TW201015870A - Successive approximation ADC with binary error tolerance mechanism - Google Patents

Successive approximation ADC with binary error tolerance mechanism Download PDF

Info

Publication number
TW201015870A
TW201015870A TW97138306A TW97138306A TW201015870A TW 201015870 A TW201015870 A TW 201015870A TW 97138306 A TW97138306 A TW 97138306A TW 97138306 A TW97138306 A TW 97138306A TW 201015870 A TW201015870 A TW 201015870A
Authority
TW
Taiwan
Prior art keywords
dac
gradual approximation
adc
digital converter
binary
Prior art date
Application number
TW97138306A
Other languages
Chinese (zh)
Other versions
TWI328356B (en
Inventor
Soon-Jyh Chang
Chun-Cheng Liu
Chih-Haur Huang
Original Assignee
Himax Media Solutions Inc
Ncku Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Media Solutions Inc, Ncku Res & Dev Foundation filed Critical Himax Media Solutions Inc
Priority to TW97138306A priority Critical patent/TWI328356B/en
Publication of TW201015870A publication Critical patent/TW201015870A/en
Application granted granted Critical
Publication of TWI328356B publication Critical patent/TWI328356B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

A successive approximation ADC is disclosed. A comparator receives and compares a sampled input signal and an output of a DAC. A non-binary successive approximation register (SAR) control logic that controls sampling of the input signal and controls a sequence of comparisons based on comparison result of the comparator. The SAR control logic controls each comparison when signal or charge in the DAC has not been completely settled. A binary-error-tolerant corrector is then used to compensate the sampling error.

Description

201015870 九、發明說明: 【發明所屬之技術領域】 本發明係有關類比至數位轉換器(ADC),特別是一種201015870 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to analog to digital converters (ADCs), particularly

I 逐漸逼近式(successive approximation register, SAR) 類比至數位轉換器,其具有二進制錯誤容忍機制。 【先前技術】 ❹ 類比至數位轉換器(ADC)有多種架構,例如快閃式 (flash)、管路式(pipelined)、逐漸逼近式等,為經常 使用的架構。這些架構各有各的優點,通常會依據不同的 應用需求來選定。其中,逐漸逼近式ADC較其他架構消耗 較低功率、較小面積及較低成本。然而,此架構需要較多 的時脈週期才能產出輸出,因此較不利於高速操作。 逐漸逼近式ADC主要分成兩種方式:二進制逼近及非 二進制逼近。二進制逼近ADC技術,如H^O-CHiao Hong' Guo-Ming Lee WA 65-fJ/Conversion-step 0.9-V 200-KS/s Rail-to-Rail 8-bit Successive Approximation ADC”,IEEE J. Solid-State Circuits, vol. 42,October 2007,pp. 2161-2168 所揭露者,其 201015870 使用數位至類比轉換器(DAC)以逐漸逼近取樣訊號,並 根據比較器的比較結果來決定下一狀態究竟是往上或往下 加一電壓,而每次改變的電壓量係以二的冪次方逐漸下 降。以此種二進制搜尋方式持續重複幾次操作以獲得相對 應的數位碼輸出。二進制逼近ADC技術也揭露於I is a progressive approximation register (SAR) analog to digital converter with a binary error tolerance mechanism. [Prior Art] ❹ Analog-to-digital converters (ADCs) have a variety of architectures, such as flash, pipelined, and gradual approximation, which are frequently used architectures. Each of these architectures has its own advantages and is often chosen for different application needs. Among them, the progressive approximation ADC consumes lower power, smaller area and lower cost than other architectures. However, this architecture requires more clock cycles to produce output and is therefore less advantageous for high speed operation. Gradual approximation ADCs are mainly divided into two ways: binary approximation and non-binary approximation. Binary approximation ADC technology, such as H^O-CHiao Hong' Guo-Ming Lee WA 65-fJ/Conversion-step 0.9-V 200-KS/s Rail-to-Rail 8-bit Successive Approximation ADC", IEEE J. Solid -State Circuits, vol. 42, Oct. 2007, pp. 2161-2168. The 201015870 uses a digital-to-analog converter (DAC) to gradually approximate the sampled signal and determine the next state based on the comparison of the comparators. A voltage is applied upwards or downwards, and the amount of voltage changed each time is gradually decreased by a power of two. In this binary search mode, the operation is repeated several times to obtain a corresponding digital code output. Binary approximation ADC Technology is also exposed

Craninckx、G. van der Plas “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-sharing SAR φ ADC in 90nm Digital CMOS”,ISSCC Dig. Tech. Papers ’ February 2007,pp. 246-247,其應用相同原 理,但係根據比較器兩端的電荷量差量來決定電荷量的增 加或減少,而每次改變的電荷量也是以二的冪次方逐漸下 降。以此種二進制搜尋方式持續重複幾次操作直到獲得相 對應的數位碼輸出。上述二進制逼近之兩種方法的操作速 度會受到限制,主要原因在於必須等到比較器兩端電壓或 參電荷穩定到小於1/2 LSB (亦即,1/2心1其中N為ADC 的解析度)’比較器才能進行比較動作,否則將造成取樣誤 差0 非二進制逼近ADC技術,如F. Kuttner “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-m CMOS”,IEEE Int. 201015870Craninckx, G. van der Plas “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-sharing SAR φ ADC in 90nm Digital CMOS”, ISSCC Dig. Tech. Papers ' February 2007, Pp. 246-247, which applies the same principle, but determines the increase or decrease of the amount of charge according to the amount of charge difference between the two ends of the comparator, and the amount of charge changed each time gradually decreases by a power of two. The operation is repeated several times in this binary search mode until the corresponding digital code output is obtained. The above two methods of binary approximation will be limited in speed. The main reason is that the voltage across the comparator or the parametric charge must be stable to less than 1/2 LSB (ie, 1/2 centimeter 1 where N is the resolution of the ADC). ) 'Comparator can perform comparison action, otherwise it will cause sampling error 0 non-binary approximation ADC technology, such as F. Kuttner "A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-m CMOS", IEEE Int. 201015870

Solid-State Circuits Conf. Dig. Tech. Papers,2002, pp· 176-177所揭露者。和二進制逼近法不同的是,非二 進制逼近法並非以二的冪次來作逼近,而是以185的幂次 方作逐漸遞減。此方法具有約12.7%的誤差容忍特性,因 此可取樣尚未穩定訊號,可縮短每一時脈週期時間;但是, .需增加額外且複雜的數位校正機制。不論是以邏輯電路或 唯讀s己憶體來實施,都需耗費功率及電路面積。 ❹ 鑑於傳統逼近ADC架構之缺點,因此亟需提出一種新 穎的ADC架構,用以維持傳統ADC架構之優點而避免其 缺點。 【發明内容】 鑑於上述,本發明的目的之一在於提出一種新賴的逐漸逼近 ®式ADC,其使用錯誤容忍機制及高速且具二進制錯誤校正機制之非 二進制逼近方法。 根據本發明實施例所揭露之逐漸逼近式類比至數位轉換器 (ADC)’ 一内部數位至類比轉換器(DAC)包含電容陣列,其電容 值具二進制權重(weight),且至少一補償電容配置於二進制權重 之電容當中。比較器接收並比較取樣輸入訊號及DAC之輪出。非 8 201015870 二進制逐漸逼近式控制電路㈣輸人訊號之取樣,並根據 比較器之崎結果⑽制―㈣之比較之訊號或 電荷尚未完全穩定(例如穩定^少二位…_,逐 近式控制電路特佩較之進行。二進魏誤容忍、校正器 補償比較器所造成的取樣誤差。 【實施方式】 〇 第一圖顯不八位元逐漸逼近式類比至數為轉換器 (SARADC)之示意圖。首先,比較器1〇的一輸入端(例 如非反向輸入端)接收取樣輸入訊號I而連接至另—輸 入端(例如反向輪入端)的内部數位至類比轉換器(Dac) 被重置(reset)為共模電壓Vcj^如圖所示,dac係由電 各陣列(C7 i CG)所構成,這些電容具有二進制比重 m (weight)。接著,比較器1〇比較輸入訊號vin和共模電 愿vcm以決定要在DAC加上或減去v/4電壓(其中V為 輪入訊號的振幅)。當DAC達到穩定之後,則進行下—個 比較及決定。持續此操作直到輪入訊號可近似為: VCm±V/4±V/8±V/16±V/32±V/64±V/128±V/256 (其中V為輸入訊號的振幅) 201015870 第二圖顯示本發明實施例之具有二進制錯誤容忍機制 的單端逐漸逼近式ADC。本實施例雖以八位元ADC為例, 然而本發明可普遍地適用於η位元ADC。在本實施例中, 逐漸逼近式ADC包含一内部DAC ’其係由電容陣列(C7 至Clc)所構成,這些電容具有非二進制比重: C7=2C6=4C5=4C5c=8C4= 16C3= 16C3c=32C2=64C 1 =64Clc 第二圖之逐漸逼近式ADC還包含一比較器20,其接 收並比較經取樣之輸入訊號Vin及DAC輸出。逐漸逼近控 制邏輯電路(SAR) 22控制輸入訊號Vin的取樣,並根據 比較器20的比較結果來控制一連串的比較,最後輸出相 對應的數位輸出,用以逼近輸入訊號Vin。 於操作時,首先’比較器20的一輸入端(例如非反 向輸入端)接收取樣輸入訊號Vin;而連接至另一輸入端(例 如反向輸入端)的内部數位至類比轉換器(DAC)被重置 (reset)為共模電壓Vcm。如圖所不,DAC係藉由連接 DAC内的開關而使其重置至共模電壓Vcm。接著’比較器 20比較輸入訊號Vin和共模電壓Vcm以決定要在DAC加 上或減去V/4電壓(其中V為輸入訊號的振幅)。在一實 施例中,當DAC電路穩定到一位元精確度(但尚未完全穩 201015870 定)時,逐漸逼近控制邏輯電路(SAR) 22即進入下一位 元的比較及決定。由於DAC訊號並未完全穩定,因而會造 成V/4 (V/4*l/2+V/8)的誤差量。由於剩餘的電壓改 變量約為 V/8 (V/16土V/32土V/64土V/128土V/256),因 此必須補上±V/8以補償該誤差量。重複此操作直到最低有 .效位元(LSB)。輸入訊號可近似為:Solid-State Circuits Conf. Dig. Tech. Papers, 2002, pp. 176-177. Unlike the binary approximation method, the non-binary approximation method does not approximate the power of two, but gradually decreases with a power of 185. This method has an error tolerance of approximately 12.7%, so samples can be sampled without a stable signal, which can shorten each clock cycle time; however, additional and complex digital correction mechanisms need to be added. Whether it is implemented as a logic circuit or a read-only memory, it takes power and circuit area. ❹ Given the shortcomings of traditional approaches to ADC architecture, a new ADC architecture is needed to maintain the advantages of traditional ADC architectures and avoid their shortcomings. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a new gradual approximation ® ADC that uses an error tolerance mechanism and a non-binary approximation method with high speed and binary error correction mechanism. A progressive approximation analog to digital converter (ADC) according to an embodiment of the invention 'an internal digital to analog converter (DAC) comprising a capacitor array having a capacitance value having a binary weight and at least one compensation capacitor configuration Among the capacitances of binary weights. The comparator receives and compares the sample input signal and the DAC round trip. Non-8 201015870 binary gradual approximation control circuit (4) sampling of the input signal, and according to the comparator's results (10) - (four) comparison of the signal or charge is not yet fully stable (such as stable ^ less two ... _, near-control The circuit is better than the second one. The second error is the tolerance of the error, and the corrector compensates the sampling error caused by the comparator. [Embodiment] The first figure shows that the octade is gradually approximating analog to digital converter (SARADC). First, an input (eg, non-inverting input) of the comparator 1〇 receives the sampled input signal I and is connected to the internal digit of the other input (eg, the reverse wheel) to the analog converter (Dac). Reset to the common mode voltage Vcj^ As shown, the dac is composed of electrical arrays (C7 i CG), which have a binary specific gravity m. Then, the comparator 1 compares the input signals. Vin and common mode power vcm to decide to add or subtract the v/4 voltage in the DAC (where V is the amplitude of the round signal). When the DAC reaches stability, the next comparison and decision are made. Until the round Can be approximated as: VCm ± V / 4 ± V / 8 ± V / 16 ± V / 32 ± V / 64 ± V / 128 ± V / 256 (where V is the amplitude of the input signal) 201015870 The second figure shows the implementation of the present invention For example, a single-ended progressive approximation ADC with a binary error tolerance mechanism. Although the embodiment uses an octet ADC as an example, the present invention is generally applicable to an n-bit ADC. In this embodiment, a progressive approximation ADC is used. Contains an internal DAC' consisting of a capacitor array (C7 to Clc) with non-binary specific gravity: C7=2C6=4C5=4C5c=8C4=16C3=16C3c=32C2=64C 1 =64Clc The approximating ADC further includes a comparator 20 that receives and compares the sampled input signal Vin and the DAC output. The gradual approximation control logic (SAR) 22 controls the sampling of the input signal Vin and controls according to the comparison result of the comparator 20. A series of comparisons, finally outputting the corresponding digital output for approximating the input signal Vin. In operation, first, an input of the comparator 20 (eg, a non-inverting input) receives the sample input signal Vin; and is connected to another The inside of an input (such as the inverting input) The digital to analog converter (DAC) is reset to the common mode voltage Vcm. As shown, the DAC is reset to the common mode voltage Vcm by connecting a switch in the DAC. Then the comparator 20 Comparing the input signal Vin with the common mode voltage Vcm to determine whether to add or subtract the V/4 voltage (where V is the amplitude of the input signal) in the DAC. In one embodiment, when the DAC circuit is stable to one bit accuracy ( However, when it is not fully stabilized, the control logic circuit (SAR) 22 is gradually approaching the comparison and decision of the next bit. Since the DAC signal is not completely stable, it will cause an error of V/4 (V/4*l/2+V/8). Since the remaining voltage change is approximately V/8 (V/16 V/32 V/64 V/128 V/256), ±V/8 must be added to compensate for this error. Repeat this operation until the lowest effective bit (LSB). The input signal can be approximated as:

Vcm±v/ 4土V/ 8土V/ 8 土V/16土V/16土V/ 3 2士V/ 3 2士V/ 64士 ❹ V/64土V/128土V/128土V/256土V/256 在另一實施例中(第二圖),當DAC電路穩定到二位 元精確度(而非前述的一位元)時,逐漸逼近控制邏輯電 路(SAR) 22即進入下一位元的比較及決定。由於DAC 訊號並未完全穩定,因而會造成3V/16(V/4*l/22+V/8) 的誤差量。由於剩餘的電壓改變量約為V/8(V/16±V/32 φ 土V/64土V/128土V/256),因此必須補上土V/16以補償該 誤差量。重複此操作直到最低有效位元(LSB)。輸入訊號 可近似為:Vcm±v/ 4 soil V/ 8 soil V/ 8 soil V/16 soil V/16 soil V/ 3 2 士V/ 3 2 士V/64士❹ V/64 soil V/128 soil V/128 soil V /256 soil V/256 In another embodiment (second diagram), when the DAC circuit is stable to two-bit accuracy (rather than the one-bit element described above), the control logic circuit (SAR) 22 is gradually approached. The comparison and decision of the next dollar. Since the DAC signal is not completely stable, it will cause an error of 3V/16 (V/4*l/22+V/8). Since the remaining voltage change is approximately V/8 (V/16 ± V / 32 φ soil V / 64 ± V / 128 ± V / 256), it is necessary to fill the soil V / 16 to compensate for the error. Repeat this operation until the least significant bit (LSB). The input signal can be approximated as:

Vcm士V/4土V/8土V/16士V/16土V/32士V/64土V/64土V/128 士V/256土V/256 底下將分析究竟DAC電壓穩定到幾位元的精確度之 後比較器再取樣會讓逐漸逼近式DAC可以最佳化。對一個 11 201015870 N位元ADC而言,假設DAC穩定至x位元的精確度再取 樣,且比較器從開始比較至DAC開始動作這段期間間隔為 yAt (其中△tsRCWi^),貝ij解一筆資料所需時間Ttotal 可近似為:Vcm Shi V / 4 soil V / 8 soil V / 16 Shi V / 16 soil V / 32 Shi V / 64 soil V / 64 soil V / 128 Shi V / 256 soil V / 256 will analyze the DAC voltage stability to a few Comparator resampling after bit accuracy will optimize the gradual approximation DAC. For an 11 201015870 N-bit ADC, the DAC is stable to x-bit precision resampling, and the interval between the comparators starting from the start of the comparison and the start of the DAC is yAt (where ΔtsRCWi^), the Bay ij solution The time required for a piece of data Ttotal can be approximated as:

Ttotal (X, y,N)^ T le +(x + y)At »(N +Ttotal (X, y,N)^ T le +(x + y)At »(N +

X « Tsample + N(x + y) At+ -2)· At + (—) . yAtX « Tsample + N(x + y) At+ -2)· At + (—) . yAt

X 對x作偏微分:X is partial to x:

^〇ία/ίώyj^l ΧΝ· At-·(yAt) = 0^〇ία/ίώyj^l ΧΝ· At-·(yAt) = 0

OX X N-2 ^ N · At yAt = 0 x N — 2 x2 => N = y( =>xm y- ΑΓ-2 ~N~ 以八位元ADC為例,假設y与5,則可得到最佳化值 X与2。比較各種X值可得知,當x=2時所需時間最短。 ® ^ = Ttotal = Tsampk + (1 + 5)Δ/ * (8 + 6) = Tsample + 84Δί λ: = 2 Ttotal = Tsample + (2 + 5) At * (8 + 3) = Tsample +11 hd ^ = Tlotal = Tsample + (3 + 5)At * (8 + 2) = Tsample + 80Δί x = 8 — 7;to,=7;_e + (8 + 5)〜*8 = ;rs_ + 104A,(對應至第一圖的 ADC) 根據上述,當X=2時,ADC為最佳化,因此使用三個 補償電容(亦即,C5c、C3c、Clc)來校正逐漸逼近式 12 201015870 ADC,如第二圖所示。一般來說,對於η位元ADC,所需 補償電容的數量可以表示為[(n-2)/x】,其中[]為高斯運算 符號,其取一數值的整數部分。在本實施例中,這些補償 電容係以下列方式來配置於非補償電容(C7、C6、C5、 C4、C3、C2、C1及C1)之間:第一個補償電容(C5c) .配置於第三個電容(C5)之後;第二個補償電容(C3c) 配置於接下來的第二個電容(C3)之後;第三個補償電容 參 (Clc)配置於再接下來第二個電容(C1)之後。上述的 最佳化方法可適用於不同解析度的ADC。再者,對於較大 解析度之ADC ’上述最佳化的效能會更好。 第三圖例示對應裘第一圖的取樣波形31及對應至第 二圖(x=2 )的取樣波形32。圖式中以括弧標示的十一個 取樣二進制數值(亦即1〇〇〇〇11111〇)代表比較器20 ❹的輸出。接著,此位元輸出藉由逐漸逼近控制邏輯電 路(SAR) 22内部的二進制錯誤谷忍校正器處理之後,產 生ADC的8位元數位輸出,以完成取樣誤差的補償。雖 然本實施例中的二進制錯誤容忍杈正器係位於逐漸逼近控 制邏輯電路(SAR) 22的内部,然而,在其他實施例中, 也可以位於逐漸逼近控制邏輯電路(SAR) 22的外部。 13 201015870 針對第一圖所示之ADC,其輸出可表示為:OX X N-2 ^ N · At yAt = 0 x N — 2 x2 => N = y( =>xm y- ΑΓ-2 ~N~ Take the octet ADC as an example, assuming y and 5, then The optimized values X and 2 are obtained. Comparing the various X values shows that the time required is the shortest when x = 2. ® ^ = Ttotal = Tsampk + (1 + 5) Δ / * (8 + 6) = Tsample + 84Δί λ: = 2 Ttotal = Tsample + (2 + 5) At * (8 + 3) = Tsample +11 hd ^ = Tlotal = Tsample + (3 + 5)At * (8 + 2) = Tsample + 80Δί x = 8 — 7;to,=7;_e + (8 + 5)~*8 = ;rs_ + 104A, (corresponding to the ADC of the first figure) According to the above, when X=2, the ADC is optimized, Therefore, three compensation capacitors (ie, C5c, C3c, Clc) are used to correct the gradual approximation of the 12 201015870 ADC, as shown in the second figure. In general, for an η-bit ADC, the amount of compensation capacitor required can be expressed. It is [(n-2)/x], where [] is a Gaussian operation symbol, which takes an integer part of a value. In this embodiment, these compensation capacitors are configured in non-compensating capacitors in the following manner (C7, C6) Between C5, C4, C3, C2, C1 and C1): the first compensation capacitor (C5c). Configured in the third After (C5); the second compensation capacitor (C3c) is placed after the next second capacitor (C3); the third compensation capacitor parameter (Clc) is placed after the second capacitor (C1). The above optimization method can be applied to ADCs with different resolutions. Furthermore, for the larger resolution ADC 'the above optimization performance is better. The third figure illustrates the sampling waveform 31 corresponding to the first picture and Corresponding to the sampling waveform 32 of the second figure (x=2), eleven sampling binary values (ie, 1〇〇〇〇11111〇) indicated by brackets in the figure represent the output of the comparator 20 。. Then, this The bit output is processed by a binary error valley forensor after gradually approximating the control logic (SAR) 22 to produce an 8-bit digital output of the ADC to compensate for the sampling error. Although binary error tolerance in this embodiment The positivity device is located inside the gradual approximation control logic (SAR) 22, however, in other embodiments, it may also be located outside the gradual approximation control logic (SAR) 22. 13 201015870 For the ADC shown in the first figure ,its The output can be expressed as:

Out=128 · B1+64 · B2+32 · B3+16 · B4+8 · B5+4 · B6+2 · B7+1 · B8 或Out=128 · B1+64 · B2+32 · B3+16 · B4+8 · B5+4 · B6+2 · B7+1 · B8 or

Out=(0+255) / 2±64±32± 16±8±4±2± 1 ±〇. 5 其中,符號”+”或係決定於Bn之值為”1”或,,〇,,,n=l, 2,…,8。 針對第二圖所示之ADC,其輸出可表示為:Out=(0+255) / 2±64±32± 16±8±4±2± 1 ±〇. 5 where the symbol “+” is determined by the value of Bn being “1” or, 〇,, , n=l, 2,..., 8. For the ADC shown in Figure 2, the output can be expressed as:

Out=(0+255) /2±64±32± 16± 16±8±4±4±2± 1± 1±〇. 5 或Out=(0+255) /2±64±32± 16± 16±8±4±4±2± 1± 1±〇. 5 or

Out=-21 + 128· B1+64· B2+32· B3+32· B4+16· B5+8 · ΒΘ+8 · B7+4 · B8+2 · ΒΘ+2 · B10+1 · B11 其可以表示為第四圖所示的算式。針對第三圖之例子,其 Φ 輸出(10000111110)的處理可以如第五圖所示。 第六圖顯示本發明實施例之二進制錯誤容忍校正器, 用以將比較器20的11位元輸出(B1 B2B3…B11)轉 換為ADC的8位元輸出。在本實施例中,使用一些半加 法器(HA)將二輸入(例如,’ 1 ”與B11 )相加,並使用一 些全加法器(FA)將三輸入(例如1、B9與B10)相加。 每一半加法器或全加法器產生一進位位元C饋至相鄰的前 201015870 級半/全加法器,並產生一和位元s饋至並行的半/全加法 器。 ' 根據上述之本發明實施例,非二進制逐漸逼近式adc 的操作速度將大於傳統的逐漸逼近式ADC,其原因在於信 號未達到完全穩定之前即進行取樣,且使用簡易的二進制 錯誤容忍校正機制以得到ADC之輸出。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離發明所揭示之精 神下所完成之等效改變或修飾,均應包含在下述之申請專 【圖式簡單說明】Out=-21 + 128· B1+64· B2+32· B3+32· B4+16· B5+8 · ΒΘ+8 · B7+4 · B8+2 · ΒΘ+2 · B10+1 · B11 Expressed as the formula shown in the fourth figure. For the example of the third figure, the processing of the Φ output (10000111110) can be as shown in the fifth figure. The sixth figure shows a binary error tolerance corrector of an embodiment of the present invention for converting the 11-bit output (B1 B2B3...B11) of comparator 20 to the 8-bit output of the ADC. In this embodiment, two inputs (eg, '1' and B11) are added using some half adders (HA), and three inputs (eg, 1, B9 and B10) are used using some full adders (FA). Each half adder or full adder produces a carry bit C that is fed to the adjacent front 201015870 stage half/full adder and produces a sum bit s fed to the parallel half/full adder. 'According to the above In the embodiment of the present invention, the operation speed of the non-binary gradual approximation adc will be larger than that of the conventional gradual approximation ADC, because the sampling is performed before the signal is completely stabilized, and a simple binary error tolerance correction mechanism is used to obtain the ADC. The above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the claims of the present invention; any equivalent changes or modifications made without departing from the spirit of the invention should be included. The application for the application [simplified description of the schema]

第-圖顯不八位元逐漸逼近式類比至數為轉換 ADC)之示意圖。 、The first-graph shows a schematic diagram of the octupary approximation analogy to the number of conversion ADCs. ,

器(SAR 的單 實施例之具有二進制錯誤容忍機制 第三圖例示對應至第 樣波形。 一圖的取樣波形及對應至第 一'^的取 第四圖顯示二 壤·制錯謨容忍校正的運算。 15 201015870 第五圖例示第三圖之輸出的二進制錯誤容忍校正運算 第六圖顯示本發明實施例之二進制錯誤容忍校正器。 10 【主要元件符號說明】 比較器 20 比較器 22 逐漸逼近控制邏輯電路 31 ❹32 第一圖的取樣波形例 第二圖的取樣波形例 16The third figure of the single embodiment of the SAR has a binary error tolerance mechanism corresponding to the first waveform. The sampling waveform of one picture and the fourth picture corresponding to the first '^ show the two-dimensional error correction tolerance correction 15 201015870 The fifth figure illustrates the binary error tolerance correction operation of the output of the third figure. The sixth figure shows the binary error tolerance corrector of the embodiment of the present invention. 10 [Description of main component symbols] Comparator 20 Comparator 22 gradually approximating control Logic circuit 31 ❹32 Sample waveform of the first figure Example of sample waveform of the second figure Example 16

Claims (1)

201015870 十、申請專利範圍: 1.一種逐漸逼近式類比至數位轉換器(ADC)’包含·· 一數位至類比轉換器(DAC); 一比較器,其一輸入端接收一取樣輸入訊號,其另一輸 入端接收該DAC之輪出; 一非二進制逐漸逼近式控制電路,其控制該輪入訊號之 ❹取樣,並根據該比較器之比較結果以控制一連串之比斡 其中該逐漸逼近式控制電路於該DAC之訊號或電荷=未 完全穩定之前即控制比較之進行;及 一校正器,用以補償該比較器所造成的誤差。 ❹ 2. 如申請專利範圍第1項所述之逐漸逼近式類比至數位轉 換器,當該DAC之訊號或電荷穩定到至少一位元之精確度 時,上述之逐漸逼近式控制電路則控制比較之進行。 換器,當該DAC之訊號成電何穩定到x位元 3. 如申請專利範圍第2項所述之逐漸逼近式類比至數位轉 之精確度時, 上 述之逐漸逼近式控制電路則控制比較之進行 4.如申請專利範圍第3項辦逑之遂漸逼近式類比至數伋轉 換器,其中上述之DAC包含電容陣列,其電容值具二進制 17 201015870 權重(weight),且至少一補償電容配置於該二進制權重之 電容當中。 5. 如申請專利範圍第4項所述之逐漸逼近式類比至數位轉 換器,對於一 η位元ADC,上述之DAC所使用的補償電 容數量為[(η-2)/χ】,其中丨】為高斯運算符號,其取一數值 的整數部分。 參 6. 如申請專利範圍第5項所述之逐漸逼近式類比至數位轉 換器,其中上述之校正器包含複數個加法器,分別用以將 比較器之輸出位元進行相加運算。 I I 7. 如申請專利範圍第1項所述之逐漸逼近式類比至數位轉 換器,其中上述之ADC具η位元解析度。 ❹ 8. 如申請專利範圍第7項所述之逐漸逼近式類比至數位轉 換器,當該DAC之訊號或電荷穩定到X位元之精確度時, 上述之逐漸逼近式控制電路則控制比較之進行,且對於一 η位元ADC,上述之DAC所使用的補償電容數量為 [(η-2)/χ】,其中[I為高斯運算符號,其取一數值的整數部 分。 18 201015870 9·如申請專利範圍第8項所述之逐漸逼近式類比至數位轉 換器’其中上述之ADC具有8位元解析度,且該DAC包 I 含電容陣列,其電容值具有下列之非二進制權重: C7=2C6=4C5=4C5c=8C4=16C3=16C3c=32C2=64C1 =64Clc。 10·如申請專利範圍第9項所述之逐漸逼近式類比至數位 ❿轉換器’其中上述逐漸逼近式控制電路之輸出係根據下列 校正運算進行校正: Out=-21 + 128. Bl+64. B2+32. B3+32. B4+16. B5+8 · B6+8 · B7+4 . B8+2 · B9+2 · B10+1 · B11。 11. 如申請專利範圍第項所述之逐漸逼近式類比至數位 轉換器’其中上述之校正器包含複數個加法器,分別用以 Ο將該校正運算中具相同權重之數值予以相加。 12. 如申請專利範圍第u項所述之逐漸逼近式類比至數位 轉換器’其中上述之校正運算係根據以下算式將(Bi B2 B3 …Bll)轉換為(A1 A2 A3 …A8): 201015870 B1 B2 B3 B5 B6 B8 B9 Bll + B4 B7 BIO A1 A2 A3 A4 A5 A6 A7 A8。201015870 X. Patent application scope: 1. A gradual approximation analog to digital converter (ADC) 'contains · a digital to analog converter (DAC); a comparator whose input receives a sample input signal, The other input receives the rounding of the DAC; a non-binary gradual approximation control circuit controls the sampling of the round-in signal, and controls a series of ratios according to the comparison result of the comparator, wherein the gradual approximation control The circuit controls the comparison before the signal or charge of the DAC = not fully stabilized; and a corrector to compensate for the error caused by the comparator. ❹ 2. As in the gradual approximation analog to digital converter described in claim 1, when the signal or charge of the DAC is stabilized to at least one bit accuracy, the above-mentioned gradual approximation control circuit controls comparison Go on. The converter, when the signal of the DAC is stabilized to x bit 3. As described in the scope of the approximation analog to digital conversion described in the second paragraph of the patent application, the above-mentioned gradual approximation control circuit controls the comparison. 4. The method of claim 3, wherein the DAC comprises a capacitor array having a capacitance value of a binary 17 201015870 weight and at least one compensation capacitor, as in the third application of the patent application scope. Configured in the capacitance of the binary weight. 5. For a gradual approximation analog to digital converter as described in claim 4, for an n-bit ADC, the number of compensation capacitors used by the DAC is [(η-2)/χ], where 丨】 is a Gaussian operation symbol, which takes an integer part of a value. 6. The gradual approximation analog to digital converter of claim 5, wherein the calibrator comprises a plurality of adders for respectively adding the output bits of the comparator. I I 7. The gradual approximation analog to digital converter of claim 1, wherein the ADC has an η bit resolution. ❹ 8. As in the gradual approximation analog-to-digital converter described in claim 7, when the signal or charge of the DAC is stabilized to the accuracy of the X-bit, the above-mentioned gradual approximation control circuit controls the comparison. For the η-bit ADC, the number of compensation capacitors used by the above DAC is [(η-2)/χ], where [I is a Gaussian operation symbol, which takes an integer part of a value. 18 201015870 9. The gradual approximation analog to digital converter of claim 8 wherein the ADC has an 8-bit resolution and the DAC package I comprises a capacitor array having a capacitance value of the following Binary weight: C7=2C6=4C5=4C5c=8C4=16C3=16C3c=32C2=64C1=64Clc. 10. The gradual approximation analog to digital ❿ converter as described in claim 9 wherein the output of the gradual approximation control circuit is corrected according to the following correction operation: Out=-21 + 128. Bl+64. B2+32. B3+32. B4+16. B5+8 · B6+8 · B7+4 . B8+2 · B9+2 · B10+1 · B11. 11. The gradual approximation analog to digital converter of claim 1 wherein the calibrator comprises a plurality of adders for respectively adding values of the same weight in the correction operation. 12. The gradual approximation analog to digital converter described in the scope of claim 5, wherein the above correction operation converts (Bi B2 B3 ... B11) into (A1 A2 A3 ... A8) according to the following formula: 201015870 B1 B2 B3 B5 B6 B8 B9 Bll + B4 B7 BIO A1 A2 A3 A4 A5 A6 A7 A8. 2020
TW97138306A 2008-10-03 2008-10-03 Successive approximation adc with binary error tolerance mechanism TWI328356B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97138306A TWI328356B (en) 2008-10-03 2008-10-03 Successive approximation adc with binary error tolerance mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97138306A TWI328356B (en) 2008-10-03 2008-10-03 Successive approximation adc with binary error tolerance mechanism

Publications (2)

Publication Number Publication Date
TW201015870A true TW201015870A (en) 2010-04-16
TWI328356B TWI328356B (en) 2010-08-01

Family

ID=44830221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138306A TWI328356B (en) 2008-10-03 2008-10-03 Successive approximation adc with binary error tolerance mechanism

Country Status (1)

Country Link
TW (1) TWI328356B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454064B (en) * 2010-12-16 2014-09-21 Univ Nat Cheng Kung Successive approximation analog-to-digital converter having auxiliary prediction circuit and method thereof
US9467159B1 (en) 2015-06-11 2016-10-11 Sitronix Technology Corp. Analog-to-digital converting device and related calibration method and calibration module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489788B (en) * 2012-05-08 2015-06-21 Himax Tech Ltd Multi-bit per cycle successive approximation register adc
TWI514777B (en) 2012-08-03 2015-12-21 Realtek Semiconductor Corp Predictive successive-approximation-register converting device and method therefor
TWI501562B (en) * 2012-10-05 2015-09-21 Univ Nat Chiao Tung A method to estimate the ratio errors of the capacitors in the digital-to-analog converter of a successive approximation analog digital converter and its application to calibrate the successive approximation analog digital converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454064B (en) * 2010-12-16 2014-09-21 Univ Nat Cheng Kung Successive approximation analog-to-digital converter having auxiliary prediction circuit and method thereof
US9467159B1 (en) 2015-06-11 2016-10-11 Sitronix Technology Corp. Analog-to-digital converting device and related calibration method and calibration module
TWI556585B (en) * 2015-06-11 2016-11-01 矽創電子股份有限公司 Analog-to-Digital Converting Device and Related Calibration Method and Calibration Module

Also Published As

Publication number Publication date
TWI328356B (en) 2010-08-01

Similar Documents

Publication Publication Date Title
US7724174B2 (en) Successive approximation ADC with binary error tolerance mechanism
US9154152B1 (en) Calibration and noise reduction of analog to digital converters
JP4445995B2 (en) Pipeline type A / D converter
TWI467924B (en) Successive approximation register analog to digital converter and conversion method thereof
CN107493104B (en) Successive approximation register analog-to-digital converter and analog-to-digital signal conversion method thereof
US8599059B1 (en) Successive approximation register analog-digital converter and method for operating the same
US8441386B2 (en) Method to reduce voltage swing at comparator input of successive-approximations-register analog-to-digital converters
US10484000B2 (en) Analog-to-digital converters
JP4897047B2 (en) Analog-to-digital conversion using asynchronous current-mode cyclic comparison
JP6353267B2 (en) AD converter and AD conversion method
TWI559687B (en) Successive approximation analog-to-digitl converter
US9362939B1 (en) Reduction of input dependent capacitor DAC switching current in flash-SAR analog-to-digital converters
TWI473437B (en) Successive approximation register analog-to-digital converter and analog-to-digital conversion method using the same
JP2010045723A (en) Digital-to-analog converter
CN101729069B (en) Successive approximation type analog-to-digital converter with binary fault tolerant mechanism
JP2013251700A (en) Ad conversion circuit and ad conversion method
TW201015870A (en) Successive approximation ADC with binary error tolerance mechanism
CN112583409A (en) Successive approximation type analog-to-digital converter and three-level switching method thereof
CN113794475B (en) Calibration method of capacitor array type successive approximation analog-digital converter
TWI778155B (en) Method and apparatus for enabling wide input common-mode range in sar adcs with no additional active circuitry
JP4684028B2 (en) Pipeline A / D converter
KR101012684B1 (en) Analog to digital converter accumulating iterative divided-by-two reference voltage
CN110176930B (en) Multi-position resolution sub-pipeline structure for measuring jump height of transmission curve
JP5695629B2 (en) Successive comparison type A / D converter and multi-bit delta-sigma modulator using the same
US9998137B1 (en) Power-efficient successive-approximation analog-to-digital converter using LSB averaging

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees