TW201015730A - Solar cell apparatus - Google Patents

Solar cell apparatus Download PDF

Info

Publication number
TW201015730A
TW201015730A TW97139440A TW97139440A TW201015730A TW 201015730 A TW201015730 A TW 201015730A TW 97139440 A TW97139440 A TW 97139440A TW 97139440 A TW97139440 A TW 97139440A TW 201015730 A TW201015730 A TW 201015730A
Authority
TW
Taiwan
Prior art keywords
solar cell
unit
cavity
cell device
concentrating
Prior art date
Application number
TW97139440A
Other languages
Chinese (zh)
Other versions
TWI369787B (en
Inventor
Chung-Jyh Lin
Original Assignee
Aussmak Optoelectronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aussmak Optoelectronic Corp filed Critical Aussmak Optoelectronic Corp
Priority to TW097139440A priority Critical patent/TWI369787B/en
Publication of TW201015730A publication Critical patent/TW201015730A/en
Application granted granted Critical
Publication of TWI369787B publication Critical patent/TWI369787B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell apparatus has a chamber. The chamber is substantially closed. The solar cell apparatus includes a solar cell unit and a light-focusing unit. The solar cell unit is partially located in the chamber. The light-focusing unit focuses at least one part of the external light to the solar cell unit. The light-focusing unit is relatively movable to the solar cell unit.

