裝置440與接收器裝置441間轉移之資訊 包含從處理器403傳送至接收器裝置441之處理器412之加 密密鑰’及從接收器裝置441之處理器412至發射器裝置 440之處理器403的一或多個確認。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for receiving/transmitting electromagnetic waves with high efficiency and low VSWR over a wide bandwidth, and more particularly, it can be used in the field of wireless transmission. [Prior Art] The use of millimeter wave frequencies (specifically, those having a high data rate) in communication systems requires an effective antenna. Antenna directivity and radiation efficiency must be fairly high' to overcome high free space losses at millimeter wave frequencies. The twist effective planar radiating element can have a variety of applications. It can be used as a radiating element on an array (specifically, with an electronic steering type). In the case where a high gain radiator is required, the high gain radiator can be used as a non-array antenna (eg, a horn or reflector) Feed element of the antenna) to avoid, for example, considerable feed loss in millimeter waves. Millimeter and sub-millimeter wave devices often utilize an integrated circuit in combination with a waveguide assembly. This requires a transition between the waveguide and the different planar transmission lines. In addition, for device characterization and testing, a transition to a waveguide measurement system is often required. Effective planar radiating elements can be tuned for such applications. U.S. Patent No. 4,825,220 (Edward et al.) discloses a planar antenna that provides a wide bandwidth. Figure 1 illustrates the planar antenna. Referring to Figure 1, the structure utilizes a two-layer configuration, which is a disadvantage in terms of production. In addition, the VSWR is not extremely low, and the gain is not high. Another prior art antenna described in Figures 2A and 2B is a single-sided Yagi-like type which consists of a truncated ground plane and a microstrip to a common noodle (hereinafter referred to as 135579.doc 201017977 "co-noodles" abbreviated to "CPS ") The two dipole components of the balanced unbalanced adapter. The two dipole elements include a director and a driver. The director and driver of the antenna are placed on the same plane of the substrate to direct the surface waves generated by the antenna to the end-fire direction. SUMMARY OF THE INVENTION An antenna is disclosed. In one embodiment, the antenna includes a driver including a folded dipole; and an integrated balanced unbalanced adapter affixed to the folded dipole. [Embodiment] An improved compact planar radiation radio frequency (RF) component is described. The specific embodiment of the planar component has broadband high performance and is useful for microwave and millimeter wave frequency systems. In one embodiment, the radiating element includes a folded dipole, one or more guides that act as the primary driver. And a balanced feed structure that follows miniaturization and has a low VSWR. In a specific embodiment, a direct feed element of the folded dipole Yag-like planar antenna, i.e., a driver. Accordingly, embodiments of the present invention provide an improved radiating element for use as a feed element for another antenna. The radiating element can be used in an array and can be fabricated using printed circuit technology. In order to fully explain the present invention, a number of specific details are set forth in the following description. However, it is apparent to those skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known structures and devices are shown in the <RTI ID=0.0> 135579.doc -6 - 201017977 OVERVIEW Embodiments of the present invention provide an efficient but easy to implement approach to providing one or more of the above objectives. 3A and 3B respectively illustrate top and isometric views of an improved planar antenna in accordance with one embodiment of the present invention. Referring to Figure 3A, a folded dipole 301 operates as a driver or primary radiating portion of a Yagi-like planar antenna. Therefore, despite the improved VSWR and improved impedance matching, the benefits of this prior art antenna will still be achieved. More specifically, the folded dipole 301 is coupled to the balanced unbalanced adapter 302 via a common noodle 3〇4. Thus, the structure is a quasi-Yagi in which its balanced unbalanced adapter is combined with a folded dipole. In operation, electromagnetic energy is coupled from the folded dipole 301 through the space to the parasitic dipoles and then radiated' to form a directed beam. In a specific embodiment, the folded dipole 301 and the balanced unbalanced adapter 302 are attached to a substrate (e.g., substrate 31 in Figure (3)). In another embodiment, the balanced unbalanced adapter 302 is not on the substrate. The antenna includes a director 303. Although only one director is shown, the antenna can have more than one director (e.g., two directors, three directors, etc.). If the money uses more than one guide, the materials are parallel and on the same side of the drive. The antenna also includes a feed structure 305. In a particular embodiment, the feed structure 305 is a balanced feed structure that includes a feed line. The feed transmission line may include, but is not limited to, a coplanar waveguide (hereinafter referred to as "CPW") or a microstrip line. Feeding with balanced unbalanced adapters 135579.doc 201017977 Sending structure 305 uses a common noodle 304 to provide a differential input to the folded dipole 3〇1. Referring to Figure 3B, the driver 301, the balanced unbalanced adapter 3〇2, the director The 303 and the feed structure 305 (microstrip line) are positioned on one side of the substrate 31, while the ground plane 311 is positioned on the other side of the substrate 31. In a specific embodiment, the ground plane 3 11 is positioned only below the balanced unbalanced adapter 3〇2 and the feed structure 305 and is not under the driver 3〇1 and the director 3〇3. Therefore, the ground plane 311 is a truncated ground plane. In a specific embodiment, the ground plane 311 is a microstrip ground plane. In this case, the truncated microstrip ground plane 311 is used as the reflective element, thereby eliminating the need for a reflector dipole. The ground plane 311 has a ground edge 312 at the bottom of the substrate that operates as the reflector to reflect the electromagnetic waves. In one embodiment, the grounding edge 3 12 is a straight edge; however, this is not necessary, and in other embodiments, the grounding edge 312 may not be straight. For example, in another embodiment, the ground edge 3 12 can be serrated. In one embodiment, substrate 310 includes a planar material having a high dielectric constant. For example, a planar material having a dielectric constant of 10 or more, such as alumina, can be used. Because of its planar nature, the antenna is not difficult to fabricate and can be fabricated using printed circuit board (PCB) fabrication techniques. Thus, the antenna described in connection with Figures 3A and 3B is compact, has a very wide bandwidth and has a low VSWR. The antennas described in this article have been used in a wide variety of applications, including those requiring an extremely wide bandwidth of 135579.doc 201017977 or a gain. In one embodiment, the antenna is used in linear phase arrays such as, but not limited to, millimeter wave applications, and in applications using substrates having high dielectric constants. If used for this linear phase, a bandwidth of at least 15 percent can be provided for a better than 2: a second-line better than 10 dB of a return loss, nearly 90 percent efficiency, and a very wide beam. There are several advantages to using a particular embodiment of the antenna described herein. Example φ An advantage of one embodiment of a gastric antenna is that it has at least the same or a wider bandwidth with a lower VSWR than the prior art antenna described above. In another embodiment of the antenna, the radiating element is relatively small, resulting in a small coupling between the radiating elements for the same inter-element distance. FIG. 4 is an example of a communication system. FIG. 4 is a communication system. A block diagram containing the antennas disclosed above. Referring to FIG. 4, the system includes a media receiver 4, a φ a media receiver interface 402, a transmitting device 440, a receiving device 441, a media player interface 413, a media player 414, and a display 415. Media receiver 400 receives content from a source (not shown). In a specific embodiment, the media receiver 4 includes a video converter. The content may include fundamental frequency digital video' such as, for example, but not limited to, content attached to the Hdmi or DVI standard. In this case, the media receiver 4A can include a transmitter (e.g., an HDMI transmitter) for forwarding the received content. 135579.doc 201017977 The media receiver 401 transmits the content 400 to the transmitter device 440 via the media receiver interface 402. In one embodiment, media receiver interface 402 includes logic to convert content 401 into HDMI content. In this case, the media receiver interface 402 can include an HDMI plug and the content 401 is transmitted via a wired connection; however, the transfer can occur over a wireless connection. In another embodiment, content 4〇 1 includes DVI content. In one embodiment, the transfer of content 401 between media receiver interface 402 and transmitter device 440 occurs over a wired connection; however, the transfer can occur over a wireless connection. Transmitter device 440 wirelessly transfers information to receiver device 441 using two wireless connections. One of the wireless connections is through a phased array antenna with adaptive beam shaping. Other wireless connections are referred to herein as return channels via wireless communication channel 407'. In one embodiment, the wireless communication channel 407 is unidirectional. In an alternate embodiment, the wireless communication channel 407 is bidirectional. Receiver device 441 transfers the content received from transmitter device 440 to media player 414 via media player interface 413. In one embodiment, the transfer of content between the receiver device 441 and the media player interface 413 occurs over a wired connection; however, the transfer can occur over a wireless connection. In one embodiment, the media player interface 413 includes an HDMI plug. Similarly, the transfer of content between the media player interface 413 and the media player 414 occurs over a wired connection; however, the transfer can occur over a wireless connection. 135579.doc • 10· 201017977 The media player 414 causes the content to be played on the display 415. In one embodiment, the content is HDMI content and the media player 414 transfers the media content for display via a wired connection; however, the transfer can occur over a wireless connection. Display 415 can include a plasma display, an LCD, a CRT, and the like. Note that the system of Figure 4 can be modified to include a dvD player/recorder in place of the one received; the DVD player/recorder and to play and/or record the content. In one embodiment, 'transmitter 440 and media receiver interface 402 are part of media receiver 400. Similarly, in one embodiment, receiver 440, media player interface 413, and media player 414 are all part of the same device. In an alternate embodiment, receiver 440, media player interface 413, media player 414, and display 415 are all part of the display. An example of such a device is shown in FIG. In one embodiment, the transmitter device 440 includes a processor 403, an optional baseband processing component 404, a phased array antenna 405, and a wireless communication channel interface 406. The phased array antenna 4〇5 includes a radio frequency ( Rf) The transmitter 'which has a digitally controlled phased array antenna coupled to and controlled by the processor 403' to transmit content to the receiver device 441 using adaptive beamforming. In one embodiment, the receiver device 441 includes a processor 412, an optional baseband processing component 411, a phased array antenna 41A, and a wireless communication channel interface 409. The phase array antenna 41 includes a radio frequency ( The RF) transmitter has a digital control 135579.doc • 11 · 201017977 Phase Array Antenna coupled to the processor 412 for receiving content from the transmitter device 440 using adaptive beamforming. In one embodiment, processor 403 generates a baseband signal that is processed by baseband signal processing 4〇4 before being wirelessly transmitted by phase array antenna 405. In this case, the receiver device 441 includes a baseband signal processing 'for converting the analog signal received by the phase array antenna 410 into a baseband signal' for processing by the processor 412. In a specific embodiment, the baseband signals are orthogonal frequency division multiplexing (OFDM) signals. In one embodiment, 'transmitter device 440 and/or receiver device 441 are separate portions of the transceiver. Transmitter device 440 and receiver device 441 perform wireless communication using a phased array antenna with adaptive beam shaping that allows for beam steering. Beamforming is well known in the art. In a specific embodiment, the processor 403 transmits digital control information to the phase array antenna 指示 to indicate an amount used to offset one or more phase shifters in the phase array antenna 405 to facilitate One way of understanding is to manipulate a beam formed thereby. Processor 412 also controls phase array antenna 410 using digital control information. The digital control information is transmitted using the control channel 421 of the transmitter device 44 and the control channel 422 of the receiver device 441. In a specific embodiment, the digital control information includes a set of coefficients. In one embodiment, each of processors 403 and 412 includes a digital signal processor. The wireless communication keyway interface 406 is coupled to the processor 403 and provides an interface between the wireless communication k-keyway 407 and the processor 403 for communicating an antenna for use with the 135579.doc • 12-201017977 phase array antenna Information and communication to promote the playback of the content in another location. In one embodiment, the information transferred between the transmitter device 440 and the receiver device 441 to facilitate playback of the content includes an encryption key 'transmitted from the processor 403 to the processor 412 of the receiver device 441' and received from One or more acknowledgments of the processor 412 of the device 441 to the processor 403 of the transmitter device 440.

無線通信鏈路407亦在發射器裝置440與接收器裝置441 間轉移天線資訊》於該等相位陣列天線4〇5及41〇之初始化 期間,無線通信鏈路407轉移用以實現處理器403選擇該相 位陣列天線405之一方向之資訊。在一具體實施例中,該 資訊包含(但不限於)天線定位資訊及對應於該天線定位之 效能資訊,例如一或多對資料’其包含相位陣列天線41〇 之位置,及對於該天線位置之通道之信號強度。在另一具 體實施例中’該資訊包含(但不限於)由處理器412傳送至處 理器403之資訊,用以實現處理器彻決定使用相位陣列天 線405之哪些部分轉移内容。 當該等相位陣列天線405及41〇以其可轉移内容(例如, Η麵内容)期間的-模式操作時,無線通信鍵路彻轉移 來自接收器裝置441之處理器412之通信路徑之狀態的一指 示。通信之狀態之指示包括來自處理器412的—指示 = = 403二另:方向(例如’至另-通道)操縱該波 回應與該内容之部分之傳輸之干 …可規定處理器403可使用的一或多個替代通 135579.doc •13· 201017977 在一具體實施例中,該天線資訊包括由處理器412所傳 送之資訊,用以規定接收器裝置441引導相位陣列天線41〇 所至的一定位。此可係於初始化期間有用,其係在發射器 裝置440告訴接收器裝置441將其天線定位在何處以便可進 行信號品質測量以識別該等最佳通道時。規定位置可係一 正確疋位,或者可係一相對定位,例如像由發射器裝置 ' 440及接收器裝置441所遵循之一預定定位次序中之下一定 位。 ❹ 在一具體實施例中,無線通信鏈路4〇7將來自接收器裝 置441之資訊轉移至發射器裝置44〇,其規定相位陣列天線 410之天線特徵,或反之亦然。 一收發器架構之一範例 圖5係一適應性波束成形多重天線無線電系統之一具體 實施例的一方塊圖,其含有圖4之發射器裝置44〇及接收器 裝置441 »收發器500包含多重獨立發送及接收鏈。收發器 φ 500使用一相位陣列執行相位陣列波束成形,該相位陣列 取得一同樣之RF信號,並且對於該陣列中的一或多個天線 元件偏移該相位,以達成波束操縱。 • 參考圖5,數位信號處理器(DSP)501格式化該内容,並 . 且產生即時基頻信號。DSP 501可提供調變、feC編碼、 封包組裝、交錯及自動增益控制。 然後DSP 501轉遞欲在該發射器之rf部分上調變及送出 之基頻信號》在一具體實施例中,該内容係以該技術中已 熟知的一方式調變成OFDM信號》 135579.doc •14- 201017977 數位至類比轉換器(DAC)502接收輸出自DSP 5〇1之數位 k號’並且將其轉換至類比信號。在一具體實施例中,輸 出自DAC 502之信號係介於〇至256 MHz信號之間。 混合器503接收輸出自DAC 502之信號,並且將其與來 自本機振盈器(LO)504的一信號組合。輸出自混合器5〇3 之信號係依一中頻。在一具體實施例中,該中頻係介於2 至9 GHz之間。 多重相移器505〇·Ν接收來自混合器503之輸出。其包含一 倍減器,用以控制哪些相移器接收該等信號。在一具體實 施例中’此等相移器係已量化相移器。在一替代具體實施 例中,該等相移器可由複合乘法器取代。在一具體實施例 中,DSP 501亦經由控制通道508控制相位陣列天線52〇中 之天線元件之每一者中之電流之相位及量值,而以該技術 中已熟知的一方式產生一所需波束場型。換言之,Dsp 5〇1控制相位陣列天線520之相移器5050-n,以產生該所需 場型<5 相移器505〇·Ν之每一者產生一輸出,其係傳送至用以放 大該信號之功率放大器506〇-ν之一。該等已放大信號係傳 送至具有多重天線元件507〇_Ν之天線陣列507。在一具體實 施例中’發送自天線5〇7〇 ν之信號係56至64 〇^^間之射頻 ^號°因此,多重波束係從相位陣列天線52〇輸出。 相對於該接收器,天線510〇_N接收來自天線5〇7g_n之無線 傳輸’並且將其提供給相移器511q_n。如以上所討論,在 —具體實施例中’相移器511〇·Ν包括已量化相移器。另— 135579.doc -15- 201017977 選擇為:相移器5110.n可由複合乘法器取代。相移器511〇 n 接收來自天線510〇_n之信號,該等相移器511()n係經組合以 形成一單一線饋輸出。在一具體實施例中,一多工器係用 以組合來自該等不同元件之信號,並且輸出該單一饋線。 相移器511〇·Ν之輸出係輸入至中頻(π?)放大器512,其將該 信號之頻率降低至一中頻。在一具體實施例中,該中頻係 介於2至9 GHz之間》 混合器513接收該IF放大器512之輸出,並且以該技術中 已熟知之一方式將其與來自L0514的一信號組合。在一具 體實施例中,混合器513之輸出係0至250 MHz之範圍中的 一信號。在一具體實施例中’每一通道存在丨及卩信號。 類比至數位轉換器(ADC)515接收混合器513之輸出,並 將其轉換至數位形式。來自ADC 515之數位輸出係由dsp 5 16加以接收。DSP 5 16復原該信號之振幅及相位^ Dsp 511可提供解調、封包解組裝、解交錯及自動増益控制。 在一具體實施例中’該等收發器之每一者包含一控制微 處理器’其設立DSP之控制資訊。該控制微處理器可與該 DSP在相同晶粒上。 DSP控制適應性波束成形 在一具體實施例中,該等DSP實施一適應性演算法,其 中該等波束成形權重係以硬體加以實施。亦即,該發射器 及接收器一起運作以使用數位控制之類比相移器以RF頻率 執行該波束成形;然而,在一替代具體實施例中,該波束 成形係以IF執行。相移器505o-N及5 110·Ν係分別經由控制通 135579.doc -16- 201017977 道508及控制通道517而經由其個別DSP以該技術中已熟知 的一方式加以控制。例如,DSP 501控制相移器405〇·ν,以 使該發射器執行適應性波束成形,以操縱該波束,同時 DSP 511控制相移器511〇_n,以引導天線元件接收來自天線 元件之無線傳輸’並且組合來自不同元件之信號,以形成 一單一線饋輸出》在一具體實施例中,一多工器係用以組 合來自該等不同元件之信號,並且輸出該單一饋線。 攀 DSP 501藉由脈動或激勵連接至每一天線元件之適當相 移器而執行該波束操縱《在DSP 501下之脈動演算法控制 每一元件之相位及增益❶執行DSP控制相位陣列波束成形 係該技術中已熟知。 該適應性波束成形天線係用以避免干擾障礙。藉由調適 該波束成形及操縱該波束,可避免可能防止或干擾該發射 器與該接收器間之無線傳輸之障礙而使該通信發生。 在一具體實施例中,關於該等適應性波束成形天線,其 ❹ 具有二個操作相位。該三個操作相位係該調校相位、一搜 哥相位及追蹤相位。該調校相位及搜尋相位發生於初 始化期Μ。該調校相位以預定之空間場型⑷及⑻順序 .決定該通道輪廓。該搜尋相位計算候選空間場型、 ⑽的-清單’並且選擇一主要候選{Αδ,Βδ},用於一收發 器之發射器與另一收發器之接收器間之資料傳輸。該追蹤 相位記錄該候選清單之強度。當該主要候選遭受障礙時, 選擇下一對之空間場型以便使用。 在-具體實施例中’於該調校相位期間,該發射器送出 135579.doc -17- 201017977 一空間場型{Αί}順序。對於每-空間場型{A〇,該接收器 將該已接收信號投影至另—場型{B3}順序上M乍為該投影 之一結果,一通道輪廓係於該對{义}、上獲得。 在一具體實施例中,於該發射器與該接收器間執行一徹 底調校,其中該接收器之天線係位在所有定位而且該發 射器傳送多重空間場型。徹底調校係該技術中已熟知。在 此情況中,由該發射器發送Μ個發送空間場型,而且由該 接收器接收Ν個接收空間場型,以形成一 1<[乘1^通道矩陣。 因此’該發射器經歷發送扇區的一場型,而且該接收器搜 尋以便尋找該傳輸之最強信號。然後該發射器移至下一扇 區。於該徹底搜尋程序之最後,已獲得該發射器與該接收 器之所有位置的一分級,及在該等位置之通道之信號強 度°該資訊係依該等天線所指向之位置與該等通道之信號 強度之對加以維護。在干擾之情況中,該清單可用以操縱 該天線波束。 在一替代具體實施例中,使用雙區段調校,其中該空間 係以連續窄區段加以分割,並且傳送正交天線場型,以獲 得一通道輪廓。 假設DSP 501係在一穩定狀態中,而且已決定該天線應 指向之方向。在該標稱狀態中,該DSP將具有其傳送至該 等相移器的一組係數。該等係數指示該相移器對於其對應 天線偏移該信號之相位數量。例如,DSP 501將一組數位 控制資訊傳送至該等相移器,用以指示該等不同相移器偏 移不同數量,例如,偏移30度、偏移45度、偏移90度、偏 135579.doc • 18 - 201017977 移1 80度等。因此,往該天線元件之信號將以相位之某一 度數加以偏移。偏移之最後結果(例如,該陣列中由不同 數量所致之16、34、32、64個元件)實現該天線以於該接 收天線具備最靈敏接受定位的一方向上加以操縱。亦即, . 該整體天線陣列上之合成組之偏移提供用以攪拌該天線之 最靈敏點在該半球上所指向之處之能力。 注意.在一具體實施例中,該發射器與該接收器間之適 ^ 當連接可能並非從該發射器至該接收器的一直接路徑《例 如,該最適當路徑可係彈離該天花板。 返回通道 在一具體實施例中,該無線通信系統包含一返回通道或 鏈路用於在無線通信裝置(例如,一發射器與接收器、 一對收發器等)間發送資訊。該資訊係關於該等波束成形 天線,而且實現該等無線通信之一或二者調適天線元件之 陣列,以便將一發射器之天線元件一起較佳地引導至該接 φ 收裝置之天線元件。該資訊亦包含用以促進使用在該發射 器與該接收器之天線元件間無線轉移之内容之資訊。 在圖5中’返回通道52〇係耦合於Dsp 516與DSP 501之 ' 間’用以實現DSP 516將追蹤及控制資訊傳送至DSP 501。 • 在一具體實施例中,返回通道520用作一高速下行鏈路及 一確認通道。 在一具體實施例中,該返回通道亦係用以轉移對應於該 無線通信發生(例如,無線視訊)所進行之應用之資訊。此 類資訊包含内容保護資訊。例如,在一具體實施例中,當 135579.doc -19· 201017977 該等收發器轉移HDMI資料時,該返回通道係用以轉移加 密資訊(例如,加密密鑰及加密密鑰之確認在此一情況 令’該返回通道係用於内容保護通信。The wireless communication link 407 also transfers antenna information between the transmitter device 440 and the receiver device 441 during initialization of the phase array antennas 4〇5 and 41〇, and the wireless communication link 407 is transferred for processor 403 selection. Information about the direction of one of the phase array antennas 405. In a specific embodiment, the information includes, but is not limited to, antenna positioning information and performance information corresponding to the antenna positioning, such as one or more pairs of data 'which includes the position of the phase array antenna 41〇, and for the antenna position The signal strength of the channel. In another embodiment, the information includes, but is not limited to, information transmitted by processor 412 to processor 403 for the processor to decide which portions of phase array antenna 405 to use to transfer content. When the phase array antennas 405 and 41 are operated in the - mode during their transferable content (e.g., face content), the wireless communication key passes the state of the communication path from the processor 412 of the receiver device 441. An indication. The indication of the status of the communication includes an indication from the processor 412 - = 403 two: the direction (e.g., 'to another channel') manipulates the transmission of the wave response with a portion of the content ... can specify that the processor 403 can be used One or more alternatives 135579.doc • 13· 201017977 In a specific embodiment, the antenna information includes information transmitted by the processor 412 for specifying that the receiver device 441 directs the phase array antenna 41 to Positioning. This may be useful during initialization, when the transmitter device 440 tells the receiver device 441 where to locate its antenna so that signal quality measurements can be made to identify the best channel. The specified position may be a correct position, or may be a relative position, such as, for example, a predetermined position in the predetermined positioning order followed by the transmitter device '440 and the receiver device 441. In a specific embodiment, the wireless communication link 410 transfers the information from the receiver device 441 to the transmitter device 44, which specifies the antenna characteristics of the phase array antenna 410, or vice versa. Example of a Transceiver Architecture FIG. 5 is a block diagram of an embodiment of an adaptive beamforming multi-antenna radio system including the transmitter device 44 of FIG. 4 and the receiver device 441. The transceiver 500 includes multiple Independent transmit and receive chain. Transceiver φ 500 performs phase array beamforming using a phase array that takes a similar RF signal and offsets the phase for one or more antenna elements in the array to achieve beam steering. • Referring to Figure 5, a digital signal processor (DSP) 501 formats the content and generates an instantaneous baseband signal. The DSP 501 provides modulation, feC coding, packet assembly, interleaving, and automatic gain control. The DSP 501 then forwards the baseband signal to be modulated and transmitted on the rf portion of the transmitter. In one embodiment, the content is modulated into an OFDM signal in a manner well known in the art. 135579.doc • 14- 201017977 The digital to analog converter (DAC) 502 receives the digit k number 'output from DSP 5〇1' and converts it to an analog signal. In one embodiment, the signal output from DAC 502 is between 〇 and 256 MHz signals. Mixer 503 receives the signal output from DAC 502 and combines it with a signal from local oscillator (LO) 504. The signal output from the mixer 5〇3 is based on an intermediate frequency. In a specific embodiment, the intermediate frequency system is between 2 and 9 GHz. The multiple phase shifter 505 Ν receives the output from the mixer 503. It includes a doubler to control which phase shifters receive the signals. In a particular embodiment, such phase shifters have quantized phase shifters. In an alternate embodiment, the phase shifters may be replaced by a composite multiplier. In one embodiment, DSP 501 also controls the phase and magnitude of the current in each of the antenna elements in phase array antenna 52A via control channel 508, and produces a method in a manner well known in the art. Beam field type is required. In other words, Dsp 5〇1 controls phase shifter 5050-n of phase array antenna 520 to generate the desired field type <5 phase shifter 505〇·Ν to generate an output which is transmitted to One of the power amplifiers 506 〇-ν that amplifies the signal. The amplified signals are transmitted to an antenna array 507 having multiple antenna elements 507 〇 Ν. In a specific embodiment, the RF signal number transmitted from the signal system 56 to 64 天线 天线 of the antenna 5 〇 7 〇 ν is thus output from the phase array antenna 52 。. With respect to the receiver, the antenna 510〇_N receives the wireless transmission 'from the antenna 5〇7g_n and supplies it to the phase shifter 511q_n. As discussed above, in the particular embodiment the 'phase shifter 511' includes a quantized phase shifter. Another – 135579.doc -15- 201017977 The choice is: phase shifter 5110.n can be replaced by a composite multiplier. Phase shifter 511 〇 n receives signals from antennas 510 〇 n, which are combined to form a single line feed output. In a specific embodiment, a multiplexer is used to combine signals from the different components and output the single feeder. The output of the phase shifter 511 〇 Ν is input to an intermediate frequency (π?) amplifier 512 which reduces the frequency of the signal to an intermediate frequency. In a specific embodiment, the intermediate frequency system is between 2 and 9 GHz. The mixer 513 receives the output of the IF amplifier 512 and combines it with a signal from L0514 in a manner well known in the art. . In a specific embodiment, the output of mixer 513 is a signal in the range of 0 to 250 MHz. In one embodiment, the 丨 and 卩 signals are present in each channel. An analog to digital converter (ADC) 515 receives the output of mixer 513 and converts it to digital form. The digital output from ADC 515 is received by dsp 5 16. The DSP 5 16 restores the amplitude and phase of the signal. The Dsp 511 provides demodulation, packet deassembly, de-interlacing, and automatic gain control. In one embodiment, each of the transceivers includes a control microprocessor that sets up control information for the DSP. The control microprocessor can be on the same die as the DSP. DSP Controlled Adaptive Beamforming In one embodiment, the DSPs implement an adaptive algorithm in which the beamforming weights are implemented in hardware. That is, the transmitter and receiver operate together to perform the beamforming at an RF frequency using an analog phase shifter of digital control; however, in an alternate embodiment, the beamforming is performed in an IF. The phase shifters 505o-N and 5110 are controlled via their respective DSPs in a manner well known in the art via control 135579.doc -16 - 201017977 508 and control channel 517, respectively. For example, the DSP 501 controls the phase shifter 405〇·ν to cause the transmitter to perform adaptive beamforming to manipulate the beam while the DSP 511 controls the phase shifter 511〇_n to direct the antenna element to receive from the antenna element. Wireless transmission 'and combining signals from different components to form a single wire feed output." In one embodiment, a multiplexer is used to combine signals from the different components and output the single feed. The Climbing DSP 501 performs the beam steering by pulsing or exciting a suitable phase shifter connected to each antenna element. The pulse algorithm under the DSP 501 controls the phase and gain of each component. The DSP controls the phase array beamforming system. It is well known in the art. The adaptive beamforming antenna is used to avoid interference barriers. By adapting the beamforming and manipulating the beam, the communication can occur by avoiding the obstacles that may prevent or interfere with the wireless transmission between the transmitter and the receiver. In a specific embodiment, with respect to the adaptive beamforming antennas, ❹ has two operational phases. The three operational phases are the adjusted phase, a search phase, and a tracking phase. The tuning phase and the search phase occur during the initial period. The tuning phase determines the contour of the channel in a predetermined spatial field pattern (4) and (8). The search phase calculates the candidate spatial field pattern, the -list' of (10) and selects a primary candidate {Αδ, Βδ} for data transfer between the transmitter of one transceiver and the receiver of the other transceiver. The tracking phase records the strength of the candidate list. When the primary candidate suffers an obstacle, the next pair of spatial patterns are selected for use. In the particular embodiment, during the tuning phase, the transmitter sends a sequence of 135579.doc -17- 201017977 a spatial field type {Αί}. For each-space field type {A〇, the receiver projects the received signal to another field type {B3} in the order that M乍 is one of the projections, and a channel contour is attached to the pair. obtain. In a specific embodiment, a thorough tuning is performed between the transmitter and the receiver, wherein the antenna of the receiver is located at all locations and the transmitter transmits multiple spatial patterns. Thorough adjustment is well known in the art. In this case, one transmit spatial field pattern is transmitted by the transmitter, and one receive spatial field pattern is received by the receiver to form a 1<[multiply 1^ channel matrix. Thus the transmitter experiences a field type of the transmitting sector and the receiver searches for the strongest signal for the transmission. The transmitter then moves to the next sector. At the end of the thorough search procedure, a hierarchy of all locations of the transmitter and the receiver, and signal strengths of the channels at the locations have been obtained. The information is based on the locations pointed by the antennas and the channels The pair of signal strengths is maintained. In the case of interference, the list can be used to manipulate the antenna beam. In an alternate embodiment, a two-segment calibration is used in which the space is segmented in a continuous narrow segment and the orthogonal antenna pattern is transmitted to obtain a channel profile. Assume that the DSP 501 is in a steady state and has determined the direction in which the antenna should point. In this nominal state, the DSP will have a set of coefficients that it transmits to the phase shifters. The coefficients indicate the number of phases the phase shifter has offset for its corresponding antenna. For example, the DSP 501 transmits a set of digital control information to the phase shifters to indicate that the different phase shifters are offset by different numbers, for example, offset by 30 degrees, offset by 45 degrees, offset by 90 degrees, and offset. 135579.doc • 18 - 201017977 Move 1 80 degrees and so on. Therefore, the signal to the antenna element will be offset by a certain degree of phase. The final result of the offset (e.g., 16, 34, 32, 64 elements in the array due to different numbers) is implemented to operate the antenna with the most sensitive side of the receiving antenna. That is, the offset of the composite set on the overall antenna array provides the ability to agitate where the most sensitive point of the antenna is pointing on the hemisphere. Note that in a particular embodiment, the appropriate connection between the transmitter and the receiver may not be a direct path from the transmitter to the receiver (e.g., the most appropriate path may be ejected from the ceiling). Return Channel In one embodiment, the wireless communication system includes a return channel or link for transmitting information between wireless communication devices (e.g., a transmitter and receiver, a pair of transceivers, etc.). The information relates to the beamforming antennas, and one or both of the wireless communications are adapted to adapt the array of antenna elements to preferably direct the antenna elements of a transmitter together to the antenna elements of the splicing device. The information also includes information to facilitate the use of content for wireless transfer between the transmitter and the antenna elements of the receiver. In Figure 5, the 'return channel 52' is coupled between the Dsp 516 and the DSP 501 to enable the DSP 516 to communicate tracking and control information to the DSP 501. • In one embodiment, return channel 520 acts as a high speed downlink and a acknowledgment channel. In a specific embodiment, the return channel is also used to transfer information corresponding to the application of the wireless communication (e.g., wireless video). This type of information includes content protection information. For example, in a specific embodiment, when the transceivers transfer HDMI data, the return channel is used to transfer encrypted information (for example, the encryption key and the encryption key are confirmed here). The situation is that 'the return channel is used for content protection communication.

更具體言之,在HDMI中’加密用以驗證該資料槽係一 已准許裝置(例如’一已准許顯示器)。存在新加密密鑰的 一連續流,其係於轉移該HDMI資料流時轉移,用以驗證 該已准許裝置尚未改變。該HD !^資料之圖框之區塊係以 不同從餘加密,而且然後該等密鑰必須在返回通道520上 返回確遇’以便驗證該播放器。返回通道520於該前向方 向上將該等加密密鑰轉移至該接收器,而且來自該接收器 之密鑰接受之確認係於該轉回方向上。因此,已加密資訊 係於二個方向上傳送。 使用該返回通道進行内容保護通信係有益,因為其避免 必須在此類通信係伴隨内容而傳送時完成—冗長重新調校 程序》例如,若來卜發射器的—密錄係與橫跨該主要鍵 路而流動之内容並排傳送,並且該主要鏈路中斷,則對於 一典型HDM獅CP系統,其將強迫2至3秒的一冗長重新 調校。在-具體實施例中,具有較該主要定向鏈路更高之 可靠度之此分離雙向鏈路給予其全向方位。藉由使用此返 回通道進行該等HDCP密鑰及從該接收裝置返回之適當確 涊之通信’即使在最具衝擊障礙之事件中,仍可 時之重新調校。 # 在該等波束成形天線轉㈣料之現__間,該返 回通道係用以允許該接收器通知該發射器有關該通道之狀 135579.doc •20· 201017977 態。例如,於該等波束成形天線間之通道係具有充分品質 時,該接收器在該返回通道上傳送資訊,以指示該通道係 可接受。該返回通道亦可由該接收器用以傳送給該發射器 可量化資訊’指示所使用通道之品質。若一些形式之干擾 (例如,一障礙)發生,其使該通道之品質劣化至一可接受 位準以下,或者完全地防止該等波束成形天線間之傳輸, 則該接收器可指示該通道不再可接受,及/或可在該返回 通道上要求該通道的一改變。該接收器可請求改變至一預 定組之通道中之下一通道,或者可規定一特定通道供該發 射器使用。 在一具體實施例中,該返回通道係雙向。在此一情況 中,於一具體實施例中,該發射器使用該返回通道將資訊 傳送至該《器。㈣資訊可包含指示該接收器將其天線 元件定位在初始化期間該發射器可掃描之不同固定定位之 資訊。該發射器可規定此如下:藉由特別地指定該定位, φ 或者藉由指示該接收器應進行至以該發射器及接收器二者 所進行之一預定次序或清單中指定之下一定位。 在-具體實施例中,該返回通道係由該發射器及該接收 ’ g之任-者或二者用精另一者通知特定天線特徵化資 訊。例如,該天線特徵化資訊可規定該天線能夠向下分解 至半徑之6度’而且該天線具有某_數目之元件(例如,32 個元件、64個元件等)。 在-具體實施例中’該返回通道上之通信係藉由使用干 擾單元而無線地執行。可使用任何形式之無線通作。在一 135579.doc -21- 201017977 具體實施例中,0FDM係用以在該返回通道上轉移資訊。 在另一具體實施例中,CPM係用以在該返回通道上轉移資 訊。 雖然已結合其特定具髏實施例而描述本發明,但基於前 述描述,許多替代、修改及變化對於熟習此項技術者而言 是顯然可知的。例如,任何已平衡饋送結構可取代微帶線 與該平衡非平衡適配器之組合,而不致偏離本發明之範 疇。因此,希望本發明包括如落在隨附之申請專利範圍之 廣泛範疇内之所有此類替代、修改及變化。 【圖式簡單說明】 從以下給定之詳細描述及從本發明之各種具體實施例之 附圖將更完全地瞭解本發明,然而,不應藉此將本發明限 制於該等特定具體實施例,而係僅用於解釋及瞭解。 圖1解說該先前技術的一平面式天線; 圖2A及2B分別描述另一先前技術平面式天線之俯視及 等角視圖; 圖3 A及3B分別解說根據本發明之一具體實施例之一已 改良平面式天線之俯視及等角視圖; 圖4係一通信系統之一具體實施例的一方塊圖; 圖5係該通信系統之一具體實施例的一較詳細方塊圖; 以及 圖6係一周邊裝置之一具體實施例的一方塊圖。 【主要元件符號說明】 301 損疊偶極/驅動器 I35579.doc •22- 201017977 參 302 平衡非平衡適配器 303 引導器 304 共面條 305 饋送結構 310 基板 311 接地平面 312 接地邊緣 400 媒體接收器 401 内容 402 媒體接收器介面 403 處理器 404 可選基頻處理組件 405 相位陣列天線 406 無線通信通道介面/無線通信鏈路介面 407 無線通信通道/無線通信鏈路 409 無線通信通道介面 410 相位陣列天線 411 可選基頻處理組件 412 處理器 413 媒體播放器介面 414 媒體播放器 415 顯示器 421 控制通道 422 控制通道 135579.doc -23· 201017977More specifically, 'encryption' is used in HDMI to verify that the data slot is a licensed device (e.g., 'a licensed display'). There is a continuous stream of new encryption keys that are transferred when the HDMI data stream is transferred to verify that the granted device has not changed. The blocks of the HD!^ data frame are encrypted with different suffixes, and then the keys must be returned on the return channel 520 to verify the player. The return channel 520 transfers the encryption key to the receiver in the forward direction, and the confirmation of the key acceptance from the receiver is in the direction of the reversal. Therefore, the encrypted information is transmitted in two directions. The use of this return channel for content protection communication is beneficial because it avoids having to be done when such a communication system is accompanied by content - a lengthy recalibration procedure, for example, if the originator of the transmitter is occluded across the main The contents of the keyway are transmitted side by side, and the main link is interrupted. For a typical HDM Lion CP system, it will force a lengthy recalibration of 2 to 3 seconds. In a particular embodiment, the separate bidirectional link having a higher reliability than the primary directional link gives its omnidirectional orientation. By using this return channel, the HDCP keys and the appropriately confirmed communication returned from the receiving device can be recalibrated even in the event of the most impulsive obstacle. # Between the current beamforming antennas (4), the return channel is used to allow the receiver to inform the transmitter of the state of the channel 135579.doc •20· 201017977. For example, when the channel between the beamforming antennas is of sufficient quality, the receiver transmits information on the return channel to indicate that the channel is acceptable. The return channel can also be used by the receiver to transmit to the transmitter quantifiable information' indicating the quality of the channel used. If some form of interference (eg, an obstacle) occurs that degrades the quality of the channel below an acceptable level, or completely prevents transmission between the beamforming antennas, the receiver may indicate that the channel is not Further acceptable, and/or a change in the channel may be requested on the return channel. The receiver may request to change to the next channel in a predetermined group of channels, or may specify a particular channel for use by the transmitter. In a specific embodiment, the return channel is bidirectional. In this case, in one embodiment, the transmitter uses the return channel to communicate information to the device. (4) The information may include information indicating that the receiver positions its antenna elements at different fixed positions that the transmitter can scan during initialization. The transmitter may specify this by: specifying the location, φ or by indicating that the receiver should proceed to a predetermined order in either the transmitter and the receiver or a lower one in the list. . In a particular embodiment, the return channel notifies the particular antenna to characterize the message by the transmitter and the receiver or both. For example, the antenna characterization information may specify that the antenna can be resolved down to a degree of 6 degrees ' and the antenna has a certain number of elements (e.g., 32 elements, 64 elements, etc.). In a particular embodiment, the communication on the return channel is performed wirelessly by using an interference unit. Any form of wireless communication can be used. In a specific embodiment 135579.doc -21- 201017977, OFDM is used to transfer information on the return channel. In another embodiment, the CPM is used to transfer information on the return channel. Although the present invention has been described in connection with the specific embodiments thereof, many alternatives, modifications and variations are apparent to those skilled in the art. For example, any balanced feed structure can be substituted for the combination of the microstrip line and the balanced unbalanced adapter without departing from the scope of the invention. Therefore, it is intended that the present invention include such such alternatives, modifications and BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be more fully understood from the following detailed description of the embodiments of the invention. It is for explanation and understanding only. 1 illustrates a planar antenna of the prior art; FIGS. 2A and 2B respectively illustrate a top view and an isometric view of another prior art planar antenna; FIGS. 3A and 3B respectively illustrate one embodiment of the present invention. 4 is a block diagram of a specific embodiment of a communication system; FIG. 5 is a more detailed block diagram of one embodiment of the communication system; and FIG. 6 is a block diagram A block diagram of one embodiment of a peripheral device. [Major component symbol description] 301 Loss-dial dipole/driver I35579.doc • 22- 201017977 Reference 302 Balance unbalanced adapter 303 Guide 304 Common noodle 305 Feed structure 310 Substrate 311 Ground plane 312 Ground edge 400 Media receiver 401 Content 402 Media Receiver Interface 403 Processor 404 Optional Baseband Processing Component 405 Phase Array Antenna 406 Wireless Communication Channel Interface / Wireless Communication Link Interface 407 Wireless Communication Channel / Wireless Communication Link 409 Wireless Communication Channel Interface 410 Phase Array Antenna 411 Optional Baseband Processing Component 412 Processor 413 Media Player Interface 414 Media Player 415 Display 421 Control Channel 422 Control Channel 135579.doc -23· 201017977

440 發送裝置/發射器裝置 441 接收裝置/接收器裝置 501 數位信號處理器(DSP) 502 數位至類比轉換器(DAC) 503 混合器 504 本機振盪器(LO) 5 05〇,n 相移器 5 06〇,n 功率放大器 5〇7〇·ν 天線元件 508 控制通道 5 1 〇〇-n 天線 512 中頻(IF)放大器 513 混合器 514 LO 515 類比至數位轉換器(ADC) 516 DSP 517 控制通道 520 相位陣列天線/返回通道 613 媒體播放器介面 614 媒體播放器 615 顯示器 631 接收器 135579.doc -24-440 Transmitter/transmitter device 441 Receiver/receiver device 501 Digital Signal Processor (DSP) 502 Digital to Analog Converter (DAC) 503 Mixer 504 Local Oscillator (LO) 5 05〇, n Phase Shifter 5 06〇, n Power Amplifier 5〇7〇·ν Antenna Element 508 Control Channel 5 1 〇〇-n Antenna 512 Intermediate Frequency (IF) Amplifier 513 Mixer 514 LO 515 Analog to Digital Converter (ADC) 516 DSP 517 Control Channel 520 Phase Array Antenna/Return Channel 613 Media Player Interface 614 Media Player 615 Display 631 Receiver 135579.doc -24-

Claims (1)

201017977 十、申請專利範圍: 1. 一種平面式天線,其包括: 一驅動器,其包括一摺疊偶極;以及 一整合平衡非平衡適配器,其耗合至該指憂偶極。 2. 如請求項1之天線,其進一步包括一基板,該摺疊偶極 及該平衡非平衡適配器係耦合至其上Q201017977 X. Patent Application Range: 1. A planar antenna comprising: a driver comprising a folded dipole; and an integrated balanced unbalanced adapter consuming to the finger dipole. 2. The antenna of claim 1, further comprising a substrate, the folded dipole and the balanced unbalanced adapter being coupled thereto 3. 如凊求項2之.天線,其中該摺疊偶極及平衡非平衡適配 器係在該基板的一第一側上,而且進一步包括一接地平 面,其耦合至與該第一側相反之該基板的一第二側,該 接地平面用作一反射元件。 4.如請求項〗之天線,其中該摺疊偶極及該平衡非平衡適 配器係經由共面條加以耦合。 5·如請求項1之天線,其進一步包括: :或多個引導器,其中該一或多個引導器及該驅動器 係在一基板的一平面上。 6.如”月求項1之天線’其進一步包括用以饋 衡適配器的—已平衡饋送結構。 4衡非平 I =項6之天線’其中該已平衡嫌送結構包括1送 8.如請求項7之天線, 導》 其中該饋送傳輸線 包括—共面波 9.10. 如凊求項7之天線,其中該饋送傳輸線包括— 一種平面式天線,其包括: 微帶線。 —驅動器’其包括一摺疊偶極; 135579.doc 201017977 一整合平衡非平衡適配器,其使用共面條糕合至該摺 疊偶極; 一或多個引導器,其中該一或多個引導器、該驅動器 及該平衡非平衡適配器係在一基板的一平面上;以及 一已平衡饋送結構。 π.如請求項10之天線,其中該摺叠偶極及平衡非平衡適配 器係在該基板的一第一側上,而且進一步 * 少巴栝一接地3. The antenna of claim 2, wherein the folded dipole and balanced unbalanced adapter are on a first side of the substrate, and further comprising a ground plane coupled to the opposite of the first side A second side of the substrate that serves as a reflective element. 4. The antenna of claim 1, wherein the folded dipole and the balanced unbalanced adapter are coupled via a common noodle. 5. The antenna of claim 1, further comprising: or a plurality of directors, wherein the one or more directors and the driver are on a plane of a substrate. 6. The antenna of the monthly claim 1 further comprising a balanced feed structure for feeding the adapter. 4 balanced non-flat I = antenna of the item 6 wherein the balanced suspect structure comprises 1 send 8. The antenna of claim 7, wherein the feed transmission line comprises a coplanar wave 9.10. The antenna of claim 7, wherein the feed transmission line comprises - a planar antenna comprising: a microstrip line. - a driver a folded dipole; 135579.doc 201017977 an integrated balanced unbalanced adapter that uses a common noodle cake to the folded dipole; one or more directors, wherein the one or more directors, the driver, and the balance are not The balance adapter is mounted on a plane of a substrate; and a balanced feed structure. π. The antenna of claim 10, wherein the folded dipole and balanced unbalanced adapter are attached to a first side of the substrate, and Further * 少巴栝一接地 面,其耦合至與該第一側相反之該基板的— 接地平面用作一反射元件。 一則’該 12.如請求項1〇之天線,其中該已平衡饋送結構 傳輸線》 饋送 13.如請求項12之天線 導。 其中該饋送傳輸線包括一 开面波 14.如請未項12之天線’其中該馈送傳輸線包括— 15· -種具有二或多個天線之天線陣列,其中該:。 • 、線包含如請求項1之至少-平面式天線。 ”個天 135579.doc •2·The face, which is coupled to the substrate opposite the first side, serves as a reflective element. A 12. The antenna of claim 1 wherein the balanced feed structure transmission line is fed 13. The antenna of claim 12 is directed. Wherein the feed transmission line comprises an open-face wave, such as the antenna of the item 12, wherein the feed transmission line comprises an antenna array having two or more antennas, wherein: • The line contains at least the planar antenna as in Request 1. "One day 135579.doc •2·
TW097140499A 2008-10-22 2008-10-22 A planar antenna TWI497821B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097140499A TWI497821B (en) 2008-10-22 2008-10-22 A planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097140499A TWI497821B (en) 2008-10-22 2008-10-22 A planar antenna

Publications (2)

Publication Number Publication Date
TW201017977A true TW201017977A (en) 2010-05-01
TWI497821B TWI497821B (en) 2015-08-21

Family

ID=44831030

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097140499A TWI497821B (en) 2008-10-22 2008-10-22 A planar antenna

Country Status (1)

Country Link
TW (1) TWI497821B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916907A (en) * 2010-07-08 2010-12-15 西北工业大学 Ultrahigh frequency band near field RFID reader-writer antenna
CN114696088A (en) * 2022-06-01 2022-07-01 中山大学 Broadband low-profile magnetoelectric dipole antenna based on lamination technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933907B2 (en) * 2003-04-02 2005-08-23 Dx Antenna Company, Limited Variable directivity antenna and variable directivity antenna system using such antennas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916907A (en) * 2010-07-08 2010-12-15 西北工业大学 Ultrahigh frequency band near field RFID reader-writer antenna
CN114696088A (en) * 2022-06-01 2022-07-01 中山大学 Broadband low-profile magnetoelectric dipole antenna based on lamination technology

Also Published As

Publication number Publication date
TWI497821B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
US8022887B1 (en) Planar antenna
KR101599041B1 (en) Symmetrical stripline balun for radio frequency applications
US6433742B1 (en) Diversity antenna structure for wireless communications
US11482787B2 (en) Antenna and antenna module including the antenna
US7965242B2 (en) Dual-band antenna
US8818457B2 (en) Antenna having polarization diversity
US4316194A (en) Hemispherical coverage microstrip antenna
US20140062822A1 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
JP2005210521A (en) Antenna device
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
JP2008510425A (en) Waveguide notch antenna
JP6747624B2 (en) Antenna module and communication device equipped with the same
EP2178162A1 (en) A planar antenna
US7239288B2 (en) Access point antenna for a wireless local area network
US7280085B2 (en) Antenna for wireless KVM, and housing therefor
WO2020119228A1 (en) Antenna system and communication terminal
JP2006074719A (en) Rotatable microstrip patch antenna and array antenna using the same
TWI497821B (en) A planar antenna
US20190221932A1 (en) Antenna Apparatus and Terminal Device
JP4136178B2 (en) Twin loop antenna
JP2004289371A (en) Antenna device and wireless device
KR102158981B1 (en) Antenna with a symmetrical Feeder Circuit for Improving Antenna Pattern
WO2024098928A1 (en) Dual-polarized antenna unit, antenna apparatus, and base station system
JPH0955620A (en) Ominidirectional microwave gain antenna
Frenzel Welcome to antennas 101

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees