TW201016216A - New Isoniazid-containing compound with low side effects - Google Patents

New Isoniazid-containing compound with low side effects Download PDF

Info

Publication number
TW201016216A
TW201016216A TW97141522A TW97141522A TW201016216A TW 201016216 A TW201016216 A TW 201016216A TW 97141522 A TW97141522 A TW 97141522A TW 97141522 A TW97141522 A TW 97141522A TW 201016216 A TW201016216 A TW 201016216A
Authority
TW
Taiwan
Prior art keywords
inh
cyp2e1
group
cytochrome
inhibitor
Prior art date
Application number
TW97141522A
Other languages
Chinese (zh)
Other versions
TWI372052B (en
Inventor
You-Pu Hu
Dong-He Yang
dong-yuan Shi
Original Assignee
Inst Defense Education Res Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Defense Education Res Foundation filed Critical Inst Defense Education Res Foundation
Priority to TW97141522A priority Critical patent/TW201016216A/en
Publication of TW201016216A publication Critical patent/TW201016216A/en
Application granted granted Critical
Publication of TWI372052B publication Critical patent/TWI372052B/zh

Links

Abstract

A new Isoniazid-containing compound with low side effects (2) includes a pharmaceutically effective amount of isoniazid (INH), and at least a pharmaceutically effective amount of cytochrom P450 2E1 (CYP2E1) inhibitor, in which the CYP 2E1 inhibitor is selected from a group consisting of: Trans-Cinnamaldehyde,Daidzein, Isovitexin, β -Myrcene, Quercetin, (+)-Limonene, Myricetin, Quercitrin, Luteolin-7-Glucoside, Morin, Neohesperidin, Hesperidin, (-)-Epigallocatechin, Luteolin, Hyperoside, Ethyl Myristate, Tamarixetin, Baicalein, Rutin, Baicalin, Apigenin, (+)-Epicatechin, (-)-Epicatechin-3-gallate, Silybin, Vitexin, Genistein, Isorhamnetin, Diosmin, Puerarin,and Umbelliferone, in order to reduce side effects, such as liver toxicity, caused by INH. Furthermore, the present invention also provides a novel cytochrom P450 2E1 inhibitor.

Description

201016216 •九、發明說明: 【發明所屬之技術領域】 本發明係關於一種含異菸鹼醯胺(Isoniazici,INH)之低副作用新複方 (2) ’特別是指一種將異菸鹼醯胺(INH)合併使用新穎細胞色素p45〇 2E1 (CYP2E1)抑制劑之新複方’以降低由異菸鹼醯胺(INH)所引起之肝毒性等副 .作用之含異菸鹼醢胺新複方。 肇【先别技術】 根據世界衛生組織(WHO)估計,全球大約有三分之一的人口感染肺結 核,每年約有八百萬新增病例;而台灣新登記的肺結核病患人數最近幾年 也不停爬升’每十萬人口有六十多人感染肺結核,但其中只有大約四分之 三的人接受完整治療;根據衛生署的統計,台灣每天至少有4.2個人死於肺 、’》核,在這麼多接受肺結核藥物治療的病患中,臨床上最常見的藥物副作 用即為肝毒性和神經系統病變(如:聽神經和視神經病變),其中又以肝毒性 _最為常見。再加上台灣又是B型及c型肝炎的盛行區,絲肺結核之肝炎 。者也不在^數’假^^年有14,圖名新增的肺結核病患,粗略估計至少 名到3,000名慢性肝病患者需接受抗結核藥物治療,因此在這些病 患身上所可能發生的肝毒性是吾人不可魏的醫源性疾病。 乡數的第-線抗結核藥物,例如:異於驗醯胺(isQniazid,俗稱敵㈣ )丙土爪異終醯胺(pyrazmamide,俗輪敵療新邁)及立紐素(他瓜㈣等 都有導致肝备時生的潛在不良反應;其中異酿胺(is oniazid)是目前最 201016216 *有效的單一抗結核藥物,也最容易引起服用者產生肝毒性;在6〇年代末期 陸續有異菸鹼醯胺(i—)造成肝毒性的報告;異於驗酿胺(isoniazid)所造 成具有臨床症狀的肝毒性約O.W%〗’2,而在1〇 2〇%的病患中,則可觀察到 無症狀的肝功能異常3,這些肝功能異常通常於服藥後兩個月内發生。 - 如圖一所示’異於驗醯胺(isoniazid)在“肝臟中主要經由氮-乙醯氨基轉移 .酶(N-acety丨transferase, NAT)的幫助而乙醯化,產生的中間產物乙醯化異菸鹼 醢fe(acetylisoniazid)迅速被水解成乙醯化聯胺(acetyihydrazine);乙醯化聯胺 ❷可以再經由氮-乙醯氨基轉移酶(N_acetyltransferase)被乙酿化成無毒性的雙 乙酿化聯胺(diacetylhydrazine),或者經由細胞色素P45 〇 2E1 (CYP 450 2E1) 乳化成具有肝毒性的分子,其中包括乙醯化偶氮(aCetyldiaZene)、乙醯敍離 子(acetylonium ion)、乙醯自由基(acety!radicai)、乙稀酮(ketene)等,另外在 有氧及NADPH存在時,乙醯化聯胺會被細胞色素P45〇2E1反應生成自由 基而is·成氧化壓力,導致細胞死亡;此外,異終驗酿胺(is〇niazid)亦可經由 醯fe水解S#(amidase)直接水解成有毒性的聯胺(hydrazine) ’或者由上述乙醯 癱化聯胺(aeetylhydrazine)經酿胺水解酶(ajnidase)水解成有毒性的聯胺 (hydrazine) ° 近來有研究顯示’聯胺(而非異菸鹼醯胺或乙醯化聯胺)是在兔及鼠體内 造成異务驗酿胺引起之肝毒性(INH_induced hepatotoxicity)最可能的主因 ’’研究者認為異於驗醢胺引起之肝毒性的嚴重性與金漿中聯胺的濃度成正 相關;1999年Sarich6等人的報導則認為對硝基苯酚磷酸二醋 (bis-/Miitrophenyl phosphate,ΊΒΝΡΡ,為一種醯胺水解酶之抑制劑)可預防異 201016216 *於驗醯胺引起之肝毒_傷#,其保護機制應是透過抑織聽酿胺產生 聯胺。 細胞色素P450 2E! (CYP2E1)在肝射會持續的表現,並負責許多異物 質肝毒素四氣化碳卿)以及乙醢_(acetamin〇phen))的代謝生物 反應7’8;然而,CYP2E1在異於驗醯胺引起之肝毒性中所扮演的角色並不明 確,異於驗醯胺本身即為CYP2E1的—種誘導物9 ;有些研究認為肝臟内的 CYP2E1與絲賴闕起之肝毒㈣機财心。。在體外試射,雙硫 #俞(disum_,DSF)及其代謝物二乙基二硫代氨基甲ς (diethyidi—amate)均被確認為老鼠及人類肝臟微粒體cYp2Ei的選擇 性抑制劑(selective mechanism_based ㈣丨㈣ „·13,Β_13 等人^ 示老鼠服用單-口服劑量的雙硫余_)後,會造成免疫反應肝容量 (immunoreactivehepatic content)以及CYP2E1催化活性快速且完全的下降。201016216 • Nine, invention description: [Technical field to which the invention pertains] The present invention relates to a novel compound of low side effects containing isoniazine (INH) (2) 'especially refers to an isonianic acid amide ( INH) A new combination of isoniazid and guanamine containing a novel cytochrome p45〇2E1 (CYP2E1) inhibitor to reduce hepatotoxicity caused by isoniazid amide (INH).肇[First Technology] According to the World Health Organization (WHO), about one-third of the world's population is infected with tuberculosis, and there are about 8 million new cases each year. The number of newly registered tuberculosis patients in Taiwan has also been in recent years. Keep climbing. More than 60 people per 100,000 people are infected with tuberculosis, but only about three-quarters of them receive complete treatment. According to the statistics of the Department of Health, at least 4.2 people die every day in Taiwan from the lungs. Among the many patients receiving tuberculosis medication, the most common clinical side effects are hepatotoxicity and neurological diseases (such as auditory nerve and optic neuropathy), among which hepatotoxicity is the most common. In addition, Taiwan is also a prevalent area for hepatitis B and c, and hepatitis for tuberculosis. There are also 14 new tuberculosis patients with a number of 'false ^^ years. It is estimated that at least 3,000 patients with chronic liver disease need to receive anti-tuberculosis drugs, so the liver may occur in these patients. Toxicity is a iatrogenic disease that we can't. The first-line anti-tuberculosis drugs in the township, for example: different from the testisamine (isQniazid, commonly known as the enemy (4)), the pyrazmamide (the common round of the enemy) and the Lixin (the other) There are potential adverse reactions leading to liver preparation; among them, isoniazid is currently the most effective single anti-tuberculosis drug in 201016216, and it is also the most likely to cause hepatotoxicity in the patients; it is different in the late 6th century. Nicotinamide (i-) is a report of hepatotoxicity; it is different from the clinical symptoms of hepatotoxicity caused by toniazid (about OW%) '2, and in 1 2% of patients, Asymptomatic liver dysfunction can be observed 3, these liver function abnormalities usually occur within two months after taking the drug. - As shown in Figure 1, 'isoiazid' in the liver mainly through nitrogen-acetamidine With the help of N-acety丨transferase (NAT), it is acetylated, and the intermediate product, acetylisoniazid, is rapidly hydrolyzed to acetyihydrazine; The hydrazine can be further brewed via N-acetyltransferase Non-toxic diacetylhydrazine, or emulsified into hepatotoxic molecules via cytochrome P45 〇2E1 (CYP 450 2E1), including aCetyldiaZene, acetylonium Ion), acety!radicai, ketene, etc. In addition, in the presence of aerobic and NADPH, acetylated hydrazine is reacted by cytochrome P45〇2E1 to form free radicals and is Oxidative pressure, leading to cell death; in addition, is〇niazid can also be directly hydrolyzed to toxic hydrazine via 醯fe hydrolysis S# (amidase) or by the above-mentioned acetamidine Amine (hydretylhydrazine) is hydrolyzed to a toxic hydrazine by ajnidase. Recently, studies have shown that 'biamine (rather than isoniaceine guanamine or acetylated hydrazine) is in rabbits and rats. The most likely cause of hepatotoxicity (INH_induced hepatotoxicity) caused by anthocyanin in the body'' The investigator believes that the severity of hepatotoxicity caused by the detection of guanamine is positively correlated with the concentration of hydrazine in the gold paste; 1999 The report of Sarich6 et al. Bis-/Miitrophenyl phosphate (ΊΒΝΡΡ, is an inhibitor of indoleamine hydrolase) can prevent the different 201016216 * in the detection of guanamine caused by liver poisoning _ injury #, its protective mechanism should be through the weaving The amine produces a hydrazine. Cytochrome P450 2E! (CYP2E1) will continue to behave in the liver and is responsible for the metabolic bioreactivity of many heterologous hepatotonics, four gasifications, and acetamin〇phen 7'8; however, CYP2E1 The role played by hepatotoxicity caused by the detection of guanamine is not clear. It is different from the testin itself as an inducer of CYP2E1. 9 Some studies suggest that CYP2E1 in the liver and hepatotoxicity caused by silkworm (4) The heart of the machine. . In vitro test, disulfide #dis (DSF) and its metabolite diethyldithiocarbamidine (diethyidi-amate) were identified as selective inhibitors of mouse and human liver microsomes cYp2Ei (selective mechanism_based (d) 丨 (4) „·13, Β _13 et al ^ show that the mice take a single-oral dose of disulfide remaining _), resulting in immunoreactive liver capacity (immunoreactive hepatic content) and CYP2E1 catalytic activity decreased rapidly and completely.

Sodhi丨4等人則在觸年的報導指出,氧化壓力是造成幼鼠體内異於驗 S!胺及立復黴素引起之肝毒性的因素之一。有許多的研究欲找出適當的生 ❷物標記(biomarker)以評估體内氧化傷害的速率,目前可能適用的生物標記可 分為三類,分別為對脂質、蛋白質、核酸氧化傷害的標記;8_異構前列腺素 F2a (8-is〇-prostaglandin F2a,8_iso_PGF2a )是一種自由基引起花生四稀酸 (amchidonic acid)發生脂質過氧化作用的產物,其化學性質穩定,8_is〇 pGF2a 含量可作為判斷活_脂質過氧化稿指標,該脂f過氧化反映可能與體 内自由基的產生、氧化性的傷害(oxidative d_ge)及抗氧化劑的缺乏 (antioxidantdeficiency)有關15义;目前有許多方法可用來測量8 is〇pGF2a含 201016216 量,包括酵素免疫分析法(enzyme immunoassay) 17、放射免疫分析法 (radioimmunoassay) 18、氣相層析質譜儀(gas-chromatography mass spectrometry) 19 以及液相層析質譜儀(liquid chromatography mass spectrometry) M等;此外,人類尿液中的8-iso-PGF2a及其代謝物 2,3-dinor-8-iso-PGF2a含量可利用 C18 固相萃取(C18 solid phase extraction, SPE)準備樣品後,再以液相層析串聯式質譜儀(Lc/ms/MS)分析21。 利用侵入式及非侵入式方法測試大鼠(rat)肝功能,以監測肝損害的發展 φ以及篩選肝臟疾病,其中最常使用的方法包含測量血清中之天門冬氨酸轉 胺酶(aspartate aminotransferase, AST) ' 丙氨酸轉胺酶(alanine aminotransferase,ALT)以及驗性填酸酶(aikaline phosphatase)數值,以及測量 肝細胞產物如:膽紅素(bilirubin)、白蛋白(albumin),以及利用量測前凝血 素時間(prothrombin time)來檢測凝血因子(coagUiati〇n fact〇rs)等;肝,功能定 量測試是根據幾乎只經過肝臟代謝之受質在血清中的濃度而定,這些受質 的清除是依肝門靜脈'肝動脈血流量以及由肝細胞對這些受質的作用而 •定,肝臟血流量與提供給肝臟的受質量有關,反之,該受質的清除則決定 於肝臟代謝的能力23。 半乳糖(galactose)疋一種具有兩萃取率(extracti〇n rati〇)、在肝臟中代 謝的聽類,在肝臟中,半乳糖是由半乳糖激酶(galact〇kinase)經過差向立體 異構化反應(epimerization),將之轉換成丨_磷酸葡萄糖 (Glucose-1-phosphate) ·’半乳糖激酶的作用反應為肝細胞中半乳糖代謝途徑 的速率決定步驟(rate-limiting卿严。半乳糖的高萃取率使得依賴肝臟血流 201016216 里及肝臟魏的半乳糖代謝侧成為檢断功能最主要的方式,目前並無 疋的細丨來估大%之殘餘肝功齡esidual liver fu⑽ion),量測—確切化 合物(如.半乳糖)之代謝能力,可制肝臟巾—代謝侧之速率決定步驟, 亦可能取得殘餘肝功能之代表數質M,25。 以半乳糖β除此力(galaetose eliminatiQn eapaeity,GEC)作為人類肝功能 定量測試26已行之有年,然而,半乳糖清除能力測試需取得多個血液樣本 以建立標準曲線’麵床應壯有其雜度,因此有許多研究使用半乳糖 ❹單點法(Galactose Single P〇int,GSP)以評估人類肝功能;本案發明人以半乳 糖單點法測試慢性肝炎、肝硬化以及肝癌病患,結果顯示半乳糖單點法可 精確測出這些肝臟疾病27;半乳糖單點法已被成功的應用到測試肝病患者排 除如丙噪(promazine)及抗生素頭抱酮(cef0perazone)等藥物之剩餘肝功能 28·30。此外,半乳糖單點法已在美國食品藥物管理局(FDA)所出版的指南 (Guidance for Industry)中成為建議採用測試肝功能的方法之一 由此可見,上述習用抗結核藥物異於驗酿胺(isoniazid)仍有諸多缺失, # 實非一良善之設計者,而亟待加以改良。 故,本案發明人於2007年1月16曰,申請一件我國公開第200831087 號專利案低副作用之異菸鹼醯胺(Isoniazid,INH)新複方(下稱引證案),其中 揭露一種低副作用之異菸鹼醯胺(isoniazid,INH)新複方,包括一藥學有效量 之異於驗醯胺(isoniazid,INH),合併使用一藥學有效量之雙硫余(disulfiram, DSF),或再合併一藥學有效量之硝基苯酌·磷酸二酯(bis-p-nitrophenyl phosphate,BNPP);另於引證案亦提供一種低副作用之異菸鹼醯胺(INH)新複 201016216 方包括一藥學有效量之異菸鹼醯胺(INH),合併使用一藥學有效量之細胞色 素P450 2E1(CYP2E1)抑制劑,以降低由異菸鹼醯胺(INH)所引起之肝毒性等 副作用。然而’於該引證案中僅以cDNA合成微粒體細胞色素p45〇 2E1, 用以篩選可能之細胞色素P450 2E1抑制劑’較無法篩選出於人體中可有效 抑制細胞色素P450 2E1活性之抑制劑。故,本案發明人係以人類肝臟中製 備取得富含細胞色素P450 2E1之微粒體,藉此進行細胞色素P45〇2E1抑制 劑之篩選’以篩選出可於人類肝臟中有效抑制細胞色素p45〇2E1活性之天 Ο然抑制劑。此外’本案發明人亦從中藥藥引中發現新穎之細胞色素P450 2E1 抑制劑。故’今本發明提供之一種含異#驗醯胺(Isoniazid,INH)之低副作用 新複方(2),悉為世人之健康福祉,以提供天然之新穎複方。 本案發明人鑑於上述習用抗結核藥物異於驗醯胺(isoni^id)所導致肝毒 性等副作用的缺點,乃亟思加以改良創新,並經多年苦心孤詣潛心研究後, 終於成功研發完成本件含異於鹼酿胺(Is〇niazid,之低副作用新複方(2)。 【發明内容】 ί 本發明之目的即在於提供一種含異於鹼醯胺(Is〇niazid,之低副作 用新複方(2) ’將異於驗醯胺(jnh)合併使用細胞色素p450 2E1 (CYP2E1)之 抑制劑,以降低由異菸鹼醯胺(INH)所引起之肝毒性等副作用》 本發明之次一目的係在於提供一種含異菸鹼醯胺(Is〇niazkJ,之低 副作用新複方(2) ’其中亦提供選自中_引之新穎細胞色素 P450 2E1 (CYP2E1)抑制劑,以降低由異於驗醯胺(腑骑引起之月于毒性等副作用。 為達成上述發明目的之含異於驗酿胺(Is〇niazid,之低副作用新複 201016216 '方⑺,本發明首先以異菸鹼醯胺(INH)誘導大鼠㈣產生肝毒性為模式,研 究細胞色素P450 2E1 (CYP2E1)抑制劑雙疏佘(DSF),以及醯胺水解酶 (amidase)抑制劑硝基苯酚磷酸二酯(BNpp)對大鼠體内異菸鹼醯胺引 發之肝毒性的影響;除了使用一般肝毒性標記、半乳糖單點法(Gsp)以及半 乳糖清除能力(GEC)進行大鼠的殘餘肝功能之定量量測外,本案發明人更利 用改良式液相層析串聯式質譜儀(LC/MS/MS)分析量測大鼠血漿中 S-iso-PGFh濃度,以進一步判斷“〜阳匕是否與大鼠體内INH引發之肝 參毒性有關。另’更進一步以人類肝臟微粒體,進行可能之細胞色素抑兄2^ (CYP2E1)抑制劑之篩選。 可達成上述發明目的之含異於驗醯胺inH)之低副作用新複 方(2),係包括一藥學有效量之異菸鹼醯胺(is〇niazid,INH),合併使用至少一 種藥學有效量之細胞色素P450 2E1(CYP2E1)抑制劑。 其中該細胞色素P450 2E1 (CYP2E1)抑制劑係選自於下列化合物所組 成群組:反式肉桂醛(Trans-Cinnamaldehyde)、大豆甘元(Daidzein)、異牡荊 ❹素(Isovitexm)、香葉稀(p_Myrcene)、獬皮素(Quercetin)、(+)-檸檬烯 ((+)-Limonene)、楊梅素(Myricetin)、槲皮(Quercitrin)、木犀草素-7-葡萄糖苷 (Luteolin-'Glucoside)、桑葉素(Morin)、新橙皮苷(Neohesperidin)、橙皮苷 (Hesperidin)、((-)-Epigallocatechin)、木犀草素(Luteolin)、金絲桃苷 (Hyperoside)、十四烷酸乙酯(Ethyl Myristate)、禮柳素(Tamarixetin)、黃芩素 (Baicalein)、云香素(Rutin)、黃答(Baicalin)、芹菜素(Apigenin)、 (+)-Epicatechin、(_)_Epicatechin-3-gallate、水飛薊賓(Silybin)、牡荊素 201016216 (Vitexin)金雀異黃酮(Genistein)、異鼠李素(isorhamnetin)、香葉木素 (Diosmin) ' 葛根素(Puerarin)、或傘形花内酯(Umbemfer〇ne)。 本發月所k供之低田作用之異於驗醯胺(is〇niazid, inh)新複方,亦可加 入-藥學上可接仅賦糊至該複方,制_可為獅劑、填充劑、結 合劑、崩解劑、潤滑劑等。 【實施方式】 本發明將就下财施_進—步制,錢等實關僅為例示說明之 0用,而不應被解釋為實施本發明之限制。 實施例一異菸鹼醯胺(INH)合併使用CYP2E1抑制劑雙硫侖(DSF>a/或硝 基苯酚磷酸二酯(BNPP)之動物試驗 一、材料與方法 1. 試驗材料 所有的有機溶劑均為HPLC等級,購自Tedia有限公司(Fairfieid,〇H,Sodhi丨4 et al. reported in the year-old report that oxidative stress is one of the factors that cause hepatotoxicity caused by S! amine and rifamycin in young rats. There are many studies to find appropriate biomarkers to assess the rate of oxidative damage in the body. Biomarkers that may be applicable at present can be divided into three categories, which are markers for oxidative damage to lipids, proteins, and nucleic acids; 8_Iso-prostaglandin F2a (8-is〇-prostaglandin F2a, 8_iso_PGF2a) is a product of free radical-induced lipid peroxidation of arachidonic acid, which is chemically stable, and the content of 8_is〇pGF2a can be used as Judging the activity of lipid peroxidation, the lipid peroxidation may be related to the production of free radicals, oxidative d_ge and antioxidant deficiency in the body. There are many methods available. Measurement of 8 is〇pGF2a containing 201016216, including enzyme immunoassay 17, radioimmunoassay 18, gas-chromatography mass spectrometry 19 and liquid chromatography mass spectrometer (liquid chromatography mass spectrometry) M, etc. In addition, 8-iso-PGF2a and its metabolite 2,3-dinor-8 in human urine The -iso-PGF2a content can be prepared by C18 solid phase extraction (SPE) and then analyzed by liquid chromatography tandem mass spectrometry (Lc/ms/MS). Invasive and non-invasive methods are used to test rat liver function to monitor the development of liver damage and to screen for liver disease. The most commonly used method involves measuring aspartate aminotransferase in serum. , AST) 'Alanine aminotransferase (ALT) and aikaline phosphatase values, as well as measuring hepatocyte products such as bilirubin, albumin, and utilization The prothrombin time is measured to detect coagUiati〇n fact〇rs, etc. The liver and function quantitative tests are based on the concentration of the serum in the serum that is almost exclusively metabolized by the liver. The removal is based on the hepatic arterial blood flow of the hepatic portal and the effect of hepatocytes on these receptors. The blood flow of the liver is related to the quality of the liver. In contrast, the clearance of the receptor is determined by the ability of the liver to metabolize. twenty three. Galactose An auditory that has two extraction rates (extracti〇n rati〇) and is metabolized in the liver. In the liver, galactose is differentially stereoisomerized by galact〇kinase. Reaction (epimerization), which is converted to Glucose-1-phosphate. The action of galactose kinase is the rate-determining step of the galactose metabolic pathway in hepatocytes (rate-limiting galactose The high extraction rate makes the hepatic blood flow in 201016216 and the galactose metabolism side of the liver Wei become the most important way of detecting function. At present, there is no fine sputum to estimate the residual liver function age (eidual liver fu (10) ion), measurement - The metabolic ability of the exact compound (eg, galactose) can be used to determine the rate of the liver towel-metabolic side, and it is also possible to obtain the representative quality of residual liver function M,25. The galactose eliminatiQn eapaeity (GEC) has been used as a quantitative test for human liver function for 26 years. However, the galactose clearance test requires multiple blood samples to establish a standard curve. Its heterogeneity, so many studies use Galactose Single P〇int (GSP) to assess human liver function; the inventors tested chronic hepatitis, cirrhosis and liver cancer patients by galactose single-point method, The results show that the galactose single-point method can accurately detect these liver diseases. 27 The galactose single-point method has been successfully applied to test the residual liver of patients with liver diseases such as promazine and cef0perazone. Function 28·30. In addition, the galactose single-point method has become one of the recommended methods for testing liver function in the guidelines published by the US Food and Drug Administration (FDA). It can be seen that the above-mentioned conventional anti-tuberculosis drugs are different from the test. There are still many shortcomings in the amine (isoniazid), which is not a good designer, but needs to be improved. Therefore, the inventor of this case applied for a new compound of Isoniazid (INH) with low side effects in the patent No. 200831087 of China, which was published on January 16, 2007, which revealed a low side effect. A new compound of isoniazid (INH) comprising a pharmaceutically effective amount of isoniazid (INH) in combination with a pharmaceutically effective amount of disulfiram (DFF), or recombination A pharmaceutically effective amount of bis-p-nitrophenyl phosphate (BNPP); in addition to the cited case also provides a low side effect of isonicotinic acid amide (INH) Xinfu 201016216 prescription including a pharmaceutically effective The amount of isonicotinicinamide (INH) is combined with a pharmaceutically effective amount of a cytochrome P450 2E1 (CYP2E1) inhibitor to reduce side effects such as hepatotoxicity caused by isoniazidamine (INH). However, in this case, only the cDNA synthesis of microsomal cytochrome p45〇 2E1 for screening for possible cytochrome P450 2E1 inhibitors was less able to screen for inhibitors that inhibit cytochrome P450 2E1 activity in humans. Therefore, the inventors of the present invention prepared a cytochrome P45 2E1 inhibitor by preparing microsomes rich in cytochrome P450 2E1 in human liver to screen for effective inhibition of cytochrome p45〇2E1 in human liver. Active Day Suppressor. In addition, the inventors of the present invention also found novel cytochrome P450 2E1 inhibitors from traditional Chinese medicines. Therefore, the present invention provides a low-side side effect of Isoniazid (INH). The new compound (2) is known to be a healthy and beneficial compound for the world to provide a natural and novel compound. In view of the above-mentioned shortcomings of side effects such as hepatotoxicity caused by testisamine (isoni^id), the inventors of the present invention have improved and innovated after the research and development of the anti-tuberculosis drug, and after years of painstaking research, finally succeeded in research and development. It is a low-side side effect compound (2). It is an object of the present invention to provide a new compound (I) which is different from the base amide (Is〇niazid). 'The inhibitor of cytochrome p450 2E1 (CYP2E1) is used in combination with an inhibitor of cytochrome p450 2E1 (CYP2E1) to reduce side effects such as hepatotoxicity caused by isoniazidamine (INH). The second object of the present invention is Providing a novel cytochrome P450 2E1 (CYP2E1) inhibitor containing isoniazid amide (Is〇niazkJ, a low side effect compound (2)' which also provides a cytochrome P450 2E1 (CYP2E1) inhibitor (The side caused by sputum riding is toxic and other side effects. In order to achieve the above object of the invention, it is different from the test amine (Is〇niazid, the low side effect of the new complex 201016216 ' square (7), the present invention first with isoniazid amide (INH) Induction of rat (4) hepatotoxicity as a pattern To study the cytochrome P450 2E1 (CYP2E1) inhibitor double dredging (DSF), and the indoleamine hydrolase (amidase) inhibitor nitrophenol phosphate diester (BNpp) on the liver induced by isonicotinicin in rats The effects of toxicity; in addition to the use of general hepatotoxicity markers, galactose single point method (Gsp) and galactose clearance (GEC) for quantitative measurement of residual liver function in rats, the inventors of the present invention use improved liquid layer The tandem mass spectrometer (LC/MS/MS) was used to measure the concentration of S-iso-PGFh in rat plasma to further judge whether "~-yang sputum is related to the toxicity of liver sputum induced by INH in rats. Further screening of possible cytochrome inhibitors (CYP2E1) inhibitors with human liver microsomes. A new compound (2) with low side effects containing the indoleamine inH) which achieves the above object, includes one A pharmaceutically effective amount of isoniazidamine (INH) in combination with at least one pharmaceutically effective amount of a cytochrome P450 2E1 (CYP2E1) inhibitor, wherein the cytochrome P450 2E1 (CYP2E1) inhibitor is selected from Group consisting of the following compounds: trans-cinnamaldehyde (T rans-Cinnamaldehyde), Daidzein, Isovitexm, p_Myrcene, Quercetin, (+)-limonene ((+)-Limonene), myricetin (Myricetin), Quercitrin, Luteolin-'Glucoside, Morin, Neohesperidin, Hesperidin, (- )-Epigallocatechin), Luteolin, Hyperoside, Ethyl Myristate, Tamarixetin, Baicalein, Rutin , Baicalin, Apigenin, (+)-Epicatechin, (_)_Epicatechin-3-gallate, Silybin, Vitexin 201016216 (Vitexin) Genistein (Genistein) , isorhamnetin, dioxin (Puerarin), or Umbrate lactone (Umbemfer〇ne). The low-field effect of this month is different from the new compound of is〇niazid (inh), and can also be added - pharmaceutically acceptable only to paste the compound, the system can be a lion agent, a filler , binders, disintegrants, lubricants, etc. [Embodiment] The present invention is to be construed as a exemplification of the present invention, and is not to be construed as limiting the scope of the present invention. Example 1 Isoniaciline guanamine (INH) combined with animal test using CYP2E1 inhibitor disulfiram (DSF>a/ or nitrophenol phosphate diester (BNPP) I. Materials and methods 1. Test materials All organic solvents All HPLC grades, purchased from Tedia Ltd. (Fairfieid, 〇H,

USA) ’ INH,BNPP,DSF以及玉米油則購自sigma化學公司(St. Louis, MO USA) ’ 8-is〇-PGF2a以及放射線標定之8_iso_PGF2a_d4則得自㈣麵化學公司 (Ann Arbor,MI,USA),半乳糖注射溶液由南光化學製藥股份有限公司製 備,係將400克半乳糖(Sigma)溶於1公升含有適當緩衝溶液系統以及等張鹽 類之蒸餾水中,供作注射使用。 2. 試驗動物 體重為320-350公克之雄性SD(Sprague-Dawley)大鼠購自國家實驗動物 中心(台灣),動物實驗係遵照國衛院動物實驗指南進行,所有的大鼠均置於 12 201016216 空氣/濕度調節環境下,光照與黑暗各12小時,水及飼料的供給不限,在試 驗期間大鼠體重均持續監測,所有的大鼠均以使用50毫克/公斤體重劑量之 戊巴比妥鈉(sodium pentobarbital)進行腹腔麻醉(intraperit〇neally anesthetized),將聚乙烯導管置於大鼠右頸内靜脈(intemal扣細批vein)内以 加打半乳糖’導管係以切入穿刺(cut_d〇wntechniqUe)插入,該導管的末端係 置於大鼠頸後切口之皮膚下方,手術完成後,恢復期間使大鼠禁食一夜(約 16小時),但水分照常供給。 I 3.試驗處理 響 試驗動物隨機分成5組,每組包括3種處理,第一種處理為注射25 mg/kg BNPP或BNPP之基劑(vehicle, VEm ’即食鹽水),BNPP係溶於加熱至60°C 之食鹽水(0.9% NaCl),冷卻後以1 ml/kg的體積進行腹腔内注射至大鼠體 内;第二種處理為則注射l〇〇mg/kgDSF或’DSF之基劑(VEH2,即玉米油), DSF係溶於玉米油中,以1 ml/kg的體積進行腹腔内注射至大鼠體内;第三 種處理為注射150 mg/kg INH或INH之基劑(VEH3,即食鹽水),INH係溶於 ❹食鹽水(0.9°/。NaCl)中,以1 ml/kg的體積進行腹腔内注射至大鼠體内;第一 組(BNPP或VEH1)較第三組(INH或VEH3)早30分鐘處理,第二組(DSF或 VEH2)比第三組(INH或VEH3)早15分鐘處理。 上述5組試驗共包含: (1) 對照組(normal control group,NC,n=l2):正常的大鼠每天注射1次 VEH1、VEH2以及VEH3(施行腹腔内注射)共21天; (2) INH組(INH,n=7):正常的大鼠每天注射1次INH、VEH1以及VEH2 13 201016216 • (施行腹腔内注射)共21天;USA) 'INH, BNPP, DSF and corn oil were purchased from sigma chemical company (St. Louis, MO USA) ' 8-is〇-PGF2a and radiation calibration 8_iso_PGF2a_d4 was obtained from (A) Facial Chemical Company (Ann Arbor, MI, USA), a galactose injection solution was prepared by Nanguang Chemical Pharmaceutical Co., Ltd., and 400 g of galactose (Sigma) was dissolved in 1 liter of distilled water containing a suitable buffer solution system and isotonic salts for injection. 2. Male SD (Sprague-Dawley) rats weighing 320-350 g were purchased from the National Laboratory Animal Center (Taiwan). The animal experiments were carried out in accordance with the guidelines of the National Animal Research Institute. All rats were placed in 12 201016216 Under the air/humidity adjustment environment, the light and the darkness were each 12 hours, and the supply of water and feed was not limited. The weight of the rats was continuously monitored during the test. All the rats were dosed with 50 mg/kg body weight of pentobarbital. Sodium pentobarbital was intraperitally anesthetized (intraperit〇neally anesthetized), and the polyethylene catheter was placed in the right internal jugular vein (intemal detonated vene) of the rat to add a galactose 'catheter to cut into the puncture (cut_d〇 wntechniqUe) was inserted, and the end of the catheter was placed under the skin of the posterior cervical incision of the rat. After the surgery was completed, the rats were fasted for one night (about 16 hours) during the recovery, but the water was supplied as usual. I 3. Test treatment The test animals were randomly divided into 5 groups, each group consisting of 3 treatments. The first treatment was injection of 25 mg/kg BNPP or BNPP (vehicle, VEm 'ready saline), and BNPP was dissolved in heating. Saline solution (0.9% NaCl) to 60 ° C, after cooling, intraperitoneal injection into the body in a volume of 1 ml / kg; the second treatment is to inject l〇〇mg / kg DSF or 'DSF base Agent (VEH2, corn oil), DSF is dissolved in corn oil and injected intraperitoneally into the body in a volume of 1 ml/kg; the third treatment is the injection of 150 mg/kg INH or INH. (VEH3, ready-to-feed saline), INH is dissolved in barium (0.9°/. NaCl) and injected intraperitoneally into the body in a volume of 1 ml/kg; the first group (BNPP or VEH1) is the first Three groups (INH or VEH3) were treated 30 minutes earlier and the second group (DSF or VEH2) was treated 15 minutes earlier than the third group (INH or VEH3). The above five groups of experiments included: (1) Control group (normal control group, NC, n=l2): normal rats were injected with VEH1, VEH2 and VEH3 (administered intraperitoneally) once a day for 21 days; (2) INH group (INH, n=7): normal rats were injected once daily with INH, VEH1 and VEH2 13 201016216 • (administered intraperitoneally) for 21 days;

(3) BNPP-INH組(BNPP-INH,n=7):正常的大鼠每天注射 1 次BNPP、INH 以及VEH2 (施行腹腔内注射)共21天; (4) DSF-INH組(DSF-INH,n=7):正常的大鼠每天注射1次DSF、INH以 及VEH1(施行腹腔内注射)共21天;以及 (5) BNPP-DSF-INH組(BNPP-DSF-INH, n=7):正常的大鼠每天注射 1 次 BNPP、DSF以及INH(施行腹腔内注射)共21天; 半乳糖單點法於第21天處理後16小時進行測試。 4. 血液樣本 處理完畢後’大鼠以乙醚麻醉犧牲,金液由大鼠背部主動脈抽取,置 於含有EDTA之試管中’血襞(piasma)以i3,〇〇〇g於4。〇離心15分鐘,分離後 的企躁分裝到微量小管(Eppendorf tube)中並置於-80。(3中儲存。 5. 生化分析 · 肝細胞損傷以量測血漿中天門冬氨酸轉胺酶(AST)與丙氨酸轉胺酶 春(ALT)活性以進行定量,AS1^ALT活性是肝臟毒性常用的指標,係以(3) BNPP-INH group (BNPP-INH, n=7): Normal rats were injected with BNPP, INH and VEH2 once daily (administered intraperitoneally) for 21 days; (4) DSF-INH group (DSF- INH, n=7): Normal rats were injected with DSF, INH, and VEH1 once daily (administered intraperitoneally) for 21 days; and (5) BNPP-DSF-INH group (BNPP-DSF-INH, n=7) ): Normal rats were injected with BNPP, DSF, and INH (administered intraperitoneally) once a day for 21 days; the galactose single-point method was tested 16 hours after the 21st day of treatment. 4. Blood sample After the treatment, the rats were sacrificed by ether anesthesia. The gold solution was taken from the rat aorta and placed in a test tube containing EDTA. The blood piasma was i3 and 〇〇〇g was 4. The crucible was centrifuged for 15 minutes, and the separated crucible was dispensed into a small tube (Eppendorf tube) and placed at -80. (3 in storage. 5. Biochemical analysis · Hepatocyte injury to measure plasma aspartate transaminase (AST) and alanine transaminase spring (ALT) activity for quantification, AS1 ALT activity is liver Commonly used indicators of toxicity

Synchron LXi 725 系統來量測(Beckman Instruments,美國)。 6. 光學顯微鏡與電子顯微鏡 大鼠犧牲後肝臟隨即進行組織學分析;肝臟樣本以1〇%麟酸緩衝液配製 之福馬林(phosphate-buffered formalin)固定,隨後脫水並包埋於石蠟(paraffin) 中以5μπι厚度切片’切片樣本以蘇木精(hemat〇XyKn)與伊紅(e〇sin)染色, 並進行肝糖染色試驗(Peri〇dic acid Schiff stain,pAS),染色後以光學顯微鏡 14 201016216 •進行組織學觀察;另外,肝臟切片以二甲胂緩衝液(cac〇dylate buffer,0.1M pH 7·4)清洗,以20%四氧化锇水溶液(aqueous osmium tetroxide)後固定1小 時’以酒精連續脫水後包埋於Spurr樹脂(Spurrresin)中,並以鐵石刀切取超 薄切片’以醋酸鈾酿(uranylacetate)及檸檬酸鉛(leadcitrate)作雙重染色,並 以穿透式電子顯微鏡(Transmission Electron Microscope, Hitachi 600, Hitachi Co·,日本)觀察。 的萃取與量測 φ 所有PGFk的同分異構物(isomers)均以適當體積之酒精溶解或稀釋以製 備原液,並分裝於小管中儲存於-70°C,取〇.5ml血漿至玻璃管中,加入i〇ng 内標準品(internal standard,即8-iso-PGF2a-d4),混勻後之血漿以C18固相萃取 管柱(Solid-Phase Extraction cartridge, J.T. Baker, MA,美國)純化,樣本流洗 液以亂氣蒸發乾燥後,以50μ1乙睛:水(acetonitrile: water, 15:85 v/v)溶液回溶 並震盪30秒,取10μ1回溶後的萃取物注射至LC/MS/MS系統進行分析。 8.液相層析串聯式質譜儀(LC/MS/MS)分鼾 參 HPLC 系統包括 2個島津 LC-lOADvP 泵(Shimadzu LC-10ADvP pumps)、1 個島津系統控制器(Shimadzu system control)以及1個島津自動樣本機 (Shimadzuautosampler)(島津科學儀器,日本),以C18管柱(顆粒大小5·μηι, 内徑50 X 2_lmm)進行HPLC分離,並使用含有2mM醋酸銨(ammonium acetate) 及乙睛(acetonitrile,ACN)之梯度流洗液(t = 〇 min,15% ACN; t = 6 min,70% ACN; t = 7 min, 90% ACN; t = 8 min,%% ACN; t = 8.5 min,15% ACN)流 洗,LC/MS/MS的流速均維持在2〇ρμ1/πήη,整個HPLC進行時間為13 5分鐘; 15 201016216 •該HPLC系統與一三層四極質譜儀(triple stage quadrupole mass spectrometer, API3000,Applied Biosystem,Foster City, CA,美國)介接,配備有一 TurboIonSpray離子源(TurboIonSpray ionization source),並使用負電電喷霧 (negative electrospray)作為電離(ionization)之方法;該質譜儀藉由擴散200 ng/ml 8-iso-PGF2a 或 8-iso-PGF2a-d4 標準液以多重反應監測(multiple reaction monitoring, MRM)模式進行最佳化,m/z 353/193以及m/z 357/197離 子偶(ionpair)則個別用來監測8-iso-PGF2α以及8-iso_PGF2α-d4;測量後,計The Synchron LXi 725 system was measured (Beckman Instruments, USA). 6. Light microscopy and electron microscopy Rats were sacrificed for histological analysis immediately after sacrifice; liver samples were fixed with phosphate-buffered formalin in 1% linonic acid buffer, then dehydrated and embedded in paraffin (paraffin) The sliced samples were sliced with 5 μπι thickness and stained with hematium (XyKn) and eosin (e〇sin), and subjected to a liver glycan staining test (Peri〇dic acid Schiff stain, pAS), followed by staining with an optical microscope 14 201016216 • Histological observation; in addition, liver sections were washed with caC〇 dylate buffer (0.1 M pH 7.4) and fixed with 20% aqueous osmium tetroxide for 1 hour. Alcohol was continuously dehydrated and embedded in Spurr resin (Spurrresin), and ultra-thin sections were cut with a stone knife. Double staining with uranylacetate and leadcitrate, and transmission electron microscopy (Transmission) Electron Microscope, Hitachi 600, Hitachi Co., Japan). Extraction and measurement φ All PGFk isomers are dissolved or diluted in an appropriate volume of alcohol to prepare a stock solution, and stored in a small tube and stored at -70 ° C, taking 5 5 ml of plasma to glass In the tube, i〇ng internal standard (8-iso-PGF2a-d4) was added, and the mixed plasma was subjected to C18 solid phase extraction cartridge (JT Baker, MA, USA). Purification, the sample flow washing solution was evaporated and evaporated in a random atmosphere, and then dissolved in 50 μl of acetonitrile: water (15:85 v/v) solution and shaken for 30 seconds. The extract after 10 μl of the solution was injected into the LC. /MS/MS system for analysis. 8. Liquid Chromatography Tandem Mass Spectrometer (LC/MS/MS) The HPLC system consists of two Shimadzu LC-10OvvP pumps (Shimadzu LC-10ADvP pumps) and one Shimadzu system control. 1 Shimadzu autosampler (Shimadzu Scientific sampler, Japan), HPLC separation with C18 column (particle size 5·μηι, inner diameter 50 X 2_lmm), and containing 2 mM ammonium acetate and B Gradient flow wash of acetonitrile (ACN) (t = 〇min, 15% ACN; t = 6 min, 70% ACN; t = 7 min, 90% ACN; t = 8 min, %% ACN; t = 8.5 min, 15% ACN) flow wash, LC/MS/MS flow rate is maintained at 2〇ρμ1/πήη, the entire HPLC time is 13 5 minutes; 15 201016216 • The HPLC system and a three-layer quadrupole mass spectrometer (triple Stage quadrupole mass spectrometer, API3000, Applied Biosystem, Foster City, CA, USA) interfaced with a TurboIonSpray ionization source and negative electrospray as ionization method; Mass spectrometer by diffusion of 200 ng/ml 8-iso-PG The F2a or 8-iso-PGF2a-d4 standard was optimized in a multiple reaction monitoring (MRM) mode, and m/z 353/193 and m/z 357/197 ion couples (ionpair) were used individually. Monitoring 8-iso-PGF2α and 8-iso_PGF2α-d4;

算 6 個 8-iso-PGF2a 濃度(C)的線性標準曲線(linear calibration curve)對 W 8-iso-PGF2a比8-iso-PGF2a-d4比值之區域⑺’得到相關係數(r,correlation coefficient)值為0.999 ;血漿中8-iso-PGF2a的線性範圍在〇.l-2.5ng/ml之間, 其迴歸方程式(regression equation)為Y=-0.0517C +0_823 ng/ml ;所測得之結 果均對照重氫化8-iso-PGF2〇t (deuterated 8-iso-PGF2a)内標準品計算,標準曲 線之批間精密度以及準確度係以標準濃度樣品分別測試6次後,經由反向計 异法(Back-Calculation)來評估,其相對誤差(reiative errors)範圍在-5.06%至 ❷3.13%之間。 * 9·肝功能之定量測試 所有的大鼠均進行半乳糖單點法(GSP)及半乳糖清除能力(GEC)測試, 大鼠接受在30秒内的快速靜脈注射,注射0 4g/ml bW半乳糖溶液〇·5 g/kg ; 自/主射後5、10、15、30、45以及60分鐘各採血一次,血液樣本取自尾部靜 脈’以半乳糖脫氫酶比色法(colorimetric galactose dehydrogenase)量測半乳糖 含量,測試濃度範圍為5〇至i,〇〇〇 pg/mi,每個濃度的日内差異(within_day 16 201016216 ^ .variation)係由標準偏差(standard deviati〇n)以及變異係數(c〇efficient 〇f variation,CV)百分比計算,最大容許的變異係數為1〇y❶cv ;曰間差異 (day-to-day variation)則由比較校正曲線(caiibration curves)之斜率及截距來 檢驗;半乳糖清除能力(GEC)係由下列公式計算,該公式係由Tygstmp,s方程 式32修改而來: 比L = '~ - (mg / kg · min) A c=o + 7 ❹其中D為半乳糖之注射量;tc=<)為半乳糖濃度達到〇所需要的時間,係由注 射(通常為2.22 mmol/1)後20至60分鐘的血液濃度-時間曲線之線性迴歸推 得,7為依經驗法則修正體内不均勻分布之校正值;半乳糖單點法(Gsp)則 為30秒注射停止後60分鐘時血液中半乳糖濃度。 10.統計分析 所有的數據皆以平均土標準偏差(SD)表示,試驗結果以單因子變異數分 析(ANOVA)測試法來計算是否具有統計上的顯著差異,使用s如如㈤ 粵 Package of the Social Science program (Version π,SPSS Inc )套裝軟體來計 算;隨後使用事後比較(post hoc test)嵌小差異顯著性扣诚啦祿邮 difference)方法做多重比較,以確認族群間的顯著差異;族群平均之顯著差 異為PO.05 〇 二、結果 1·生化分析結果 試驗結束時,測倾祕物義重及㈣肝重量,鱗驗動物相較 17 201016216 之下並無顯著差異;生化分析結果如圖二所示,只有INH組血漿中的天門冬 氨酸轉胺酶(AST)與丙氨酸轉胺酶(ALT)活性明顯高於對照組(對照組血漿 中的AST活性為U6±ll IU/L ; INH組血漿中的AST活性為129±1〇 IU/L, p < 〇.〇5 ;對照組血漿中的ALT活性為44士6 IU/L ; INH組血漿中的ALT活性為52 ± 3 IU/L,p < 〇·〇5) ’顯示INH組產生生化上的肝損傷;對照組、BNPP-INH、 DSF-INH以及BNPP-DSF-INH組血清中轉胺酶濃度則為正常。 2. 組織病理學 φ 經過為期三週施行腹腔注射150mg/kg/dayINH之大鼠,其體内成功的 產生肝毒性;相對的,在對照組大鼠體内的肝結構則較正常,如圖三A所 示’對照組大鼠肝實質(liver parenchyma)内的肝細胞係排列於自肝小葉中央 靜脈輕射排列的網狀平板内’肝血竇(hepatic sinusoids)則在兩肝板 (anastomosing plates)之間被發現;INH組大鼠的組織切片則如圖三b所示,Calculate the correlation coefficient (r, correlation coefficient) of the region of the 8-iso-PGF2a concentration (C) by the linear calibration curve for the region of the 8-iso-PGF2a-d4 ratio (7)'. The value is 0.999; the linear range of 8-iso-PGF2a in plasma is between 〇.l-2.5 ng/ml, and the regression equation is Y=-0.0517C +0_823 ng/ml; the measured result All were calculated according to the standard of re-hydrogenated 8-iso-PGF2〇t (deuterated 8-iso-PGF2a). The inter-assay precision and accuracy of the standard curve were tested 6 times after the standard concentration samples, respectively. Back-Calculation was used to evaluate that the relative errors ranged from -5.06% to ❷3.13%. * 9. Quantitative testing of liver function All rats were tested for galactose single point (GSP) and galactose clearance (GEC). Rats received rapid intravenous injection within 30 seconds, injection of 0 4g/ml bW Galactose solution 〇·5 g/kg; blood was collected once every 5, 10, 15, 30, 45, and 60 minutes after the main shot, and the blood sample was taken from the tail vein's colorimetric galactose colorimetric method (colorimetric galactose) Dehydrogenase) The galactose content was measured at concentrations ranging from 5 〇 to i, 〇〇〇pg/mi, and intraday differences in each concentration (within_day 16 201016216 ^ .variation) were determined by standard deviation (standard deviati〇n) and variation The coefficient (c〇efficient 〇f variation, CV) is calculated as the percentage of the maximum allowable coefficient of variation is 1〇y❶cv; the day-to-day variation is calculated by comparing the slope and intercept of the caibration curves. Test; galactose clearance capacity (GEC) is calculated by the following formula, which is modified by Tygstmp, s equation 32: ratio L = '~ - (mg / kg · min) A c=o + 7 ❹ where D Is the amount of galactose injected; tc=<) is the concentration of galactose reaching 〇 The time required is derived from the linear regression of the blood concentration-time curve from 20 to 60 minutes after injection (usually 2.22 mmol/1), and 7 is the correction value for correcting the uneven distribution in the body according to the rule of thumb; galactose The point method (Gsp) is the concentration of galactose in the blood at 60 minutes after the 30 second injection is stopped. 10. Statistical analysis All data are expressed in terms of mean soil standard deviation (SD). The test results are calculated by the single factor analysis of variance (ANOVA) test method to determine whether there is a statistically significant difference, using s as in (5) Guangdong Package of the The Social Science program (Version π, SPSS Inc) sets the software to calculate; then uses the post hoc test to make multiple comparisons to confirm the significant differences between the groups; The significant difference was the average of PO.05 〇 2. Results 1 · Biochemical analysis results At the end of the experiment, the weight of the sloping secrets and (4) the liver weight, the squamous animals were not significantly different from the 17 201016216; As shown in the second, only the aspartate aminotransferase (AST) and alanine transaminase (ALT) activities in the plasma of the INH group were significantly higher than those of the control group (the AST activity in the plasma of the control group was U6 ± ll IU / The AST activity in the plasma of the INH group was 129±1〇IU/L, p <〇.〇5; the ALT activity in the plasma of the control group was 44 ± 6 IU / L; the ALT activity in the plasma of the INH group was 52 ± 3 IU/L, p < 〇·〇5) 'Show INH group Students on biochemical liver injury; control group, BNPP-INH, DSF-INH and BNPP-DSF-INH group transfer of serum aminotransferase concentration was normal. 2. Histopathology φ Rats were intraperitoneally injected with 150 mg/kg/day INH for three weeks, and the hepatotoxicity was successfully produced in vivo. In contrast, the liver structure in the control group was normal. The liver cell line in the liver parenchyma of the control group indicated by the third A is arranged in the reticular plate arranged from the central vein of the hepatic lobules. The hepatic sinusoids are in the two liver plates (anastomosing). The plates were found between the plates; the tissue sections of the rats in the INH group are shown in Figure 3b.

INH組大鼠中央靜脈周圍的肝細胞則呈現碎裂及空泡化,然而並無看到肝 細胞壞死(necrosis)的徵死;以電子顯微鏡觀察之結果顯示,相較於對照組(如 粵圖三C所示)’ INH組大鼠肝細胞内的粗内質網(rER)明顯增加(如圖三d所 示)。根據文獻報導,INH是一個強效的細胞色素P450 2E1 (CYP2E1)的誘 導物33 ’而CYP2E1會導致超氧基(superoxide)以及氫氧自由基(hydr〇Xyi radicals)的產生34 ,並且會引發内質網的增加35,因此本試驗之結果與先前 研究相符。而其他試驗組:BNPP-INH組、DSF-INH組、BNPP-DSF-INH 組大鼠的肝損害程度與對照組相較,並無明顯區別(未顯示結果)。 3. 血液樣本中心如的量測 18 201016216 在負電電儒模式下,㈣+队最大量之分子鮮為質糾㈣阳 之離子8 iso-PGFh-d4最大量之分子離子為質荷比(m/z)357之離子,這些負 電4刀子離子係㈣大量碰撞誘導而產生游離,這兩個目標化合物的分子 、,’。構以及產生的離子光譜如圖四所示;除了 8 isG_pGF2a_⑽子離子(daughter urns)恆較S-iso-PGF^的子離子高四個單位之外,8_is〇pGF2a以及 8 iso PGFh-d4兩者的碎裂模式(㈣咖顧卿伽㈣很相似,這顯示大多數 穩定的子離子係由A鍵產生而來,該A鏈上標示有4個氛原子(demerium ❹atoms); S-iso-PGFh最密集之子離子為質荷比(m/z)193之離子,8_is〇 pGF2a山 最後集之子離子為質荷tb(m/z)197之離子。圖五所示為在多重反應監測模式 (M腹Μ貞測下,含有 l〇〇pg8_is〇_pGF2a與25〇pg/ml8 is〇 pGF2a_d4的標準溶 液’以及一血液樣本的典型LC/MS/MS色譜,在注入ing8-iso-PGF2a-d4作為 内標準品後,該標準溶液與該血液樣本均經過相同的固相萃取(spE)純化, 並以前述LC/MS/MS規程分析。 4.血漿中8-iso-PGF2a的濃度 ❹ 血漿中的8-iso~PGF2〇^ —種氧化壓力(oxidative stress)的指標,如圖六所The hepatocytes around the central vein of the INH group showed fragmentation and vacuolization. However, no necrosis was observed. The results of electron microscopy showed that compared with the control group (such as Guangdong). Figure 3C shows that the crude endoplasmic reticulum (rER) in the liver cells of the INH group is significantly increased (as shown in Figure 3d). According to the literature, INH is a potent inducer of cytochrome P450 2E1 (CYP2E1) 33 ' and CYP2E1 leads to the production of superoxide and hydr〇Xyi radicals 34 and can cause The endoplasmic reticulum increased by 35, so the results of this trial are consistent with previous studies. In other test groups, the degree of liver damage in the BNPP-INH group, the DSF-INH group, and the BNPP-DSF-INH group was not significantly different from that of the control group (no results were shown). 3. Measurement of blood sample center 18 201016216 In the negative electric power Confucian mode, (4) + the team's maximum amount of molecules is rarely corrected. (4) Yang ion 8 iso-PGFh-d4 The maximum amount of molecular ions is mass-to-charge ratio (m /z) 357 ions, these negative 4 knives ion system (four) induced by a large number of collisions to produce free, the molecules of the two target compounds, '. The structure and the generated ion spectrum are shown in Fig. 4; except for 8 isG_pGF2a_(10) daughter ions (daughter urns) are always four units higher than S-iso-PGF^, and 8_is〇pGF2a and 8 iso PGFh-d4 The fragmentation mode ((4) is similar to that of the grief gamma (4), which shows that most stable daughter ions are produced by the A bond, which is labeled with 4 atmosphere atoms (demerium ❹atoms); S-iso-PGFh The most dense daughter ion is the mass-to-charge ratio (m/z) 193 ion, and the last ion of the 8_is〇pGF2a mountain is the ion of the mass charge tb(m/z)197. Figure 5 shows the multi-reaction monitoring mode (M A typical LC/MS/MS chromatogram containing a standard solution of l〇〇pg8_is〇_pGF2a and 25〇pg/ml8 is〇pGF2a_d4 and a blood sample was injected into ing8-iso-PGF2a-d4 as measured by abdominal hernia. After the internal standard, the standard solution and the blood sample were purified by the same solid phase extraction (spE) and analyzed by the aforementioned LC/MS/MS protocol. 4. The concentration of 8-iso-PGF2a in plasma ❹ in plasma 8-iso~PGF2〇^ — an indicator of oxidative stress, as shown in Figure 6.

示’相較於對照組,INH組大鼠血漿中8-iso-PGF2W濃度明顯增加(INH組大 鼠血漿中8-iso-PGF2^濃度為151±26pg/ml ;對照組大鼠血漿中8-iso-PGF2a 的濃度為 11〇±15 pg/ml,;? < 0.001);與INH組相較,bnPP-INH組、DSF-INH 組、BNPP-DSF-INH組三組則明顯降低由INH引起肝臟的8-iso-PGF2a產生 (BNPP-INH組大鼠血漿中S-iso-PGFzW濃度為 128±29pg/ml ; DSF-INH組大 鼠血漿中8-iso-PGF2〇^濃度為126±20 pg/ml ; BNPP-DSF-INH組大鼠血衆中 19 201016216 • 8-iso-PGF2A濃度為 123土 17 pg/ml ; INH組大鼠血漿中8-iso-PGF2〇^濃度為 151 士26 pg/ml,;? < 0.005);值得注意的是’對照組、BNPP-INH組、DSF-INH 組'BNPP-DSF-INH組四組之間,大鼠血'漿中8-iso-PGF2(^濃度無顯著差 異’與BNPP-INH組及DSF-INH、纟且相較,INH合併施用BNPP與DSF並不會進 一步減少血漿中8-iso-PGF2a^濃度。 5.剩餘肝功能之量測 如圖七所示’對照組與INH組大鼠之半乳糖單點法(GSP)值具有高度的 ❹顯著差異(對照組大鼠之GSP值為384±69 pg/ml ; INH組大鼠之GSP值為 565±87 pg/ml,;? < 0.001),此外 ’BNPP-INH 組、DSF-INH 組、BNPP-DSF-INH 組大鼠之 GSP 值各為 401±70 pg/m卜 449±45 pg/m卜 388±53 pg/m卜與 INH 組相較,BNPP-INH組、DSF-INH組、BNPP-DSF-INH組大鼠之GSP值各 與INH組大鼠具有南度的顯著差異(其尸值各為p < 〇.〇〇i,p < 0.005, and_p < 0.001);單獨施用INH的大鼠之GSP值明顯增加;然而,在INH合併施用 BNPP或DSF或BNPP與DSF之大鼠則可抵抗這種改變;另一方面,與 _ DSF-INH組相較,INH合併施用BNPP與DSF顯示可以降低INH引起的肝 毒性,雖然兩者之間的差異未達到統計上的差異(p=〇.l),而對照組、 BNPP-INH組、DSF-INH組、BNPP-DSF-INH組四組之間大鼠的GSP值無 顯著差異存在。 相似的結果在使用半乳糖清除能力(G‘EC)方法上也可觀察的到,如圖八 所示,與對照組相較,INH組大鼠之GEC值明顯減少(INH組大鼠之GEC 值為 3·4±0·6 mg/min.kg ;對照組大鼠之 GEC 值為 4.9士0.8 mg/min.kg,p < 20 201016216 -0.001),此外,BNPP-INH 組、DSF-ΙΝΗ 組、BNPP-DSF-INH 組大鼠之 GEC 值各為4.5土0.6]11居/111111.]<^、4.3±0.411^/11企1.1^、4.7±0.5 11^/111^1.1^;與1>^[ 組相較,BNPP-INH組、DSF-INH組、BNPP-DSF-INH組大鼠之GEC值各 與INH組大鼠具有高度的顯著差異(其p值各為p < 0.005,p < 0.05, andjp < 0.005);單獨施用INH的大鼠之GEC值明顯減少;然而,在INH合併施用 BNPP或DSF或BNPP與DSF之大鼠則可恢復這種改變;與DSF-INH組相 較,INH合併施用BNPP舆DSF者有增加GEC值的傾向(DSF-INH組與 ❹ BNPP-DSF-INH 組大鼠之GEC 值各為 4.3±0.4 mg/min.kg、4.7±0.5 mg/min.kg, = 0.29);此外,對照組、BNPP-INH 組、DSF-INH 組、BNPP-DSF-INH 組 四組之間大鼠的GEC值無顯著差異存在。 為了確定AST、ALT、血漿中8-iso-PGF2a的濃度,以及定量肝功能測 試(如:GSP以及GEC)是否相關,以數種相關分析計算後,發現GSP值與 血漿中8-iso-PGF2a的濃度具有高度相關(如圖九所示),相關係數為0.836 ; GSP值與GEC值具有高度相關(如圖十所示)〇? < 0.001),相關係數為-❹0.822;GEC值也與血漿中8-iso-PGF2a的濃度具有高度相關(相關係數為_ 〇.743,ρ<〇·〇〇ι,如表一所示);而GSP值、GEC值以及血漿中8-iso-PGF2a 的濃度則與A ST及ALT均無明顯相關(如表一所示)。 表一 GSP、GEC以及8-iso-PGF2a與生化測試之相關性 ___GSP . GEC 8-iso-PGF2a AST r = 0.114 r = -0.111 r = 0.217 ALT r = 0.016 r = 0.039 r = 0.035 21 201016216 8-iso-PGF2a_r = 0.836* r =-0.743* r=i* 以皮爾森氏相關係數(Pearson’s correlation coefficient)作為統計計算,*户<〇·〇〇ι 實施例二細胞色素Ρ45〇 2Ε1 (CYP2E1)抑制劑之筛選_ cDNA合成微粒體細胞色素P450 2E1 一、材料與方法 * 1.試驗材料 本實施例係使用細胞色素P450 2E1 (CYP2E1)抑制劑之筛選套組 (CYP2E1 High Throughput Inhibitor Screening Kit,BD Bioscience,美國)針對 22種中藥藥引及l〇種賦型劑進行細胞色素p45〇2E1 (CYP2E1)抑制劑之篩 選;該CYP2E1抑制劑之篩選套組的作用原理為:在含有細胞色素p45〇 2m (CYP2E1)以及其螢光性受質 MFC (7-Methoxy-4-trifluoromethyl coumarin)的 環境下加入測試樣品作用後,再偵測CYP2E1代謝物標準品HFC (7-Hydroxy-4-trifluoromethyl coumarin)的生成量,並以對照組(⑺血叫的 HFC生成量為基準,計算測試樣品之CYP2E1抑制率》 各測試樣品均溶於乙腈(acentoitrile) ’測試不同濃度之中藥藥引(66μΜ, 33μΜ, 16.5μΜ)及賦形劑(〇·167%,0·08°/。,0.042%,w/v)對 CYP2E1 之抑制 率,所測試之中藥藥引及結果如表三所列,所測試之賦型劑及結果如表四 所列。 另外’本實施例使用之細胞色素P450 2E1 (CYP2E1)抑制劑之篩選套組 (CYP2E1 High Throughput Inhibitor Screening Kit,BD Bioscience,美國)所需 之藥劑如下: - (1) CYP2E1 + P450 Reductase + Cytochrome b5 : 100 mM potassium 22 201016216 phosphate (pH 7_4)含有 i_3 nmol P450 以及 p-Nitrophenol 水解酶。 (2) Control Protein : 15 mg/ujL Control Protein 溶於 100 mM Potassium Phosphate (pH 7.4)中。 (3) Buffer Solution : 0.5 M Potassium Phosphate (pH 7.4)。 (4) Stop Solution : 0.5 M Tris Base。 (5) Cofactors :含有 U mM NADP+ ' 66 mM MgCl2 以及 66 mM Glucose 6-Phosphate ° ❻ (6) Glucose 6-Phosphate Dehydrogenase : 40 units/ml 溶於 5 mM SodiumCompared with the control group, the concentration of 8-iso-PGF2W in the plasma of INH group was significantly increased (the concentration of 8-iso-PGF2 in the plasma of INH group was 151±26pg/ml; The concentration of -iso-PGF2a was 11〇±15 pg/ml,;? <0.001); compared with the INH group, the bnPP-INH group, the DSF-INH group, and the BNPP-DSF-INH group were significantly reduced. INH caused 8-iso-PGF2a production in the liver (the concentration of S-iso-PGFzW in the plasma of rats in the BNPP-INH group was 128±29 pg/ml; the concentration of 8-iso-PGF2〇 in the plasma of the DSF-INH group was 126). ±20 pg/ml ; BNPP-DSF-INH group blood group 19 201016216 • 8-iso-PGF2A concentration was 123 soil 17 pg/ml; INH group rats plasma 8-iso-PGF2〇^ concentration was 151 ±26 pg/ml,;? <0.005); notable is the control group, BNPP-INH group, DSF-INH group 'BNPP-DSF-INH group between the four groups, rat blood 'slurry in the 8- The iso-PGF2 (no significant difference in concentration) was compared with the BNPP-INH group and DSF-INH, and the combination of BNPP and DSF in INH did not further reduce the concentration of 8-iso-PGF2a in plasma. The measurement of function is shown in Figure 7. 'The galactose single point method (GSP) value of the control group and the INH group has a high value. Significant difference in degree (GSP value of 384±69 pg/ml in control rats; GSP value in 565±87 pg/ml in INH group; ≥ 0.001), in addition to 'BNPP-INH group, The GSP values of the DSF-INH group and the BNPP-DSF-INH group were 401±70 pg/m, 449±45 pg/m, 388±53 pg/m, compared with the INH group, and the BNPP-INH group. The GSP values of the rats in the DSF-INH group and the BNPP-DSF-INH group were significantly different from those in the INH group (the corpse values were p < 〇.〇〇i, p < 0.005, and_p <0.001); GSP values were significantly increased in rats administered INH alone; however, rats that received BNPP or DSF or BNPP and DSF in INH were resistant to this change; on the other hand, to _ DSF-INH group In contrast, INH combined with BNPP and DSF showed a reduction in hepatotoxicity induced by INH, although the difference between the two did not reach a statistical difference (p = 〇.l), while the control group, BNPP-INH group, DSF-INH There was no significant difference in GSP values between the four groups in the BNPP-DSF-INH group. Similar results were also observed using the galactose clearance (G'EC) method. As shown in Figure 8, the GEC values of the INH group were significantly reduced compared to the control group (GEC of the INH group). The value was 3·4±0·6 mg/min.kg; the GEC value of the control rats was 4.9 ± 0.8 mg/min.kg, p < 20 201016216 -0.001), in addition, the BNPP-INH group, DSF- The GEC values of the rats in the ΙΝΗ group and the BNPP-DSF-INH group were 4.5 soils, 0.6], 11%, and 111111.] <^, 4.3±0.411^/11 enterprises 1.1^, 4.7±0.5 11^/111^1.1^ Compared with the 1>^[ group, the GEC values of the BNPP-INH group, the DSF-INH group, and the BNPP-DSF-INH group were significantly different from those of the INH group (the p values were p < 0.005, p < 0.05, and jp <0.005); the GEC value of rats administered INH alone was significantly reduced; however, rats in the combination of INH with BNPP or DSF or BNPP and DSF recovered this change; Compared with the DSF-INH group, the combination of INH and BNPP舆DSF had a tendency to increase the GEC value (the GEC values of the DSF-INH group and the ❹BNPP-DSF-INH group were 4.3±0.4 mg/min.kg, 4.7, respectively. ±0.5 mg/min.kg, = 0.29); in addition, the control group, BNPP-INH group, DSF-INH group, BN PP-DSF-INH group There was no significant difference in GEC values between the four groups. To determine whether AST, ALT, plasma 8-iso-PGF2a concentrations, and quantitative liver function tests (eg, GSP and GEC) were correlated, GSP values were found in 8-iso-PGF2a in plasma after several correlation analyses. The concentration is highly correlated (as shown in Figure 9), the correlation coefficient is 0.836; the GSP value is highly correlated with the GEC value (as shown in Figure 10)? < 0.001), the correlation coefficient is -❹0.822; GEC value It is also highly correlated with the concentration of 8-iso-PGF2a in plasma (correlation coefficient _ 〇.743, ρ < 〇 · 〇〇ι, as shown in Table 1); and GSP value, GEC value and plasma 8-iso The concentration of -PGF2a was not significantly correlated with A ST and ALT (as shown in Table 1). Table 1 Correlation between GSP, GEC and 8-iso-PGF2a and biochemical tests ___GSP . GEC 8-iso-PGF2a AST r = 0.114 r = -0.111 r = 0.217 ALT r = 0.016 r = 0.039 r = 0.035 21 201016216 8 -iso-PGF2a_r = 0.836* r =-0.743* r=i* Calculated by Pearson's correlation coefficient, * household <〇·〇〇ι Example 2 Cytochrome Ρ45〇2Ε1 (CYP2E1 Screening of inhibitors _ cDNA synthesis microsomal cytochrome P450 2E1 I. Materials and methods * 1. Test materials This example uses a cytochrome P450 2E1 (CYP2E1) inhibitor screening kit (CYP2E1 High Throughput Inhibitor Screening) Kit, BD Bioscience, USA) Screening of cytochrome p45〇2E1 (CYP2E1) inhibitors against 22 Chinese herbal medicines and l-type excipients; the principle of the CYP2E1 inhibitor screening kit is: CYP2E1 metabolite standard HFC (7-Hydroxy-4-) was added to the test sample after the pigment p45〇2m (CYP2E1) and its fluorescent substance MFC (7-Methoxy-4-trifluoromethyl coumarin) were added to the test sample. The amount of trifluoromethyl coumarin), And in the control group ((7) the amount of HFC produced by blood, the CYP2E1 inhibition rate of the test sample was calculated. Each test sample was dissolved in acetonitrile (acentoitrile) 'tested with different concentrations of Chinese medicine (66 μΜ, 33 μΜ, 16.5 μΜ) and The inhibition rate of CYP2E1 by excipients (〇·167%, 0·08°/., 0.042%, w/v), the results of the tested drugs and the results listed in Table 3, the tested excipients and The results are shown in Table 4. In addition, the reagents required for the CYP2E1 High Throughput Inhibitor Screening Kit (BD Bioscience, USA) used in this example are as follows: - (1) CYP2E1 + P450 Reductase + Cytochrome b5 : 100 mM potassium 22 201016216 phosphate (pH 7_4) contains i_3 nmol P450 and p-Nitrophenol hydrolase. (2) Control Protein: 15 mg/ujL Control Protein is dissolved in 100 mM Potassium Phosphate (pH 7.4). (3) Buffer Solution : 0.5 M Potassium Phosphate (pH 7.4). (4) Stop Solution : 0.5 M Tris Base. (5) Cofactors: contains U mM NADP+ ' 66 mM MgCl2 and 66 mM Glucose 6-Phosphate ° ❻ (6) Glucose 6-Phosphate Dehydrogenase : 40 units/ml Dissolved in 5 mM Sodium

Citrate Buffer (pH 7.5)〇 (7) MFC (7-Methoxy-4-trifluoromethyl coumarin):螢光性受質 (fluorescence substrate),50 mM MFC 溶於乙腈(acetonitrile)。 (8) DDTC (Diethyldithiocarbamic acid) : CYP2E1 選擇性抑制劑(陽性對 照組),20 mM DDTC 溶於乙腈(acentoitrile)。 (9) HFC (7-Hydroxy-4-trifluoromethyl coumarin): CYP2E1 代謝物標準品 參 (metabolite standard),0.25 mM HFC 溶於 0.1M Tris (pH 9.0) 〇 (10) NADPH-Cofactor Mix :於 14.56 ml 無菌水中加入 187.5 μΐ Cofactors ' 150 μΐ G6PDH (Glucose 6-Phosphate Dehydrogenase Solution)以及 100 μΐ Control Protein。 (11) Cofactor/ acetonitrile mix:於 9_93 ml NADPH-Cofactor Mix 中力口入 66 μΐ Acetonitrile 0 (12) Enzyme/Substrate Mix :於 4ml Buffer Soultion 中加入 5.94 ml 無菌 23 201016216 水、50μ1 HTS-706(CYP2E1,2 μΜ P450 content)以及 28 μΐ 50 mM MFC (7-Methoxy-4-trifluoromethyl coumarin,螢光性受質)。 2.細胞色素P45〇2El (CYP:2E1)抑制劑之筛選 使用細胞色素P450 2E1 (CYP2E1)抑制劑之篩選套組(CYP2E1 High Throughput Inhibitor Screening Kit,BD Bi〇Science,美國)進行中藥藥引及賦 型劑之篩選,實驗步驟如下所述: (1) 製備對照組: ❹ a•於96孔盤上第1孔井(well)内加入149plNADPH-CofactorMix以及 lpl20mMDDTC並混合均勻; b. 於該96孔盤上第2至12孔井内各丄人1〇〇 μ1 c〇fact〇r/咖⑽她 mix,第1至8孔井為陽性對照組(p〇sitive c〇mr〇1);第9與第ι〇孔 井為對照組(co咖1);第U與第12孔井為空白對照組(blartk); c. 於該第1至8孔井内做連績稀釋動作:自第i孔井内取% ^液體加 入第2孔井内混勻,再自第2孔井内取㈣液體加入第3孔井内混 ❶自以此類推’至第8孔井時去除多餘的5〇 μ1液體,以得到連續稀 釋濃度 66.6、22.2、7,4、2.47、〇·82、〇·27、〇 〇91、〇 〇3 _。 (2) 製備試驗組: 丄於96孔盤上第1行的第1及第2孔井内各加入149 μ1 NADPH杨咖Mix’以及1μ12〇_中藥藥引測試樣品或 (w/v)賦形劑測試樣品,並混合均勻; b.再自該第i行的第丄及第2孔井内各取5〇 μ1液體加入第3孔井内混 24 201016216 勻(即每—測試樣品均為三重複); (3) 反應起始與終止: a·將上述對照組與試驗組置於3r>c靜置丨〇分鐘; b.除了該空白對照組之外’其他孔井内均加入1〇〇 giEnzyme/Substrate Mix混句; c,將所有對照組與試驗組置於37。(:靜置40分鐘; d.所有的孔井内均加入75 μ1 St〇p s〇luti〇n混勻; e_緊接者於該空白對照組内加入1 〇〇 μΐ Enzyme/Substrate Mix混勻; f.將所有對照組與試驗組以螢冷光儀(Fluoroskan Ascent FL,Thermo Electron Corporation,芬蘭)讀取結果,所使用之激發光(excitati〇n) 波長為405 nm ’發散光(emission)波長為538 nm。 (4) 結果分析:測得之螢光訊號數值換算成為CYP2E1代謝物標準品HFC 生成量(pmol)後’以對照組(contr〇i)為基準,即對照組之cyp2e1抑制 率為〇°/。,以下列公式計算各陽性對照組及試驗組之CYp2E1抑制率: CYP2m抑制率(%)=工^之HFC生成* — 對照組(control)之HFC生成量 二、結果 1.陽性對照組 陽性對照組(DDTC)所測出之CYP2E1抑制率如表二所示,由表二可知 當DDTC的濃度為66.6 μΜ (即為〇167 %,w/v)時,cyp 2ei抑制率可達 97.55%,係以66·6 μΜ作為中藥藥引最高測試濃度,以〇 167 咖v)作為 25 201016216 '賦型劑最高測試濃度。 表, 陽性對照組之cΥΡ 2Ε1抑制率Citrate Buffer (pH 7.5) 〇 (7) MFC (7-Methoxy-4-trifluoromethyl coumarin): Fluorescent substrate, 50 mM MFC dissolved in acetonitrile. (8) DDTC (Diethyldithiocarbamic acid): CYP2E1 selective inhibitor (positive control group), 20 mM DDTC dissolved in acetonitrile (acentoitrile). (9) HFC (7-Hydroxy-4-trifluoromethyl coumarin): CYP2E1 metabolite standard, 0.25 mM HFC dissolved in 0.1 M Tris (pH 9.0) 〇 (10) NADPH-Cofactor Mix: at 14.56 ml 187.5 μΐ Cofactors ' 150 μΐ G6PDH (Glucose 6-Phosphate Dehydrogenase Solution) and 100 μΐ Control Protein were added to the sterile water. (11) Cofactor/ acetonitrile mix: 66 μΐ in a 9_93 ml NADPH-Cofactor Mix Acetonitrile 0 (12) Enzyme/Substrate Mix: Add 5.94 ml of sterile 23 201016216 water, 50μ1 HTS-706 (CYP2E1) to 4ml Buffer Soultion , 2 μΜ P450 content) and 28 μΐ 50 mM MFC (7-Methoxy-4-trifluoromethyl coumarin, fluorescent substrate). 2. Screening of cytochrome P45〇2El (CYP: 2E1) inhibitors using the cytochrome P450 2E1 (CYP2E1) inhibitor screening kit (CYP2E1 High Throughput Inhibitor Screening Kit, BD Bi〇Science, USA) And the screening of the excipients, the experimental steps are as follows: (1) Preparation of the control group: ❹ a• Add 149pl NADPH-CofactorMix and lpl20mMDDTC in the first well on the 96-well plate and mix well; b. In the wells of the 2nd to 12th wells of the 96-well plate, 1〇〇μ1 c〇fact〇r/Cai (10) she mixed, the wells 1 to 8 were positive control group (p〇sitive c〇mr〇1); 9 and the first 〇 well are the control group (co coffee 1); the U and 12 wells are the blank control group (blartk); c. in the first to eighth wells to do the continuous dilution action: from the i The % ^ liquid in the well is added to the well of the second well to be mixed, and then the liquid is added from the well of the second well. (4) The liquid is added to the well of the third well, and the excess 5 〇 μ1 liquid is removed from the well of the eighth well. Continuous dilution concentrations of 66.6, 22.2, 7, 4, 2.47, 〇·82, 〇·27, 〇〇91, 〇〇3 _ were obtained. (2) Preparation test group: 149 149 μl NADPH Yang coffee Mix' and 1μ12〇_ Chinese medicine drug test sample or (w/v) shape were added to the first and second wells in the first row of the 96-well plate. Test the sample and mix it evenly; b. Then take 5〇μ1 liquid from the third and second wells of the i-th row and add it to the third well. 24 201016216 Evenly (ie, each test sample is three replicates) (3) Reaction initiation and termination: a· The above control group and the test group were placed in 3r>c for 丨〇 minutes; b. In addition to the blank control group, 1 giEnzyme/ was added to other wells. Substrate Mix; c, place all control and test groups at 37. (: Allow to stand for 40 minutes; d. Add 75 μl St〇ps〇luti〇n to all wells; e_ immediately add 1 〇〇μΐ Enzyme/Substrate Mix to the blank control group; f. All the control and test groups were read with a luminescence spectrometer (Fluoroskan Ascent FL, Thermo Electron Corporation, Finland) using an excitation light (excitati〇n) wavelength of 405 nm 'emission wavelength' 538 nm. (4) Analysis of results: The measured value of the fluorescent signal was converted to the amount of HFC produced by the CYP2E1 metabolite standard (pmol), which was based on the control group (contr〇i), ie, the cyp2e1 inhibition rate of the control group. 〇°/., the CYp2E1 inhibition rate of each positive control group and the test group was calculated by the following formula: CYP2m inhibition rate (%) = HFC production* of the control group - HFC production amount of the control group 2, result 1. Positive The inhibition rate of CYP2E1 measured in the control group (DDTC) is shown in Table 2. It can be seen from Table 2 that when the concentration of DDTC is 66.6 μΜ (ie, 〇167%, w/v), the inhibition rate of cyp 2ei can be Up to 97.55%, with 66.6 μΜ as the highest test concentration of traditional Chinese medicine, to 〇167 coffee v) 25201016216 to 'the highest concentration tested excipients. Table, positive control group cΥΡ 2Ε1 inhibition rate

生成量(pm〇n 222.00 gYP2El抑制率叫 0 DDTC 濃度(μΜ) 0(對照組) 0.03 0.091 0.27 0.82 2.47 7.4 22.2 66.6 256.00 202.00 151.71 126.14 55.18 21.08 15.10 5.42 8.71 31.52 43.06 75.09 90.49 93.19 97.55The amount of production (pm〇n 222.00 gYP2El inhibition rate is 0 DDTC concentration (μΜ) 0 (control group) 0.03 0.091 0.27 0.82 2.47 7.4 22.2 66.6 256.00 202.00 151.71 126.14 55.18 21.08 15.10 5.42 8.71 31.52 43.06 75.09 90.49 93.19 97.55

2·試驗組CYP2E1抑制率 中藥藥引所測出之CYP2E1抑制率如表三所示,由結果可知各中藥藥 引於不同濃度(66μΜ,33μΜ,16‘5μΜ)的條件下,對細胞色素p45〇 2m具有 ®不同程度的抑制效果,其中以66 —正二跡瘡酸____ _ 抑制欵果最佳(97.99zh0.66 %)。 表三中藥藥引之CYP2E1抑制率 藥藥引 ---~----- CYP2E1抑制率(知 ---‘ 測試濃唐_ 66 μΜ 33 μΜ 16.5 μΜ —對照組 0 0 0 ^性對照組(DDTC) 97.55+1.862 ------ 26 201016216 中藥藥引 CYP2E1抑制率(%) 測試濃度 66 μΜ 33 μΜ 16.5 μΜ 正二羥療瘡酸 (Nordihydroguaiaretic acid) 97.99±0.66 92.36±2.20 76.52±3.86 (-)-Epigallocetechin-3-gallate 97.56±0.18 96.47±0.64 92.56+0.46 茵陳色原酮 (Capillarisin) 76.12+1.89 60.54±5.91 49.05±5.18 山奈酌· (Kaempferol) 70.6312.53 70.04±3.75 71.87±1.14 根皮素 (Phloretin) 66.84±4.79 54.69±2.84 42.0413.63 雙硫余 (disulfiram) 66.54+2.55 60.55±5.70 57.89±3.91 橙皮素 (Hesperetin) 54.75±1.37 43.29±0.82 32.10±5.80 6-薑辣醇 (6-Gingerol) 51.89±3.33 39.83±2.32 30.13±2.67 沒食子酸 (gallic acid) ★ 48.24±4.20 42.74±7.36 35.59±10.03 異甘草素 (Isoliquritigenin) 47.83±5.36 46.27±3.28 39.08±2.75 柚皮素 (Narigenin) 41.84+3.51 36.82±3.97 25.11±7.60 二氫化槲皮素 ((+)-Taxifolin) 34.54+3.47 23.80±5.84 22.58±11.69 漢黃芩素 (Wongonin) 23.48±2.59 21.87±1.90 15.64±7.82 原兒茶酸 (Protocatechuic acid) 22.75+4.07 19.95+8.95 25.66+12.74 兒茶素 ((+)-Catechin) 16.45+9.67 33.83±8.76 41.53+7.62 27 201016216 中藥藥引 CYP 2E1 抑制率(〇/〇) 測試濃度 66 μΜ 33 μΜ 16.5 μΜ β-奈黄酮 (β-naphthoflavone) 15.40±12.94 16.83±0.96 6.52±6.64 恩貝素 (Embelin) 13.54±11.64 12·30±10·24 5.95±7.48 反式肉桂酸 (trans-Cinnamic acid) 表兒茶酚 ((-)-Epicatechin) 根皮苷 (Phloridzin) 7.10+6.95 4.66±6.50 5.71±10_53 2.57±11.60 1.42±9.28 15.02+5.50 3.76±3.58 18.27±9.34 1.25±7.90 葛根素 (Puerarin) -12.8612.75 -4.64+3.47 0.43±2.31 傘形花内酯 (Umbelliferone) -1081.56土 168.00 -571.97±117.56 -280.41±19.48 賦型劑所測出之CYP2E1抑制率如表四所示,由結果可知各賦型劑於 不同濃度(0·167%,0.08%,0.(M2%,w/v)的媒件下,對細胞色素?45〇 2m具有 粵不同程度的抑制效果,其中以〇.167% Brij 58的抑制效果最佳(97 75±〇 66%)。 表四賦型劑之CYP2E1抑制率 CYP2E1 率(〇/〇) 0.08%2. Test group CYP2E1 inhibition rate The CYP2E1 inhibition rate measured by Chinese medicine drug cited is shown in Table 3. From the results, it can be seen that each Chinese medicine drug is condensed to different concentrations (66μΜ, 33μΜ, 16'5μΜ) under conditions of cytochrome p45 〇2m has a different degree of inhibitory effect, of which 66-positive acne acid ____ _ inhibits the best results (97.99zh0.66 %). Table 3: CYP2E1 inhibition rate of traditional Chinese medicine cited drug--------- CYP2E1 inhibition rate (know---' test tangtang_66 μΜ 33 μΜ 16.5 μΜ - control group 0 0 0 ^ sex control group (DDTC) 97.55+1.862 ------ 26 201016216 CYP2E1 inhibition rate of Chinese medicine (%) Test concentration 66 μΜ 33 μΜ 16.5 μΜ Nordic hydroguaiaretic acid 97.99±0.66 92.36±2.20 76.52±3.86 ( -)-Epigallocetechin-3-gallate 97.56±0.18 96.47±0.64 92.56+0.46 Capillarisin 76.12+1.89 60.54±5.91 49.05±5.18 Kaempferol 70.6312.53 70.04±3.75 71.87±1.14 Phloetin 66.84±4.79 54.69±2.84 42.0413.63 disulfiram 66.54+2.55 60.55±5.70 57.89±3.91 Hesperetin 54.75±1.37 43.29±0.82 32.10±5.80 6-Gingerol ( 6-Gingerol) 51.89±3.33 39.83±2.32 30.13±2.67 gallic acid ★ 48.24±4.20 42.74±7.36 35.59±10.03 Isoliquritigenin 47.83±5.36 46.27±3.28 39.08±2.75 Naringenin ( Narigenin) 41.84+3.51 36.82±3.97 25.11±7.60 Dihydrogen Quercetin ((+)-Taxifolin) 34.54+3.47 23.80±5.84 22.58±11.69 Wongonin 23.48±2.59 21.87±1.90 15.64±7.82 Protocatechuic acid 22.75+4.07 19.95+8.95 25.66+ 12.74 catechin ((+)-Catechin) 16.45+9.67 33.83±8.76 41.53+7.62 27 201016216 Chinese medicine induces CYP 2E1 inhibition rate (〇/〇) Test concentration 66 μΜ 33 μΜ 16.5 μΜ β-naphthoflavone (β-naphthoflavone 15.40±12.94 16.83±0.96 6.52±6.64 Embelin 13.54±11.64 12·30±10·24 5.95±7.48 trans-Cinnamic acid Epicatechin ((-)-Epicatechin) Phloridzin 7.10+6.95 4.66±6.50 5.71±10_53 2.57±11.60 1.42±9.28 15.02+5.50 3.76±3.58 18.27±9.34 1.25±7.90 Puerarin -12.8612.75 -4.64+3.47 0.43±2.31 Umbrella Umbelliferone -1081.56 soil 168.00 -571.97±117.56 -280.41±19.48 The inhibition rate of CYP2E1 measured by the excipient is shown in Table 4. From the results, it can be seen that the excipients are at different concentrations (0.167%). , 0.08%, 0. (M2%, w/v) under the medium, on the cytochrome? 45〇 2m has different degrees of inhibitory effect in Guangdong, among which 167.167% Brij 58 has the best inhibitory effect (97 75±〇 66%). Table 4, CYP2E1 inhibition rate of excipients CYP2E1 rate (〇/〇) 0.08%

-SSi^^DDTC) 97.55±1.862 藥引 _測式濃度(w/v) 對照組 ———__97.75±0.66__96.58+0.40 96.02±0.17-SSi^^DDTC) 97.55±1.862 drug index _ test concentration (w/v) control group ———__97.75±0.66__96.58+0.40 96.02±0.17

28 201016216 中藥藥引 CYP2E1抑制率f%) 測試濃度(w/v) 0.167% 0.08% 0.042% Brij 35 93.33+0.82 89.45±0.68 76.21±7.37 (測試濃度0.025%) (測試濃度0.013%) (測試濃度0.006%) Tween 20 87.20+1.29 82.80il.71 71.7714.48 Tween 80 73.92+4.71 65.4512.50 64.02±12.54 Tween 40 58.97+3.29 47.05+6.48 44.79±2.49 PEG 2000 44.33+2.75 40.13±3.06 35.81±3.26 PEG 400 42.33+5.25 39.10+0.73 31.98+5.97 Pluomic F68 41.72+5.34 42.98±3.24 37.11+10.35 PEG 4000 37.21+1.91 41.22±0.97 37.18±10.52 實施例三細胞色素P45〇 2E1 (CYP2E1)抑制劑的筛選-人肝微粒體細胞色素P450 2E1 一、材料與方法 1.試驗材料28 201016216 Chinese medicine medicine cited CYP2E1 inhibition rate f%) Test concentration (w / v) 0.167% 0.08% 0.042% Brij 35 93.33 +0.82 89.45 ± 0.68 76.21 ± 7.37 (test concentration 0.025%) (test concentration 0.013%) (test concentration 0.006%) Tween 20 87.20+1.29 82.80il.71 71.7714.48 Tween 80 73.92+4.71 65.4512.50 64.02±12.54 Tween 40 58.97+3.29 47.05+6.48 44.79±2.49 PEG 2000 44.33+2.75 40.13±3.06 35.81±3.26 PEG 400 42.33+5.25 39.10+0.73 31.98+5.97 Pluomic F68 41.72+5.34 42.98±3.24 37.11+10.35 PEG 4000 37.21+1.91 41.22±0.97 37.18±10.52 Example 3 Screening of cytochrome P45〇2E1 (CYP2E1) inhibitors - human liver Microsomal cytochrome P450 2E1 I. Materials and methods 1. Test materials

本實施例是使用人類肝臟所製備微粒體,針對細胞色素p45〇 2E1 (CYP2E1)與39種中藥藥引及1〇種賦型劑進行細胞色素p45〇2E1 (CYp2E1) ❸抑制劑的篩選,以篩選出對於人類肝臟之細胞色素P45〇2ei (CYP2E1)有效 抑制劑;該CYP2E1抑制劑的篩選作用原理為:係利用人類肝臟所製備微 粒體中細胞色素P450 2E1 (CYP2E1)與其受質,Chlorzoxazone反應,加入測 試樣品作用後’再偵測CYP2E1代謝物標準品6-OH-CZX (6-Hydroxy-Chlorzoxazone)的生成量,並以對照組(c〇ntr〇1)的 6-OH-CZX 生 成量為基準’計算測試樣品的CYP2E1抑制率。 各測試樣品均溶於10%甲醇(methanol)或是二次水中,測試不同濃度的 中藥藥引(66μΜ,33μΜ,16·5μΜ)及賦形劑(〇1670/〇, 0.08%,0.042%, w/v)對 CYP2E1的抑制率,所測試的中藥藥引及結果如表三所列,所測試的賦型劑 29 201016216 及結果如表四所列。 本實施例所利用人類肝臟細胞色素Ρ45〇 2Ε1 (CYP2E1)抑制劑篩選所 需的藥劑如下: (1) CYP2E1 : 1〇〇 niM potassium phosphate (pH 7.4)含有 1〇 ρ450 protein concentration。 (2) Control Protein : 10 mg/mL P450 Protein 溶於 100 mM PotassiumIn this example, microsomes prepared by human liver were used to screen for cytochrome p45〇2E1 (CYp2E1) ❸ inhibitors against cytochrome p45〇2E1 (CYP2E1) and 39 kinds of traditional Chinese medicines and one type of excipient. The effective inhibitor of cytochrome P45〇2ei (CYP2E1) for human liver was screened; the principle of screening of CYP2E1 inhibitor was: cytochrome P450 2E1 (CYP2E1) and its receptor, Chlorzoxazone reaction in microsomes prepared by human liver After the test sample was added, the amount of 6-OH-CZX (6-Hydroxy-Chlorzoxazone) produced by the CYP2E1 metabolite standard was detected, and the amount of 6-OH-CZX produced by the control group (c〇ntr〇1) was measured. Calculate the CYP2E1 inhibition rate of the test sample for the benchmark '. Each test sample was dissolved in 10% methanol or secondary water, and tested at different concentrations of Chinese medicine (66 μΜ, 33 μΜ, 16.5 μΜ) and excipients (〇1670/〇, 0.08%, 0.042%, w/v) The inhibition rate of CYP2E1, the results of the tested traditional Chinese medicines are listed in Table 3, the tested excipients 29 201016216 and the results are listed in Table 4. The agents required for screening human liver cytochrome Ρ45〇 2Ε1 (CYP2E1) inhibitors in this example are as follows: (1) CYP2E1: 1〇〇 niM potassium phosphate (pH 7.4) contains 1〇 ρ450 protein concentration. (2) Control Protein : 10 mg/mL P450 Protein Dissolved in 100 mM Potassium

Phosphate (pH 7.4)中》 (3) Buffer Solution : 0.5 M Potassium Phosphate (pH 7.4) 〇 Stop Solution : ice-acetonitrile o φ (4) Cofactors :含有 100 mM NADP+以及 10 mM Glucose 6-Phosphate。 (5) Glucose 6-Phosphate Dehydrogenase : 2000 units/ml 溶于無菌水。 (6) Chlorzoxazone :受質(substrate),16 mM Chlorzoxazone 溶於 10% 甲 醇(Methanol)。 (7) DDTC (Diethyldithiocarbamic acid) : CYP2E1 選擇性抑制劑(陽性對照 組),20 mM DDTC 容於 1〇。/0 甲醇(Methanol) 〇 (8) NADPH-regenerating System:於 3·42 ml 中加入 530 μΐ Cofactors、40 μΐ G6PDH (Glucose 6-Phosphate Dehydrogenase Solution)以及 100 μΐ Control Protein ° 鲁2·細胞色素P45〇2El(CYP2El)抑制劑的篩選 使用人類肝臟微粒體細胞色素Ρί50 2E1 (CYP2E1)進行細胞色素 Ρ450 2Ε1 (CYP2E1)抑制劑篩選的實驗步驟如下所述: (1) 在4°C冰浴環境下,0.1Μ磷酸緩衝液(pH = 7.4)包含0.5 mg/ml 人肝微粒體、5 mMMgCl2靜置15分鐘; (2) 此時實驗組加入細胞色素P450 2E1反應基質藥物16 mM Chlorzoxazone以及濃縮中藥藥引萃取液;對照組以甲醇:無菌水=1 : 1 201016216 » * 取代中藥藥引;陽性對照組則以ddtc取代; ⑶最後加入輔酶1 mM NADP+、10 mM G6P與2 IU G6PD。將反應 液轉移至37。(:水浴預溫(pre-incubatkm) 1分鐘,活性測試實驗的反應時 間為30分鐘; (4)反應完後以500pL acetonitrile終止反應,樣品靜置1分鐘後加入 内部標準品(5 pg/mL4-hydroxy-tobutamide),離心後取上層液20pL以甲 醇:無菌水作稀釋十倍動作,取5pL之回溶液注入LC/MS/MS系統進行Phosphate (pH 7.4) (3) Buffer Solution : 0.5 M Potassium Phosphate (pH 7.4) 〇 Stop Solution : ice-acetonitrile o φ (4) Cofactors: Contains 100 mM NADP+ and 10 mM Glucose 6-Phosphate. (5) Glucose 6-Phosphate Dehydrogenase: 2000 units/ml Dissolved in sterile water. (6) Chlorzoxazone: Substrate, 16 mM Chlorzoxazone is dissolved in 10% methanol (Methanol). (7) DDTC (Diethyldithiocarbamic acid): CYP2E1 selective inhibitor (positive control group), 20 mM DDTC is contained in 1〇. /0 Methanol (8) NADPH-regenerating System: 530 μΐ Cofactors, 40 μΐ G6PDH (Glucose 6-Phosphate Dehydrogenase Solution) and 100 μΐ Control Protein ° Lu 2·Cytochrome P45〇 in 3·42 ml Screening of 2El (CYP2El) Inhibitors The experimental procedures for screening for cytochrome Ρ450 2Ε1 (CYP2E1) inhibitors using human liver microsomal cytochrome Ρ50(E) (CYP2E1) are as follows: (1) In an ice bath at 4 °C, 0.1Μ phosphate buffer (pH = 7.4) containing 0.5 mg/ml human liver microsomes and 5 mMMgCl2 for 15 minutes; (2) At this time, the experimental group was added with cytochrome P450 2E1 reaction matrix drug 16 mM Chlorzoxazone and concentrated Chinese medicine Extract; control group with methanol: sterile water = 1 : 1 201016216 » * replaced with traditional Chinese medicine; positive control group was replaced by ddtc; (3) finally added coenzyme 1 mM NADP +, 10 mM G6P and 2 IU G6PD. Transfer the reaction to 37. (: pre-incubatkm for 1 minute, reaction time for activity test is 30 minutes; (4) Stop reaction with 500pL acetonitrile after the reaction, and leave the sample for 1 minute and then add internal standard (5 pg/mL4) -hydroxy-tobutamide), after centrifugation, take 20pL of the supernatant solution and dilute it with methanol: sterile water for 10 times. Take 5pL of the solution back into the LC/MS/MS system.

分析。 (5)結果分析:將LC/MS/MS測得的訊號數值換算成為CYP2E1代謝 物標準品6-Hydroxy-Chlorzoxazone生成量(pmol)後,以對照組(contr〇i)為 基準,即對照組的CYP2E1抑制率為〇%,以下列公式計算各陽性對照組 實驗組的6-OH-CZX生成量 及試驗組的CΥΡ 2E1抑制率 CYP 2E1 抑制率(%) = 1 — 對照組(control)的6-OH-CZX生成量 一、結果 φ 1·陽性對照組 陽性對照組(DDTC)所測出的CYP2E1抑制率如表二所示,由表二可知 § DDTC的》農度為1〇〇 μΜ時’ CYP2E1抑制率可達87.56%。 gpTC ’農度(μΜ)__fOH-CZX 生成量(pmol) cγρ 2Ε1 抑制座⑽ 〇(對照組) 3207.5 〇 5〇 1644'5 48.66 -—-__ 87.56_ L試驗組CYP2E1抑制率 31 201016216 • 巾藥藥引_出的CYP2E1抑制率如表三所示,由結 〜 引於不同濃度(66μΗ 33μΜ,16.5μΜ)的條奔下,對細胞色素ρ45〇°2Ει = 不同程度的抑制效果,其中以66 μΜ正二羥愈瘡酸(N〇rdmydr〇guaiaretic 抑制效果(96·98±0.19 %)及 66 μΜ 反式肉桂酸·(Trans-Cinnamaldehyde)抑制 效果(92·81±0·53 %)最佳。 參 中藥藥引 CYP2E1 抑制率(〇/0) 測試濃度 66 μΜ 33 μΜ 16.5 μΜ 對照組 0 0 0 正二羥愈瘡酸 (Nordihydroguaiaretic acid) 96.98±0.19 67·68.±2·24 49.81 士 2.42 反式肉桂醛 (Trans-Cinnamaldehyde) 92.81±0.53 89.56±1.52 60.79±3_00 大豆甘元 (Daidzein) 86.77±1.04 76.33±2.28 73.55士 1.74 異牡荊素 (Isovitexin) 81.82±1_34 67.60±3.24 59.82 土 1.41 山奈盼 (Kaempferol) 79.25±0.27 74.74±0.60 66.53±1.71 雙硫命 (Disulfiram) 78_23 土 0.25 75.75±1.38 74.09±1.10 β-香葉烯 (β-Myrcene) 76.49土 2.18 75.50±2.14 53.40土 4.93 槲皮素 (Quercetin) 73.32±1.57 53.02±2.17 46.40土 4.68 (-)-Epigallocetechin-3 -gallate 72.16±1.02 60.53±2.06 50.19±1.89 32 201016216 中藥藥引 CYP2E1抑制率(%) 測試濃度 66 μΜ 33 μΜ 16.5 μΜ (+)-檸檬烯 ((+)-Limonene) 63.64士 2.74 38·05±1·95 13.77 士 1.96 揚梅素 (Myricetin) 61.60±0.88 59.21±1.27 42.21±2.55 槲皮 (Quercitrin) 61.04±5.88 53.77±3.51 33.51±4.29 木犀草素-7-葡萄糖苷 (Luteolin-7-Glucoside) 60.26士1_11 55_87 士 0.67 42.96±5.10 桑葉素 (Morin) 60.26±1.56 52.08±1.70 36.88士 1.56 新橙皮苷 (Neohesperidin) 58.70士1.06 48.96±2.37 42.81士1.75 橙皮苷 (Hesperidin) 58.57土 3.78 50.91±2.81 45.32土 1.57 茵陳色原酮 (Capillarisin) 57.31 士 1.31 46.22士 2.65 32.89±2.46 (-)-Epigallocatechin 57.08土 1.85 36.40±2.18 38.95土 1.92 金絲桃苷 (Hyperoside) 53.51 士 1.20 35.58±3.68 -24.16±1.19 木犀草素 (Luteolin) 53.23士 1.78 丄 43.40±4.74 39_15±3·42 十四烧酸乙酉旨 (Ethyl Myristate) 51.95±2.38 41.04±4.76 22.08士 0.78 禋柳素 (Tamarixetin) 50.91 士 3.12 47.79士 2.81 37.40±1.96 33 201016216 中藥藥引 CYP2E1抑制率(%) 測試濃度 66 μΜ 33 μΜ 16.5 μΜ 根皮素 (Phloretin) 50.90±2.09 ♦ 39.78±3.28 29.60±3.21 黃芩素 (Baicalein) 50.13±5.11 47.79士 3.40 35.32±1.51 黃芩 (Baicalin) 49.30±2.26 35.61 士 3.09 22.51±2.24 芹菜素 (Apigenin) 47.51±3.66 36.80士 1.98 28.89土 1.54 柚皮素 (Naringenin) 45.16±4.43 28.45±2.21 19.50 士 2.02 橙皮素 (Hesperetin) 44_56±2.35 34.28士 2.03 25.74±2.45 (+)-Epicatechin 44.32±1.25 52.32±1.59 66.71±1.79 芸香素 (Rutin) 43.51 土 3_09 30.13士1.62 30.00士 0.81 (-)-Epicatechin-3-gallate 42.92±0.65 34.84±1.72 30.31±1.27 異甘草素 (Isoliquritigenin) 41.12±0.92 31.48±1.24 21.18±1.96 水飛薊賓 (Silybin) 38.96±1.19 37.14±1.15 59.48±2.34 牡荊素 (Vitexin) 38.70土 1.62 30.65±0.78 23.12 土 1.19 金雀異黃酮 (Genistein) 36.88土 1_56 30.91±1.62 43.90±2.06 34 201016216 測試濃度 異鼠李素 (Isorhamnetin) CYP2E1 33 μΜ 18.68±1·22 中藥藥引 沒食子酸 (gallic acid) 66 μΜ 36.31±1.59 27.96±1.56 18.79±2.03 16.5 μΜ 12.06±1.〇6 ------ 1〇.50±ΐ.ΐ2 ❹ 香葉木素 Diosmin 6-薑辣醇 (6-Gingerol) 21.56±1.19 43.12±3.57 60.〇〇±ι.96 19.08±1.36 11·51±1.〇2 7.84±〇.92 賦型劑所測出的CYP2m抑制率如表四所示,由結果可知錢型細 不同濃度(0.167%,〇.08%,0.042%,w/v)的條件下,對細胞色素p45〇加具有 不同程度的抑制效果,其中以〇.167% Brij 58的抑制效果最佳 %)。 ·… 中藥藥引 表四賦型劑的CYP 2E1抑制率 CYP2E1抑制率(%) 參 測試濃度(w/v) 對照組 0.167% 0.08% 0.042%analysis. (5) Analysis of results: The signal value measured by LC/MS/MS was converted into the amount of 6-Hydroxy-Chlorzoxazone (pmol) of the CYP2E1 metabolite standard, which was based on the control group (contr〇i), ie, the control group. The CYP2E1 inhibition rate was 〇%, and the 6-OH-CZX production amount of each positive control group and the CΥΡ 2E1 inhibition rate of the test group CYP 2E1 inhibition rate (%) = 1 - control group were calculated by the following formula 6-OH-CZX production amount 1. Result φ 1· Positive control group The positive control group (DDTC) measured the inhibition rate of CYP2E1 as shown in Table 2. It can be seen from Table 2 that the agricultural degree of § DDTC is 1〇〇μΜ When the 'CYP2E1 inhibition rate can reach 87.56%. gpTC 'agricultural degree (μΜ)__fOH-CZX production amount (pmol) cγρ 2Ε1 inhibitory seat (10) 〇 (control group) 3207.5 〇5〇1644'5 48.66 ---__ 87.56_ L test group CYP2E1 inhibition rate 31 201016216 • towel medicine The inhibition rate of CYP2E1 from the drug cited is shown in Table 3. From the knots to the different concentrations (66μΗ 33μΜ, 16.5μΜ), the cytochrome ρ45〇°2Ει = different degrees of inhibition, of which 66 The optimal inhibitory effect of N〇rdmydr〇guaiaretic (96·98±0.19 %) and 66 μΜ Trans-Cinnamaldehyde (92·81±0.53%) was the best. Inhibition rate of CYP2E1 in Chinese medicine (〇/0) Test concentration 66 μΜ 33 μΜ 16.5 μΜ Control group 0 0 0 Nordic hydroguaiaretic acid 96.98±0.19 67·68.±2·24 49.81 ± 2.42 Trans Cinnamaldehyde (Trans-Cinnamaldehyde) 92.81±0.53 89.56±1.52 60.79±3_00 Soybean Gan (Daidzein) 86.77±1.04 76.33±2.28 73.55±1.74 Isovitexin 81.82±1_34 67.60±3.24 59.82 Soil 1.41 Shan Nai Pan ( Kaempferol) 79.25±0.27 74.74±0.60 66.53±1.71 double Disulfiram 78_23 Soil 0.25 75.75±1.38 74.09±1.10 β-Zerene (β-Myrcene) 76.49 Soil 2.18 75.50±2.14 53.40 Soil 4.93 Quercetin 73.32±1.57 53.02±2.17 46.40 Soil 4.68 (-) -Epigallocetechin-3 -gallate 72.16±1.02 60.53±2.06 50.19±1.89 32 201016216 CYP2E1 inhibition rate of Chinese medicine (%) Test concentration 66 μΜ 33 μΜ 16.5 μΜ (+)-limonene ((+)-Limonene) 63.64±2.74 38 ·05±1·95 13.77 ± 1.96 mericetin 61.60±0.88 59.21±1.27 42.21±2.55 Quercitrin 61.04±5.88 53.77±3.51 33.51±4.29 Luteolin-7-glucoside (Luteolin-7 -Glucoside) 60.26士1_11 55_87士0.67 42.96±5.10 Morin 60.26±1.56 52.08±1.70 36.88±1.56 Neohesperidin 58.70士1.06 48.96±2.37 42.81士1.75 Hesperidin 58.57 Soil 3.78 50.91±2.81 45.32 soil 1.57 Capillarisin 57.31 ± 1.31 46.22 ± 2.65 32.89 ± 2.46 (-)-Epigallocatechin 57.08 soil 1.85 36.40 ± 2.18 38.95 soil 1.92 Hypericine (Hyperoside) 53.51 ± 1.20 35.58 ±3. 68 -24.16±1.19 Luteolin 53.23±1.78 丄43.40±4.74 39_15±3·42 Ethyl Myristate 51.95±2.38 41.04±4.76 22.08±0.78 Tamarixetin 50.91 士士3.12 47.79士2.81 37.40±1.96 33 201016216 CYP2E1 inhibition rate of Chinese medicine (%) Test concentration 66 μΜ 33 μΜ 16.5 μΜ Phloretin 50.90±2.09 ♦ 39.78±3.28 29.60±3.21 Baicalein 50.13±5.11 47.79士 3.40 35.32±1.51 Baicalin 49.30±2.26 35.61 ±3.09 22.51±2.24 Apigenin 47.51±3.66 36.80±1.98 28.89 soil 1.54 Naringenin 45.16±4.43 28.45±2.21 19.50 ± 2.02 Orange peel Hesperetin 44_56±2.35 34.28士2.03 25.74±2.45 (+)-Epicatechin 44.32±1.25 52.32±1.59 66.71±1.79 Rutin 43.51 Soil 3_09 30.13士1.62 30.00士0.81 (-)-Epicatechin-3-gallate 42.92±0.65 34.84±1.72 30.31±1.27 Isoliquritigenin 41.12±0.92 31.48±1.24 21.18±1.96 Silybin 38.96±1.19 37.14±1.15 59.48±2.34 Vitex Vitexin 38.70 soil 1.62 30.65±0.78 23.12 soil 1.19 genistein 36.88 soil 1_56 30.91±1.62 43.90±2.06 34 201016216 test concentration isorhamnetin CYP2E1 33 μΜ 18.68±1·22 Chinese medicine Galic acid 66 μΜ 36.31±1.59 27.96±1.56 18.79±2.03 16.5 μΜ 12.06±1.〇6 ------ 1〇.50±ΐ.ΐ2 香 cedar lignin Diosmin 6-ginger Spicy alcohol (6-Gingerol) 21.56±1.19 43.12±3.57 60.〇〇±ι.96 19.08±1.36 11·51±1.〇2 7.84±〇.92 The CYP2m inhibition rate measured by the excipient is shown in Table IV. As shown by the results, it can be seen that under the conditions of fine different concentrations (0.167%, 〇.08%, 0.042%, w/v), the cytochrome p45 具有 has different degrees of inhibitory effect, of which 167167% Brij 58 has the best inhibition effect). ·... TCM 2E1 inhibition rate of CYP2E1 inhibition rate (%) Reference test concentration (w/v) Control group 0.167% 0.08% 0.042%

Brij 58 91.24±1.33 80.50±1.14 62.57士2.10Brij 58 91.24±1.33 80.50±1.14 62.57士2.10

Brij 76 86.15 土 1.02 75.71±1.61 68.99士 3 ·77Brij 76 86.15 土 1.02 75.71±1.61 68.99士 3 ·77

Brij 35 77.28士 1.02 64.17±1.71 2則試濃度0.025%)(測試濃度0.013%)( 42.37士 1.78 :測試濃度0.006%)Brij 35 77.28士 1.02 64.17±1.71 2 test concentration 0.025%) (test concentration 0.013%) (42.37 ± 1.78: test concentration 0.006%)

Tween 20 75·38±3.64 70.44±0.93 55.38±1.95 PEG 400 64.17±1.53 54.78士 3.53 26_42 土 1.81 PEG 4000 47.11 士 0.92 23.94±0.92 8.70 土 0.77 35 201016216 中藥藥引 CYP2E1 抑制率(〇/〇) 測試濃度(w/v) PEG 2000 0.167% 47.06±1.53 0.08% 41.43±1.60 0.042% 22.25±1.93Tween 20 75·38±3.64 70.44±0.93 55.38±1.95 PEG 400 64.17±1.53 54.78±3.53 26_42 Soil 1.81 PEG 4000 47.11 ± 0.92 23.94±0.92 8.70 Soil 0.77 35 201016216 Chinese medicine CYP2E1 inhibition rate (〇/〇) Test concentration (w/v) PEG 2000 0.167% 47.06±1.53 0.08% 41.43±1.60 0.042% 22.25±1.93

本發明所提供之含異於驗酿胺(IS0niazid,麵)之低副作用新複方⑺,與 單獨使用異菸驗醯胺(INH)之試驗結果相互比較時,在生化分析(ALT、ast ❹值)、病理學分析、剩餘肝功能之量測(Gsp值、GEC值)以及氧化麼力的指 輮(血漿中S-iso-PGFh的濃度)等各方面之分析結果,都有明顯減少使用異 菸鹼醯胺(INH)所造成的肝毒性副作用的功效。 本發明所提供之含異菸鹼醯胺(Isoniazid,INH)之低副作用新緣方⑺,其 中亦提供可作為細胞色素P450 2E1 (CYP2E1)抑棚之中藥藥引,她習知 細胞色素P450 2E1 (CYP2E1)抑制劑’本發明所提供者係從天然中藥藥引萃 取者,較無生理、化學毒性,且對於人類肝臟之細胞色素p45〇2E1活性有 明顯之抑制活性。 上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例 並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實 施或變更,例如:異菸鹼醯胺(mH)、細胞色素p45〇 2m抑制劑、雙硫侖 (DSF)、硝基苯酚磷酸二酯(BNpp)施用之濃度及比例,以及細胞色素p45〇 2E1抑制劑選用之種類等變化之等效性實施例,均應包含於本案之專利範圍 中。 36 201016216 0 综上所述,本案不但在細胞色素P450 2E1抑制劑上確屬創新,並能確 實減少使用異菸鹼醯胺(INH)所造成的肝毒性副作用,應已充分符合新穎性 及進步性之法定發明專利要件,爰依法提出申請,懇請貴局核准本件發 明專利申請案,以勵發明,至感德便。 【圖式簡單說明】 圖一為異菸鹼醯胺(INH)在肝臟中之代謝途徑圖; 圖二為對照組、INH 組、BNPP-INH 組、DSF-INH 組以及 BNPP-DSF-INH ®組大鼠’天門冬氨酸轉胺酶(AST)與丙氨酸轉胺酶(ALT)活性分析,數值之 什算為mean 土 SD,*表示各試驗組與對照組比較後尸< 0.05者; 圖三為對照組(圖三A及C)與INH組(圖三B及D)大鼠肝臟切片:圖三 A ’對照組相對正常肝組織之型態(he染色,400X);圖三B,INH組在周 圍中央靜脈(V)的肝細胞呈現碎裂及空泡化(he染色,400X);圖三C,以電 子顯微鏡檢視對照組大鼠肝切片,Nu :細胞核(9,〇〇〇χ);圖三D,以電子顯 微鏡檢視INH組大鼠肝切片’相較於圖三C對照組之肝細胞切片,组 9 大鼠肝細胞之粗内質網(rER)明顯增加,Nu :細胞核(9,000Χ); 圖四為8-iso-PGF2a-d4 (Α)與8-iso-PGF2a (Β)之分子結構以及子離子光 譜; 圖五為含有250 pg 8-iso-PGF2a-d4 (A)的内標準品溶液、含有100 pg 8-iso-PGF2a (B)的標準品溶液與空白樣本(c),在多重反應監測模式 偵測下之液相層析串聯式質譜儀(LC/MS/MS)色譜,質荷比(111/2) 357/197以 及質荷比(m/z) 35V193之離子偶(i〇n pairs)分別被用來監測8_is〇_pGF2a_d4 37 201016216 9 (A)(作為内標準品)以及8-iso-PGF2a (B)(作為標準品);波峰i :空白血漿; 波峰2 :注入標準品之空白血漿; 圖六為對照組、INH組、BNPP-INH组、DSF-INH組以及BNPP-DSF-INH 組大鼠血漿中8-iso-PGF2a的濃度,數值之計算為mean 土 SD,*表示試驗 組與對照組比較後P < 0.001者;#表示各試驗組與INH組比較後/^ < 0.05 者; 圖七為對照組、INH組、BNPP-INH組、DSF-INH組以及BNPP-DSF-INH ❹組大鼠半乳糖單點法(GSP)值,數值之計算為mean ± sd,*表示試驗組與 對照組比較後ρ<〇·〇〇1者;#表示各試驗組與_組比較後p<0 001者; ※表示各試驗組與INH組比較後< 0.005者; 圖八為對照組、INH組、BNPP-INH組、DSF-INH組以及BNPP-DSF-INH 組大鼠半乳糖清除能力(GEC)值,數值之計算為mean 土 SD,*表示試驗組 與對照組比較後/> < 0·001者;#表示各試驗組與INH組比較後p < 〇 005者; 》表示各試驗組與INH組比較後Ρ<〇·〇5者;The present invention provides a new compound (7) with low side effects different from the amine (IS0niazid), and when compared with the test results of isoniazid (INH) alone, in biochemical analysis (ALT, ast ❹ value) ), pathological analysis, measurement of residual liver function (Gsp value, GEC value), and analysis of oxidative stress (concentration of S-iso-PGFh in plasma), etc., have significantly reduced the use of different The efficacy of hepatotoxic side effects caused by nicotinamide (INH). The invention provides a novel side effect of isoniazid amide (Isoniazid (INH)) (7), which also provides cytochrome P450 2E1 (CYP2E1) sedative medicine, she knows cytochrome P450 2E1 (CYP2E1) Inhibitors The present invention provides those who are extracted from natural Chinese medicines, have no physiological and chemical toxicity, and have significant inhibitory activity against cytochrome p45〇2E1 activity in human liver. The detailed description above is a detailed description of one of the possible embodiments of the present invention, and is not intended to limit the scope of the invention. The concentration and ratio of alkali guanamine (mH), cytochrome p45〇2m inhibitor, disulfiram (DSF), nitrophenol phosphate diester (BNpp), and the type of cytochrome p45〇2E1 inhibitor Equivalent embodiments are to be included in the scope of the patent. 36 201016216 0 In summary, this case is not only innovative in cytochrome P450 2E1 inhibitors, but also can effectively reduce the side effects of hepatotoxicity caused by the use of isonicotinic acid amide (INH), which should fully meet the novelty and progress. The statutory invention patent requirements for sex, 提出 apply in accordance with the law, and ask your bureau to approve the application for this invention patent, in order to invent invention, to the sense of virtue. [Simplified illustration] Figure 1 shows the metabolic pathway of isonicotinic acid amide (INH) in the liver; Figure 2 shows the control group, INH group, BNPP-INH group, DSF-INH group and BNPP-DSF-INH ® The rats in the group were analyzed for the activity of aspartate aminotransferase (AST) and alanine transaminase (ALT). The values were calculated as mean soil SD, and * indicates that each test group was compared with the control group. Figure 3 shows the liver sections of the control group (Fig. 3A and C) and the INH group (Fig. 3B and D): Fig. 3A 'type of the control group relative to normal liver tissue (he staining, 400X); In the three B, INH group, the hepatocytes in the peripheral central vein (V) showed fragmentation and vacuolation (he staining, 400X); Fig. 3C, the liver slices of the control group were observed by electron microscopy, Nu: nuclei (9,三); Figure 3D, the liver sections of the rats in the INH group were examined by electron microscopy. Compared with the hepatocyte sections of the control group of the third group, the crude endoplasmic reticulum (rER) of the hepatocytes of the group 9 was significantly increased. Nu: Nuclei (9,000Χ); Figure 4 shows the molecular structure and daughter ion spectrum of 8-iso-PGF2a-d4 (Α) and 8-iso-PGF2a (Β); Figure 5 contains 250 pg 8-iso-PGF2a -d4 (A) internal standard Liquid, liquid chromatography-tandem mass spectrometer (LC/MS/MS) chromatography with standard solution of 100 pg 8-iso-PGF2a (B) and blank sample (c), detected by multiplex reaction monitoring mode, Mass-to-charge ratio (111/2) 357/197 and mass-to-charge ratio (m/z) 35V193 ion couples (i〇n pairs) were used to monitor 8_is〇_pGF2a_d4 37 201016216 9 (A) (as internal standard) ) and 8-iso-PGF2a (B) (as a standard); peak i: blank plasma; peak 2: blank plasma injected into the standard; Figure 6 is the control group, INH group, BNPP-INH group, DSF-INH group And the concentration of 8-iso-PGF2a in the plasma of the BNPP-DSF-INH group, the value was calculated as mean soil SD, * indicates that the test group was compared with the control group P <0.001;# indicates each test group and INH group After comparison, /^ <0.05; Figure 7 is the control group, INH group, BNPP-INH group, DSF-INH group and BNPP-DSF-INH ❹ group galactose single point method (GSP) value, the calculation of the value For mean ± sd, * indicates that the test group is compared with the control group, ρ < 〇 · 〇〇 1; # indicates that each test group is compared with the _ group after p < 0 001; ※ indicates that each test group is compared with the INH group &lt ; 0.005; Figure 8 shows the galactose clearance capacity (GEC) values of the control group, INH group, BNPP-INH group, DSF-INH group and BNPP-DSF-INH group. The values are calculated as mean soil SD, and * indicates the test group and control. After the group comparison /><0·001;# indicates that each test group is compared with the INH group p < 〇 005; 》 indicates that each test group is compared with the INH group Ρ < 〇 · 〇 5;

❹ 圖九為對照組、ΙΝΗ組、BNPP-INH組、DSF-INH組以及BNPP-DSF-INH 組各組半乳糖單點法(GSP)值與血漿中8-iso-PGF2a的濃度具有高度相關之 統計圖;以及❹ Figure IX shows that the galactose single point method (GSP) values in the control group, sputum group, BNPP-INH group, DSF-INH group and BNPP-DSF-INH group are highly correlated with the concentration of 8-iso-PGF2a in plasma. a chart; and

圖十為對照組、INH組、BNPP-INH組、DSF-INH組以及BNPP-DSF-INH 組各組半乳糖單點法(GSP)值與半乳糖清除能力(GEC)值具有高度相關之統 計圖。 38 201016216 ’【主要元件符號說明】 無 【參考文獻】 1. Kopanoff DE et al., Isoniazid-related hepatitis: a U.S. Public Health Service cooperative surveillance study., 1978. Am. Rev RespirDis 117:991-1001. 2. Nolan CM et al., Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. 1999. JAMA 281: 1014. 3. Steele MA et al., Toxic hepatitis with isoniazid and rifampin: A meta-analysis. 1991. Chest. φ 99:465. 4. Sarich TC, Youssefi M, Zhou T, Adams SP, Wall RA, Wright JM. Role of hydrazine in the mechanism of isoniazid hepatotoxicity in rabbits. 1996. Arch Toxicol 70: 835-840. 5. Yue J, Peng RX, Yang J, Kong R, Liu J. CYP2E1 mediated isoniazid-induced hepatotoxicity in rats. 2004. Acta Pharmacol Sin. 25: 699-704. 6. Sarich TC, Adams SP, Petricca G, Wright JM. Inhibition of isoniazid-induced hepatotoxicity in rabbits by pretreatment with an amidase inhibitor. 1999. J Pharmacol Exp Ther. 289: 695-702.Figure 10 shows the high correlation between galactose single point (GSP) and galactose clearance (GEC) values in the control, INH, BNPP-INH, DSF-INH, and BNPP-DSF-INH groups. Figure. 38 201016216 '[Main component symbol description] None [References] 1. Kopanoff DE et al., Isoniazid-related hepatitis: a US Public Health Service cooperative surveillance study., 1978. Am. Rev RespirDis 117:991-1001. Nolan CM et al., Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. 1999. JAMA 281: 1014. 3. Steele MA et al., Toxic hepatitis with isoniazid and rifampin: A meta -analysis. 1991. Chest. φ 99:465. 4. Sarich TC, Youssefi M, Zhou T, Adams SP, Wall RA, Wright JM. Role of hydrazine in the mechanism of isoniazid hepatotoxicity in rabbits. 1996. Arch Toxicol 70: 835-840. 5. Yue J, Peng RX, Yang J, Kong R, Liu J. CYP2E1 mediated isoniazid-induced hepatotoxicity in rats. 2004. Acta Pharmacol Sin. 25: 699-704. 6. Sarich TC, Adams SP, Petricca G, Wright JM. Inhibition of isoniazid-induced hepatotoxicity in rabbits by pretreatment with an amidase inhibitor. 1999. J Pharmacol Exp Ther. 289: 695-702.

7. Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. 1996. J Biol Chem 271: 12063-12067. 8. Wong FW,Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. 1998. Toxicol Appl Pharmacol. 153: 109-118. 9. Ramaiah SK, Apte U, Mehendale HM. Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. 2001. Drug Metab Dispos. 29: 1088-1095. 10. Huang YS, Chem HD, Su WJ, Wu JC, Chang SC, Chiang CH, Chang FY, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. 2003. Hepatology 37: 924-930. 11. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. 1991. Chem Res Toxicol. 4: 39 201016216 Ψ 168-179. 12. Hunter AL, Neal RA. Inhibition of hepatic mixed-function oxidase activity in vitro and in vivo by various thiono-sulfur-containing compounds. 1975. Biochem Pharmacol. 24: 2199-2205. 13· Brady JF,Xiao F,Wang MH,Li Y,Ning SM,Gapac JM,Yang CS. Effects of disuLfiram on hepatic P450IIE1, other microsomal enzymes, and hepatotoxicity in rats. 1991. Toxicol Appl Pharmacol. 108: 366-373. 14. Sodhi CP9 Rana SV, Mehta SKs Vaiphei K, Attari S5 Mehta S. Study of oxidative-stress in isoniazid-rifampicin induced hepatic injury in young rats. 1997. Drug Chem Toxicol 20: 255-269. 參 15. Morrow JD,Hill KE,Burk RF,Nammour TM,Badr KF,Roberts LJ,2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase5 free radical-catalyzed mechanism. 1990. Proc. Natl. Acad. Sci. USA 87: 9383-9387. 16. Morrow JD. The isoprostanes: their quantification as an index of oxidant stress status in vivo. 2000. Drug Metab Rev. 32: 377-385. 17. Devaraj S, Hirany SV, Burk RF, Jialal I. Divergence between LDL oxidative susceptibility and urinary F(2)-isoprostanes as measures of oxidative stress in type 2 diabetes. 2001. Clin. Chem. 47: 1974-1979. 18. Helmersson J, Basu S. F2-isoprostane excretion rate and diurnal variation in human urine. 1999. Prostaglandins Leukot. Essent. Fatty Acids 61: 203-205. 19. Morrow JD, Roberts LJ? 2nd. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. 1999. Methods Enzymol. 300: 3-12. 20. Li H,Lawson JA,Reilly M, Adiyaman M,Hwang SW,Rokach J,FitzGerald GA. Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F(2)-isoprostanes in human urine. 1999. Proc. Natl. Acad. Sci. USA 96: 13381-13386. 21. Liang Y5 Wei P3 Duke RW, Reaven PD, Harman SM? Cutler RGS Heward CB. 40 201016216 ,7. Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. 1996. J Biol Chem 271: 12063-12067. 8. Wong FW, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. 1998. Toxicol Appl Pharmacol. 153: 109-118. 9. Ramaiah SK, Apte U, Mehendale HM. Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. 2001. Drug Metab Dispos. 29: 1088-1095. 10. Huang YS, Chem HD, Su WJ, Wu JC, Chang SC, Chiang CH, Chang FY, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced 2003. Hepatology 37: 924-930. 11. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. 1991. Chem Res Toxicol. 4: 39 201016216 Ψ 168-179. 12. Hunter AL, Neal RA. Inhibition of hepatic mixed-function oxidase activity in vitro and in vivo by various thio No-sulfur-containing compounds. 1975. Biochem Pharmacol. 24: 2199-2205. 13· Brady JF, Xiao F, Wang MH, Li Y, Ning SM, Gapac JM, Yang CS. Effects of disuLfiram on hepatic P450IIE1, other microsomal Enzymes, and hepatotoxicity in rats. 1991. Toxicol Appl Pharmacol. 108: 366-373. 14. Sodhi CP9 Rana SV, Mehta SKs Vaiphei K, Attari S5 Mehta S. Study of oxidative-stress in isoniazid-rifampicin induced hepatic injury in young Rats. 1997. Drug Chem Toxicol 20: 255-269. Reference 15. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ, 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans 1990. Proc. Natl. Acad. Sci. USA 87: 9383-9387. 16. Morrow JD. The isoprostanes: their quantification as an index of oxidant stress status in vivo. 2000. Drug Metab Rev. 32: 377-385. 17. Devaraj S, Hirany SV, Burk RF, Jialal I. Divergence between LDL oxidative susceptibility and urinary F(2)-isoprostanes as mea 2001. Clin. Chem. 47: 1974-1979. 18. Helmersson J, Basu S. F2-isoprostane excretion rate and diurnal variation in human urine. 1999. Prostaglandins Leukot. Essent. Fatty Acids 61: 203-205. 19. Morrow JD, Roberts LJ? 2nd. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. 1999. Methods Enzymol. 300: 3-12. 20. Li H, Lawson JA, Reilly M, Adiyaman M, Hwang SW, Rokach J, FitzGerald GA. Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F(2)-isoprostanes in human urine. 1999. Proc. Natl. Acad Sci. USA 96: 13381-13386. 21. Liang Y5 Wei P3 Duke RW, Reaven PD, Harman SM? Cutler RGS Heward CB. 40 201016216 ,

Quantification of 8-iso-prostaglandin-F2a and 2,3-dinor-8-iso-prostaglandin-F2a in human urine using liquid chromatography-tandem mass spectrometry. 2003. Free Radic. Biol. Med 34:409-418. 22. Carlisle R, Galambos JT, Warren WD. The relationship between conventional liver tests, quantitative function tests, and histopathology in cirrhosis. 1979. Dig. Dis. Sci. 24: 358-362. 23. Hero Id C, Heinz R, Niedobitek G, Schneider T, Hahn EQ Schuppan D. Quantitative testing of liver function in relation to fibrosis in patients with chronic hepatitis B and C. 2001. Liver 21: 260-265. 24. Keiding S,Johansen S,Tonnesen K. Kinetics of ethanol inhibition of galactose elimination in perfused pig liver. 1977. Scand J. Clin. Lab Invest. 37: 487-494. 25. Keiding S, Johansen S3 Winkler K. Hepatic galactose elimination kinetics in the intact pig. 1982. Scand J. Clin. Lab Invest 42: 253-259. 26. Lindskov J. The quantitative liver function as^ measured by the galactose elimination capacity. I. Diagnostic value and relations to clinical, biochemical, and histological findings in patients with steatosis and patients with cirrhosis. 1982. Acta Med. Scand. 212: 295-302. 27. Tang HS, Hu OY. Assessment of liver function using a novel galactose single point method. 1992. Digestion 52: 222-231. 28. Hu OY, Tang HS, Chang CL. The influence of chronic lobular hepatitis on pharmacokinetics of cefoperazone—a novel galactose single-point method as a measure of residual liver function. 1994. Biopharm Drug Dispos 15: 563-576. 29. Hu OY, Hu TM,Tang HS. Determination of galactose in human blood by high-performance liquid chromatography: comparison with an enzymatic method and application to the pharmacokinetic study of galactose in patients with liver dysfunction. 1995. J. Pharm. Sci. 84:231-235. 30. Hu OY, Tang HS? Sheeng TY3 Chen TC, Curry SH. Pharmacokinetics of promazine in patients with hepatic cirrhosis—correlation with a novel galactose single point method. 1995. J. Pharm. Sci. 84: 111-114. 41 201016216 « 31. FDA Center for Drug Evaluation and Research (CDER) Pharmacokinetics in patients with impaired hepatic function: Study design, data analysis, and impact on dosing and labeling. Guidance for Industry, U.S. Department of Health and Human Service. 2003 pp5. 32. Tygstrup N. The Galactose Elimination Capacity in Control Subjects and in Patients with Cirrhosis of the Liver. 1964. Acta Med. Scand 175: 281-289. 33. Ryan DE,Ramanathan L,Iida S,Thomas PE,Haniu M,Shively JE,Lieber CS,et al. Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. 1985. J. Biol. Chem. 260: 6385-6393. 34. Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 〇 (P-450IIE1). 1989. Biochem. Pharmacol. 38: 1313-1319. 35. Sodhi CP, Rana SV5 Mehta SK5 Vaiphei K, Attri S3 Thakur S5 Mehta S, Study of oxidative stress in isoniazid-induced hepatic injury in young rats with and without protein-energy malnutrition. 1996. J Biochem Toxicol. 11: 139-146. 4222. Quantification of 8-iso-prostaglandin-F2a and 2,3-dinor-8-iso-prostaglandin-F2a in human urine using liquid chromatography-tandem mass spectrometry. 2003. Free Radic. Biol. Med 34:409-418. Carlisle R, Galambos JT, Warren WD. The relationship between conventional liver tests, quantitative function tests, and histopathology in cirrhosis. 1979. Dig. Dis. Sci. 24: 358-362. 23. Hero Id C, Heinz R, Niedobitek G , Schneider T, Hahn EQ Schuppan D. Quantitative testing of liver function in relation to fibrosis in patients with chronic hepatitis B and C. 2001. Liver 21: 260-265. 24. Keiding S, Johansen S, Tonnesen K. Kinetics of ethanol Inhibition of galactose elimination in perfused pig liver. 1977. Scand J. Clin. Lab Invest. 37: 487-494. 25. Keiding S, Johansen S3 Winkler K. Hepatic galactose elimination kinetics in the intact pig. 1982. Scand J. Clin Lab Invest 42: 253-259. 26. Lindskov J. The quantitative liver function as^ measured by the galactose elimination capacity. I. Diagnostic Value and relations to clinical, biochemical, and histological findings in patients with steatosis and patients with cirrhosis. 1982. Acta Med. Scand. 212: 295-302. 27. Tang HS, Hu OY. Assessment of liver function using a novel galactose single 1992. Digestion 52: 222-231. 28. Hu OY, Tang HS, Chang CL. The influence of chronic lobular hepatitis on pharmacokinetics of cefoperazone—a novel galactose single-point method as a measure of residual liver function. 1994 Phy 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Liver dysfunction. 1995. J. Pharm. Sci. 84:231-235. 30. Hu OY, Tang HS? Sheeng TY3 Chen TC, Curry SH. Pharmacokinetics of promazine in patients with hepatic cirrhosis—correlation with a novel galactose single point method 1995. J. Pharm. Sci. 84: 111-114. 41 201016216 « 31. FDA Center for Drug Evaluation and Research (CDER) Pharmacokinetics in patients with impaired hepatic function: Study design, data analysis, and impact on dosing and labeling. Guidance for Industry, US Department of Health and Human Service. 2003 pp5 32. Tygstrup N. The Galactose Elimination Capacity in Control Subjects and in Patients with Cirrhosis of the Liver. 1964. Acta Med. Scand 175: 281-289. 33. Ryan DE, Ramanathan L, Iida S, Thomas PE, Haniu M , Shively JE, Lieber CS, et al. Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. 1985. J. Biol. Chem. 260: 6385-6393. 34. Ekstrom G, Ingelman-Sundberg M Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 〇(P-450IIE1). 1989. Biochem. Pharmacol. 38: 1313-1319. 35. Sodhi CP, Rana SV5 Mehta SK5 Vaiphei K, Attri S3 Thakur S5 Mehta S, Study of oxidative stress in isoniazid-induced hepatic Injury in young rats with and without protein-energy malnutrition. 1996. J Biochem Toxicol. 11: 139-146. 42

Claims (1)

201016216 '十、申請專利範圍: 1. 一種含異菸鹼醯胺(Isoniazid,INH)之低副作用新複方(2),包括一藥學有 效量之異菸鹼醯胺(isoniazid, INH),合併使用至少一種藥學有效量之細 胞色素P450 2E1 (CYP2E1)抑制劑。 2.如申請專利範圍第1項所述之含異於驗酿胺(Isoniazid,INH)之低副作用 新複方(2),其中該細胞色素P450 2E1 (CYP2E1)抑制劑係選自於下列化 合物所組成群組:反式肉桂链(Trans-Cinnamaldehyde)、大豆甘元 ❶ (Daidzein)、異牡荊素(Isovitexin)、召-香葉烯(β-Myrcene)、槲皮素 (Quercetin)、(+)-檸檬烯((+)-Limonene)、揚梅素(Myricetin)、槲皮 (Quercitrin)、木犀草素-7-葡萄糖苷(Luteolin-7-Ghicoside)、桑葉素 (Morin)、新橙皮苷(Neohesperidin)、橙皮苷(Hesperidin)、 ((-)-Epigallocatechin)、木犀草素(Luteolin)、金絲桃苷(Hyperoside)、十四 烧酸乙醋(Ethyl Myristate) ' 禋柳素(Tamarixetin)、黃答素(Baicalein)、芸 香素(Rutm)、黃芩(Baicalin)、芹菜素(Apigenin)、⑴-Epicatechin ' Φ (_)_Epicatechin_3_gaUate、水飛,萄賓(Silybin)、牡荊素(Vitexin)、金雀異黃 酮(Gemstem)、異鼠李素(Isorhamnetin)、香葉木素(Di〇smin)、葛根素 (Puerarin)、或傘形花内酯(Umbemfer〇ne)。 3·如申睛專利範圍第1項所述之含異菸鹼醯胺(Is〇niazid,腿)之低副作用 新複方(2) ’其中可加入一藥學上可接受之賦形劑至該複方。 4.如申清專利範圍帛3項所述之含異柊驗醯卿—,酬批低副作用 斤複方()/、中^亥賦形劑可為稀釋劑、填充劑、結合劑、崩解劑、潤滑 43 201016216 *劑等。 5. —種細胞色素P450 2E1 (CYP2E1)抑制劑,其中該細胞色素Ρ450 2Ει (CYP2E1)抑制劑係選自於下列化合物所組成群組:反式肉桂酿 (Trans-Cinnamaldehyde)、大丑甘元(Daidzein)、異牡莉素(isovitexin)、 香葉烯(β-Myrcene)、槲皮素(Quercetin)、(+)-檸檬稀((+)_Limonene)、揚 梅素(Myricetin)、槲皮(Quercitrin)、木犀草素_7_葡萄糖苷 (Luteolin-7_Glucoside)、桑葉素(Morin)、新检皮苦(Neohesperidin)、撥皮 苷(Hesperidin)、(㈠-Epigallocatechin)、木犀草素(Luteolin)、金絲桃苷 (Hyperoside)、十四烧酸乙醋(Ethyl Myristate)、種柳素(Tamarixetin)、黃 芩素(Baicalein)、芸香素(Rutin)、黃芩(Baicalin)、芹菜素(Apigenin) ' (+)-Epicatechin、(-)-Epicatechin-3-gallate、水飛薊賓(Silybin)、牡荊素 (Vitexin)、金雀異黃酮(Genistein)、異鼠李素(Isorhamnetin) '香葉木素 (Diosmin)、葛根素(Puerarin)、或傘形花内酯(Umbelliferone)。 44201016216 'X. Patent application scope: 1. A new compound (2) with low side effects of isoniazid (INH), including a pharmaceutically effective amount of isoniazid (INH), combined use At least one pharmaceutically effective amount of a cytochrome P450 2E1 (CYP2E1) inhibitor. 2. A new compound (2) having a low side effect different from the isoniazid (INH) according to the scope of claim 1, wherein the cytochrome P450 2E1 (CYP2E1) inhibitor is selected from the following compounds; Groups: Trans-Cinnamaldehyde, Daidzein, Isovitexin, β-Myrcene, Quercetin, (+ )-Limonene ((+)-Limonene), Myricetin, Quercitrin, Luteolin-7-Ghicoside, Morin, New Orange Peel Neohesperidin, Hesperidin, (---Epigallocatechin), Luteolin, Hyperoside, Ethyl Myristate 'Salvain' Tamarixetin), Baicalein, Rutm, Baicalin, Apigenin, (1)-Epicatechin ' Φ (_)_Epicatechin_3_gaUate, Shuifei, Silybin, Vitexin , Gemstem, Isorhamnetin, Di〇smin, Puerarin, or Umbelliferous Lactone (Umbemfer〇ne). 3. A new side effect of a low side effect of isoniazidamine (Is〇niazid, leg) as described in item 1 of the scope of the patent application. (2) A pharmaceutically acceptable excipient may be added to the compound. . 4. If the application of the patent scope 帛3 is different, the compensation is low, the side-effect compound (), and the medium-based excipient can be a diluent, a filler, a binder, disintegration. Agent, lubrication 43 201016216 *agents, etc. 5. A cytochrome P450 2E1 (CYP2E1) inhibitor, wherein the cytochrome Ρ450 2Ει (CYP2E1) inhibitor is selected from the group consisting of trans-Cinnamaldehyde, ugly gamma (Daidzein), isovitexin, β-Myrcene, Quercetin, (+)-lean ((+)_Limonene), mericetin, suede (Quercitrin), luteolin-7_Glucoside, Morin, Neohesperidin, Hesperidin, (I)-Epigallocatechin, Luteolin ( Luteolin), Hypercoside, Ethyl Myristate, Tamarixetin, Baicalein, Rutin, Baicalin, Apigenin ) ' (+)-Epicatechin, (-)-Epicatechin-3-gallate, Silybin, Vitexin, Genistein, Isorhamnetin Diosmin, Puerarin, or Umbelliferone. 44
TW97141522A 2008-10-29 2008-10-29 New Isoniazid-containing compound with low side effects TW201016216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97141522A TW201016216A (en) 2008-10-29 2008-10-29 New Isoniazid-containing compound with low side effects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97141522A TW201016216A (en) 2008-10-29 2008-10-29 New Isoniazid-containing compound with low side effects

Publications (2)

Publication Number Publication Date
TW201016216A true TW201016216A (en) 2010-05-01
TWI372052B TWI372052B (en) 2012-09-11

Family

ID=44830356

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97141522A TW201016216A (en) 2008-10-29 2008-10-29 New Isoniazid-containing compound with low side effects

Country Status (1)

Country Link
TW (1) TW201016216A (en)

Also Published As

Publication number Publication date
TWI372052B (en) 2012-09-11

Similar Documents

Publication Publication Date Title
US8969312B2 (en) Low side effect pharmaceutical composition containing antituberculosis drugs
Stepp et al. Native LDL and minimally oxidized LDL differentially regulate superoxide anion in vascular endothelium in situ
Koike et al. Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-α stimulation, and effects of a phosphodiesterase inhibitor
Colturato et al. Metabolic effects of silibinin in the rat liver
Stangier et al. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, with coadministration of digoxin
Hargreaves et al. The effect of HMG-CoA reductase inhibitors on coenzyme Q 10: possible biochemical/clinical implications
Sastre et al. Post mortem redistribution of drugs: current state of knowledge
US8304394B2 (en) Low side effect pharmaceutical composition containing isoniazid
JP2009500357A (en) Methods and related compositions for treating or preventing obesity, insulin resistance disorders and mitochondrial related disorders
Pulkoski-Gross et al. Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis
KR102017550B1 (en) New acetaminophen compound composition without side effect to liver
Jhanji et al. Towards resolving the enigma of the dichotomy of resveratrol: Cis-and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation
Bruderer et al. Investigation of potential pharmacodynamic and pharmacokinetic interactions between selexipag and warfarin in healthy male subjects
Schwer et al. Heme oxygenase-1 inhibits the proliferation of pancreatic stellate cells by repression of the extracellular signal-regulated kinase1/2 pathway
Tran et al. A prenylated flavonoid, 10-oxomornigrol F, exhibits anti-inflammatory effects by activating the Nrf2/heme oxygenase-1 pathway in macrophage cells
JP5901770B2 (en) A pharmaceutical composition for preventing or treating diabetes or fatty liver, comprising a CYP4A inhibitor as an active ingredient.
CN114728876A (en) Curcumin compositions and their therapeutic potential for treatment of pulmonary fibrosis
TW201016216A (en) New Isoniazid-containing compound with low side effects
TWI360418B (en)
Zhou et al. Small molecule IVQ, as a prodrug of gluconeogenesis inhibitor QVO, efficiently ameliorates glucose homeostasis in type 2 diabetic mice
Fredsted et al. Effects of β2-agonists on force during and following anoxia in rat extensor digitorum longus muscle
US20140045889A1 (en) Combination Drug Containing Probucol and a Tetrazolyalkoxy-Dihydrocarbostyril Derivative With Superoxide Supressant Effects
KR101467996B1 (en) The qhinazoline derivatives which are inhibitor of ADP-ribosyl cyclases
Lim et al. Effects of cilostazol on the pharmacokinetics of carvedilol after oral and intravenous administration in rats
TWI552748B (en) The use of a compound for the removal of hepatotoxicity against Acetaminophen (APAP)