TW201017713A - Ultra-violet and visible light emitting system - Google Patents

Ultra-violet and visible light emitting system Download PDF

Info

Publication number
TW201017713A
TW201017713A TW098126413A TW98126413A TW201017713A TW 201017713 A TW201017713 A TW 201017713A TW 098126413 A TW098126413 A TW 098126413A TW 98126413 A TW98126413 A TW 98126413A TW 201017713 A TW201017713 A TW 201017713A
Authority
TW
Taiwan
Prior art keywords
illumination system
weight percent
discharge
lap
phosphor
Prior art date
Application number
TW098126413A
Other languages
Chinese (zh)
Inventor
Maurice Alexander Hugo Donners
Dijk Gerardus Arnoldus Rita Van
Lucas Josef Maria Schlangen
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201017713A publication Critical patent/TW201017713A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0654Lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0661Radiation therapy using light characterised by the wavelength of light used ultraviolet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0664Details
    • A61N2005/0667Filters

Abstract

A UV-VIS light emitting system is described. The system comprises a phosphor mixture emitting within the UVB range and the visible range of the electromagnetic spectrum. The system has an efficiency of 84 lm/W or greater and a spectral power distribution E( λ ) such that the ratio O between the dose rate for vitamin D synthesis RD= ∫ E( λ )AD( λ )d λ and the luminous flux Φ = ∫ E( λ )V( λ )d λ is 10<SP>-6</SP> J/m<SP>2</SP>lm.s or greater. The UV-VIS light emitting system is therefore suitable for general lighting applications while providing controlled simulation of vitamin D synthesis.

Description

201017713 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種經組合之紫外線與可見光(uv_VIS)s 光系統,且特定言之(但非限於),係關於一種用於刺激維 他命D合成的UV-VIS發光系統以及一種在該系統中使用的 UV-VIS磷光體摻合物。 【先前技術】 眾所周知,維他命D在人類的鈣代謝及骨骼健康中發揮 著重要作用。另外,維他命D被公認地具有許多進一步益 於健康的效果。諸如對防止結腸癌、前列腺癌、乳腺及前 列腺癌、高血壓起到保護作用’且可預防特定的自身免疫 性疾病,諸如多發性硬化及1塑糖尿病。因此’已有提議 增加推薦日常攝入量(RDI)為每天範圍介於1000 ϊϋ與4000 IU之間以確保維他命D之所有潛在益處。 維他命D係曝露於UVB輻射中之後被合成於皮膚,且由 於僅有少數種類的食物含有維他命D’大多數人係由曝露 於陽光下以獲取其維他命D的攝入。然而許多族群與年齡 群的人每次在自然光中曝露太少或時間太短。結果許多人 因低維他命D量而患病。因此在適當的UVB位準下增加受 控曝露是值得的。 在紫外線及視覺範圍内存在細分電磁光譜的幾項定義。 在本申請案中波長所選範圍為:UVB介於280奈米與320奈 米之間;短波紫外線(UVA)介於320奈米與400奈米之間; 及人類可見光(human visual)介於400奈米與780奈米之間。 141796.doc 201017713 目則,用於一般照明應用的光源並不發射有效數量的紫 外線(UV)以獲得在UVB下的受控曝露。僅有有限數量特殊 「全光譜燈」可用,此等特殊「全光譜燈」產生緊鄰可見 光之UV輻射。當經安裝以達成在一般照明應用使用之光 . 強度(大約100 lux至1000 lux)時,此等燈僅有少數產生足 以導致有效維他命D合成的充分UV輻射數量。然而如此一 來,由於此等燈產生的UVA含量相對於UVB含量來說相當 高,因此存在患紅斑(曝露於UV下後皮膚變紅)的風險相當 • 之大。而且,此等燈使用具有一廣發射光譜的大量磷光 體,使得如今該等燈之效率(一般而言少於5〇 lm/w)在當 前最先進技術下被S忍為過低而不足以用於一般照明應用。 WO 2008/027438描述一基於磷光體的光療燈以用於刺激 維他命D的產生。此文獻提議藉由用一非紫外線發射之紅 色或綠色磷光體以弱化發射UVB之碗光體來控制UVB輻射 的輸出。此類燈不適合於一般照明應用。 因此需要一種UV-VIS發光系統之技術以用於刺激維他 ® 命D合成且適合於一般照明應用。 【發明内容】 本發明的目的係為減少或消除先前技術中的至少一已知 缺點,且在本發明的一第一態様中,提供一種用於刺激維 他命D合成之UV-VIS發光系統,其包括:至少一第一光 源’其用以發射可見光範圍内之光線;及至少一第二光 源,其用以發射至少在UVB範圍内之光線,其中該發光系 統具有84 lm/W或以上之一效率及一光譜功率分佈Ε(χ), 141796.doc 201017713 使得介於用於維他命D合成之劑量率及0=丨五(乂^々^與光 通量Φ=ί£(;1)Κ(;1)ί/;1之間之比率Q為10_6 J/m2lm_s或以上。 本發明提供一種UV-VIS發光系統,該UV-VIS發光系統 適合於一般照明應用同時提供受控的刺激維他命D合成。 在一般照明應用中使用此類光源為每次在自然光中曝露太 少或時間太短的人類或動物提供強化維他命D合成的益 處。 在該發光系統之一實施例中,第一光源包括一種或多種 可見光發光磷光體,且第二光源包括一種或多種發射UV 磷光體。使用一磷光體容許易於在經設計用於一般照明應 用的冷光放電燈中實施本發明。 在一實施例中,第一光源包括一可見光發光磷光體混合 物,宜為至少摻銪之鋁酸鋇鎂(BAM)、摻铽之磷酸鈽鑭 (LAP)及摻銪之氧化釔(YOX)的混合物。在一進一步的實 施例中,該混合物包括3重量百分比至22重量百分比之 BAM、31重量百分比至47重量百分比之LAP及31重量百分 比至67重量百分比之YOX,BAM、LAP及YOX之一混合物 提供用於組合發射UV磷光體使用之一有效的可見光發光 源。 在一實施例中,第二光源包括選自以下之群中的至少一 UV發射磷光體··鋁酸銘:Ce(SAC)、磷酸鑭:Ce(LAP:Ce)、 硼酸釓鑭:Bi(GLBB)、鋁酸鈽鎂:Ce(CAM)或磷酸釔: Ce(YPO)。在一進一步的實施例中,第二光源包括至少0.1 重量百分比至5重量百分比之一磷光體,該磷光體係選 141796.doc -6- 201017713 自:SAC、LAP.Ce、GLBB、CAM或YPO之群。當混合該 等發射UV磷光體與一合適的可見光發光磷光體混合物, 獲得一高效率UV-VIS摻合物。 在進一步之一實施例中,發射UV磷光體經組態以發射 .介於280奈米與320奈米之間的UV光線,最好是介於300奈 米與3 1 0奈米之間的UV光線。使用一小頻寬的發射性UV磷 光體,將在最小化非所欲之紅斑效應的同時,提供一相對 大的維他命D合成。 參 在更進一步之一實施例中,該系統進一步包括一 UVB透 射性(例如玻璃或石英)外殼及/或一 UVA濾光器。使用一 UVA濾光器可進一步抑制紅斑。 在一實施例中,發光系統係一放電燈,該放電燈包括一 UVB透射性放電容器,該放電容器以一氣密性方式封圍具 有一惰性氣體及水銀之一放電空間;且該放電燈包括放電 構件,該放電構件係用於在該放電空間中維持放電,設有 一冷光層之該放電容器之内表面的至少一部分包括至少 ® BAM、LAP及Υ0Χ及至少一UVB發射磷光體之一混合物, 該至少一 UVB發射磷光體宜係選自SAC、LAP:Ce、 • GLBB、CAM或 YPO之群。 I 在一實施例中,該系統包括至少一可見光發光源及一發 射UV光源。在另一實施例中,可見光發光源及/或發射UV 光源包括一螢光放電燈、一高強度放電(HID)燈或一 LED 燈。一種或多種可見光發光燈與一種或多種UV發射燈之 組合提供一種用於一般照明應用用途且同時容許刺激維他 141796.doc •Ί · 201017713 命D合成的燈總成。 在一實施例中,一可見光冷光放電燈可包括至少BAM、 LAP及YOX,且發射UV放電燈包括至少一發射UV磷光 體,該發射UV磷光體較佳地係選自:SAC、LAP:Ce、 GLBB、CAM或 YPO之群。 在進一步的一態様,本發明係關於一種在如上所述之 UV-VIS發光系統中使用的UV-VIS磷光體摻合物,其中該 摻合物包括至少3重量百分比至22重量百分比之B AM、3 1 重量百分比至47重量百分比之LAP、31重量百分比至67重 量百分比之YOX、及至少0.1重量百分比至5重量百分比之 發射UV磷光體,該發射UV磷光體較佳地係選自:SAC、 LAPrCe、GLBB、CAM或 YPO之群。 將參照所附圖式進一步地闡釋本發明,圖式將綱要性地 呈現根據本發明之實施例。將瞭解到,無論如何’本發明 非受限於該等特定實施例。 【實施方式】 具有一定波長λ的輻射其引發一生物性反應之能力由相 關作用光譜給定。圖1(ISBN 3901906509,2006年&lt;&lt;CIE publication 174&gt;&gt;Bouillon等人「Action Spectrum for the production of previtamin D3 in human skin」)繪示用於紅 斑之作用光譜ΑΕ(λ)(實線)與用於維他命D合成的作用光譜 AD(X)(虛線)是不同的。維他命D合成主要侷限於UV光譜之 UVB部分,而紅斑作用光譜延伸進入至UVA譜帶。201017713 VI. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a combined ultraviolet and visible light (uv_VIS) s optical system, and in particular, but not limited to, for stimulating vitamin D synthesis UV-VIS illumination system and a UV-VIS phosphor blend used in the system. [Prior Art] It is well known that vitamin D plays an important role in human calcium metabolism and bone health. In addition, vitamin D is recognized as having many further health benefits. For example, it protects against colon cancer, prostate cancer, breast and prostate cancer, and hypertension, and can prevent specific autoimmune diseases such as multiple sclerosis and 1 plastic diabetes. Therefore, it has been proposed to increase the recommended daily intake (RDI) to be between 1000 4000 and 4000 IU per day to ensure all potential benefits of vitamin D. Vitamin D is synthesized in the skin after exposure to UVB radiation, and since only a few types of foods contain vitamin D', most people are exposed to the sun to obtain their vitamin D intake. However, many ethnic groups and age groups are exposed too little or too short in natural light each time. As a result, many people suffer from low vitamin D levels. It is therefore worthwhile to increase controlled exposure at the appropriate UVB level. There are several definitions of subdivided electromagnetic spectra in the ultraviolet and visual range. In the present application, the wavelength selected range is: UVB is between 280 nm and 320 nm; short-wave ultraviolet (UVA) is between 320 nm and 400 nm; and human visible is between 400 nm and 780 nm. 141796.doc 201017713 The light source for general lighting applications does not emit an effective amount of ultraviolet (UV) to achieve controlled exposure under UVB. Only a limited number of special "full spectrum lights" are available, and these special "full spectrum lights" produce UV radiation in close proximity to visible light. When installed to achieve light intensity (approximately 100 lux to 1000 lux) for use in general lighting applications, there are only a few of these lamps that produce sufficient UV radiation sufficient to result in effective vitamin D synthesis. However, since the UVA content of these lamps is relatively high relative to the UVB content, there is a considerable risk of erythema (the skin becomes red after exposure to UV). Moreover, these lamps use a large number of phosphors with a broad emission spectrum, so that the efficiency of these lamps today (generally less than 5 〇lm/w) is too low for S to be too low under current state of the art technology. For general lighting applications. WO 2008/027438 describes a phosphor-based phototherapy lamp for stimulating the production of vitamin D. This document proposes to control the output of UVB radiation by weakening the UVB-emitting bowl with a non-UV-emitting red or green phosphor. Such lamps are not suitable for general lighting applications. There is therefore a need for a UV-VIS illumination system technology for stimulating Vitasoy D synthesis and for general lighting applications. SUMMARY OF THE INVENTION The object of the present invention is to reduce or eliminate at least one of the known disadvantages of the prior art, and in a first aspect of the present invention, a UV-VIS illumination system for stimulating the synthesis of vitamin D is provided. The method includes: at least one first light source for emitting light in a visible range; and at least one second light source for emitting light at least in a UVB range, wherein the illumination system has one of 84 lm/W or more Efficiency and a spectral power distribution Ε(χ), 141796.doc 201017713 Make the dose rate between the synthesis of vitamin D and 0=丨5(乂^々^ and the luminous flux Φ=ί£(;1)Κ(;1 The ratio Q between ί/;1 is 10_6 J/m2 lm_s or more. The present invention provides a UV-VIS illumination system suitable for general illumination applications while providing controlled stimulation of vitamin D synthesis. The use of such light sources in general lighting applications provides the benefit of enhanced vitamin D synthesis for each time a human or animal that is exposed too little or too short in natural light. In one embodiment of the illumination system, the first source comprises one or more Visible light A luminescent phosphor, and the second source comprises one or more emitting UV phosphors. The use of a phosphor allows for easy implementation of the invention in a luminescent discharge lamp designed for general lighting applications. In an embodiment, the first source comprises a mixture of visible light luminescent phosphors, preferably a mixture of at least erbium-doped bismuth magnesium aluminate (BAM), cerium-doped cerium phosphate (LAP) and cerium-doped cerium oxide (YOX). In a further embodiment, The mixture comprises from 3 weight percent to 22 weight percent BAM, from 31 weight percent to 47 weight percent LAP and from 31 weight percent to 67 weight percent YOX, one of a mixture of BAM, LAP and YOX is provided for use in combination to emit UV phosphors. An effective visible light illuminating source. In an embodiment, the second light source comprises at least one UV emitting phosphor selected from the group consisting of: alumina (SAC), strontium phosphate: Ce (LAP: Ce ), barium borate: Bi (GLBB), barium magnesium aluminate: Ce (CAM) or barium phosphate: Ce (YPO). In a further embodiment, the second source comprises at least 0.1 weight percent to 5 weight percent Phosphorescence The phosphorescent system is selected from 141796.doc -6- 201017713 from: a group of SAC, LAP.Ce, GLBB, CAM or YPO. When mixing such a UV-emitting phosphor with a suitable visible light-emitting phosphor, a high efficiency is obtained. UV-VIS Blend. In a further embodiment, the emitting UV phosphor is configured to emit UV light between 280 nm and 320 nm, preferably between 300 nm and 3 UV light between 10 nm. Using a small bandwidth of emissive UV phosphor will provide a relatively large vitamin D synthesis while minimizing the unwanted erythema effect. In still another embodiment, the system further includes a UVB permeable (e.g., glass or quartz) outer casing and/or a UVA filter. The erythema is further suppressed by using a UVA filter. In one embodiment, the illumination system is a discharge lamp, and the discharge lamp includes a UVB transmissive discharge vessel that encloses a discharge space having an inert gas and mercury in an airtight manner; and the discharge lamp includes a discharge member for maintaining a discharge in the discharge space, wherein at least a portion of an inner surface of the discharge vessel including a luminescent layer comprises a mixture of at least one of BAM, LAP, and Χ0Χ and at least one UVB-emitting phosphor, The at least one UVB emitting phosphor is preferably selected from the group consisting of SAC, LAP: Ce, • GLBB, CAM or YPO. In one embodiment, the system includes at least one visible light source and an emitting UV source. In another embodiment, the visible light source and/or the emitted UV source comprise a fluorescent discharge lamp, a high intensity discharge (HID) lamp, or an LED lamp. The combination of one or more visible light illuminating lamps and one or more UV emitting lamps provides a lamp assembly for general lighting applications while permitting stimulation of the Vitas 141796.doc • Ί 201017313 D synthesis. In one embodiment, a visible light luminescent discharge lamp can include at least BAM, LAP, and YOX, and the emitted UV discharge lamp includes at least one emitting UV phosphor, preferably selected from the group consisting of: SAC, LAP: Ce , GLBB, CAM or YPO group. In a further aspect, the invention relates to a UV-VIS phosphor blend for use in a UV-VIS illumination system as described above, wherein the blend comprises at least 3 weight percent to 22 weight percent B AM 3 1 weight percent to 47 weight percent LAP, 31 weight percent to 67 weight percent YOX, and at least 0.1 weight percent to 5 weight percent of the emitted UV phosphor, preferably selected from: SAC , a group of LAPrCe, GLBB, CAM or YPO. The invention will be further elucidated with reference to the drawings, which are intended to present an embodiment in accordance with the invention. It will be appreciated that the invention is not limited by the specific embodiments. [Embodiment] The ability of a radiation having a certain wavelength λ to initiate a biological reaction is given by a correlation spectrum. Figure 1 (ISBN 3901906509, 2006 &lt;&lt;CIE publication 174&gt;&gt; Bouillon et al. "Action Spectrum for the production of previtamin D3 in human skin") shows the action spectrum λ(λ) for erythema (solid line) ) is different from the action spectrum AD(X) (dashed line) used for the synthesis of vitamin D. Vitamin D synthesis is primarily limited to the UVB portion of the UV spectrum, while the erythema action spectrum extends into the UVA band.

給定一特殊光源的一光譜功率分佈Ε(λ)及用於維他命D 141796.doc 201017713 口成的作用光谱,可計算用於維他命D合成的生物學有效 劑里率及/)=仏(乂)心(in J/m2.s)。可用一分光輻射譜儀 來測置該光譜功率分佈,該分光輻射譜儀測量在每一波長 接收能量之比率,即是該波長下的功率。 按&quot;於用於維他命D合成的劑量率尺〇與光通量 Φ-仏(;1)「(祝;1(以流明為單位)(即,遍及人類眼睛易感覺 之波長所輻射能量)之間的比率所定義的相對「維他命D合 成促進通量」之估值Q提供一種判定一光源是否在發射適 Φ 合於一般照明應用之強度的可見光時發射足以刺激維他命 D合成的UVB。 用以產生具有I型皮膚(最敏感的皮膚類型)的人所需之相 當於口服劑量大約為1000 IU的維他命D的最小有效劑量為 37.2 Jm 2。使用產生約1〇〇〇 iux左右之可見光強度線之一 光源,應在一合理曝露時間(1 〇小時)内,達到此劑量Dd(其 簡單地係維他命D合成的有效劑量率乘曝露時間Te(以秒為 單位))。假定一光源發射之UV輻射與可見光輻射的空間分 ® 佈是相似的’其導致ρ&gt;1·1〇-6 J/m2lm.S之條件。 一進一步條件係關於光源之效率。對於螢光光源,採用 管柱效率作為相對光源效率。螢光光源之效率主要由磷光 體組合物及關於一特定螢光光源之設計的若干因數所決 定。為適應該等因數,對於螢光燈,管柱效率(即,當在 一直線T8(直徑為25.4毫米)36 W熱釋光(TL)燈中使用時所 決定的一特定磷光體之效率)將被用作相關光源效率。使 用以下校正因數計算一螢光光源之管柱效率: 141796.doc 201017713 器壁損耗(從T2至Τ8,從T8至Τ5,從T5至一緊密螢光燈 (CFL)) : -5%/步階 屏蔽損耗(CFL) : -15% 歸因於一整合式驅動器(CFL-I)造成的損耗:-15% 用於CFL的外部燈泡或覆蓋物:-5% 在所有情況,燈之功率歸因於電極損耗而降低2 W。所 以,於具有一管柱效率為1〇〇 lm/W的Τ8或Τ12的一 TL燈中 使用一磷光體混合物用將在36 W的一燈中提供94 lm/W之 效率,且在具有一外部燈泡的10 W的一 CFL-Ι燈中提供僅 49 ml/W之效率。 如今,用於一般照明應用之螢光光源的管柱效率應在約 為80 lm/W至100 lm/W的範圍内具有價值。 對於一般照明用途,光源進一步要求至少為7〇或以上之 一演色指數Ra。演色係用於測量一光源在照射各種物體時 再現各種物體顏色之能力。此係基於自十四種參考顏色之 一集合中的先八種顏色之演色係數的平均,如ISBN 3901906509 , 1995 年 «CIE Publication No. 13.3» 「Method of Measuring and Specifying Colour Rendering Properties of Light Sources」中所描述。 目前已知的與一高管柱效率組合的寬光譜之光源未提供 或10_6或以上的維他命D合成促進通量。已知的寬光譜燈 具有與一低Q值(〜1〇_7至1〇_8)組合的一相對高管柱效率,或 者具有與一低的管柱效率(〜40 lm/W至60 lm/W)組合的相 對高Q值。申請人已發現實際上是可生產用於維他命D合 141796.doc -10· 201017713 成與一般照明用途兩者之UV-VIS光源。 本發明之一第一實施例係關於一種具有玻璃外殼之螢光 UV-VIS燈,該玻璃外殼對於至少為300奈米及以上之波長 是透明的(例如一飛利浦290型鈉鈣玻璃,其具有化學組合 物:73.1重量百分比之Si02、2.15重量百分比之Al2〇3、 16.8重量百分比之Na20、0.6重量百分比之K20、7.1重量 百分比之MgO+CaO、&lt;0.035重量百分比之ΜηΟ、&lt;0.15重 量百分比之?6203、&lt;0.15之重量百分比803及&lt;0.025重量百 ❹ 分比之Ti02)。該燈包括一可見光發光磷光體及列於表1之 發射UV磷光體之至少一種: 發射UV磷光體 Q 光源效率 類型 含量[重量百分比] *·* [J/m lm.s] [lm/W] LAP:Ce 4.90 5.303E-06 86 LAP:Ce 1.68 1.341E-06 91 LAP:Ce 1.01 5.29E-05 91 LAP:Ce 0.51 1.241E-05 92 LAP:Ce 0.26 4.243E-06 92 CAM 2.84 2.553E-06 89 SMS 6.11 1.317E-06 86 SAC 0.12 4.022E-06 92 GLBB 5.90 1.284E-06 87 GLBB 1.84 4.282E-06 90 此處LAP:Ce指稱磷酸鑭:Ce,CAM指稱鋁酸鈽鎂: Ce,SMS指稱摻鉛雜質之锶鋇鎂矽酸鹽,SAC指稱矽酸锶 鋇鎂:Pb,及GLBB指稱硼酸釓鑭:Bi。在一進一步的實 施例中亦有可能用到磷酸釔:Ce(YPO)。 141796.doc 201017713 該可見光發光稱光體之組合物可能為一 Ba〇.9Eu〇.iMgAliG〇i7 (鋁酸銪鋇鎂或BAM),LaG.43Ce〇.43Tb().14P04(磷酸铽鈽鑭或 LAP)及(銪活化的氧化釔或YOX)。混合物中之相對比例之 範圍可係3重量百分比至22重量百分比之BAM、3 1重量百 分比至47重量百分比之LAP及31重量百分比至67重量百分 比之YOX,其中重量百分率之總和等於100%。 列於表1之組合物係基於一可見光發光磷光體混合物, 該可見光發光磷光體混合物包括2重量百分比之B AM、47 重量百分比之LAP及31重量百分比之YOX。用(以重量百分 比為單位)發射UV磷光體LAP:Ce、CAM、SAC或GLBB中 之一者摻合該混合物。對於每一發射UVB磷光體,決定相 對維他命D合成促進通量Q及效率。該等結果指示出基於 列於表1之磷光體混合物的螢光光源全部滿足0^1.1〇_6之條 件,且效率至少大於85 lm/W。光源(包括有關表1所描述 的發射UV-VIS之磷光體)之演色指數係約85。對於包含 0.26重量百分比至1.01重量百分比之LAP:Ce、0.12重量百 分比之SAC及1.84重量百分比之GLBB的組合物可獲得尤其 有利之結果。對於此等組合物可獲得範圍介於4.0_ 1 0_6 J/m2lms 至 5.3 10·5 J/m2lms 之 Q值及範圍介於 90 lm/W至 92 lm/W之效率。 因此,在如上所述之一螢光UV-VIS發光燈中使用可見 光之磷光體及發射UVB之磷光體的一混合物導致一具有充 分高效率、光線強度及演色指數的燈,用於在一般照明應 用中使用,同時在一合理的時間内促進一充分維他命D合 141796.doc -12- 201017713 成量的合成。 在一進一步實施例中,光源經組態以在最大預期曝露時 間(例如24小時)内以不超過1〇〇〇 lux的光線強度刺激維他 命D合成而不引起顯著紅斑。對於r型皮膚的人,引起紅斑 的最小劑量為200 然而,實務上,併入一安全邊限 因數4而提供一最小劑量5〇 Jm-2。由圖】之作用光譜而得出 對於大約為300奈米至3 10奈米光頻帶内的波長,相對紅斑 反應小於相對維他命D反應。因此,發射峰值介於3〇〇奈米 ® 與3 10奈米之間之一小頻寬發射性IJV磷光體將提供一相對 大的維他命D合成,同時最小化非所欲之紅斑效應。發射 UV磷光體GLBB(發射峰值在312奈米)及LAp(發射峰值在 3 15奈米)尤其適合於此用途。可藉由使用一適當濾光器(例 如’ 一干涉濾光器),或諸濾光器之組合阻斷波長小於3 〇〇 奈米之輻射及波長大於320奈米之輕射,以達到進一步減 少紅斑。 熟悉此項技術者將易於明白,本發明不限於如表1所述 ® 之三種磷光體之可見光發光摻合物及發射UV磷光體。其 它可見光發光構光體亦適合。例如,在進一步之實施例 中,可用鋁酸鈽鎂:Tb細粒(CAT)、硼酸鈽釓鎂·· Tb細粒 (CBT)、鋁酸鋇鎂:Eu、Μη及其諸混合物代替LAp,且可 用麟灰銀氣:Eu(SCAP)代替BAM。另外,可添加鍺酸鎂 氟:Mn(MGM)、銘酸鍵:Eu(SAE)及/或铭酸記:Ce(YAC) 至如上所述之構光體混合物中,以提高演色指數。UV填 光體具有相似屬性’可使用如上所述之磷光體以達到所欲 141796.doc -13· 201017713 之效果。 圖2及圖3示意性地繪示根據本發明之一螢光uv_vis光 源之一第一實施例及一第二實施例之一刮面圖。圖2僅繪 示該光源10之一末端部,其包括兩個互相相對的相同末端 部,各末端部密封地封閉一伸長之放電容器12之一末端。 該等光源10、20係低壓氣體放電燈,其包括一光透射放電 容器12、22,該等放電容器以氣密性方式封圍一放電空間 14、24。放電空間14、24包括一氣體填充物,其包括水銀 及一緩衝氣體,例如氬或氙。低壓氣體放電燈1〇、2〇進一 步包括放電構件18、28,以維持在放電空間14、24内之放 電。放電構件18、28(例如)經由電容耦合、電感耦合、微 波耗合、或經由電極而耗合能量至放電空間14、24内。 在如圖2所繪示之氣體放電燈1〇的實施例中,放電構件 18包括一組電極18。圖2僅縉示該組電極18之一電極18。 透過低壓氣體放電燈10之放電容器12電連接該等電極18。 藉由施加介於兩個電極18之間之一電位差,在該兩個電極 18之間起始一放電。一般而言’該放電位於該兩個電極18 之間’且於圖1中表示為放電空間丨4。 在如圖3所緣示之低壓氣體放電燈2〇之實施例中,放電 構件28包括一電感耦合器28,以在低壓氣體放電燈20中電 感性地維持放電。或者’亦可使用電感耦合器28來產生放 電。一般而言’該電感耦合器28(亦作為電力耦合器)包括 繞一鐵氧體(例如,鎳鋅鐵氧體或錳鋅鐵氧體)磁芯之一線 圈’電感耦合器28係被配置於放電容器22中之一突出部23 141796.doc -14- 201017713 且在放電空間24之放電容器22内產生一變化的電磁場。在 低壓氣體放電燈20中電感性產生及/或維持放電之優勢係 具有可省略電極18之優點,一般而言,電極限制低壓氣體 放電燈之壽命。或者,電感耦合器28可配置於(未繪示於 圖3中)放電容器22之外部,以導致簡化放電容器22之製造 方法。 Λ 再次參考圖2及圖3 ’在放電空間14、24之氣體填充物中 的電子及離子係經由電磁場及氣體填充物中之水銀化合物 • 之衝撞而加速。由於衝撞,水銀原子受到激發且隨後發射 光線’主要發射波長約為254奈米之紫外光線。低壓放電 燈10、20包括如上文關於表1所述之磷光體之一混合物的 一冷光層16、26。冷光層吸收紫外線光且隨後轉換所吸收 之紫外線光成可見光及UVB光線。 在一進一步之實施例中,UV_VIS發光系統可包括一或 多個可見光發光燈與一或多個UV發射燈之一組合,其中 該系統經組態以具有84 lm/w或以上之一效率及一光譜功 ❹率刀佈E(入)’使得比率Q為1〇·6 J/m2lm s或以上。可見光及/ 或發射UV光源之不同類型之多種組合是可能的,例如, _ 類似於參照圖2及圖3所述之螢光氣體放電燈;高強度放電 (HID)燈包括:一氣密性、光透射放電容器,該放電容器 以含有稀有氣體之可離子化填充物及金屬齒化物的石英玻 璃製成,或一 LED光源》在一實施例中,一 HID燈之可離 子化填充物可包括一發射UV2基於離子型鹽,諸如Feh。 應瞭解,關於任一實施例所述之任何特徵可單獨使用, 141796.doc -15· 201017713 亦可與其他所述特徵組合而使用’且亦可與任一其他實施 例之一種或多種特徵組合而使用,或以任意其它實施例之 任意組合而使用。此外,在不脫離本發明之範嘴下,亦可 使用上文未述之等效物及修改,本發明之範圍係在附加申 請專利範圍中加以定義。 【圖式簡單說明】 圖1係描繪用於紅斑及維他命D合成的作用光譜。 圖2係代表根據本發明之一實施例之一種燈的示意圖。 圖3係代表根據本發明之另一實施例之一種燈的示意 【主要元件符號說明】 10 光源 12 放電容器 14 放電空間 16 發光層 18 放電構件 20 光源 22 放電容器 23 突出部 24 放電空間 26 發光層 28 放電構件Given a spectral power distribution Ε(λ) for a particular source and a spectrum of action for vitamin D 141796.doc 201017713, the rate of biological efficiencies for vitamin D synthesis can be calculated and /) = 仏 (乂) Heart (in J/m2.s). The spectral power distribution can be measured by a spectroradiometer that measures the ratio of energy received at each wavelength, i.e., the power at that wavelength. Press &quot; between the dose rate for vitamin D synthesis and the luminous flux Φ-仏(;1) "(I wish; 1 (in lumens) (ie, the energy radiated from the wavelengths that are easily felt by human eyes) The estimate of the relative "vitamin D synthesis-promoting flux" defined by the ratio Q provides a means of determining whether a light source emits UVB sufficient to stimulate the synthesis of vitamin D when emitting visible light of a suitable intensity for general illumination applications. The minimum effective dose of vitamin D equivalent to an oral dose of approximately 1000 IU for a person with type I skin (the most sensitive skin type) is 37.2 Jm 2. Use a line of visible light intensity of about 1 〇〇〇iux. A light source should reach this dose Dd within a reasonable exposure time (1 hr) (which is simply the effective dose rate of vitamin D synthesis multiplied by the exposure time Te (in seconds). Assuming a UV emitted by a light source The spatial distribution of radiation and visible radiation is similar to the condition of 'which results in ρ>1·1〇-6 J/m2lm.S. A further condition relates to the efficiency of the light source. For fluorescent light sources, the efficiency of the tube is used. Rate as a relative source efficiency. The efficiency of a fluorescent source is primarily determined by the phosphor composition and several factors with respect to the design of a particular fluorescent source. To accommodate these factors, for fluorescent lamps, column efficiency (ie, when The efficiency of a particular phosphor determined when used in a straight T8 (25.4 mm diameter) 36 W thermoluminescent (TL) lamp will be used as the relevant source efficiency. Calculate a tube of fluorescent light using the following correction factor Column efficiency: 141796.doc 201017713 Wall loss (from T2 to Τ8, from T8 to Τ5, from T5 to a compact fluorescent lamp (CFL)): -5%/step shielding loss (CFL): -15% Loss due to an integrated drive (CFL-I): -15% External bulb or cover for CFL: -5% In all cases, the power of the lamp is reduced by 2 W due to electrode loss. Using a phosphor mixture in a TL lamp with Τ8 or Τ12 with a column efficiency of 1 〇〇lm/W would provide 94 lm/W efficiency in a 36 W lamp with an external bulb The 10 W CFL-Xenon lamp provides an efficiency of only 49 ml/W. Today, for general lighting The column efficiency of the applied fluorescent light source should be of value in the range of approximately 80 lm/W to 100 lm/W. For general lighting applications, the light source further requires a color rendering index Ra of at least 7 inches or more. It is used to measure the ability of a light source to reproduce the color of various objects when illuminating various objects. This is based on the average of the color coefficients of the first eight colors in one of the fourteen reference colors, as in ISBN 3901906509, 1995 «CIE Publication No. 13.3» "Method of Measuring and Specifying Colour Rendering Properties of Light Sources". A currently known broad spectrum source combined with a high column efficiency does not provide a vitamin D synthesis promoting flux of 10-6 or more. Known wide-spectrum lamps have a relatively high column efficiency combined with a low Q value (~1〇_7 to 1〇_8), or have a low column efficiency (~40 lm/W to 60) Lm/W) The relatively high Q value of the combination. Applicants have discovered that it is actually a UV-VIS source that can be used for both vitamin D and 141796.doc -10· 201017713 for general lighting purposes. A first embodiment of the present invention relates to a fluorescent UV-VIS lamp having a glass envelope that is transparent to wavelengths of at least 300 nm and above (eg, a Philips 290 type soda lime glass having Chemical composition: 73.1 weight percent SiO 2 , 2.15 weight percent Al 2 〇 3, 16.8 weight percent Na20, 0.6 weight percent K20, 7.1 weight percent MgO + CaO, &lt;0.035 weight percent ΜηΟ, &lt;0.15 weight Percentage of ?6203, &lt;0.15 weight percent 803 and &lt;0.025 weight percent ratio Ti02). The lamp comprises a visible light illuminating phosphor and at least one of the emitted UV phosphors listed in Table 1: Emission of UV phosphor Q source efficiency type content [% by weight] *·* [J/m lm.s] [lm/W LAP:Ce 4.90 5.303E-06 86 LAP:Ce 1.68 1.341E-06 91 LAP:Ce 1.01 5.29E-05 91 LAP:Ce 0.51 1.241E-05 92 LAP:Ce 0.26 4.243E-06 92 CAM 2.84 2.553E -06 89 SMS 6.11 1.317E-06 86 SAC 0.12 4.022E-06 92 GLBB 5.90 1.284E-06 87 GLBB 1.84 4.282E-06 90 Here LAP:Ce refers to barium phosphate: Ce, CAM refers to barium magnesium aluminate: Ce , SMS refers to lead-doped impurities of barium magnesium citrate, SAC refers to barium magnesium citrate: Pb, and GLBB refers to barium borate: Bi. It is also possible to use yttrium phosphate: Ce(YPO) in a further embodiment. 141796.doc 201017713 The composition of the visible light illuminating body may be a Ba〇.9Eu〇.iMgAliG〇i7 (barium magnesium aluminate or BAM), LaG.43Ce〇.43Tb().14P04(铽钸镧Or LAP) and (铕 activated yttrium oxide or YOX). The relative proportions in the mixture may range from 3 weight percent to 22 weight percent BAM, 31 weight percent to 47 weight percent LAP, and 31 weight percent to 67 weight percent YOX, wherein the sum of weight percentages is equal to 100%. The compositions listed in Table 1 are based on a visible light luminescent phosphor mixture comprising 2 weight percent B AM, 47 weight percent LAP and 31 weight percent YOX. The mixture is blended (in weight percent) with one of the UV phosphors LAP: Ce, CAM, SAC or GLBB. For each UVB-emitting phosphor, the relative vitamin D synthesis promotes flux Q and efficiency. These results indicate that the fluorescent light sources based on the phosphor mixture listed in Table 1 all satisfy the conditions of 0^1.1〇_6 and the efficiency is at least greater than 85 lm/W. The color rendering index of the light source (including the phosphors emitting UV-VIS described in Table 1) is about 85. Particularly advantageous results are obtained for compositions comprising from 0.26 weight percent to 1.01 weight percent LAP: Ce, 0.12 weight percent SAC, and 1.84 weight percent GLBB. For these compositions, Q values ranging from 4.0 _ 1 0_6 J/m 2 lms to 5.3 10·5 J/m 2 lms are obtained and efficiencies ranging from 90 lm/W to 92 lm/W are available. Therefore, the use of a mixture of a visible light phosphor and a UVB-emitting phosphor in a fluorescent UV-VIS illuminating lamp as described above results in a lamp having sufficient high efficiency, light intensity and color rendering index for general illumination. Used in the application while promoting a sufficient amount of vitamin D 141796.doc -12- 201017713 in a reasonable amount of time. In a further embodiment, the light source is configured to stimulate vitamin D synthesis without causing significant erythema at a maximum expected exposure time (e.g., 24 hours) with a light intensity of no more than 1 lux. For people with r-type skin, the minimum dose that causes erythema is 200. However, in practice, a safety margin factor of 4 is incorporated to provide a minimum dose of 5 〇 Jm-2. From the action spectrum of the graph, the relative erythema reaction is less than the relative vitamin D response for wavelengths in the optical band of approximately 300 nm to 3 10 nm. Therefore, a small bandwidth emissive IJV phosphor with an emission peak between 3 〇〇 nanometer ® and 3 10 nm will provide a relatively large vitamin D synthesis while minimizing the unwanted erythema effect. The emission UV phosphor GLBB (emission peak at 312 nm) and LAp (emission peak at 3 15 nm) are particularly suitable for this purpose. Further radiation can be blocked by using a suitable filter (such as an 'interference filter), or a combination of filters to block radiation having a wavelength of less than 3 nanometers and a light beam having a wavelength greater than 320 nanometers. Reduce erythema. Those skilled in the art will readily appreciate that the present invention is not limited to visible light luminescent blends and emitting UV phosphors of the three phosphors as described in Table 1. Other visible light illuminating bodies are also suitable. For example, in a further embodiment, magnesium strontium aluminate: Tb fine particles (CAT), barium magnesium borate · Tb fine particles (CBT), barium magnesium aluminate: Eu, Μη, and mixtures thereof may be used in place of LAp, And can use argyceous silver gas: Eu (SCAP) instead of BAM. In addition, magnesium citrate fluoride: Mn (MGM), sulphuric acid bond: Eu (SAE) and/or sulphuric acid: Ce (YAC) may be added to the illuminant mixture as described above to increase the color rendering index. The UV filler has similar properties. The phosphor as described above can be used to achieve the desired effect of 141796.doc -13· 201017713. 2 and 3 are schematic views showing a first embodiment and a second embodiment of a fluorescent uv_vis light source according to the present invention. Fig. 2 shows only one end portion of the light source 10, which includes two mutually opposite end portions, each end portion sealingly closing one end of an elongated discharge vessel 12. The light sources 10, 20 are low pressure gas discharge lamps comprising a light transmissive discharge vessel 12, 22 which enclose a discharge space 14, 24 in a gastight manner. The discharge spaces 14, 24 include a gas fill comprising mercury and a buffer gas such as argon or helium. The low-pressure gas discharge lamp 1〇, 2 further includes discharge members 18, 28 to maintain discharge in the discharge spaces 14, 24. The discharge members 18, 28, for example, consume energy into the discharge spaces 14, 24 via capacitive coupling, inductive coupling, microwave phasing, or via electrodes. In the embodiment of the gas discharge lamp 1 as shown in Fig. 2, the discharge member 18 comprises a set of electrodes 18. Figure 2 shows only one of the electrodes 18 of the set of electrodes 18. The electrodes 18 are electrically connected through a discharge vessel 12 of the low-pressure gas discharge lamp 10. A discharge is initiated between the two electrodes 18 by applying a potential difference between the two electrodes 18. In general, the discharge is located between the two electrodes 18 and is shown in Fig. 1 as the discharge space 丨4. In the embodiment of the low pressure gas discharge lamp 2 shown in Fig. 3, the discharge member 28 includes an inductive coupler 28 to electrically sustain the discharge in the low pressure gas discharge lamp 20. Alternatively, inductive coupler 28 can also be used to generate the discharge. In general, the inductive coupler 28 (also referred to as a power coupler) includes a coil of inductive coupler 28 that is configured around a ferrite (eg, nickel zinc ferrite or manganese zinc ferrite) core. A variable electromagnetic field is generated in the discharge vessel 22 of the discharge space 24 by a projection 23 141796.doc -14- 201017713 in the discharge vessel 22. The advantage of inductively generating and/or sustaining discharge in the low pressure gas discharge lamp 20 has the advantage that the electrode 18 can be omitted. In general, the electrode limits the life of the low pressure gas discharge lamp. Alternatively, inductive coupler 28 can be disposed external to discharge vessel 22 (not shown in Figure 3) to result in a simplified method of fabricating discharge vessel 22.再次 Referring again to Figures 2 and 3, the electrons and ions in the gas filling of the discharge spaces 14, 24 are accelerated by the collision of the electromagnetic field and the mercury compound in the gas filling. Due to the collision, the mercury atoms are excited and then emit light 'mainly emitting ultraviolet light having a wavelength of about 254 nm. The low pressure discharge lamps 10, 20 comprise a luminescent layer 16, 26 of a mixture of phosphors as described above with respect to Table 1. The luminescent layer absorbs ultraviolet light and then converts the absorbed ultraviolet light into visible light and UVB light. In a further embodiment, the UV_VIS illumination system can include one or more visible light illumination lamps in combination with one or more of the one or more UV emission lamps, wherein the system is configured to have an efficiency of 84 lm/w or more and A spectral power rate knife E (in) ' makes the ratio Q 1 〇 · 6 J / m 2 lm s or more. Various combinations of different types of visible light and/or emitting UV light sources are possible, for example, _ similar to the fluorescent gas discharge lamps described with reference to FIGS. 2 and 3; high intensity discharge (HID) lamps include: a gas tightness, a light transmissive discharge vessel made of quartz glass containing an ionizable filler and metal toothing of a rare gas, or an LED light source. In an embodiment, an ionizable filling of an HID lamp may include A emitting UV2 is based on an ionic salt such as Feh. It will be appreciated that any of the features described with respect to any of the embodiments can be used alone, and that 141796.doc -15. 201017713 can also be used in combination with other described features and can also be combined with one or more features of any other embodiment. Use, or in any combination of any of the other embodiments. In addition, equivalents and modifications, which are not described above, may be used without departing from the scope of the invention, and the scope of the invention is defined in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts the spectrum of action for erythema and vitamin D synthesis. 2 is a schematic diagram showing a lamp in accordance with an embodiment of the present invention. Figure 3 is a schematic representation of a lamp according to another embodiment of the present invention. [Main component symbol description] 10 Light source 12 Discharge capacitor 14 Discharge space 16 Light-emitting layer 18 Discharge member 20 Light source 22 Capacitor 23 Projection 24 Discharge space 26 Illumination Layer 28 discharge member

141796.doc -16 ·141796.doc -16 ·

Claims (1)

201017713 七、申請專利範圍: 1. 一種刺激維他命D合成的UV-VIS發光系統,其包括:至 少一第一光源’其發射可見光範圍内之光線;及至少一 第二光源,其發射至少在UVB範圍内之光,其中該發光 系統具有為84 lm/W或以上之一光源效率及一光譜功率 为佈Ε(λ),使得用於維他命d合成之劑量率 Λβ-ΐΕ(乂)與光通量^之間之比率卩為 10·6 J/m2lm s或以上。 φ 2·如請求項1之發光系統’其中該第一光源包括一種或多 種可見光發光磷光體,且該第二光源包括一種或多種uv 發射峨光體。 3. 如請求項1或2之發光系統,其中該第一光源包括可見光 發光磷光體之一混合物,宜包括至少銪活化之鋁酸鋇鎂 (ΒΛΜ)、铽活化之磷酸鈽鑭(LAp)及銪活化之氧化釔 (YOX)的一混合物。 4. 如請求項3之發光系統,其中該混合物包括3重量百分比 ® 至22重量百分比之BAM、31重量百分比至47重量百分比 之LAP ’及31重量百分比至67重量百分比之γοχ。 5. 如請求項1至4中任一項之發光系統,其中該第二光源包 , 括選自以下之群中的至少一 UV發射磷光體:锶 銘:Ce(SAC)、磷酸鑭:Ce(LAP:Ce)、硼酸釓鑭: Bi(GLBB)、鋁酸鈽鎂:ce(CAM)或磷酸釔:Ce(YPO)。 6. 如請求項5之發光系統,其中該第二光源包括至少〇1重 量百分比至5重量百分比之一磷光體,該磷光體係選自 141796.doc 201017713 SAC、LAP:Ce、GLBB、CAM或 YPO之群。 7. 如請求項1至3之發光系統,其中該UV磷光體經組態以發 射介於280奈米與320奈米之間的UV光,最好發射介於 3〇〇奈米與310奈米之間的UV光。 8. 如請求項1之發光系統,其中該系統進一步包括一 UVB 透射性外殼及/或一 UVA濾光器。 9. 如請求項1之發光系統,其中該發光系統係一放電燈, 該放電燈包括一 UVB透射性放電容器,該放電容器以一 氣密性方式封圍具有一惰性氣體及水銀之一放電空間; 且該放電燈包括放電構件,該放電構件係用於在該放電 空間中維持放電,設有一冷光層之該放電容器之内表面 的至少一部分包括至少BAM、LAP及YOX及至少一 UVB 發射磷光體的一混合物,該至少一 UVB發射磷光體宜係 選自 SAC、LAP:Ce、GLBB、CAM或 YPO之群。 10. 如請求項1之發光系統,其中該系統包括至少一可見光 發光源及一發射UV光源。 11. 如請求項10之發光系統,其中該可見光發光源及/或該發 射UV光源包括一螢光放電燈、一高強度放電(HID)燈或 一 LED 燈。 12. 如請求項10之發光系統,該發光系統包括一可見光冷光 放電燈,該可見光冷光放電燈宜包括至少BAM、LAP及 YOX ;且該發光系統包括一 UV發射放電燈,該UV發射 放電燈包括至少一 UV發射磷光體,該至少一 UV發射磷 光體宜係選自SAC、LAP:Ce、GLBB、CAM或YPO之 141796.doc 201017713 群。 13. —種在如請求項1之UV-VIS光源中使用的UV/VIS磷光體 摻合物,該摻合物包括至少3重量百分比至22重量百分 比之B AM、31重量百分比至47重量百分比之LAP、3 1重 量百分比至67重量百分比之YOX,及至少0.1重量百分比 m 至5重量百分比之一 UV磷光體,該UV磷光體宜係選自 SAC、LAPiCe、GLBB、CAM或 YPO之群。201017713 VII. Patent Application Range: 1. A UV-VIS illumination system for stimulating the synthesis of vitamin D, comprising: at least one first light source 'which emits light in the visible range; and at least one second light source emitting at least UVB Light within the range, wherein the illumination system has a source efficiency of 84 lm/W or more and a spectral power of λ (λ), such that the dose rate for the synthesis of vitamin D Λβ-ΐΕ(乂) and luminous flux^ The ratio between 卩 is 10·6 J/m 2 lm s or more. φ 2· The illumination system of claim 1 wherein the first source comprises one or more visible light emitting phosphors and the second source comprises one or more uv emitting phosphors. 3. The illuminating system of claim 1 or 2, wherein the first source comprises a mixture of visible light luminescent phosphors, preferably comprising at least cerium activated strontium aluminate (ΒΛΜ), strontium activated strontium phosphate (LAp), and A mixture of cerium activated cerium oxide (YOX). 4. The illumination system of claim 3, wherein the mixture comprises 3 weight percent ® to 22 weight percent BAM, 31 weight percent to 47 weight percent LAP ' and 31 weight percent to 67 weight percent gamma. 5. The illumination system of any of claims 1 to 4, wherein the second source package comprises at least one UV-emitting phosphor selected from the group consisting of: Ce (SAC), strontium phosphate: Ce (LAP: Ce), barium borate: Bi (GLBB), barium magnesium aluminate: ce (CAM) or barium phosphate: Ce (YPO). 6. The illumination system of claim 5, wherein the second source comprises at least 1 to 5 weight percent of a phosphor selected from the group consisting of 141796.doc 201017713 SAC, LAP: Ce, GLBB, CAM or YPO Group. 7. The illumination system of claims 1 to 3, wherein the UV phosphor is configured to emit UV light between 280 nm and 320 nm, preferably between 3 nm and 310 nm UV light between meters. 8. The illumination system of claim 1, wherein the system further comprises a UVB transmissive housing and/or a UVA filter. 9. The illumination system of claim 1, wherein the illumination system is a discharge lamp, the discharge lamp comprising a UVB transmissive discharge vessel, the discharge vessel enclosing a discharge space having an inert gas and mercury in an airtight manner And the discharge lamp includes a discharge member for maintaining a discharge in the discharge space, and at least a portion of an inner surface of the discharge vessel including a luminescent layer includes at least BAM, LAP and YOX and at least one UVB emission phosphorescence A mixture of the bodies, the at least one UVB emitting phosphor is preferably selected from the group consisting of SAC, LAP: Ce, GLBB, CAM or YPO. 10. The illumination system of claim 1, wherein the system comprises at least one visible light source and an emitting UV source. 11. The illumination system of claim 10, wherein the visible light source and/or the emitted UV source comprises a fluorescent discharge lamp, a high intensity discharge (HID) lamp, or an LED lamp. 12. The illumination system of claim 10, the illumination system comprising a visible light luminescence discharge lamp, the visible luminescence discharge lamp preferably comprising at least BAM, LAP and YOX; and the illumination system comprises a UV emission discharge lamp, the UV emission discharge lamp At least one UV emitting phosphor is included, and the at least one UV emitting phosphor is preferably selected from the group consisting of SAC, LAP:Ce, GLBB, CAM or YPO 141796.doc 201017713. 13. A UV/VIS phosphor blend for use in a UV-VIS light source as claimed in claim 1, the blend comprising at least 3 to 22 weight percent B AM, 31 to 47 weight percent The LAP, 31% by weight to 67% by weight of YOX, and at least 0.1% by weight to 5 parts by weight of the UV phosphor, the UV phosphor being preferably selected from the group consisting of SAC, LAPiCe, GLBB, CAM or YPO. 141796.doc141796.doc
TW098126413A 2008-08-07 2009-08-05 Ultra-violet and visible light emitting system TW201017713A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08162007 2008-08-07

Publications (1)

Publication Number Publication Date
TW201017713A true TW201017713A (en) 2010-05-01

Family

ID=41137330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126413A TW201017713A (en) 2008-08-07 2009-08-05 Ultra-violet and visible light emitting system

Country Status (2)

Country Link
TW (1) TW201017713A (en)
WO (1) WO2010016009A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644752C2 (en) 2012-01-03 2018-02-13 Бенесол, Инк. Phototherapy unit for creation of focused uv radiation and vitamin d synthesis and corresponding systems and methods
CN105470069B (en) * 2015-10-23 2017-10-17 东台市天源荧光材料有限公司 A kind of UVB sunshines are replenished the calcium the preparation method of fluorescent lamp
CN108290050B (en) 2015-11-10 2020-05-19 飞利浦照明控股有限公司 Tunable white light source with variable UV component
EP3723853A4 (en) 2017-12-15 2021-09-22 BeneSol, Inc. Systems and methods for operating phototherapy kiosks
WO2021223918A1 (en) * 2020-05-07 2021-11-11 Farmer-Light Holding A/S Black light device for improving vitamin d3 formation in animals and inactivating bacteria and viruses
GB2596574A (en) * 2020-07-01 2022-01-05 Ceravision Ltd Lamp for emitting UV-B radiation & luminaire
WO2022184620A1 (en) 2021-03-04 2022-09-09 Signify Holding B.V. Led device for emitting uv-b and method of irradiation
WO2023186741A1 (en) 2022-03-31 2023-10-05 Signify Holding B.V. Feeding system with uv-b light source for a livestock animal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891550A (en) * 1987-10-15 1990-01-02 Duro-Test Corporation Phosphor blend for broad spectrum fluorescent lamp
US7402955B2 (en) * 2005-05-24 2008-07-22 Osram Sylvania Inc. Lamp with multi-layer phosphor coating
JP2009519576A (en) * 2005-12-16 2009-05-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Low pressure discharge lamp with improved efficiency
WO2008027438A2 (en) * 2006-08-31 2008-03-06 Voltarc Technologies, Inc. Lamp for stimulating vitamin d production and method of making the same
EP1970423A1 (en) * 2007-03-13 2008-09-17 LightTech Lámpatechnológia Kft. Fluorescent lamp for stimulating previtamin D3 production

Also Published As

Publication number Publication date
WO2010016009A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
TW201017713A (en) Ultra-violet and visible light emitting system
JP5952902B2 (en) Luminescent substance particles comprising a coating and lighting unit comprising said luminescent substance
EP1741118B1 (en) Dielectric barrier discharge lamp comprising an uv-b phosphor
US7990040B2 (en) Phosphor for high CRI lamps
KR20060133053A (en) Fluorescent composition for a low-pressure discharge lamp having a very high color temperature
JP2004269845A (en) Blue-green phosphor for use in fluorescent lamp
US7053542B2 (en) Rare-gas low-pressure discharge lamp, method of manufacturing a rare-gas low-pressure discharge lamp, and application of a gas discharge lamp
JP2009516329A (en) Low pressure mercury vapor discharge lamp and compact fluorescent lamp
US20080224592A1 (en) Fluorescent lamp for stimulating previtamin d3 production
JP2008500422A (en) Low pressure mercury vapor discharge lamp with UV-A phosphor
US20110025187A1 (en) Low-pressure gas-discharge lamp for influencing the endogenous melatonin balance
US7497974B2 (en) Ce,Pr-coactivated yttrium phosphate phosphor and lamp containing same
KR20080003702A (en) Uv-emitting phosphor and lamp containing same
JP2003282026A (en) Fluorescent lamp having monolayered phosphor layer
EP2551328A2 (en) Fluorescent Lamps Having High CRI and LPW
CN103828016B (en) Strontium phosphor blends having high CRI
JPH05334999A (en) Low-pressure mercury discharge lamp
TW200537551A (en) Fluorescent lamp for emitting visible radiation
JP2007277550A (en) CALCIUM PYROPHOSPHATE PHOSPHOR COACTIVATED WITH Ce AND Pr AND LAMP CONTAINING THE SAME
GB2421846A (en) Incandescent light bulb with blue light-emitting phosphor coating
JP2003297291A (en) Fluorescent lamp
CN103247515A (en) Fluorescent lamps having high CRI
JPH09199086A (en) Low pressure mercury vapor-filled discharge lamp and lighting system using thereof
JP2011026527A (en) Phosphor for lighting everyday dish, and fluorescent lamp for lighting everyday dish by using the same
JPH10241631A (en) Fluorescent lamp