Description

201015730 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能電池裝置。 【先前技術】 隨著消耗性能源的耗竭危機以及全球環保意識的高 漲,有效利用各種再生能源已成為現今極為重要的課題。 由於太陽能係為生活中最顯而易見的再生能源之一,因 ® 此,太陽能電池技術也成為現今業者發展重點之一。 請參照圖1所示,一種習知之太陽能電池裝置1包含 一太陽能電池單元11及一透光殼體12。其中,太陽能電 池單元11設置於透光殼體12内,且透光殼體12可產生 聚光功能。 因此,外部光線L可穿過透光殼體12聚焦於太陽能 電池單元11,並與太陽能電池單元11產生光電轉換效應, Q 藉此太陽能電池裝置1即可產生電能輸出。 然而,當外部光線L入射角度改變,致使太陽能電池 單元11未正對於透光殼體12的聚焦點時,太陽能電池單 元11有可能無法接受到光線L,而使光線L直接穿出透光 殼體12,從而造成太陽能電池裝置1的光線利用率不佳。 因此,如何設計一種能提高光線利用率的太陽能電池 裝置,已逐漸成為重要課題之一。 【發明内容】 5 201015730 有鑑於上述課題,本發明之目的為提供一種能提高光 線利用率的太陽能電池裝置。 為達上述目的,依據本發明之一種太陽能電池裝置, 具有一空腔,空腔係實質上為密閉,太陽能電池裝置包含 一太陽能電池單元及一聚光單元。太陽能電池單元至少部 分位於空腔,聚光單元將至少一部分之外部光線聚集於太 陽能電池單元。其中,聚光單元與太陽能電池單元可相對 運動。 承上所述,依據本發明之太陽能電池裝置,其聚光單 元與太陽能電池單元形成一密閉空腔,且可相對運動。藉 此,當外部光線的入射角度改變時,藉由聚光單元與太陽 能電池單元的相對運動,即可使太陽能電池單元仍能位於 聚光單元的聚焦點,藉以降低外部光線未與太陽能電池單 元反應即直接穿出太陽能電池裝置的情況,從而可提高本 發明之太陽能電池裝置的光線利用率。 【實施方式】 以下將參照相關圖式,說明依據本發明之太陽能電池 裝置,其中相同元件以相同符號表示。 第一實施例 請參照圖2A所示,其為本發明第一實施例之太陽能 電池裝置2的示意圖。太陽能電池裝置2具有一空腔C, 空腔C係實質上為密閉的(substantially closed )。即使空 腔C藉由通孔及管路與外部儲存流體產生連通,但連通時 6 201015730 管路仍為密閉的,並未與外界的空氣產生對流,空腔c仍 為密閉。太陽能電池裝置2包含/太陽能電池單元21及 一聚光單元22。 太陽能電池單元21係至少部分位於空腔C’於本實施 例中’太陽能電池單元21包含奚少一太陽能電池元件 211。太陽能電池元件211亦可稱為光伏打電池 (photovoltaic cell)元件,其例如為染料敏化太陽能電池 (dye-sensitized solar cell)元件,係具有二玻璃基板 G1、 ® G2及一光電轉換層P,而藉由染料敏化太陽能電池元件的 玻璃基板G1與聚光單元22連結,來形成空腔C。 聚光早元22之材質係’包含玻璃、或石英、或金屬、 或陶瓷、或塑膠、或高分子材料等,其將至少一部分之外 部光線L聚集於太陽能電池單元21,且聚光單元22與太 陽能電池單元21可相對運動。 其中,聚光單元22係具有一反射面221 ,至少部分外 Q部光線L穿透部分太陽能電池單元21,並由反射面221 反射至太陽能電池單元21。聚光單元22例如可為具有反 射面221之金屬材質殼體,或者為其他不具反射性之材質 的殼體,並鍍有一作為反射面之反射層。於本實施例中, 聚光單元22以金屬材質殼體作說明。值得一提的是反 射面221可例如為一拋物球面,俾使穿射太陽能電池單元 21的外部光線L,能聚集於太陽能電池單元21。其中,反 射面221的曲率及形狀並非限制性,以外部光線l能聚光 至太陽能電池單元21為優先考量。 201015730 請參照圖2B所示,當外部光線L (例如為太陽光) 的入射角度改變時,由於反射面221為一拋物球面,因外 部光線L之聚焦點會隨著入射角度而改變,且聚焦點會於 一聚焦平面上移動。在此,以聚焦平面平行太陽能電池單 元21為例。藉由使聚光單元22與太陽能電池單元21相 對運動而產生位移,即可使太陽能電池單元21位於聚光 單元22的聚焦點,藉此降低因外部光線L的入射角度改 變,而造成外部光線L未與太陽能電池單元21反應即直 ^ 接穿出太陽能電池裝置2的情況,從而可提高太陽能電池 裝置2的光線利用率。 請參照圖3所示,其為本實施例之太陽能電池裝置2a 的另一變化態樣示意圖。太陽能電池裝置2a更包含一驅動 組件23。且,太陽能電池單元21a可具有複數太陽能電池 元件211a,該等太陽能電池元件211a共用玻璃基板G1。 驅動組件23係可與聚光單元22a及/或太陽能電池單 q 元21a連結或耦接。於此,以驅動組件23與聚光單元22a 連結作說明,然其非限制性。因此,可藉由馬達或磁力驅 動,俾使聚光單元22a及太陽能電池單元21a可相對運動。 值得一提的是,太陽能電池單元21a亦可另外藉由其他元 件予以固定,以避免當聚光單元22a被驅動組件23驅動而 移動時,太陽能電池單元21a亦一併移動。 第二實施例 請參照圖4所示,其為本發明第二實施例之太陽能電 池裝置3的示意圖。太陽能電池裝置3包含太陽能電池單 201015730 元31、聚光單元32及驅動組件33。其中,太陽能電池單 元31係具有至少一太陽能電池元件311及一承載體312。 承載體312與聚光單元32連結而形成空腔C,太陽能電池 元件311設置於承載體312。 太陽能電池元件311可例如為薄膜太陽能電池(thin film solar cell)元件、單晶梦太陽能電池(mono-crystalline silicon solar cell)元件、多晶矽太陽能電池(p〇iy_crystaiiine silicon solar cell)元件、或染料敏化太陽能電池元件。本 實施例中,太陽能電池元件311可為單一太陽能電池元 件、複數膜層結構、或為一太陽能電池陣列所形成的太陽 能電池板(solar cell panel)。另外,藉由聚光單元32之反 射面321聚集外部光線,當聚光單元32的聚焦倍率設計 得宜,可使聚焦點的面積縮小時,太陽能電池元件311的 面積可進一步縮小,以降低太陽能電池裝置3的材料成 本。其中’小面積的太陽能電池元件311可稱為一光發電 ❹ 二極體(photovoltaic diode, PVD )。 承載體312可部分透光,外部光線L穿射承載體312。 承載體312材質係包含玻璃、或石英、或金屬或陶究、 或塑膠、或高分子材料,例如可為一透明基板或一玻璃電 路板。 同樣地,藉由驅動組件33與聚光單元32或太陽能電 池單元31連結或耦接,以使聚光單元32與太陽能電池單 元31相對運動。如此一來,太陽能電池單元31隨外部光 線角度的改變,仍能位於聚光單元32的聚焦點,以可提 9 201015730 高太陽能電池裝置3的光線利用率。 請參照圖5A及圖5B所示,其為本實施例之太陽能電 池裝置3a的另一變化態樣作動方式示意圖。於本實施例 中,太陽能電池單元31a具有複數太陽能電池元件311, 其例如可為砷化鎵薄膜太陽能電池。該等太陽能電池元件 311呈陣列排列,而聚光單元32a之反射面321具有複數 反射結構,該等反射結構亦呈陣列排列並分別對應於各太 陽能電池元件311。需注意者,該等太陽能電池元件311 ® 及該等反射結構係可呈一維或二維陣列排列,於此不予以 限制。 另外,於聚光單元32a與承載體312a之間係可藉由可 完全氣密的滑軌滑槽元件或彈性元件E相互連結,以達到 可相互移動且仍為密閉空腔C的需求,於本實施例中係以 彈性元件E連結作說明。藉此,即使聚光單元32a與承載 體312a進行相對移動,聚光單元32a與承載體312a所形 Q 成的空腔C仍可保持密閉的。 而藉由太陽能電池單元31a具有複數太陽能電池元件 311,可提高太陽能電池裝置3a的光電轉換效率,以增加 太陽能電池裝置3a的應用範圍。 請參照圖6所示,其為本實施例之太陽能電池裝置3b 的又一變化態樣示意圖。太陽能電池裝置3b更可包含一 保特件34’其係與聚光單元32b及太陽能電池單元31b之 承載體312b連結而形成空腔C,太陽能電池元件311位於 空腔C。 10 201015730 保持件34係具有一滑槽結構3 w , κ ^ 偁341,而聚光單兀32b相 對應具有-滑軌結構323,俾使保持件34滑設於聚光單元 32b或承載體312b。於此’以保持件34滑設於聚光軍元 32b而承載體312b蚊於保持件34作說明,然其非限制 性》因此,藉由太陽能電池震置3b不同的結構設計,可 增加太陽能電池裝置3b的應用範圍。 另外,太陽能電池裝置3b |可包含一抗反射層乃及 一散熱元件36。 0 抗反㈣35設置於承载體3l2b之一部分表面。於本 實施例中,以抗反射層35設置於承載體312b之外表面si 為例作說明,外表面si是太陽能電池裝置3b的外部光線 入光面。若為增加承載體312b的入光量,亦可於承栽體 312b之内表面S2再增設另_抗反射層。抗反射層%例如 可為-單層膜結構或-多層膜結構,多層膜結構材料特性 為由入光面向外折射率依序遞減。 ❹ 散熱元件36設置於聚光單元32b之一外表面322。散 熱元件36例如可為散熱膜、散熱板、熱管(heat pipe)、 散熱片或散熱鰭片等。藉由散熱元件36與金屬或合金材 質的聚光單兀32b se·合,則可大幅提升太陽能電池裝置3b 的散熱效果。 第三實施例 請參照圖7所示,其為本發明第三實施例之太陽能電 池裝置4的示意圖。太陽能電池裝置4包含太陽能電池單 元41、聚光單元42及驅動組件43。其中,太陽能電池單 201015730 元41亦以具有一太陽能電池元件411及一承載體412作 說明,而聚光單元42係至少部分透光,至少一部分外部 光線穿射聚光單元42並聚光至太陽能電池單元41的太陽 能電池元件411。 聚光單元42之結構例如可為凸透鏡或菲涅爾透鏡 (Fresnellens)等結構,使得外部光線L經由凸透鏡或菲 涅爾透鏡而聚焦於太陽能電池元件411。於本實施例中, 聚光單元42以凸透鏡結構為例作說明,一太陽能電池元 ® 件411可對應一凸透鏡結構,也可以一太陽能電池元件411 對應多個凸透鏡結構或多個太陽能電池元件411對應一凸 透鏡結構。需注意者,當太陽能電池元件411呈一維、二 維或陣列方式排列時,凸透鏡結構也可對應成為一維、二 維或陣列方式排列,然其非限制性。 另外,承載體412更可具有一反射面R,其可位於承 載體412面對及/或遠離太陽能電池元件411之一侧,至少 ❹一部分光線L會由反射面R反射回太陽能電池元件411, 以增加光線利用率。於本實施例中,以承載體412具有透 明材質及一作為反射面R之反射層47,且反射面R位於 承載體412遠離太陽能電池元件411之一側。需注意者, 承載體412的形狀依不同要求可有不同的設計方式,例如 可為平板狀或具有凹部等,於此不予以限制。 因此’利用穿透式聚光單元42同樣可將至少一部分 外部光線L聚集於太陽能電池元件411,且當外部光線L 的入射角度改變時,亦可藉由使聚光單元42與太陽能電 12 201015730 池單元41相對運動,提高太陽能電池裝置4的光線利用 率。 請參照圖8所示,其為本實施例之太陽能電池裝置4a 的另一變化態樣示意圖。於本實施例中,太陽能電池單元 41a具有複數太陽能電池元件411,該等太陽能電池元件 411呈陣列排列,而聚光單元42a亦具有複數透鏡結構, 該等透鏡結構亦呈陣列排列並分別對應於各該太陽能電 池元件411。 另外,太陽能電池裝置4a亦可包含一抗反射層45及 一散熱元件46。因此,藉由抗反射層45可增加聚光單元 42a的入光量,而散熱元件46則可大幅提升太陽能電池裝 置4a的散熱效果。由於抗反射層45及散熱元件46之結構 與功效已於第二實施例中詳述,於此不再贅述。 第四實施例 請參照圖9所示,其為本發明第四實施例之太陽能電 Q 池裝置5的示意圖。太陽能電池裝置5包含太陽能電池單 元51、聚光單元52及殼體58。殼體58係與聚光單元52 及太陽能電池單元51連結形成空腔C。其中,太陽能電池 單元51以具有複數太陽能電池元件511及一承載體512 作說明,而殼體58係至少部分透光,至少一部分外部光 線L穿射殼體58並聚光至太陽能電池單元51的太陽能電 池元件511。 另外,同樣可藉由使太陽能電池單元51與聚光單元 52及殼體58相對運動,提高太陽能電池裝置5的光線利 13 201015730 用率。 請參照圖ίο所示,其為本實施例之太陽能電池裝置 5a的另一變化態樣示意圖。太陽能電池裝置5a之殼體58a 係與聚光單元52a連結形成空腔C,太陽能電池單元51a 位於空腔C。而太陽能電池裝置5a更包含一驅動組件53, 其係穿過殼體58a與位於空腔C的太陽能電池單元51a連 結。 承上所述,藉由太陽能電池裝置5、5a不同的結構設 ® 計,可增加太陽能電池裝置5、5a的應用範圍。 第五實施例 請參照圖11所示,其為本發明第五實施例之太陽能 電池裝置6的示意圖。太陽能電池裝置6包含太陽能電池 單元61、聚光單元62、驅動組件63、散熱元件66及一膠 體或一流體69。 膠體或流體69充填於空腔C,但可以完全填滿整個空 Q 腔C或部分充填空腔C(例如可只覆蓋住太陽能電池元件 611即可)。其中,膠體例如可為熔融態的膠體、具流動性 的膠體、半固化的膠體、具彈性的膠體或已固化的膠體; 流體69則可例如為氣體或液體,氣體可為空氣或惰性氣 體,而液體則例如為油(例如鑛物油)或溶劑(例如乙醇、 甲醇)。藉由膠體或流體69充填於空腔C中,可協助傳遞 太陽能電池元件611所產生的熱量,進而提升太陽能電池 元件611的散熱效果。 另外,聚光單元62及/或太陽能電池單元61係可具有 201015730 二通孔201015730 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a solar cell device. [Prior Art] With the exhaustion of consumable energy and the global awareness of environmental protection, the effective use of various renewable energy sources has become an extremely important issue today. Since solar energy is one of the most obvious renewable energy sources in life, solar cell technology has become one of the development priorities of today's operators. Referring to FIG. 1, a conventional solar cell device 1 includes a solar cell unit 11 and a light transmissive housing 12. The solar cell unit 11 is disposed in the light transmissive housing 12, and the light transmissive housing 12 can generate a concentrating function. Therefore, the external light L can be focused on the solar battery unit 11 through the light-transmitting casing 12, and a photoelectric conversion effect is generated with the solar battery unit 11, whereby the solar battery device 1 can generate electric energy output. However, when the incident angle of the external light L changes, so that the solar battery unit 11 is not facing the focus point of the light-transmitting casing 12, the solar battery unit 11 may not receive the light L, and the light L may directly pass through the light-transmitting shell. The body 12 causes the light utilization efficiency of the solar cell device 1 to be poor. Therefore, how to design a solar cell device that can improve light utilization has gradually become one of the important topics. SUMMARY OF THE INVENTION 5 201015730 In view of the above problems, an object of the present invention is to provide a solar battery device capable of improving the utilization of light. To achieve the above object, a solar cell device according to the present invention has a cavity, the cavity is substantially sealed, and the solar cell device comprises a solar cell unit and a concentrating unit. The solar cell unit is at least partially located in the cavity, and the concentrating unit concentrates at least a portion of the external light rays on the solar cell unit. Wherein, the concentrating unit and the solar battery unit are relatively movable. According to the solar battery device of the present invention, the concentrating unit and the solar battery unit form a closed cavity and are relatively movable. Thereby, when the incident angle of the external light changes, the relative movement of the concentrating unit and the solar cell unit enables the solar cell unit to remain at the focus of the concentrating unit, thereby reducing the external light and the solar cell. The reaction is a case where the solar cell device is directly passed through, so that the light utilization efficiency of the solar cell device of the present invention can be improved. [Embodiment] Hereinafter, a solar cell device according to the present invention will be described with reference to the related drawings, in which the same elements are denoted by the same reference numerals. First Embodiment Referring to Fig. 2A, there is shown a schematic view of a solar battery device 2 according to a first embodiment of the present invention. The solar cell device 2 has a cavity C, and the cavity C is substantially substantially closed. Even if the cavity C is connected to the external storage fluid through the through hole and the pipe, the pipe is still closed when it is connected. The pipe is not convected with the outside air, and the cavity c is still sealed. The solar cell device 2 includes a / solar cell unit 21 and a concentrating unit 22. The solar cell unit 21 is at least partially located in the cavity C' in the present embodiment. The solar cell unit 21 includes a solar cell element 211. The solar cell element 211 may also be referred to as a photovoltaic cell, which is, for example, a dye-sensitized solar cell element having two glass substrates G1, G2 and a photoelectric conversion layer P, On the other hand, the glass substrate G1 of the dye-sensitized solar cell element is connected to the condensing unit 22 to form the cavity C. The material of the concentrating element 22 is "containing glass, or quartz, or metal, or ceramic, or plastic, or a polymer material, etc., which concentrates at least a portion of the external light L on the solar cell unit 21, and the concentrating unit 22 It can move relative to the solar battery unit 21. The concentrating unit 22 has a reflecting surface 221, and at least a portion of the outer Q light ray penetrates a portion of the solar battery unit 21 and is reflected by the reflecting surface 221 to the solar battery unit 21. The concentrating unit 22 may be, for example, a metal casing having a reflecting surface 221 or a casing having other non-reflective materials and plated with a reflecting layer as a reflecting surface. In the present embodiment, the concentrating unit 22 is described by a metal casing. It is worth mentioning that the reflecting surface 221 can be, for example, a parabolic sphere, so that the external light L passing through the solar cell unit 21 can be concentrated on the solar cell unit 21. The curvature and shape of the reflecting surface 221 are not limited, and the external light 1 can be condensed to the solar cell unit 21 as a priority. 201015730 As shown in FIG. 2B, when the incident angle of the external light L (for example, sunlight) is changed, since the reflecting surface 221 is a parabolic spherical surface, the focus point of the external light L changes with the incident angle, and the focus is focused. The point moves on a focal plane. Here, the focus plane parallel solar cell unit 21 is taken as an example. By causing the concentrating unit 22 to move relative to the solar cell unit 21, the solar cell unit 21 can be positioned at the focus of the concentrating unit 22, thereby reducing the incident angle of the external light L, thereby causing external light. When L does not react with the solar battery cell 21, the solar cell device 2 is directly passed through, so that the light utilization efficiency of the solar cell device 2 can be improved. Referring to FIG. 3, it is a schematic diagram of another variation of the solar cell device 2a of the present embodiment. The solar cell device 2a further includes a driving unit 23. Further, the solar battery unit 21a may have a plurality of solar battery elements 211a, and the solar battery elements 211a share the glass substrate G1. The drive assembly 23 can be coupled or coupled to the concentrating unit 22a and/or the solar cell unit 21a. Here, the driving unit 23 is connected to the concentrating unit 22a for explanation, but it is not limited. Therefore, the concentrating unit 22a and the solar battery unit 21a can be relatively moved by a motor or a magnetic force. It is worth mentioning that the solar battery unit 21a can be additionally fixed by other components to prevent the solar battery unit 21a from moving together when the concentrating unit 22a is driven by the driving unit 23. Second Embodiment Referring to Figure 4, there is shown a schematic view of a solar battery unit 3 according to a second embodiment of the present invention. The solar cell device 3 includes a solar cell sheet 201015730, a concentrating unit 32, and a driving unit 33. The solar cell unit 31 has at least one solar cell element 311 and a carrier 312. The carrier 312 is coupled to the concentrating unit 32 to form a cavity C, and the solar cell element 311 is disposed on the carrier 312. The solar cell element 311 can be, for example, a thin film solar cell element, a mono-crystalline silicon solar cell element, a polycrystalline silicon solar cell element, or a dye sensitized device. Solar cell components. In this embodiment, the solar cell element 311 can be a single solar cell element, a plurality of film structures, or a solar cell panel formed by a solar cell array. In addition, when the external light is collected by the reflecting surface 321 of the concentrating unit 32, when the focusing magnification of the concentrating unit 32 is designed to reduce the area of the focusing point, the area of the solar cell element 311 can be further reduced to reduce the solar cell. Material cost of device 3. The 'small area solar cell element 311' may be referred to as a photovoltaic power generation diode (PVD). The carrier 312 is partially transparent, and the external light L passes through the carrier 312. The material of the carrier 312 comprises glass, or quartz, or metal or ceramic, or plastic, or a polymer material, such as a transparent substrate or a glass circuit board. Similarly, the driving unit 33 is coupled or coupled to the concentrating unit 32 or the solar battery unit 31 to move the concentrating unit 32 relative to the solar battery unit 31. As a result, the solar battery unit 31 can still be located at the focus of the concentrating unit 32 as the angle of the external light is changed, so that the light utilization rate of the high solar battery device 3 can be improved. Referring to FIG. 5A and FIG. 5B, a schematic diagram of another variation of the solar cell device 3a of the present embodiment is shown. In the present embodiment, the solar cell unit 31a has a plurality of solar cell elements 311, which may be, for example, gallium arsenide thin film solar cells. The solar cell elements 311 are arranged in an array, and the reflecting surface 321 of the concentrating unit 32a has a plurality of reflecting structures, and the reflecting structures are also arranged in an array and respectively correspond to the respective solar cell elements 311. It should be noted that the solar cell elements 311 ® and the reflective structures may be arranged in a one-dimensional or two-dimensional array, which is not limited herein. In addition, between the concentrating unit 32a and the carrier 312a, the fully airtight sliding chute member or the elastic member E can be connected to each other to achieve the requirement of being movable and still sealing the cavity C. In the present embodiment, the elastic members E are linked for explanation. Thereby, even if the concentrating unit 32a and the carrier 312a are relatively moved, the cavity C formed by the condensing unit 32a and the carrier 312a can be kept closed. On the other hand, since the solar battery unit 31a has the plurality of solar battery elements 311, the photoelectric conversion efficiency of the solar battery device 3a can be improved to increase the application range of the solar battery device 3a. Please refer to FIG. 6, which is a schematic diagram of still another variation of the solar cell device 3b of the present embodiment. The solar cell device 3b may further include a security member 34' coupled to the concentrating unit 32b and the carrier 312b of the solar cell unit 31b to form a cavity C, and the solar cell element 311 is located in the cavity C. 10 201015730 The retaining member 34 has a chute structure 3 w , κ ^ 偁 341, and the concentrating unit 32b has a slide rail structure 323 corresponding to the squeezing member 32b or the carrier 312b. . Here, the holder member 34 is slidably disposed on the concentrating unit 32b and the carrier 312b is vacated in the holder member 34. However, it is not limited. Therefore, solar energy can be increased by the different structural design of the solar cell 3b. The range of application of the battery device 3b. In addition, the solar cell device 3b | may include an anti-reflection layer and a heat dissipating member 36. The anti-reverse (four) 35 is disposed on a surface of a portion of the carrier 3112. In the present embodiment, the anti-reflection layer 35 is disposed on the outer surface si of the carrier 312b as an example, and the outer surface si is the external light incident surface of the solar cell device 3b. If the amount of light entering the carrier 312b is increased, an additional anti-reflection layer may be added to the inner surface S2 of the carrier 312b. The antireflection layer % may be, for example, a monolayer film structure or a multilayer film structure, and the multilayer film structure material is characterized in that the refractive index is sequentially decreased from the incident light to the outer surface.散热 The heat dissipating component 36 is disposed on an outer surface 322 of the concentrating unit 32b. The heat dissipating member 36 may be, for example, a heat dissipating film, a heat sink, a heat pipe, a heat sink or a heat sink fin, or the like. When the heat dissipating member 36 is combined with the metal or alloy concentrating unit 32b, the heat dissipating effect of the solar cell device 3b can be greatly improved. THIRD EMBODIMENT Referring to Figure 7, there is shown a schematic view of a solar battery unit 4 according to a third embodiment of the present invention. The solar cell device 4 includes a solar cell unit 41, a concentrating unit 42, and a driving unit 43. The solar cell unit 201015730 41 also has a solar cell element 411 and a carrier 412, and the concentrating unit 42 is at least partially transparent, at least a part of the external light passes through the concentrating unit 42 and is concentrated to the solar energy. Solar cell element 411 of battery unit 41. The structure of the condensing unit 42 may be, for example, a structure such as a convex lens or a Fresnel lens, such that the external light L is focused on the solar cell element 411 via a convex lens or a Fresnel lens. In the present embodiment, the concentrating unit 42 is exemplified by a convex lens structure. A solar cell element 411 may correspond to a convex lens structure, or a solar cell element 411 may correspond to a plurality of convex lens structures or a plurality of solar cell elements 411. Corresponding to a convex lens structure. It should be noted that when the solar cell elements 411 are arranged in a one-dimensional, two-dimensional or array manner, the convex lens structures may also be arranged in a one-dimensional, two-dimensional or array manner, which is not limited. In addition, the carrier 412 may further have a reflective surface R, which may be located on one side of the carrier 412 facing and/or away from the solar cell element 411, and at least a portion of the light L may be reflected by the reflective surface R back to the solar cell element 411. To increase light utilization. In the present embodiment, the carrier 412 has a transparent material and a reflective layer 47 as a reflective surface R, and the reflective surface R is located on one side of the carrier 412 away from the solar cell element 411. It should be noted that the shape of the carrier 412 may be differently designed according to different requirements, and may be, for example, a flat plate shape or a concave portion, and is not limited thereto. Therefore, at least a part of the external light L can be concentrated on the solar cell element 411 by the transmissive concentrating unit 42 , and when the incident angle of the external light L is changed, the concentrating unit 42 and the solar power can also be used 12 201015730 The cell unit 41 is relatively moved to increase the light utilization efficiency of the solar cell device 4. Please refer to FIG. 8, which is another schematic diagram of the solar cell device 4a of the present embodiment. In this embodiment, the solar cell unit 41a has a plurality of solar cell elements 411 arranged in an array, and the concentrating unit 42a also has a plurality of lens structures, and the lens structures are also arranged in an array and respectively correspond to Each of the solar cell elements 411. In addition, the solar cell device 4a may further include an anti-reflection layer 45 and a heat dissipating member 46. Therefore, the amount of light entering the concentrating unit 42a can be increased by the anti-reflection layer 45, and the heat dissipating member 46 can greatly enhance the heat dissipation effect of the solar cell device 4a. Since the structure and function of the anti-reflection layer 45 and the heat dissipating component 46 have been described in detail in the second embodiment, they will not be described again. Fourth Embodiment Referring to Figure 9, there is shown a schematic diagram of a solar cell Q cell device 5 according to a fourth embodiment of the present invention. The solar cell device 5 includes a solar cell unit 51, a concentrating unit 52, and a casing 58. The casing 58 is coupled to the concentrating unit 52 and the solar battery unit 51 to form a cavity C. The solar cell unit 51 has a plurality of solar cell elements 511 and a carrier 512, and the casing 58 is at least partially transparent, and at least a part of the external light L passes through the casing 58 and is condensed to the solar cell 51. Solar cell element 511. In addition, the solar cell unit 51 can be used to move relative to the concentrating unit 52 and the casing 58 to increase the utilization rate of the solar cell device 5. Referring to the figure, it is a schematic view of another variation of the solar cell device 5a of the present embodiment. The casing 58a of the solar cell device 5a is connected to the concentrating unit 52a to form a cavity C, and the solar cell unit 51a is located in the cavity C. The solar cell device 5a further includes a driving unit 53 which is connected to the solar battery unit 51a located in the cavity C through the casing 58a. As described above, the range of applications of the solar cell devices 5, 5a can be increased by the different configuration of the solar cell devices 5, 5a. Fifth Embodiment Referring to Fig. 11, there is shown a schematic view of a solar battery device 6 according to a fifth embodiment of the present invention. The solar cell device 6 includes a solar cell unit 61, a concentrating unit 62, a driving unit 63, a heat dissipating member 66, and a gel or a fluid 69. The colloid or fluid 69 fills the cavity C, but can completely fill the entire empty Q cavity C or partially fill the cavity C (for example, it can cover only the solar cell element 611). The colloid may be, for example, a colloid in a molten state, a colloid having a fluidity, a semi-cured colloid, an elastic colloid or a solidified colloid; the fluid 69 may be, for example, a gas or a liquid, and the gas may be air or an inert gas. The liquid is, for example, an oil such as mineral oil or a solvent such as ethanol or methanol. The filling of the cavity C by the colloid or fluid 69 assists in transferring the heat generated by the solar cell element 611, thereby improving the heat dissipation effect of the solar cell element 611. In addition, the concentrating unit 62 and/or the solar battery unit 61 can have two through holes of 201015730.

〜熱交 由熱交 至少一通孔623。於本實施例,以聚光單元62具有 623作說明,然其非限制性。因此,膠體或流體69 通孔623進出空腔C。而太陽能電池裝置6更可與 換單元T連接,膠體或流體69流出空腔C,係經 換單元T釋放一熱能後,再流回空腔C。 藉此,複數太陽能電池裝置6之通孔623係可緩 數連通管I彼此連接,再與熱交換單元τ連接,你:由複 ^使儲存於 ❹ 熱父換單元T的流體69可經由通孔623注入至办腔◦ 注入後即可封閉通孔623,以維持空腔C的密閉。若不封 閉通孔623 ’於進行散熱時’則可將已吸收熱量的流體的 抽出進行熱交換,然後再經由熱交換單元T充填入溫度較 低的冷卻流體69’藉此則可提高太陽能電池裝置6的散熱 效果。其中’由於膠體或流體69仍於一固定的空間内擴 環’故聚光單元62及太陽能電池單元61仍然形成—實質 上密閉的空腔C。 ❹ 值得一提的是,太陽能電池裝置之結構亦可應用如第 三實施例及第四實施例所述之結構,於此不再予以贅述。 綜上所述,依據本發明之太陽能電池裝置,其聚光單 元與太陽能電池單元形成一密閉空腔,且可相對運動。藉 此’當外部光線的入射角度改變時,藉由聚光單元與太陽 能電池單元的相對運動’即可使太陽能電池單元仍能位於 聚光單元的聚焦點,藉以降低外部光線未與太陽能電池單 元反應即直接穿出太陽能電池裝置的情況,從而可提高本 發明之太陽能電池裝置的光線利用率。 15 201015730 另外,本發明之太陽能電池裝置所具有的空腔内更可 充填膠體或流體,因此可藉由膠體或流體傳遞太陽能電池 元件所產生的熱量,進而提升太陽能電池元件的散熱效 果。且藉由聚光單元與承載體之不同的結構設計方式,可 f 增加本發明之太陽能電池模組的應用範圍。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 ❹ 【圖式簡單說明】 圖1為一種習知之太陽能電池裝置示意圖; 圖2A為本發明第一實施例之太陽能電池裝置的示意 圖,圖2B為本發明第一實施例之太陽能電池裝置的作動 方式示意圖; 圖3為本發明第一實施例之太陽能電池裝置的另一變 Q 化態樣示意圖; 圖4為本發明第二實施例之太陽能電池裝置的示意 圖; 圖5A及圖5B為本發明第二實施例之太陽能電池裝置 的另一變化態樣作動方式示意圖; 圖6為本發明第二實施例之太陽能電池裝置的又一變 化態樣示意圖; 圖7為本發明第三實施例之太陽能電池裝置的示意 201015730 圖8為本發明第三實施例之太陽能電池裝置的另一變 化態樣示意圖; 圖9為本發明第四實施例之太陽能電池裝置的示意 圖; < 圖10為本發明第四實施例之太陽能電池裝置的另一 變化態樣示意圖;以及 圖11為本發明第五實施例之太陽能電池裝置的示意 圖。 ❹ 【主要元件符號說明】 I、 2、2a、3、3a、3b、4、4a、5、5a、6 :太陽能電池裝 置 II、 21、21a、31、31a、31b、41、41 a、51、51a、61:太 陽能電池單元 12 :透光殼體 Q 211、211a、311、411、511、611 :太陽能電池元件 22、 22a、32、32a ' 32b、42 ' 42a、52、52a、62 :聚光單 元 221、321、R :反射面 23、 33、43、53、63 :驅動組件 312、312a、312b、412、512、612 :承載體 322、S1 :外表面 323 :滑軌結構 34 :保持件 17 201015730 341 :滑槽結構 35、 45 :抗反射層 36、 46、66 :散熱元件 47 :反射層 58、58a :殼體 623 :通孔 69 :流體 C :空腔 E:彈性元件 Gl、G2 :玻璃基板 I :連通管 L :外部光線 P:光電轉換層 S2 ··内表面 T ··熱交換單元~ Heated by hot cross at least one through hole 623. In the present embodiment, the concentrating unit 62 has 623 for description, but it is not limited. Thus, the colloid or fluid 69 through hole 623 enters and exits the cavity C. The solar cell device 6 is further connected to the replacement unit T, and the colloid or fluid 69 flows out of the cavity C, and the heat exchange energy is released by the replacement unit T, and then flows back to the cavity C. Thereby, the through holes 623 of the plurality of solar battery devices 6 are connected to each other by the slow communication pipes I, and then connected to the heat exchange unit τ, and the fluid 69 stored in the heat exchange unit T can be passed through The hole 623 is injected into the chamber. After the injection, the through hole 623 can be closed to maintain the sealing of the cavity C. If the through hole 623' is not closed, the heat-extracting fluid can be exchanged for heat exchange, and then the lower temperature cooling fluid 69' can be filled via the heat exchange unit T, thereby improving the solar cell. The heat dissipation effect of the device 6. Wherein the concentrating unit 62 and the solar cell unit 61 still form a substantially closed cavity C because the colloid or fluid 69 is still expanding in a fixed space.值得 It is worth mentioning that the structure of the solar cell device can also be applied as described in the third embodiment and the fourth embodiment, and details are not described herein. In summary, according to the solar cell device of the present invention, the concentrating unit and the solar cell unit form a closed cavity and are relatively movable. Therefore, when the incident angle of the external light is changed, the solar cell can still be located at the focus of the concentrating unit by the relative movement of the concentrating unit and the solar cell unit, thereby reducing the external light and the solar cell. The reaction is a case where the solar cell device is directly passed through, so that the light utilization efficiency of the solar cell device of the present invention can be improved. Further, the solar cell device of the present invention can be filled with a colloid or a fluid in the cavity, so that the heat generated by the solar cell element can be transferred by the colloid or fluid, thereby improving the heat dissipation effect of the solar cell element. Moreover, the application range of the solar cell module of the present invention can be increased by the different structural design of the concentrating unit and the carrier. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional solar cell device; FIG. 2A is a schematic diagram of a solar cell device according to a first embodiment of the present invention, and FIG. 2B is a schematic view of a solar cell device according to a first embodiment of the present invention. 3 is a schematic view showing another modified state of the solar cell device according to the first embodiment of the present invention; FIG. 4 is a schematic view showing a solar cell device according to a second embodiment of the present invention; FIG. 5A and FIG. FIG. 6 is a schematic diagram showing another variation of the solar cell device according to the second embodiment of the present invention; FIG. 7 is a solar cell according to a third embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 8 is a schematic view showing another variation of a solar battery device according to a third embodiment of the present invention; FIG. 9 is a schematic view showing a solar battery device according to a fourth embodiment of the present invention; Another variation of the solar cell device of the embodiment; and FIG. 11 is a solar cell device according to a fifth embodiment of the present invention. A schematic of FIG. ❹ [Explanation of main component symbols] I, 2, 2a, 3, 3a, 3b, 4, 4a, 5, 5a, 6: solar cell devices II, 21, 21a, 31, 31a, 31b, 41, 41 a, 51 , 51a, 61: solar battery unit 12: light-transmitting housing Q 211, 211a, 311, 411, 511, 611: solar battery elements 22, 22a, 32, 32a '32b, 42' 42a, 52, 52a, 62: Condenser unit 221, 321, R: reflective surface 23, 33, 43, 53, 63: drive assembly 312, 312a, 312b, 412, 512, 612: carrier 322, S1: outer surface 323: slide structure 34: Holding member 17 201015730 341: chute structure 35, 45: anti-reflection layer 36, 46, 66: heat dissipating member 47: reflective layer 58, 58a: housing 623: through hole 69: fluid C: cavity E: elastic member G1 , G2 : glass substrate I : communication tube L : external light P: photoelectric conversion layer S2 ·· inner surface T ··heat exchange unit

Claims (1)

201015730 十、申請專利範圍: 1、一種太陽能電池裝置,具有一空腔,該空腔係實質上 為密閉,該太陽能電池裝置包含: 一太陽能電池單元,其係至少部分位於該空腔;以及 一聚光單元,其係將至少一部分之外部光線聚集於該 太陽能電池單元, 其中,該聚光單元與該太陽能電池單元可相對運動。 0 2、如申請專利範圍第1項所述之太陽能電池裝置,其中 該太陽能電池單元包含至少一太陽能電池元件,該太 陽能電池元件與該聚光單元連結而形成該空腔。 3、如申請專利範圍第1項所述之太陽能電池裝置,更包 含: 一驅動組件,與該聚光單元及/或該太陽能電池單元連 結,俾使該聚光單元及該太陽能電池單元可相對運 動。 ❹ 4、如申請專利範圍第1項所述之太陽能電池裝置,其中 該太陽能電池單元包含一承載體以及至少一太陽能電 池元件,該承載體與該聚光單元連結而形成該空腔, 該太陽能電池元件設置於該承載體。 5、如申請專利範圍第4項所述之太陽能電池裝置,其中 該承載體之材質係包含玻璃、或石英、或金屬、或陶 瓷、或塑膠、或高分子材料。 6、如申請專利範圍第4項所述之太陽能電池裝置,其中 該承載體係至.少部分透光,外部光線穿射該承載體。 201015730 7、如申請專利範圍第4項所述之太陽能電池裝置,其中 該承載體具有一反射面,其係位於該承載體面對及/或 遠離該太陽能電池元件之一侧。 ^ 8、如申請專利範圍第4項所述之太陽能電池裝置,更包 - 含: 一保持件,其係與該聚光單元及該承載體連結而形成 該空腔,該太陽能電池元件位於該空腔。 @ 9、如申請專利範圍第8項所述之太陽能電池裝置,其中 該保持件具有一滑槽結構,該保持件滑設於該聚光單 元或該承載體。 10、 如申請專利範圍第1項所述之太陽能電池裝置,其中 該聚光單元具有一反射面,至少部分外部光線由該反 射面反射至該太陽能電池單元。 11、 如申請專利範圍第10項所述之太陽能電池裝置,其 中部分外部光線穿透部分該太陽能電池單元,並由該 ,© 反射面反射至該太陽能電池單元。 : 12、如申請專利範圍第10項所述之太陽能電池裝置,其 中該太陽能電池單元具有複數太陽能電池元件,該等 太陽能電池元件呈陣列排列,而該聚光單元之該反射 面具有複數反射結構,該等反射結構亦呈陣列排列並 分別對應於各該太陽能電池元件。 13、如申請專利範圍第1項所述之太陽能電池裝置,其中 該聚光單元係至少部分透光,至少一部分外部光線穿 射該聚光單元並聚光至該太陽能電池單元。 20 201015730 14、 如申請專利範圍第13項所述之太陽能電池裝置,其 中該太陽能電池單元具有複數太陽能電池元件,該等 太陽能電池元件呈陣列排列,而該聚光單元具有複數 透鏡結構,該等透鏡結構亦呈陣列排列並分別對應於 各該太陽能電池元件。 15、 如申請專利範圍第1項所述之太陽能電池裝置,其中 該聚光單元之材質係包含玻璃、或石英、或金屬、或 _ 陶曼、或塑耀、或南分子材料。 〇 16、 如申請專利範圍第1項所述之太陽能電池裝置,更包 含: 一膠體或一流體,其係充填於該空腔。 17、 如申請專利範圍第16項所述之太陽能電池裝置,其 中該聚光單元及/或該太陽能電池單元具有至少一通 孔,該膠體或該流體經由該通孔進出該空腔。 18、 如申請專利範圍第16項所述之太陽能電池裝置,其 〇 更與一熱交換單元連接,該膠體或該流體流出該空 腔,係經由該熱交換單元釋放一熱能後,再流回該空 腔。 19、 如申請專利範圍第1項所述之太陽能電池裝置,更包 含: 一散熱元件,其係設置於該聚光單元及/或該太陽能電 池單元。 20、 如申請專利範圍第1項所述之太陽能電池裝置,更包 含: 21 201015730 一殼體,其係與該聚光單元及該太陽能電池單元連結 形成該空腔。 21、 如申請專利範圍第1項所述之太陽能電池裝置,更包 含: 一殼體,其係與該聚光單元連結形成該空腔,該太陽 能電池單元位於該空腔。 22、 如申請專利範圍第21項所述之太陽能電池裝置,更 Ο 包含: 一驅動組件,其係穿過該殼體而與位於該空腔的該太 陽能電池單元連結。 .❹ 22201015730 X. Patent application scope: 1. A solar cell device having a cavity, the cavity being substantially sealed, the solar cell device comprising: a solar cell unit at least partially located in the cavity; And a light unit that collects at least a portion of external light rays to the solar cell unit, wherein the concentrating unit and the solar cell unit are relatively movable. The solar cell device according to claim 1, wherein the solar cell unit comprises at least one solar cell element, and the solar cell element is coupled to the concentrating unit to form the cavity. 3. The solar cell device of claim 1, further comprising: a driving component coupled to the concentrating unit and/or the solar cell unit, such that the concentrating unit and the solar cell unit are opposite motion. 4. The solar cell device of claim 1, wherein the solar cell unit comprises a carrier and at least one solar cell component, the carrier is coupled to the concentrating unit to form the cavity, the solar energy The battery component is disposed on the carrier. 5. The solar cell device of claim 4, wherein the material of the carrier comprises glass, or quartz, or metal, or ceramic, or plastic, or a polymer material. 6. The solar cell device of claim 4, wherein the carrier system has a portion of light transmission, and external light passes through the carrier. The solar cell device of claim 4, wherein the carrier has a reflecting surface located on a side of the carrier facing and/or away from the solar cell element. The solar cell device of claim 4, further comprising: a holding member coupled to the concentrating unit and the carrier to form the cavity, wherein the solar cell component is located Cavity. The solar cell device of claim 8, wherein the holder has a chute structure, and the holder is slidably disposed on the concentrating unit or the carrier. 10. The solar cell device of claim 1, wherein the concentrating unit has a reflecting surface from which at least a portion of external light is reflected to the solar cell unit. 11. The solar cell device of claim 10, wherein a portion of the external light penetrates a portion of the solar cell and is reflected by the reflective surface to the solar cell. The solar cell device of claim 10, wherein the solar cell unit has a plurality of solar cell elements arranged in an array, and the reflective surface of the concentrating unit has a complex reflective structure The reflective structures are also arranged in an array and respectively correspond to the respective solar cell elements. 13. The solar cell device of claim 1, wherein the concentrating unit is at least partially transparent, and at least a portion of the external light passes through the concentrating unit and is condensed to the solar cell. The solar cell device of claim 13, wherein the solar cell unit has a plurality of solar cell elements arranged in an array, and the concentrating unit has a plurality of lens structures, The lens structures are also arranged in an array and correspond to each of the solar cell elements, respectively. 15. The solar cell device of claim 1, wherein the material of the concentrating unit comprises glass, or quartz, or metal, or _Taman, or plastic, or south molecular material. The solar cell device of claim 1, further comprising: a colloid or a fluid filled in the cavity. The solar cell device of claim 16, wherein the concentrating unit and/or the solar cell unit has at least one through hole through which the colloid or the fluid enters and exits the cavity. 18. The solar cell device of claim 16, further comprising a heat exchange unit, the gel or the fluid flowing out of the cavity, releasing a heat energy through the heat exchange unit, and then flowing back The cavity. 19. The solar cell device of claim 1, further comprising: a heat dissipating component disposed in the concentrating unit and/or the solar cell unit. 20. The solar cell device of claim 1, further comprising: 21 201015730 A housing coupled to the concentrating unit and the solar cell unit to form the cavity. 21. The solar cell device of claim 1, further comprising: a housing coupled to the concentrating unit to form the cavity, the solar battery unit being located in the cavity. 22. The solar cell device of claim 21, further comprising: a drive assembly coupled through the housing to the solar battery unit located in the cavity. .❹ 22
TW097139440A 2008-10-14 2008-10-14 Solar cell apparatus TWI369787B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097139440A TWI369787B (en) 2008-10-14 2008-10-14 Solar cell apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097139440A TWI369787B (en) 2008-10-14 2008-10-14 Solar cell apparatus

Publications (2)

Publication Number Publication Date
TW201015730A true TW201015730A (en) 2010-04-16
TWI369787B TWI369787B (en) 2012-08-01

Family

ID=44830151

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139440A TWI369787B (en) 2008-10-14 2008-10-14 Solar cell apparatus

Country Status (1)

Country Link
TW (1) TWI369787B (en)

Also Published As

Publication number Publication date
TWI369787B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
TW201010098A (en) Solar cell module
US9541306B2 (en) Solar flux conversion module
Miñano et al. Free-form optics for Fresnel-lens-based photovoltaic concentrators
JP2011525965A5 (en)
JP5818813B2 (en) Multi-point cooling system for solar concentrator
CN101667603A (en) Solar battery module
TW201337195A (en) Temperature differential power generation system of solar energy heat-collecting oil tank, and integrated planar micro-ultra heat pipe thermal conduction device, transition metal alloy super-heat conductive device and their applications
Winston et al. Hybrid solar collector using nonimaging optics and photovoltaic components
EP2254157A1 (en) Solar cell device with high heat dissipation efficiency
CN101989629B (en) Solar battery module and manufacturing method thereof
US20140326293A1 (en) Methods and apparatus for solar energy concentration and conversion
JP2009147155A (en) Condensing photovoltaic power generation system
US20200228058A1 (en) Concentrated multifunctional solar system
CN101860271B (en) Line-focusing solar photo-electric conversion device with high multiplying power
Vu et al. A homogeniser inspired by the crustacean’s eye with uniform irradiance distribution and high optical efficiency characteristics for concentrated photovoltaics system
TW201015730A (en) Solar cell apparatus
CN101728444A (en) Solar battery device
WO2011027421A1 (en) Photothermal conversion device
TW202334590A (en) Plate type container, cooling type photovoltaic power generation device and solar photovoltaic power generation equipment
CN102638199B (en) Solar energy point condensation photovoltaic power generation device
TW201434169A (en) Solar cell apparatus
CN102842631A (en) Solar condensation power and heat cogeneration module
RU193323U1 (en) Foldable thermal photovoltaic concentrator module with double-sided photocells
CN202736958U (en) Solar condensation power and heat cogeneration module
JP2008311408A (en) Condensing solar cell module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees