TW201015781A - Chip-type antenna for receiving FM broadcasting signal - Google Patents

Chip-type antenna for receiving FM broadcasting signal Download PDF

Info

Publication number
TW201015781A
TW201015781A TW97139203A TW97139203A TW201015781A TW 201015781 A TW201015781 A TW 201015781A TW 97139203 A TW97139203 A TW 97139203A TW 97139203 A TW97139203 A TW 97139203A TW 201015781 A TW201015781 A TW 201015781A
Authority
TW
Taiwan
Prior art keywords
antenna
type
wafer
substrate
broadcast
Prior art date
Application number
TW97139203A
Other languages
Chinese (zh)
Other versions
TWI385856B (en
Inventor
Zhi-Ming Chen
Zhi-Wei Chen
zhi-hao Lai
Ming-Yi Wu
zi-feng Li
Original Assignee
Inpaq Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inpaq Technology Co Ltd filed Critical Inpaq Technology Co Ltd
Priority to TW97139203A priority Critical patent/TW201015781A/en
Publication of TW201015781A publication Critical patent/TW201015781A/en
Application granted granted Critical
Publication of TWI385856B publication Critical patent/TWI385856B/zh

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

A chip-type antenna for receiving the FM broadcasting signal is disclosed. The antenna includes a ceramic substrate and a ferrite layer on the ceramic substrate. The ferrite layer and the ceramic substrate are constructed as an antenna substrate. A radiation structure coils around the antenna substrate. The high dielectric constant of the ceramic substrate and the properties of the ferrite layer are used for reducing the size of the antenna and the chip-type antenna is qualified for receiving FM signal.

Description

201015781 九、發明說明: 【發明所屬之技術領域】 天線及其製造 天線及其製造 本發明係有關於—稽日 , ^ „ 種日日片型調頻廣播 方法尤彳日一種達成尺+他, 方法。 寸微小化之調頻廣播 【先前技術】 =著半導體製程技術能力不斷向上 的功能日益強大,以致丰 +導體日日片 加。告資1斜枯Mi s 體日日片訊號的傳輪量逐漸增 向於輕薄短小的形式,尤其 仃 產品、數位相機等逐漸成為現代 人不可或缺的行動裝置時,A &斬成為現代 間密卢㈣W α A 了相㈣裝置機體高空 口質β,歧的需求不僅要維持高效能且穩定的 ::’如何縮小模組空間但仍保有高品質的特 課題 =好的資料傳輸效能與信號品質,便成為各廠商的重要 :例如手持電話之多媒體應用曰漸增多,或是一般的 子產扣通常内建有調頻廣播系統的功能,以提供使 更為夕樣化的應用魏。然而傳統的手持電話或是其 接收調頻訊號的收音|置,因為所要接㈣頻率大致上 於85MHz至⑽驗,因此必須利用—長度相當長的或 Γ圭積大的接收天線才能接受上述之調頻訊號所應用的 頻率,例如傳統收音機配備有抽拉式的單極天線,或是手 持電話利用外接耳機線的方式接收訊號,上述的天線型態 201015781 以達成接收訊號的 大多疋銅線或是單芯線所製作的天線, 功能。 ^而隨著行動電子產品的發展,調頻天線的發展腳步 κΓίϊ後行動裝置的功能性,例如抽拉式的天線在體積 ?才目虽大的尺寸’故體積上的不匹配使得抽拉式的 線2適用於手持電話等小型產品,更遑論抽拉式的天 構上的強度小、易彎折或甚至受力折斷的缺點;另 使科接耳機線的方式接收㈣會造成使用者的 更^般來說’使用者對於外接裝置的接受度相當 計可改善種設 【發明内容】 ❹ 線及要目的’在於提供-種晶片型調頻廣播天 天’該轉結構制於調㈣㈣統,且該 板配合一鐵磁材料層(ferrite)所 可以製作成-晶片形式天線體積大幅縮減,更 化的電使其非㈣用於小型 進而達成更佳的產品附加價值。 廣播2達=之明係提供-簡型調頻 型於該 £基板,一鐵磁材料層,其係成 陶是基板之第—表面,其中該”基板及該鐵磁材 201015781 料層係建構為-天線基板;以及一輕射結構,其係成型於 该天線基板上。 本發明亦提供一種晶片型調頻廣播天線之製作方 法’包括以下步驟:步驟一:提供一天線基板,其係由一 陶竞基板及-成型於該陶t基板上表面之鐵磁材料層所 ^形成;步驟二:印刷成型—㈣結構於該天線基板之 面’步驟二·印刷成型一輻射結構於該天線基板之正 驟四:進行-燒結步驟,藉以形成-晶片型調 頻卢t 發明提出之晶片型調 κ 線不但能利用陶紐料與鐵磁材料所達成的電 :特性天線體積大幅縮小,且依舊保持良好的天線特 ,5枯上述之晶片型調頻廣播天線為一窄版 電i〇L—rt)、的結構’故易於將其與微波基板之系統 用。正口 π以進一步符合電子產品的小型化需求與應 為^更進-㈣解本㈣之特徵及技術 關本發明之詳細說明與附圖,然而所附圖式: 考”說明用’並非用來對本發明加以限制者。 【實施方式】 曰^先β彡㈣目至第二圖所示,本發明提出-種 =型調頻廣播天線!,其包含:一喊基板ι〇〇、, 鐵磁材料層1(31及-姉結構11;其中該陶竟基板丄 201015781 0 0與該鐵磁材料層i 0丄係建構形成一天線基板工 0 ’邊天線基板1 Q制用該陶竟基板i Q Q的高介質常 數以及該鐵磁材料層工〇丄的電氣特性,以使該晶片型調 頻廣播天線1達成微小化的功效。且該鐵磁材料層工〇工 係可形成於該陶兗基板1 〇 〇的第一表面或是相對於第 一表面的第二表面,更或是同時形成於該陶瓷基板1 〇 〇 的第-表面與第二表面,亦即該鐵磁材料層工〇工係選擇 性的成型於該陶竟基板i 〇 〇的表面上,以形成具有高介 質常數與特殊電氣特性的天線基板工〇,而該輕射結構工 1則成型於該天線基板i Q上以組成上述之晶片型調頻 廣播天線1。 第一圖至第一 B圖係顯示本發明之晶片型調頻廣播天 線1的第-種實施例。請配合第二圖,該晶片型調頻廣播 天線1包括-天線基板丄〇及一輻射結構丄工,該天線基 板1 0係為一陶瓷基板i 0 〇與一鐵磁材料層i 〇丄所 參組j ’在本具體實施例中,該陶竟基板工〇 〇係為氧化紹 材貝之基板,而該鐵磁材料層1 〇 1係為將包含鐵、鈷、 鎳等鐵磁性物質塗佈於該陶瓷基板10 0之上表面所形 成的層體;另外,該輕射結構i工係由金屬微帶線環繞該 2線基板1 Q所成型的結構,其用以接收調頻訊號之功 能。請參考第一圖,其為該晶片型調頻廣播天線1的俯視 圖:其顯示該金屬微帶線在該天線基板i 〇上的繞線排列 °亥天線基板1〇實質上為一矩形之結構體,其中該 金屬微帶線係在該天線基板i 0的上表面以垂直該矩形 201015781 t:匕板广長邊之方向延伸’並延伸至該天線基板 二:面如第一 B圖),再進一步延伸之天線基板 下表©(如第—㈣)並重覆上述步驟,以達成環 至該天線基板10的=:】=者该金屬微帶線繞 低丄υ的下表面時,該金屬微帶線會形 :彎折部1 10,該彎折部1 1〇可避免位於上表面之 金屬微帶線與位於下表面之金屬微帶線相互重合而導致 ❹ ❹ f下表面的電流互相抵銷,且利用·f折部i i◦使金屬微 π線不易產生互相耦合的特性。 而第一圖係為該晶片型調頻廣播天線1之第一實施 例的結構示意圖’其中該鐵磁材料層1 0 1係塗佈於該陶 竞基板1〇 Q之上表面而形成該天線基板i Q,同時該金 屬微帶線以環繞的方式繞設於該天線基板i Q,從第二圖 觀之’該鐵磁材料層χ Q i係塗佈於該陶£基板i 〇 〇之 上表面,但該鐵磁材料層丄〇 i亦可成型於該陶瓷基板1 〇 0之下表面,或者該鐵磁材料層丄0 i可同時成型於該 陶瓷基板1 〇 〇之上表面與下表面。 本案提出之晶片型調頻廣播天線i的第一實施例係 利用垂直形式的金屬微帶線連接至該陶瓷基板丄〇 〇的 側邊形成上述之輻射結構2 i,可避免因彎折造成相鄰兩 個金屬微帶線的電流相反而互相抵銷,並解決造成天線共 振路徑縮短因而需要更長的共振路徑的問題。 另外,該天線基板1 〇之該鐵磁材料層i 0 i與該金 屬微帶線(輻射結構1 1 )之間更進一步設有一第一保護 Γ 201015781 層1 2 A ’且在天線基板工〇上表面及下表面的該金屬微 π線(輻射結構1 1 )上方設有第二保護層丄2 Β,故可 利用保護層以達成保護線路及基板的功效。201015781 IX. Description of the invention: [Technical field of invention] Antenna and its manufacturing antenna and its manufacture The present invention relates to -Ji Ri, ^ „ 日 日 日 FM FM FM 彳 一种 + + + + + + Inch miniaturized FM radio [Prior technology] = The ability of the semiconductor process technology to continue to improve is becoming more and more powerful, so that the Feng + conductor is added daily. The amount of transmission of the slanting Mi s body day signal is gradually increasing. In the form of light, thin and short, especially when products, digital cameras, etc. are gradually becoming indispensable mobile devices for modern people, A & 斩 becomes the modern room of Milu (four) W α A phase (four) device body high-altitude β, The demand is not only to maintain high efficiency and stability:: 'How to reduce the module space but still maintain high quality special issues = good data transmission performance and signal quality, it has become important for manufacturers: for example, multimedia applications for handheld phones曰Increasingly, or the general production deduction usually has the function of an FM radio system built in, to provide a more elegant application. However, the traditional handheld power Or it receives the FM signal, because the frequency is about 85MHz to (10), so you must use the receiving antenna with a long length or a large size to accept the frequency applied by the above FM signal. For example, the conventional radio is equipped with a pull-type monopole antenna, or the hand-held telephone receives the signal by means of an external earphone cable. The above-mentioned antenna type 201015781 is used to obtain a large number of copper wires or single-core wires for receiving signals. , function. ^ And with the development of mobile electronic products, the development of FM antennas, the functionality of the mobile device, such as the pull-type antenna in the volume, the size of the large size, so the volume mismatch makes pumping The pull-type line 2 is suitable for small products such as hand-held telephones, not to mention the shortcomings of the pull-type structure, such as low strength, easy bending or even force breaking; the other way to receive the headset line (4) will cause use More generally, 'users' acceptance of external devices is quite improved. [Inventive content] ❹ Line and purpose is to provide - The wafer-type FM broadcasting is made every day, and the rotating structure is made up of the four (four) (four) system, and the plate can be made into a wafer-formed antenna with a ferrite material, and the size of the antenna is greatly reduced, and the electric power is reduced. Smaller and then achieve better product added value. Broadcast 2 to = the Ming Department provides - simple frequency modulation type on the substrate, a ferromagnetic material layer, which is made of ceramic is the first surface of the substrate, where the "substrate and The ferromagnetic material 201015781 is constructed as an antenna substrate; and a light-emitting structure is formed on the antenna substrate. The invention also provides a method for fabricating a wafer-type FM broadcast antenna, which comprises the following steps: Step 1: providing an antenna substrate, which is composed of a ceramic substrate and a ferromagnetic material layer formed on the upper surface of the ceramic substrate. Forming; Step 2: Printing and Forming—(4) Structure on the surface of the antenna substrate. Step 2: Printing and Forming a Radiation Structure on the Antenna Substrate: Performing-Sintering Step, Forming a Wafer-Type FM Tuning The wafer type κ line can not only use the material of the ceramic material and the ferromagnetic material: the characteristic antenna is greatly reduced in size, and the antenna antenna is still well maintained. The above-mentioned wafer type FM broadcasting antenna is a narrow version. The structure of L-rt) is easy to use with systems for microwave substrates. The positive port π is further in line with the miniaturization requirements of the electronic product and should be further improved - (4) the features and techniques of the present invention (4) and the detailed description and drawings of the present invention, however, the drawing: the test description is not used The present invention is limited to the following: [Embodiment] 曰^先β彡(4) to the second figure, the present invention proposes a type=FM broadcast antenna!, which includes: a shouting substrate 〇〇, ferromagnetic Material layer 1 (31 and -姊 structure 11; wherein the ceramic substrate 丄201015781 0 0 and the ferromagnetic material layer i 0 丄 system are constructed to form an antenna substrate 0' side antenna substrate 1 Q using the ceramic substrate i The high dielectric constant of the QQ and the electrical characteristics of the ferromagnetic material layer work to achieve the miniaturization effect of the wafer type FM broadcast antenna 1. The ferromagnetic material layering system can be formed on the ceramic substrate a first surface of the crucible or a second surface opposite to the first surface, or formed simultaneously on the first surface and the second surface of the ceramic substrate 1 , that is, the ferromagnetic material layer is completed Selectively formed on the surface of the ceramic substrate i , An antenna substrate process having a high dielectric constant and special electrical characteristics is formed, and the light-radiation structure 1 is formed on the antenna substrate i Q to constitute the above-described wafer-type FM broadcast antenna 1. The first to the first B A first embodiment of the wafer-type FM broadcast antenna 1 of the present invention is shown. In conjunction with the second figure, the wafer-type FM broadcast antenna 1 includes an antenna substrate and a radiation structure, the antenna substrate 10 a ceramic substrate i 0 〇 and a ferromagnetic material layer i 〇丄 a group j ′ In the specific embodiment, the ceramic substrate engineering system is a substrate of oxidized material, and the ferromagnetic material layer 1 〇 1 is a layer body formed by coating a ferromagnetic substance such as iron, cobalt or nickel on the upper surface of the ceramic substrate 10 0. Further, the light-emitting structure i is surrounded by a metal microstrip line. The structure formed by the line substrate 1 Q for receiving the function of the frequency modulation signal. Please refer to the first figure, which is a top view of the wafer type FM broadcast antenna 1 showing the metal microstrip line on the antenna substrate i Alignment of windings a rectangular structure, wherein the metal microstrip line extends on the upper surface of the antenna substrate i 0 perpendicular to the rectangle 201015781 t: the broad side of the seesaw and extends to the antenna substrate 2: face (B)), further extending the antenna substrate table © (eg, - (4)) and repeating the above steps to achieve the ring to the antenna substrate 10 =:] = the metal microstrip line around the low On the surface, the metal microstrip line may be shaped: a bent portion 1 10, which avoids the metal microstrip line on the upper surface and the metal microstrip line on the lower surface coincide with each other to cause ❹ ❹ f The currents on the lower surface cancel each other out, and the metal micro-π lines are less likely to be coupled to each other by the F-part ii. The first figure is a schematic structural view of the first embodiment of the wafer-type FM broadcast antenna 1 in which the ferromagnetic material layer 110 is coated on the upper surface of the Tao competition substrate 1 〇Q to form the antenna substrate. i Q, at the same time, the metal microstrip line is wound around the antenna substrate i Q in a surrounding manner, and the ferromagnetic material layer χ Q i is coated on the ceramic substrate i 从 from the second figure a surface, but the ferromagnetic material layer 丄〇i may also be formed on the lower surface of the ceramic substrate 1 ,0, or the ferromagnetic material layer 丄0 i may be simultaneously formed on the upper surface and the lower surface of the ceramic substrate 1 . The first embodiment of the wafer-type FM broadcast antenna i proposed in the present invention is formed by connecting a metal microstrip line in a vertical form to the side of the ceramic substrate to form the above-mentioned radiation structure 2 i, thereby avoiding adjacent by bending. The currents of the two metal microstrip lines are opposite to each other and cancel each other, and solve the problem that the antenna resonance path is shortened and a longer resonance path is required. In addition, a first protection layer 201015781 layer 1 2 A ' is further disposed between the ferromagnetic material layer i 0 i of the antenna substrate 1 and the metal microstrip line (radiation structure 1 1 ) and is in the antenna substrate process. A second protective layer 丄2 设有 is disposed above the metal micro π line (radiation structure 1 1 ) on the upper surface and the lower surface, so that the protective layer can be utilized to achieve the effect of protecting the circuit and the substrate.

山匕另一方面,請復參考第一圖,該天線基板1 0之兩側 端白形成有-焊接部丄〇 2,該金屬微帶線的兩端分別電 生連接於該天線基板i Q之兩側端的該焊接部1 Q 2,該 兩焊接部1 ◦ 2其中之-係為饋人端(feeding_in),而 另一則為固定之焊接點。 ^另外,請參考第三圖,其為本發明之第二實施例,本 貫=與第實施例不同之處在於:位於該天線基板1 〇 ^ 表面上(或第二表面,可視金屬微帶線結構上的需 :或是天線特性的調整加以改變)的金屬微帶線更形成一 tif構111’該接地結構111係用於連接外部電路 扳的接地端。 =參考第四圖,其為本發明之第三實施例,本實施例 =:兩實施例不同之處在於:該金屬微帶線並非以垂直 天線基板1 ◦,而是以傾斜-角度的方式繞 片型調頻廣同樣可以達成接收調頻訊號的晶 小尺寸=線1之功能’且該天線結構亦可以達成縮 ㈣Ϊ參考第五圖,本發明更進—步提出製作上述晶片型 卫-公廣播天線!的方法,由於該天線基板i㈣厚度約為 本發明利用厚膜印刷製程以完成上述晶片 '、廣播天線1的的製作,該製作方法如下·· 10 201015781 步驟一:提供—天線基板1 Ο,其係由一陶瓷基板工 〇 〇及一成型於該陶瓷基板1 ο 〇上表面之鐵磁材料層 1〇1所建構形成。如上所述,該天線基板i 〇係利用該 陶瓷基板1〇 〇的高介質常數搭配該鐵磁材料層i 〇工 的電氣特性,使其可以發揮縮小天線尺寸的功效;在本實 施例中,該鐵磁材料層丄〇 i係成型於該陶瓷基板丄〇 〇 的正面。 ❹ 步驟二:印刷成型一輻射結構1 1於該天線基板工〇 ^背面。在此步驟中,係先針對該天線基板1 〇的背面進 行一厚膜印刷製程,以將金屬微帶線成型於該天線基板工 • 〇的背面。在此一印刷步驟之後,可包括一烘烤步驟,以 使金屬微帶線固定成型於該天線基板1 〇之表面上。 步驟二.印刷成型一輻射結構11於該天線基板1〇 之正面。在此步驟中,係針對該鐵磁材料層丄0丄之上進 行-厚膜印刷製程,以將金屬微帶線成型於該天線基板工 參 〇的正面,且將正面與背面的金屬微帶線相連(如第一 B 圖)在此印刷步驟之後,可包括一烘烤步驟,以使金 屬微帶線固定成型於該天線基板i 〇之表面上。 Y驟四.進行一燒結步驟以形成一晶片型調頻廣播天 線1。在本具體實施例中,係以燒結溫度為8赃進行此 一燒結步驟。 而在燒結步驟之後更可以包括形成保護層之步驟,例 如: 步驟A .印刷成型一保護層於該天線基板1 〇之背面 11 201015781 的輻射結構1 i (即金屬微帶線)之上方;接著進行步驟 B .進打烘烤。接下來,再製作該晶片型調頻廣播天線1 正面之保護層:步驟C:印刷成型一保護層於該天線基板 1 0之正面的輻射結構丄丄之上方;以及步驟D:進行烘 烤:藉此,該天線正面及背面之金屬微帶線的上方均成型 有第二保護層1 2 B ;然而設置於該天線基板1 〇之該鐵 磁材料層1 〇 1與該金屬微帶線之間的第一保護層工2 A亦可使用相同的製程加以製作。 β 最後,為了完成該晶片型調頻廣播天線丄與外部電路 之電丨生連接,在成型該天線本體之後,更可以包括一沾銀 .步驟;以及一電鍍步驟,以使該晶片型調頻廣播天線丄可 以與外部電路連接以進行訊號的接收與傳遞。 明參考第六A圖至第六c圖,其為本發明之晶片型調 頻廣播天線1與一般抽拉式天線(STD FM antenna)、外 接式耳機接收調頻廣播訊號之接收強度量測曲線圖 _ (Received Signal Strength Indication,RSSI),其中 第六A圖是使用本發明之晶片型調頻廣播天線i所得到的 廣播訊號強度;第六B圖係為使用45公分之一般抽拉式 天線所得到的廣播訊號強度;而第六B圖則為使用135公 分之外接式耳機所得到的廣播訊號強度,其中本發明所測 得之RSSI量測值和傳統天線的天線接收特性相似,但本 發明之晶片型調頻廣播天線i的尺寸大小卻遠小於傳統 天線,故本發明所提出的晶片型調頻廣播天線丄之結構可 以突破傳統天線的限制,在應用上更佔有優勢。 12 201015781 綜上所述,本發明具有下列諸項優點: 1、 本發明之晶片型調頻廣播天線係利用陶瓷基板的 高介電常數以及鐵磁材料層的電氣特性,可以有效的將形 成輻射結構之金屬微帶線微小化,亦即天線尺寸得以大幅 的縮小,並保持良好的天線接收特性,使其更適用於各種 移動通訊裝置的調頻廣播的接收系統。 2、 本發明提出之晶片型調頻廣播天線不但能利用陶 瓷材料配合鐵磁材料達成優良的電氣特性,使天線體積大 ® 幅縮小,且依舊保持良好的天線接收品質,同時上述之晶 片型調頻廣播天線為一窄版(1 〇w-prof i 1 e)的結構,故 非常容易與微波基板之系統電路整合,以提高整體系統的 整合度,更可以進一步符合電子產品的各種需求與應用。 惟以上所述僅為本發明之較佳實施例,非意欲偈限本 發明之專利保護範圍,故舉凡運用本發明說明書及圖式内 容所為之等效變化,均同理皆包含於本發明之權利保護範 ©圍内,合予陳明。 【圖式簡單說明】 第一圖係本發明之晶片型調頻廣播天線之上視圖。 第一 A圖係本發明之晶片型調頻廣播天線之下視圖。 第一 B圖係本發明之晶片型調頻廣播天線之侧視圖。 第二圖係本發明之晶片型調頻廣播天線之結構示意圖。 第三圖係本發明之晶片型調頻廣播天線之第二實施例之示 Γ Γ· 1 i 13 201015781 意圖。 第四圖係本發明上 音園D s日月型調頻廣播天線之第三實施例之示 第五圖 第丄係本發明之晶片型調頻廣播天線之製作流程圖。 /N圖至第六c圖係本發明之晶片型調頻廣播天線與其 他兩種傳統天線之RSSI曲線圖。 【主要元件符號說明】 丄 晶片型調頻廣播天線 10 天線基板 10 0 10 1 10 2 11 輕射結構 110 111 1 2 A 第一保護層 1 2 B 第二保護層 陶瓷基板 鐵磁材料層 焊接部 彎折部 接地結構 14On the other hand, please refer to the first figure, the two sides of the antenna substrate 10 are white-formed with a soldering portion ,2, and two ends of the metal microstrip line are electrically connected to the antenna substrate i Q The welded portion 1 Q 2 at the two ends of the two welded portions 1 ◦ 2 is a feeding_in and the other is a fixed soldering point. In addition, please refer to the third figure, which is a second embodiment of the present invention, which is different from the first embodiment in that it is located on the surface of the antenna substrate 1 (or the second surface, visible metal microstrip) The metal microstrip line on the line structure: or the adjustment of the antenna characteristics is changed to form a tif structure 111'. The ground structure 111 is used to connect the ground of the external circuit board. Referring to the fourth figure, which is a third embodiment of the present invention, the present embodiment =: The two embodiments are different in that the metal microstrip line is not in the vertical antenna substrate 1 but in an oblique-angle manner. The wide-wafer type FM can also achieve the function of receiving the small size of the FM signal = line 1 'and the antenna structure can also be reduced (4). Referring to the fifth figure, the present invention further proposes to manufacture the above-mentioned wafer type Wei-public broadcasting. antenna! The method of manufacturing the above-described wafer 'and the broadcast antenna 1 by using the thick film printing process of the present invention is as follows: 10 201015781 Step 1: Providing - the antenna substrate 1 Ο It is formed by a ceramic substrate process and a ferromagnetic material layer 1〇1 formed on the upper surface of the ceramic substrate 1 . As described above, the antenna substrate i uses the high dielectric constant of the ceramic substrate 1 to match the electrical characteristics of the ferromagnetic material layer i, so that the effect of reducing the size of the antenna can be exerted; in this embodiment, The ferromagnetic material layer is formed on the front surface of the ceramic substrate. ❹ Step 2: Printing and forming a radiation structure 1 1 on the back of the antenna substrate. In this step, a thick film printing process is first performed on the back surface of the antenna substrate 1 to form a metal microstrip line on the back surface of the antenna substrate. After this printing step, a baking step may be included to fix the metal microstrip line on the surface of the antenna substrate 1 . Step 2. Printing and forming a radiation structure 11 on the front side of the antenna substrate 1A. In this step, a thick film printing process is performed on the ferromagnetic material layer 丄0丄 to form a metal microstrip line on the front surface of the antenna substrate, and the front and back metal microstrips are The wire connection (as in the first B diagram) may include a baking step after the printing step to fix the metal microstrip line on the surface of the antenna substrate i. Y. Fourth, a sintering step is performed to form a wafer type FM broadcast antenna 1. In the present embodiment, this sintering step is carried out at a sintering temperature of 8 Torr. The step of forming a protective layer may be further included after the sintering step, for example: Step A. Printing and forming a protective layer over the radiation structure 1 i (ie, the metal microstrip line) of the back surface 11 201015781 of the antenna substrate 1; Go to step B. Bake in. Next, the protective layer on the front side of the wafer-type FM broadcast antenna 1 is fabricated: Step C: printing and forming a protective layer above the radiation structure 正面 of the front surface of the antenna substrate 10; and Step D: baking: borrowing Therefore, a second protective layer 1 2 B is formed on the metal microstrip line on the front and back sides of the antenna; however, the ferromagnetic material layer 1 〇1 is disposed between the antenna substrate 1 and the metal microstrip line The first protective layer 2 A can also be fabricated using the same process. Finally, in order to complete the electrical connection between the chip-type FM broadcast antenna and the external circuit, after forming the antenna body, a step of smearing silver may be included; and a plating step to make the wafer-type FM broadcast antenna丄 It can be connected to an external circuit for signal reception and transmission. Referring to FIGS. 6A to 6C, the receiving intensity measurement curve of the FM-type broadcast antenna 1 and the conventional pull-type antenna (STD FM antenna) and the external-type earphone receiving the FM broadcast signal is _ (Received Signal Strength Indication, RSSI), wherein the sixth picture A is the broadcast signal strength obtained by using the wafer type FM broadcast antenna i of the present invention; the sixth B picture is obtained by using a general drawing antenna of 45 cm. Broadcast signal strength; and the sixth B picture is the broadcast signal strength obtained by using a 135 cm external earphone, wherein the RSSI measurement measured by the present invention is similar to the antenna receiving characteristic of the conventional antenna, but the wafer of the present invention The size of the FM radio antenna i is much smaller than that of the conventional antenna. Therefore, the structure of the wafer-type FM broadcast antenna proposed by the present invention can break through the limitation of the conventional antenna and has an advantage in application. 12 201015781 In summary, the present invention has the following advantages: 1. The wafer-type FM broadcast antenna of the present invention can effectively form a radiation structure by utilizing the high dielectric constant of the ceramic substrate and the electrical characteristics of the ferromagnetic material layer. The miniaturization of the metal microstrip line, that is, the size of the antenna is greatly reduced, and the good antenna receiving characteristics are maintained, making it more suitable for the receiving system of the FM broadcasting of various mobile communication devices. 2. The wafer-type FM broadcast antenna proposed by the present invention can not only achieve excellent electrical characteristics by using ceramic materials and ferromagnetic materials, but also reduce the size of the antenna by a large size, and still maintain good antenna receiving quality, and the above-mentioned wafer type FM broadcasting. The antenna is a narrow version (1 〇w-prof i 1 e) structure, so it is very easy to integrate with the system circuit of the microwave substrate to improve the integration of the overall system, and further meet the various needs and applications of electronic products. However, the above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, the equivalent changes of the present invention and the contents of the drawings are all included in the present invention. The scope of protection of rights is within the scope of Chen Ming. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a top view of a wafer type FM broadcast antenna of the present invention. The first A is a bottom view of the wafer type FM broadcast antenna of the present invention. The first B is a side view of the wafer type FM broadcast antenna of the present invention. The second figure is a schematic structural view of a wafer type FM broadcasting antenna of the present invention. The third diagram is a second embodiment of the wafer type FM broadcast antenna of the present invention. Γ Γ 1 i 13 201015781 Intent. The fourth embodiment is a third embodiment of the present invention. The fifth embodiment of the present invention is a flow chart of the production of the wafer-type FM broadcast antenna of the present invention. The /N to sixth c diagrams are RSSI plots of the wafer-type FM broadcast antenna of the present invention and other two conventional antennas. [Main component symbol description] 丄 wafer type FM broadcasting antenna 10 Antenna board 10 0 10 1 10 2 11 Light-emitting structure 110 111 1 2 A First protective layer 1 2 B Second protective layer ceramic substrate Ferromagnetic material layer soldering portion bend Folded ground structure 14

Claims (1)

201015781 十、申請專利範圍·· 1、一種晶片型調頻廣播天線,係包含·· 一陶瓷基板; ,磁材料層’其係、於該_基板之第一表面, ^中_€基板及該鐵磁材料層係建構為一天線 基板,以及201015781 X. Patent application scope··1. A wafer type FM broadcasting antenna, comprising: a ceramic substrate; a magnetic material layer, the first surface of the substrate, the substrate, and the iron The magnetic material layer is constructed as an antenna substrate, and 2 3 4 6 一輻射結構,其係成型於該天線基板上。 利範圍第1項所述之晶片型調頻廣播天線, /、中該鐵磁材料層更進—步成型於相對 板的第-表面之第二表面。 陶是基 、::請專利範圍第2項所述之晶片型調頻廣播天線, 二錢射結構係由金屬微帶線環繞該 成型者。 π 土议I 請專利範圍第3項所述之晶片型調頻廣播天線, /、中该天線基板係為一矩形天線基板。 、^請專利範圍第4項所述之晶片型調頻廣播天線, 々中該金屬微帶線係以垂直該矩形天線基板的長邊 之方向環繞該天線基板。 申明專利範圍第5項所述之晶片型調頻廣播天線, 中該金屬微帶線形成折部於該天絲板之第 ~"表面0 7、 龙申明專利範圍第6項所述之晶片型調頻廣播天線, 8其中該天線基板之兩側端皆形成有一焊接部。 如申明專利範圍第7項所述之晶片型調頻廣播天線, Γ4 15 201015781 “中该金屬微帶線的兩端分別電性連接於該天線基 板之兩側端之該焊接部。 9 '如中請專利範圍第8項所述之晶片型調頻廣播天線, 其中該金屬微帶線更形成一接地結構。 1 〇、如申請專利範圍第9項所述之晶 、線,其中該陶究基板係為氧化銘材質。頻廣播天 1 1始如切專利範圍第i 0項所述之晶片型調頻廣播天 _ Η ’其巾鼓、絲板之該鐵磁㈣層與姉射結構之 4更進一步設有一第一保護層。 ' 1請專利範㈣11項所述之晶片型調頻廣播天 層。/、中軸射結構之上更進—步設有—第二保護 13赖了種晶片型調頻廣播天線之製作方法·,包括以下步 提供一 m — 天線基板,其係由一陶瓷基板及一成 步驟於基板上表面之鐵磁材料層所建構形成; 步:::射結構於該天線基板之背面; 以及印刷成型一輕射結構於該天線基板之正面; 步=:進行-燒結步驟以形成一晶片型調頻廣播天 4、如申請專利範圍第 線之製作方法,其中晶片型調頻廣播天 驟二與步驟三之間皆更包括一供烤步驟之間以及步 201015781 、如申請專利範圍第1 4項所述之晶片型調頻廣播天 線之製作方法,其中在步驟四之後更包括以下步驟: 步驟A.印刷成型一保護層於該天線基板之背面的輻 射結構之上方; 步驟B:進行烘烤; 步驟C:印刷成型一保護層於該天線基板之正面的輕 射結構之上方;以及 ❹ 步驟D :進行烘烤。 6綠如I請專·圍第15項所述之晶片型調頻廣播夭 驟 步驟e、隹 ㈣步 /驟E·進仃—沾銀步驟;以及 步驟F .進行—電鍍步驟。2 3 4 6 A radiation structure formed on the antenna substrate. The wafer-type FM broadcast antenna according to Item 1, wherein the ferromagnetic material layer is further formed on the second surface of the first surface of the opposite plate. Tao is based on:: Please call the wafer-type FM broadcast antenna described in the second paragraph of the patent range. The two-dimensional structure is surrounded by a metal microstrip line. π 地议 I The wafer-type FM broadcast antenna described in claim 3, wherein the antenna substrate is a rectangular antenna substrate. The wafer type FM broadcast antenna according to the fourth aspect of the invention, wherein the metal microstrip line surrounds the antenna substrate in a direction perpendicular to a long side of the rectangular antenna substrate. The wafer-type FM broadcast antenna according to the fifth aspect of the invention, wherein the metal microstrip line forms a folded portion on the surface of the celestial sheet, and the wafer type described in claim 6 of the Long Shenming patent scope The FM broadcast antenna, 8 wherein both sides of the antenna substrate are formed with a soldering portion. The wafer-type FM broadcast antenna according to claim 7 of the patent scope, Γ 4 15 201015781 "The two ends of the metal microstrip line are electrically connected to the soldering portions of the two sides of the antenna substrate, respectively. The wafer-type FM broadcast antenna according to the invention of claim 8, wherein the metal microstrip line further forms a grounding structure. 1 . The crystal and the wire according to claim 9 of the patent application, wherein the ceramic substrate is For the oxidation of the material. Frequency broadcast day 1 1 as described in the patent range i 0 item of the type of FM radio broadcast _ Η 'the towel drum, silk plate of the ferromagnetic (four) layer and the 结构 structure 4 further There is a first protective layer. '1 Please apply the wafer-type FM broadcast sky layer described in Item 11 (4). /, The above-mentioned axial-axis structure is further advanced - the second protection 13 relies on a wafer-type FM broadcasting antenna. The manufacturing method includes the following steps: providing an m-antenna substrate formed by a ceramic substrate and a ferromagnetic material layer formed on the upper surface of the substrate; step::: the structure is on the back surface of the antenna substrate And printing a light-emitting structure on the front side of the antenna substrate; step =: performing-sintering step to form a wafer-type FM broadcast day 4, as in the manufacturing method of the first line of the patent application, wherein the wafer type FM broadcast is between the second step and the third step The method further includes a method for manufacturing a wafer-type FM broadcast antenna according to the method of claim 14, wherein the step of the fourth step further comprises the following steps: Step A. Printing and forming protection Layer B is over the radiation structure of the back surface of the antenna substrate; Step B: baking; Step C: Printing and forming a protective layer over the light-emitting structure on the front surface of the antenna substrate; and ❹ Step D: baking. 6 Green as I please specializes in the wafer-type FM broadcast step-by-step e, 隹 (4) step / step E · 仃 - silver step; and step F. 1717
TW97139203A 2008-10-13 2008-10-13 Chip-type antenna for receiving FM broadcasting signal TW201015781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97139203A TW201015781A (en) 2008-10-13 2008-10-13 Chip-type antenna for receiving FM broadcasting signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97139203A TW201015781A (en) 2008-10-13 2008-10-13 Chip-type antenna for receiving FM broadcasting signal

Publications (2)

Publication Number Publication Date
TW201015781A true TW201015781A (en) 2010-04-16
TWI385856B TWI385856B (en) 2013-02-11

Family

ID=44830169

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97139203A TW201015781A (en) 2008-10-13 2008-10-13 Chip-type antenna for receiving FM broadcasting signal

Country Status (1)

Country Link
TW (1) TW201015781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513099B (en) * 2011-07-01 2015-12-11 Apple Inc Electronic device with magnetic antenna mounting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154176A (en) * 1998-08-07 2000-11-28 Sarnoff Corporation Antennas formed using multilayer ceramic substrates
US7378297B2 (en) * 2004-07-01 2008-05-27 Interuniversitair Microelektronica Centrum (Imec) Methods of bonding two semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513099B (en) * 2011-07-01 2015-12-11 Apple Inc Electronic device with magnetic antenna mounting

Also Published As

Publication number Publication date
TWI385856B (en) 2013-02-11

Similar Documents

Publication Publication Date Title
US10431372B2 (en) High current, low equivalent series resistance printed circuit board coil for power transfer application
TWI223468B (en) Broadband planar inverted F antenna
CN101345331A (en) Electronic device and method for manufacturing same
US7948445B2 (en) Wideband antenna and clothing and articles using the same
US20070222689A1 (en) Chip antenna, an antenna device, and a communication equipment
TW200903897A (en) Ultra wideband antenna
US11831062B2 (en) Mobile device radiating antenna disposed on an inner side of an insulation rear housing
CN105244610A (en) External broadband 4G printed circuit board (PCB) antenna
TW201021286A (en) Miniature antenna
JP2003332833A (en) Dual band microstrip antenna
WO2008032886A1 (en) Antenna for wireless communication and method of fabricating the same
JPH09326624A (en) Chip antenna
US20070164921A1 (en) Broadband antenna apparatus
CN105098371B (en) A kind of electronic equipment and its antenna assembly
TWI223908B (en) Concealed antenna for mobile communication device
CN112821050A (en) Antenna assembly and electronic equipment
KR20180104986A (en) Coil component
TW201015781A (en) Chip-type antenna for receiving FM broadcasting signal
CN110197946A (en) High-gain microstrip antenna
CN201336360Y (en) Chip frequency modulation broadcasting antenna
JP2006121189A (en) Plate-like broadband antenna
KR101077139B1 (en) Embeded VHF antenna with magneto-dielectric block
JP6011910B2 (en) Antenna device
JP2010171879A (en) Chip type frequency modulation broadcasting antenna
TWI312593B (en) Dual band antenna

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees