TW201015234A - Method for optical proximity correction, design and manufacturing of a reticle using character projection lithography - Google Patents

Method for optical proximity correction, design and manufacturing of a reticle using character projection lithography Download PDF

Info

Publication number
TW201015234A
TW201015234A TW098128666A TW98128666A TW201015234A TW 201015234 A TW201015234 A TW 201015234A TW 098128666 A TW098128666 A TW 098128666A TW 98128666 A TW98128666 A TW 98128666A TW 201015234 A TW201015234 A TW 201015234A
Authority
TW
Taiwan
Prior art keywords
symbol
symbols
patterns
characters
pattern
Prior art date
Application number
TW098128666A
Other languages
Chinese (zh)
Inventor
Akira Fujimura
Lance Glasser
Takashi Mitsuhashi
Kazuyuki Hagiwara
Original Assignee
D2S Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/202,364 external-priority patent/US7759026B2/en
Priority claimed from US12/202,365 external-priority patent/US7901845B2/en
Priority claimed from US12/202,366 external-priority patent/US7759027B2/en
Application filed by D2S Inc filed Critical D2S Inc
Publication of TW201015234A publication Critical patent/TW201015234A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Abstract

A method and system for manufacturing a surface having a multiplicity of slightly different patterns is disclosed. The method comprises using a stencil mask having a set of characters for forming the patterns on the surface and reducing shot count or total write time by use of a character varying technique. Application of such a method to fracturing, mask data preparation, or proximity effect correct is also disclosed. A method for optical proximity correction of a design of a pattern on a surface is also disclosed, comprising inputting desired patterns for the substrate and inputting a set of characters, some of which are complex characters, that may be used to form the pattern on the surface. A method of creating glyphs is also disclosed.

Description

201015234 六、發明說明: 【發明所屬之技彳椅領域】 交互參照相關申請案 本申請案主張以下申請案之優先權:1)2008年9月1曰 申請的美國專利申請案序列號第12/202,364號案,其名稱為 Method and System for Manufacturing a Reticle Using Character Projection Particle Beam Lithography” ; 2)2008年9 月1日申請的美國專利申請案序列號第12/202,365號案,其 名稱為“Method For Optical Proximity Correction Of A Reticle To Be Manufactured Using Character Projection Lithography” ; 3)2008年9月1曰申請的美國專利申請案序列 第號 12/202,366號案,其名稱為“Method And System For Design Of A Reticle To Be Manufactured Using Character Projection Lithography” :4)2008年 11月 12 日申請的美國專利 申請案序列號第12/269,777號案,其名稱為“Method And System For Manufacturing A Reticle Using Character Projection Lithography” ;所有這些基於所有目的以參考方 式併入本文。 揭露背景 本揭露關於微影術,且較特定地關於利用符元或胞元 投射微影術設計及製造一表面,該表面可是一標線片、一 晶圓或任意其它表面。 在生産或製造半導體裝置(諸如積體電路)中,光學微影 201015234 術可被用以製造料半導體裂置。光學《彡術是使用-微 影術遮罩或標線片來把圖案轉移到_基體(諸如一半導體 或秒晶圓)以產生該積體電路的-印刷製程。其它的基體可 包括平面顯不器抑或光罩。超紫外線(EUV)或X射線微影術 也破認爲是光學微影術之類型。該標線片或多個標線片可 包含與該频電路之—個別層相對應之—電關案且該圖 案可成像到該基體上的某—區域,該區域已經塗有一層轄 射敏感材料(被稱爲光阻劑或抗賴)。—旦該圖案化層被轉 移’該屠可經歷其它各種製程,諸如餘刻、離子植入(摻雜)、 金屬化、减及拋光。這些製紐使用以完成在該基體上 的-個別層。如果需要多個層,那麼整個製程或其變體將 針對每-新層而重複。最終,多個裝置或積體電路之一結 合將會呈現於該基體上。接著這些積體電路籍由切割或錯 切被相互分_來且接著可被絲成個卿包。在較一般 情況下,基體上的該等圖案可用以定義人卫製品㈣⑽), 諸如顯示器像素或磁性記錄頭。 在生產或製造半導體裝置(諸如積體電路)中,盈遮罩直 接寫入也可㈣製造料半導财置。無鱗直接寫入是 將圖案轉移到-基體(諸如—半導體或碎晶圓)以產生該積 體電路的-印刷製程。其它基體可包括平面顯示器、用於 奈米壓印之料遮罩抑或光罩。—層之理想圖案被直接寫 到表面上,在此情況下其也是該基體。—旦該㈣化層被 轉移,該層可經歷其它各種製程,諸如_、離子植入(推 雜)、金屬化、氧化及抛光。這些製程被使用以完成在該基 201015234 體上的一個別層。如果需要多個層,那麼整個製程或其變 體將針對每-新層而重複。該等層中之—些層可利用光學 微影術寫人’而其它可無遮罩直接寫人被寫人以製造 該相同基體。最終,多《置或频f路之—結合將呈現 於該基體上。接著這些積體電路籍由切相互分 離開來且被安裝成個別封包。在較1情況下,在該基體 上的該等圖討用以定義人卫製品1如顯示器像 性記錄頭。201015234 VI. Description of the invention: [Technical field of invention] Inter-referenced application The present application claims the priority of the following application: 1) US Patent Application Serial No. 12/ filed September 1, 2008 No. 202,364, entitled "Method and System for Manufacturing a Reticle Using Character Projection Particle Beam Lithography"; 2) US Patent Application Serial No. 12/202,365, filed on September 1, 2008, entitled "Method For Optical Proximity Correction Of A Reticle To Be Manufactured Using Character Projection Lithography"; 3) US Patent Application Serial No. 12/202,366, filed September 1, 2008, entitled "Method And System For Design Of A Reticle To Be Manufactured Using Character Projection Lithography": 4) U.S. Patent Application Serial No. 12/269,777, filed on November 12, 2008, entitled "Method And System For Manufacturing A Reticle Using Character Projection Lithography"; All of these are incorporated by reference for all purposes BACKGROUND OF THE INVENTION The present disclosure relates to lithography, and more particularly to the design and fabrication of a surface using a symbol or cell projection lithography, which may be a reticle, a wafer or any other surface. Or in the fabrication of semiconductor devices (such as integrated circuits), optical lithography 201015234 can be used to fabricate material semiconductor splicing. Optical 彡 是 is the use of - lithography mask or reticle to transfer the pattern to the _ substrate (such as a semiconductor or a second wafer) to produce a printed circuit of the integrated circuit. Other substrates may include a planar display or a reticle. Ultra-ultraviolet (EUV) or X-ray lithography is also considered optical. The type of lithography. The reticle or reticle may comprise an electrical gate corresponding to an individual layer of the frequency circuit and the pattern may be imaged onto a certain area of the substrate, the area already Coated with a layer of sensitizing sensitive material (called photoresist or repulsion). Once the patterned layer is transferred, the squid can undergo various other processes, such as residual etching, ion implantation (doping), metallization. , reduction and polishing. These tabs are used to complete the individual layers on the substrate. If multiple layers are required, the entire process or its variants will be repeated for each new layer. Finally, a combination of a plurality of devices or integrated circuits will be presented on the substrate. These integrated circuits are then separated from each other by cutting or miscutting and can then be sewed into a package. In a more general case, the patterns on the substrate can be used to define a personal product (4) (10), such as a display pixel or a magnetic recording head. In the production or manufacture of semiconductor devices (such as integrated circuits), the direct mask can also be written in (4) semi-conducting materials. Scaleless direct writing is a printing process that transfers a pattern to a substrate (such as a semiconductor or a shredded wafer) to produce the integrated circuit. Other substrates may include flat panel displays, matte masks for nanoimprinting, or reticle. The ideal pattern of the layer is written directly onto the surface, in which case it is also the substrate. Once the (four) layer is transferred, the layer can undergo various other processes such as _, ion implantation (extrusion), metallization, oxidation, and polishing. These processes are used to complete a separate layer on the base 201015234. If multiple layers are required, the entire process or its variants will be repeated for each new layer. The layers in the layers can be written by optical lithography while others can be written directly by the person without masking to make the same substrate. In the end, more "set or frequency f - the combination will appear on the substrate. These integrated circuits are then separated from each other and installed as individual packets. In the case of the first case, the figures on the substrate are used to define a human body article 1 such as a display image recording head.

如所述的,該微影術遮罩或標線片包含與要整合到一 基體上的電路元件相對應關何圖案。㈣製造該標線片 之該等圖案可利用⑽(電腦輔助設計)軟體或程式產生。在 設計該等圖案中,該CAD程式可遵守—組狀設計規則以 產生該標線片。這些規則可籍由處理、設計及最終使用限 制設定。一最終使用限制之一範例是以如下一方式定義一 電晶體之幾何:在需求電源電壓下該電晶體不會充分地工 作。尤其’設計規則可定義電路裝置或互連線之間的空間 容限。例如,該等設計規則用以保證該等電路裝置或線不 以一不希望的方式相互影響。例如,該等設計規則被使用 以使得線不以一方式太互相接近而導致一短路。該等設計 規則限制反映出的内容其中包括可以可靠製造之最小尺 寸。當提及這些小尺寸時,通常引入—臨界尺寸之概念。 例如,其被定義為一線之最小寬度或兩線之間的最小距 離’那些尺寸需要精緻的控制。 在籍由光學微影術之積體電路製造中的一個目的是籍 5 201015234 由使用該標線片在該基體上再製該原始電路設計。積體電 路加工廠一直嘗試盡可能有效率地使用半導體晶圓基板面 (real estate)。工程師不斷縮小該等電路之尺寸以允許該等 積體電路包含更多的電路元件且使用更少的電力。由於一 積體電路料尺寸大小減小及其電路密度增加,其對應的 遮罩圖案之臨界尺寸接近在鮮㈣射使㈣光學曝光 工具之解析度極限。由於電補局之該臨界尺寸變小且接 近該曝光卫具之解析度值,《罩圖案及顯影在該抗餘層 中的該實際電路圖案之間的準確轉錄變得困難。爲了促進 光學微影術之㈣以轉移具有比光學«彡術製程中使用的 光波長較小的特徵之圖案,開發了被稱爲光學鄰近校正 ()之製程QPC改變在該遮罩上原始的佈局以補償由 諸如光繞射轉徵與鄰近特徵之絲交互個之影響而造 成的失真。OPC包括藉由一標線片執行的所有解析度增強 OPC把子解析度微影特徵加到遮罩圖案上以降低原始 遮罩圖案與最終轉移到該基體上的電路圖案之 間的不同4等子微料徵與該絲料冑案交互作用且 彼此交互作用’且補償鄰近效應以改善最終轉移的電路圖 案用以改善_案之轉移之—個特徵是—子解析度輔助 特徵(SRAF)被加人以改善圖案轉移之另—特徵被稱爲“概 線(㈣”。襯線是小特徵,可被設置在-圖案之-轉角 (C〇證)以銳化最終轉移的圖像中之該轉角。由於光學卿 術之該等關已經延伸到子波長區域,該等⑽特徵必須 201015234 響。然而,由於As noted, the lithography mask or reticle includes a pattern corresponding to the circuit components to be integrated onto a substrate. (d) The pattern for the manufacture of the reticle can be produced using (10) (computer-aided design) software or programming. In designing such patterns, the CAD program can follow the set design rules to produce the reticle. These rules can be set by processing, design, and end use restrictions. An example of an end use restriction is to define the geometry of a transistor in such a way that the transistor does not operate adequately at the required supply voltage. In particular, design rules can define the spatial tolerance between circuit devices or interconnects. For example, such design rules are used to ensure that the circuit devices or lines do not interact in an undesired manner. For example, the design rules are used such that the lines do not approach each other too close in a way to cause a short circuit. These design rule limits reflect what is included in the minimum size that can be reliably manufactured. When referring to these small sizes, the concept of a critical dimension is usually introduced. For example, it is defined as the minimum width of a line or the minimum distance between two lines. Those sizes require fine control. One of the objects in the fabrication of integrated circuits by optical lithography is to reproduce the original circuit design on the substrate using the reticle. Integrated circuit processing plants have been trying to use semiconductor wafer substrate real estate as efficiently as possible. Engineers continue to shrink the size of these circuits to allow the integrated circuits to contain more circuit components and use less power. As the size of an integrated circuit material decreases and its circuit density increases, the critical dimension of its corresponding mask pattern approaches the resolution limit of the fresh (four) shot (four) optical exposure tool. Since the critical dimension of the electrical complementation becomes small and approaches the resolution value of the exposure fixture, accurate transcription between the mask pattern and the actual circuit pattern developed in the barrier layer becomes difficult. In order to promote the optical lithography (4) to transfer a pattern having a feature smaller than the wavelength of light used in the optical process, a process QPC called optical proximity correction was developed to change the original on the mask. The layout compensates for distortion caused by interactions such as light diffraction and adjacent features. The OPC includes all resolution enhancement OPCs performed by a reticle to add sub-resolution lithography features to the mask pattern to reduce the difference between the original mask pattern and the circuit pattern ultimately transferred to the substrate. The sub-micro-particles interact with the silk file and interact with each other' and compensate for the proximity effect to improve the final transferred circuit pattern to improve the transfer of the case - a feature is that the sub-resolution assist feature (SRAF) is The additional feature added to improve the pattern transfer is called the "proline ((4)". The serif is a small feature that can be set in the - pattern - corner (C〇) to sharpen the final transferred image. The corner. Since the optical imaging has extended to the sub-wavelength region, the (10) feature must be 201015234. However, due to

越來越複雜以補償更微妙的交互判與影響 成像系統被推祕近它們的極限,籍由足夠 最小線及間距尺相言光學鄰近效應是大㈣,因此一給 定位置之正確的OPC®案在很A程度上取決於與其相鄰的 其它幾何是什麼。因此,例如,—線端將根據在該標線片 上與匕相鄰的疋什麼而具有不同大小的概線。即使目的應 該是在該晶圓上產生完全相同的形狀。但這些微小但關鍵 的變化是重要的且防止了其它形狀會形成標線片圖案。常 見的是’討論該等經OPC裝飾之圖案根據主要特徵及OPC 特徵被寫入一標線片,主要特徵是反映在OPC裝飾之前之 該設計之特徵,OPC特徵可包括襯線、割接(jog)及SRAF。 爲了量化何謂微小變化,在OPC裝飾中相鄰之間的一典型 微小變化可以是一主要特徵大小之5%到80%。應注意,爲 了清楚起見,在該0PC之設計中的變化是正在提及的。製 造變化,諸如線邊緣粗糙及轉角變圓,也將出現於實際表 面圖案中。當這些0PC變化在該晶圓上產生實質上相同的 圖案時,意味著在該晶圓上的幾何以在一指定誤差内相同 為目標’該指定誤差根據該幾何被設計用於執行的功能之 7 201015234 細節而定,例一電晶體或一導線。然而,典型的規格是在 一主要特徵範圍的2%到50%中。還有很多也造成變化之製 造因素,但總誤差之OPC成分通常在剛剛列出的範圍中。 有多個用於在一標線片上形成圖案之技術,其包括利 用光學或粒子束系統。最常用的系統是可變形狀波束 (variable shape beam, VSB)類型,其中一精確電子束被成形 且被引導到該標線片之一塗有抗蝕劑之表面上。這些形狀 是簡單形狀,通常限制在具有某一最小及最大大小之矩形 及具有某一最小及最大大小之其三個内角為45度、45度、 90度之三角形。在預定位置,一定劑量的電子被發射到具 有這些簡單形狀之抗蝕劑中。此類型系統之總寫入時間隨 發射之數目而增加。一第二類型之系統是一符元投射系 統。在這種情況下在該系統中有一模板,其中具有各種形 狀,其可是直線、任意角度線、圓形、環形、部分圓形、 部分環形或任意曲線形狀,且其可是一組連接的複雜的形 狀或不連貫的多組連接的複雜形狀之一群組)。一電子束可 經由該模板被射入以在該標線片上高效地產生較複雜的圖 案(即符元)。在理論上,這樣的一系統可比一VSB系統快, 因爲籍由每次耗時發射它可發射較複雜的形狀。因此用一 VSB系統發射一E需要四次發射,但用一符元投射系統只需 一次發射即可完成。應當注意,成形波束系統可被認爲是 符元投射之一特定(簡單)情況,其中該等符元只是簡單符 元,通常是矩形或45-45-90之三角形。部分曝光一符元也是 可能的。例如,這可籍由阻斷部分粒子束完成。例如,在 201015234 該波束之不同部分被一孔徑切掉之情況下,以上所述之E 可被部分曝光為一F或一I。對於一很複雜的標線片來説, 必須把該圖案斷裂成近十億個且有時接近萬億個基本形 狀。例如,有用於一VSB系統之簡單的矩形形狀或一符元 投射系統中有限數目之符元。在該圖案中基本形狀(符元) 之總實例越多,寫入時間就越長且越昂貴。然而,對於寫 表面,諸如一經OPC裝飾之標線片,其中在較小的圖案之 間仍有很多細微變化,這樣的投射系統在今天是不切實際 的。可以成為該投射機在其中選擇符元耗費最少的時間的 可用符元之數目是有限的,現在只允許大約10-1000個符 元。當面臨過多的略微變化的OPC圖案需要位於一標線片 上時,尚無法得到能夠完成此任務之系統或方法。 因此,降低其用以準備及製造用於一基體之一標線片 所耗費的時間及花費將是有益的。更一般地,降低其用以 準備及製造任意表面所耗費的時間及花費將是有益的。還 可能希望具有包含生産或產生一具有需要轉移到一表面之 各種圖案之表面所需的一些複雜符元之一模板遮罩。例 如,可能的是,一表面可具有數以千計的圖案,該等圖案 互相之間只有略微不同。爲了準備一表面,希望具有一模 板遮罩,其可產生很多此等具有略微不同之圖案。本文較 充分地討論,這可籍由使用包含一組符元之一模板遮罩實 現,其中該組符元可被組合、修改或調整以產生具有很多 略微變化之圖案。因此,存在對消除與準備一表面相關聯 的上述問題之製造一表面之一方法及系統之需求。 9 201015234 【發明内容3 發明概要 在本揭露之一種形式中,揭露用於製造一表面之一方 法,該表面具有多個略有不同之圖案,該方法包含以下步 驟:將一組符元寫入一表面以在該表面上形成該等圖案及 籍由利用一符元改變技術減少發射次數或總寫入時間。 在本揭露之另一形式中,揭露用於産生一表面之一方 法,該方法包含以下步驟:設計要形成於一表面上之多個 圖案,該等圖案略有不同;自該等多個圖案決定要使用的 一組符元;準備具有該組符元之一模板遮罩及籍由利用一 符元改變技術降低發射次數或總寫入時間。 在本揭露之另一形式中,揭露用於製造一表面之一系 統,該表面具有多個略有不同之圖案,該系統包含具有用於 在該表面上形成該等圖案之一組符元之一模板遮罩及用於利 用一符元改變技術降低發射次數或總寫入時間之一裝置。 在本揭露之一形式中,揭露用於一表面上的一圖案設 計之光學鄰近校正之方法,該方法包含以下步驟:輸入用 於該基體之理想圖案;及輸入可用於在該表面上形成該等 圖案之一組符元,該組符元中的一些符元是複雜符元。 在本揭露之另一形式中,揭露用於一表面上的一圖案 設計之光學鄰近校正之一方法,該方法包含以下步驟:輸 入可能的字符,該等字符基於預定的符元且該等字符利用 對改變一符元劑量或改變一符元位置或應用一符元之部分 曝光之一計算來決定。 201015234 在本揭露之又一形式中,揭露用於一表面上的一圖案 設計之光學鄰近校正之一系統,其中該系統包含用於該基 體之期望圖案及用於在該表面上形成該等圖案中之一些圖 案之一組符元,該組符元中的一些是複雜符元。 在本揭露之另一形式中,揭露用於斷裂或遮罩資料準 備或鄰近效應校正之一方法,其包含以下步驟:輸入要在 一表面上形成之圖案,該等圖案之一子集互相之間略有不 同;及選擇要用來形成該等多個圖案之一組符元,該組符 元中的一些是複雜符元;及利用一符元改變技術降低發射 次數或總寫入時間。 在本揭露之另一形式中,揭露用於斷裂或遮罩資料準 備或鄰近效應校正之一系統,其包含用於輸入要在一表面 上形成的圖案之一裝置,該等圖案略有不同,及用於選擇 要用來形成該等多個圖案之其中一些是複雜符元的一組符 元,該組符元適當地位在一模板遮罩上,及利用一符元改 變技術降低發射次數及總寫入時間之一裝置。 本揭露之這些及其它優勢在結合附圖參看詳細説明之 後會變得清楚。 圖式簡單說明 第1圖是用以製造一表面之一胞元投射系統; 第2A圖説明了要位於一基體上的一圖案之一設計; 第2B圖説明自第2A圖中顯示的該設計在一標線片上 形成的一圖案; 第2C圖説明了利用第2B圖中的該標線片在一基體之 11 201015234 光阻中形成的一圖案,説明未經光學鄰近校正該圖像幾乎 不相似於第2A圖中顯示的該設計; 第3A圖説明了第2A圖中顯示的該圖案之一已光學鄰 近校正之版本; 第3B圖説明了第3A圖中顯示的該圖案在該標線片上 形成之後的一已光學鄰近校正之版本; 第3C圖説明了利用第3B圖中的該標線片在一矽晶圓 的該光阻中形成之一圖案; 第4A圖説明了要位於一基體上的一理想圖案; 第4B圖説明了兩個基本模板形狀; 第4C圖説明了第4B圖中顯示的兩個基本模板形狀於 一重疊方式; 第4D圖説明了利用第4C圖中顯示的該等重疊模板形 狀在一標線片上形成之一圖案; 第4E圖説明了利用第4D圖中顯示的該圖案在一基體 上形成之一圖案; 第5A圖説明了以一重疊方式之兩個基本模板形狀,其 中該等模板形狀中的一個由兩個不連貫的正方形組成; 第5B圖説明了利用第5A圖中顯示的該等重疊模板形 狀在一標線片上形成之一圖案; 第5C圖説明了利用第5B圖中顯示的該圖案在一基體 上形成之一圖案; 第6A圖説明了用於在一標線片上形成一圖案之一模板 形狀; 201015234 第6B圖説明了利用在第6A圖中所示的該模板形狀在 一標線片上形成之一圖案; 第6C圖説明了利用在第6B圖中所示的該圖案在一基 體上形成之一圖案; 第7A圖説明了用以在一表面上形成一圖案之四個模板 形狀; 第7B圖説明了利用在第7A圖中所示的該等模板形狀 在一表面上形成之一圖案; 第8A圖説明了在一模板遮罩上形成之一組符元; 第8B圖説明了利用第8A圖中所示的該組符元在一表 面上形成之一圖案; 第8C圖説明了一組調整符元; 第8D圖利用實線及虛線形狀説明了變化的劑量度,每 一符元及調整符元以變化的劑量度籍由利用第8A圖中顯示 的該組符元及第8C圖中顯示的該等調整符元被曝光在一表 面之抗餘劑中; 第8E圖説明了利用第8A圖中顯示的該組符元及第8C 圖中顯示的該等調整符元在一表面上形成之一圖案; 第9圖説明了如何準備一表面以用於製造諸如一矽晶 圓上的一積體電路之一基體的一概念性流程圖; 第10圖説明了如何準備一表面以用於製造諸如一矽晶 圓上的一積體電路之一基體的另一概念性流程圖; 第11圖説明了一組符元; 第12圖説明了一組符元及具有形狀變化之調整字符; 13 201015234 第13圖説明了一組符元及具有位置變化之調整符元; 第14圖説明了籍由調整符元之形狀變化產生之一組圖案; 第15圖説明了籍由調整符元之各種劑量量產生之一組 圖案; 第16圖説明了籍由一單一符元之各種劑量量產生之— 組圖案, 第17圖説明了籍由調整符元之位置變化產生之一組圖案; 第18圖説明了如何準備一表面以用於製造諸如一石夕晶 圓上的一積體電路之一基體的一概念性流程圖; 第19圖説明了字符之範例;及 第20圖説明了參數化字符之範例。 【實施方式3 較佳實施例之詳細說明 現在參考圖式’其中相同數字指代相同項目,根據本 揭露,第1圖數字ίο顯示一微影術系統之一個實施例,諸如 一粒子束寫入系統,在此實例中是一電子束寫入系統,其 使用符元投射以製造一表面12。該電子束寫入系統1〇具有 一電子束源14 ’其向一孔徑板18投射一電子束16。該板18 具有其上形成的一孔徑20,該孔徑允許該電子束16通過。 一旦該電子束16經由該孔徑20通過,它籍由一透鏡系統(未 顯示)作爲電子束22指向或轉向另一矩形孔徑板或模板遮 罩24。該模板遮罩24具有其上形成之多個孔徑26,該等孔 徑定義各種類型的符元28。在該模板遮罩24上形成的每一 符元28用以在表面12上形成一圖案。一電子束30形成於該 201015234 等孔徑26中的-個且被指引到該表面12上成爲—圖案. 該表面12塗有抗蝕劑(未顯示),其與該電子束3〇發生反應。 s亥圖案32籍由利用該電子束系統1〇之—個發射繪製。相比 於利用一可變成形狀波束(VSB)投射系统或方法,這減少了 元成s亥圖案3 2之總寫入時間。該表面12可以是一找線片。 該表面12接著可用在另一裝置或機器(諸如—掃瞄器)中以 把該圖案32轉移到用以產生一積體電路或—晶片之一矽晶 # 目上。更-般地,該標線片則在另—裝置或機器中以把 該圖案32轉移到一基體上。 如上所示,由於半導體及其它奈米技術製造商達到光 , 學微影術之極限,把一理想圖案轉移到一基體上是困難 的。例如,第2Α圖説明了一理想圖案4〇(其代表一電路), 要在-基體之抗钮劑中形成。當一標線片被生產試圖使該 圖案40在該標線片上形成時,該標線片不是該圖案4〇的一 完美代表。可在一標線片上形成的試圖代表該圖案4〇之一 # 圖案42顯示於第2Β圖中。相比於該-案4〇,該圖案心具有 變圓及變短之特徵。當該圖案42被用在該光學微影術製程 中時,一圖案44(如第2C圖中描繪)形成於該基體上的光阻 中。該圖案44不是很接近於該理想圖案40,説明了爲什麼 需要光學鄰近校正。 爲了補償該等圖案40與44之間的不同,使用了光學鄰 近扠正。光學鄰近校正改變該標線片以補償籍由光學繞 射相鄰开> 狀之間的光學交互作用及抗钱處理影響造成的 失真。第3Α到第3C圖顯示了光學鄰近校正如何被用以提高 15 201015234 光學微〜術製程以顯影出該圖案44之-較佳版本。特定 地第3A圖說明了是圖案如之一變化版本之一圖案該 圖案5〇使/線凡素52加到該圖案5G之各個轉角二提供額 外區域使料轉角之銳度降低的光 學及處理影 響田〜圖案5〇之—標線片被產生時,其可能以在第3B圖 中顯示的®案54出現在該標線片中。當該光學鄰近校正 過的圖案54被用在-光學微影裝置中時,-輸_案56(如Increasingly complex to compensate for more subtle interactions and affecting imaging systems are being pushed closer to their limits, with sufficient minimum line and spacing gauges. Optical proximity effects are large (four), so the correct OPC® for a given position The case is very much dependent on what other geometries are adjacent to it. Thus, for example, the line ends will have different sizes of profiles depending on what is on the reticle adjacent to the 匕. Even the purpose should be to produce exactly the same shape on the wafer. But these small but critical changes are important and prevent other shapes from forming a reticle pattern. It is common to 'discuss that these OPC-decorated patterns are written into a reticle based on the main features and OPC features. The main feature is the feature of the design that is reflected before the OPC decoration. The OPC features may include serifs, cuts ( Jog) and SRAF. To quantify what is small, a typical small change between adjacent ones in an OPC decoration can be 5% to 80% of a major feature size. It should be noted that variations in the design of the 0PC are being mentioned for clarity. Manufacturing variations, such as line edge roughness and corner rounding, will also occur in the actual surface pattern. When these 0PC variations produce substantially the same pattern on the wafer, it means that the geometry on the wafer is the same within a specified error. The specified error is designed for the function to be performed according to the geometry. 7 201015234 Depending on the details, example a transistor or a wire. However, typical specifications are in the range of 2% to 50% of a major feature range. There are also many manufacturing factors that also contribute to change, but the OPC component of the total error is usually in the range just listed. There are a number of techniques for forming a pattern on a reticle that includes the use of an optical or particle beam system. The most common system is of the variable shape beam (VSB) type in which a precise electron beam is shaped and directed onto one of the reticle coated with a resist. These shapes are simple shapes and are usually limited to a rectangle having a certain minimum and maximum size and a triangle having a minimum and maximum size of three internal angles of 45 degrees, 45 degrees, and 90 degrees. At a predetermined position, a dose of electrons is emitted into the resist having these simple shapes. The total write time for this type of system increases with the number of shots. A second type of system is a symbol projection system. In this case there is a template in the system having various shapes, which may be straight lines, any angular lines, circles, rings, partial circles, partial rings or any curved shape, and which may be a complex set of connections. A group of complex shapes of shapes or inconsistent sets of connections). An electron beam can be injected through the template to efficiently produce a more complex pattern (i.e., symbol) on the reticle. In theory, such a system can be faster than a VSB system because it can emit more complex shapes by emitting it each time. Therefore, it takes four shots to transmit an E with a VSB system, but only one shot can be completed with a symbol projection system. It should be noted that a shaped beam system can be thought of as a specific (simple) case of symbol projection, where the symbols are simply symbols, typically rectangular or a 45-45-90 triangle. Partial exposure of a symbol is also possible. For example, this can be done by blocking a portion of the particle beam. For example, in the case where a different portion of the beam is cut by an aperture in 201015234, the E described above may be partially exposed as an F or an I. For a very complex reticle, the pattern must be broken into nearly one billion and sometimes close to one trillion basic shapes. For example, there is a simple rectangular shape for a VSB system or a finite number of symbols in a symbol projection system. The more total instances of the basic shape (symbol) in the pattern, the longer and the more expensive the write time. However, for writing surfaces, such as OPC-decorated reticle, where there are still many subtle variations between smaller patterns, such projection systems are impractical today. The number of available symbols that can be the least time spent by the projector in selecting symbols is limited, and now only about 10-1000 symbols are allowed. When an OPC pattern that is subjected to excessively slight changes needs to be located on a reticle, a system or method capable of accomplishing this task is not yet available. Therefore, it would be beneficial to reduce the time and expense it would take to prepare and manufacture a reticle for a substrate. More generally, it would be beneficial to reduce the time and expense spent on preparing and manufacturing any surface. It may also be desirable to have a template mask that includes some of the complex symbols needed to produce or produce a surface having various patterns that need to be transferred to a surface. For example, it is possible that a surface can have thousands of patterns that are only slightly different from each other. In order to prepare a surface, it is desirable to have a template mask that produces a number of such slightly different patterns. As discussed more fully herein, this can be accomplished by using a template mask that includes a set of symbols that can be combined, modified, or adjusted to produce a pattern with many slight variations. Accordingly, a need exists for a method and system for fabricating a surface that eliminates the above-described problems associated with preparing a surface. 9 201015234 SUMMARY OF THE INVENTION In one form of the disclosure, a method for fabricating a surface having a plurality of slightly different patterns is disclosed, the method comprising the steps of: writing a set of symbols A surface is formed on the surface and the number of shots or total write time is reduced by utilizing a symbol change technique. In another form of the disclosure, a method for producing a surface is disclosed, the method comprising the steps of: designing a plurality of patterns to be formed on a surface, the patterns being slightly different; from the plurality of patterns Decide on a set of symbols to use; prepare a template mask with one of the set of symbols and reduce the number of shots or total write time by using a symbol change technique. In another form of the disclosure, a system for fabricating a surface having a plurality of slightly different patterns is disclosed, the system including a set of symbols for forming the pattern on the surface A template mask and means for reducing the number of shots or total write time using a symbol change technique. In one form of the present disclosure, a method of optical proximity correction for a pattern design on a surface is disclosed, the method comprising the steps of: inputting an ideal pattern for the substrate; and inputting the form for forming on the surface A symbol of a group of symbols, some symbols in the group of symbols are complex symbols. In another form of the disclosure, a method of optical proximity correction for a pattern design on a surface is disclosed, the method comprising the steps of: inputting possible characters based on predetermined symbols and the characters It is determined by one of the partial exposures for changing a symbol dose or changing a symbol position or applying a symbol. 201015234 In yet another form of the disclosure, a system for optical proximity correction for a pattern design on a surface is disclosed, wherein the system includes a desired pattern for the substrate and for forming the pattern on the surface Some of the patterns in the group are symbols, and some of the symbols are complex symbols. In another form of the disclosure, a method for rupturing or masking data preparation or proximity effect correction is disclosed, comprising the steps of: inputting a pattern to be formed on a surface, a subset of the patterns being mutually The difference is slightly different; and the selection is to be used to form one of the plurality of patterns, some of the symbols are complex symbols; and a symbol change technique is used to reduce the number of transmissions or the total write time. In another form of the disclosure, a system for rupturing or masking data preparation or proximity effect correction is disclosed, comprising means for inputting a pattern to be formed on a surface, the patterns being slightly different, And a set of symbols for selecting a plurality of patterns to be formed into complex symbols, the set of symbols being properly positioned on a template mask, and utilizing a symbol change technique to reduce the number of shots and One of the total write time devices. These and other advantages of the present disclosure will become apparent upon reference to the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cell projection system for fabricating a surface; Figure 2A illustrates a design of a pattern to be placed on a substrate; Figure 2B illustrates the design shown in Figure 2A. a pattern formed on a reticle; FIG. 2C illustrates a pattern formed by the reticle of FIG. 2B in a substrate 11 201015234 photoresist, indicating that the image is hardly corrected without optical proximity Similar to the design shown in Figure 2A; Figure 3A illustrates the version of one of the patterns shown in Figure 2A that has been optically adjacent corrected; Figure 3B illustrates the pattern shown in Figure 3A at the line a version of the optical proximity correction after the on-chip formation; FIG. 3C illustrates the formation of a pattern in the photoresist of a wafer using the reticle of FIG. 3B; FIG. 4A illustrates the presence of a pattern An ideal pattern on the substrate; Figure 4B illustrates two basic template shapes; Figure 4C illustrates the two basic template shapes shown in Figure 4B in an overlapping manner; Figure 4D illustrates the use of the display in Figure 4C The overlapping template shapes in one Forming a pattern on the line; Figure 4E illustrates forming a pattern on a substrate using the pattern shown in Figure 4D; Figure 5A illustrates two basic template shapes in an overlapping manner, wherein the templates One of the shapes consists of two discontinuous squares; Figure 5B illustrates the formation of a pattern on a reticle using the overlapping template shapes shown in Figure 5A; Figure 5C illustrates the use of Figure 5B The pattern shown forms a pattern on a substrate; Figure 6A illustrates a template shape for forming a pattern on a reticle; 201015234 Figure 6B illustrates the use of the template shown in Figure 6A The shape forms a pattern on a reticle; Figure 6C illustrates the formation of a pattern on a substrate using the pattern shown in Figure 6B; Figure 7A illustrates the formation of a pattern on a surface Four template shapes; Figure 7B illustrates the formation of a pattern on a surface using the template shapes shown in Figure 7A; Figure 8A illustrates the formation of a group of symbols on a template mask ; Figure 8B It is understood that the set of symbols shown in FIG. 8A forms a pattern on one surface; FIG. 8C illustrates a set of adjustment symbols; and the 8D diagram illustrates the varying dose levels by the solid line and the dotted line shape, each A symbol and an adjustment symbol are exposed to the residual agent on a surface by using the set of symbols shown in FIG. 8A and the adjustment symbols shown in FIG. 8C at varying dose levels; 8E The figure illustrates the use of the set of symbols shown in Figure 8A and the adjustment symbols shown in Figure 8C to form a pattern on a surface; Figure 9 illustrates how a surface is prepared for use in manufacturing such a A conceptual flow diagram of a substrate of an integrated circuit on a wafer; Figure 10 illustrates another concept of how to prepare a surface for fabricating a substrate such as an integrated circuit on a germanium wafer. Figure 11 illustrates a set of symbols; Figure 12 illustrates a set of symbols and adjustment characters with shape changes; 13 201015234 Figure 13 illustrates a set of symbols and adjusters with positional changes Figure 14 illustrates the shape change of the adjustment symbol Generating a set of patterns; Figure 15 illustrates the generation of a set of patterns by various dose amounts of the adjustment symbols; Figure 16 illustrates a set of patterns produced by various dose amounts of a single symbol, Figure 17 illustrates a set of patterns resulting from changes in the position of the adjustment symbols; Figure 18 illustrates a concept of how to prepare a surface for fabricating a substrate such as an integrated circuit on a silicon wafer. Sexual flow chart; Figure 19 illustrates an example of a character; and Figure 20 illustrates an example of a parameterized character. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, wherein like numerals refer to the same items, in accordance with the disclosure, FIG. 1 shows an embodiment of a lithography system, such as a particle beam write. The system, in this example an electron beam writing system, uses symbol projection to create a surface 12. The electron beam writing system 1 has an electron beam source 14' which projects an electron beam 16 toward an aperture plate 18. The plate 18 has an aperture 20 formed therein that allows the electron beam 16 to pass therethrough. Once the electron beam 16 passes through the aperture 20, it is directed or directed by the lens system (not shown) as an electron beam 22 to another rectangular aperture plate or stencil mask 24. The template mask 24 has a plurality of apertures 26 formed therein that define various types of symbols 28. Each symbol 28 formed on the template mask 24 is used to form a pattern on the surface 12. An electron beam 30 is formed in the apertures 26 of the 201015234 and is directed onto the surface 12 as a pattern. The surface 12 is coated with a resist (not shown) which reacts with the electron beam 3〇. The s-Hai pattern 32 is drawn by using one of the electron beam systems. This reduces the total write time of the sigma pattern 3 2 compared to using a morphable beam (VSB) projection system or method. The surface 12 can be a wire seeker. The surface 12 can then be used in another device or machine (such as a scanner) to transfer the pattern 32 to produce an integrated circuit or wafer. More generally, the reticle is in another apparatus or machine to transfer the pattern 32 to a substrate. As indicated above, it is difficult to transfer an ideal pattern to a substrate because semiconductor and other nanotechnology manufacturers have reached the limits of light and lithography. For example, Figure 2 illustrates an ideal pattern 4 〇 (which represents a circuit) to be formed in the resist of the substrate. When a reticle is produced in an attempt to form the pattern 40 on the reticle, the reticle is not a perfect representation of the pattern. An attempt to represent one of the patterns 4 形成 formed on a reticle is shown in the second figure. Compared with the case, the pattern has the characteristics of rounding and shortening. When the pattern 42 is used in the optical lithography process, a pattern 44 (as depicted in Figure 2C) is formed in the photoresist on the substrate. The pattern 44 is not very close to the ideal pattern 40, indicating why optical proximity correction is required. To compensate for the difference between the patterns 40 and 44, an optical neighboring fork is used. The optical proximity correction changes the reticle to compensate for the distortion caused by the optical interaction between the adjacent optical apertures and the anti-money treatment. Figures 3 through 3C show how the optical proximity correction can be used to improve the optical micro-process to develop the pattern 44 - the preferred version. Specifically, FIG. 3A illustrates that the pattern is one of a variation of the pattern, and the pattern is applied to the respective corners of the pattern 5G to provide an additional area to reduce the sharpness of the corner of the material. When the reticle pattern is generated, it may appear in the reticle in the case 54 shown in Fig. 3B. When the optical proximity corrected pattern 54 is used in an optical lithography apparatus,

第㈣^纷)破產生。該圖案56比該圖案44更像該理想圖 案40^這是由於光學鄰近校正產生的。儘管利用光學鄰近 权正疋有▲的’值其可能要求每—圖案都被修改或裝飾, 迨增加了生産一標線片或光罩之時間及花費。而且,當使 用OPC時在該標線片上形成的各種圖案之間可能要適當地 具有略微*同且這增加了在準備__標線片時的時間與花 費。而且,在該等圖案中的大量略微不同或變化可使得利 用符元投射系統難以控制生産—標線片,因爲需要的符元 之數目將太大。The fourth (four) and the other are broken. The pattern 56 is more like the ideal pattern 40 than the pattern 44. This is due to optical proximity correction. Although the use of optical proximity has a value of ▲ which may require each pattern to be modified or decorated, 迨 increases the time and expense of producing a reticle or mask. Moreover, the various patterns formed on the reticle when using OPC may be suitably slightly identical and this increases the time and expense in preparing the __ reticle. Moreover, a large number of variations or variations in the patterns may make it difficult to control the production-reticle using the symbol projection system because the number of symbols required will be too large.

現在參考第4A圖,顯示了要位於一基體上的—理想圖 案6〇(諸如一接觸點)。該理想圖案6〇是一正方形之形狀。在 試圖提供用以把該圖案60盡可能接近地轉移到該基體上之 一標線片中使用了如下步驟。第43圖顯示了兩個基本的模 板形狀或符元62與64,其等被用於把該理想圖案6〇寫到一 標線片上。該模板形狀62是一正方形形狀66,其具有位於 每一轉角70、72、74及76處的一襯線68。該模板形狀64是 一調整符元,可重新定位於該形狀62以改變或變動在嗲等 16 201015234 轉角7〇、72、74及76中的—個或多個轉角處的該襯線68之 形狀。例如,在第4C圖巾顯示频㈣彡_,其與該模板 形狀62之該㈣重疊。當料模_狀哗Μ被用於一 胞元投射裝置(諸如在第i圖中顯示的該電子束寫入系統⑼ 中以把-圖案寫到-標線片上時’如第,中顯示的一圖 案78將出現。該圖案78具有-轉角8G,其比其它轉角中的 任一個更長或更明顯。這是由於使用了該模板形⑽以改 變該轉角7[在-光阻或-標線片上的該圖案财被用在 -習知微影術裝置中以把該圖案78轉移到_基體上。例 如,如果給定影響光學鄰近校正之鄰近形狀,對於在該基 體上盡可能地接近於該圖案60來產生而言,該標線片上二 圖案78是適當的形狀的話,在該第侧中描繪的—圖案82 將是該圖案78轉移到-基體上的結果。該圖案叫目似於或 近似於該理想圖案60。 各種其它圖案可籍由利用該等模板形狀62及64形成。 例如,該形狀64之兩個實例可結合在一起成為—個符元 90,用以與該等轉角70及74重疊以形成一圖案%,其在第 5A圖中顯示。模板形狀9〇及92是重疊發射,其可在該標線 片上產生第5B圖中之圖案94。當給定影響光學鄰近校正之 鄰近形狀,對於在該基體上盡可能地接近於該圖案6〇來產 生而言,該標線片上的該圖案94是適當的圖案時,且當該 圖案94被用以投射該基體時,在第5CW中顯㈣—圖案% 出現在該基體上。該圖案96實質上和該理想圖案6〇是相同 的。也可能及想到的是,改變或變動在該電子束寫入系統 17 201015234 1 〇中使用的劑量以進一步修改或調整在一標線片上形成的 該等各種圖案。可以知道,籍由使用一些模板形狀,可在 諸如一標線片之一表面上形成大量或多種形狀。 現在特定參考第12圖,一組16個符元400、402、404、 406、408、410、412、414、416、418、420、422、424、 426、428及430顯示爲籍由一符元投射系統投射過後出現在 一表面上的該等符元。在該表面上的“〇個耳狀物”圖案(籍由 符元400顯示)籍由其設計為第13圖中所示之“中心CP,,450 之一符元來投射以投射設計為一正方形(如第13圖中所示 的“正方形”452)之一圖案。“2個耳狀物”圖案(籍由符元414 顯示)籍由其設計為第13圖中所示之“耳狀物在23處”454之 一符元來投射,且該符元是一調整符元之一範例。相似地, 15個符元402、404、406、408、410、412、414、416、418、 420、422、424、426、428及430與符元400相結合地被投射 可在一表面上產生15個圖案472、474、476、478、480、482、 484、486、488、190、492、494、496、498及500(如第 14 圖中所繪製)。一圖案470(第14圖)籍由以某一劑量來投射符 元400產生。第14圖中的該15個圖案472、474、476、478、 480 、 482 、 484 、 486 、 488 ' 490 、 492 、 494 、 496 ' 498及 500是籍由兩個符元發射之一結合形成的字符,其是可自一 小組符元在該表面上產生之略有不同的圖案之大變化之範 例。需要大變化之一潛在的原因是利用光學微影術之用於 最終投射之光學鄰近校正,在此情況下該表面是一標線片 或一光罩。爲了在該基艎上投射該正方形452(在第13圖中 18 201015234 所示)’由於需要光學鄰近校正,故略有不同之圖案(即該“0 個耳狀物”(第12圖)之變體)之大變化需要產生在該標線片 上。然而,本揭露無關於需要略有不同之圖案之大變化之 原因。 籍由改變该等調整符元之劑量,只藉由這些符元可發 射到該表面上的各種圖案進一步增加。第15圖代表劑量實 例530、532、534、536及538,該劑量以0%、-30%、-60%、 +50%及+ 100%改變’產生從1〇細到i9nm之臨界尺寸變化。 此外’籍由“0個耳狀物,,400(第12圖)表示的中心符元之劑量 也可被改變以產生略有不同圖案之進一步變化。第16圖表 示不同的形狀550、552、554、556及558,可籍由以-40%、 -20%、0%、+25%及+50%改變該劑量來產生於該表面上。 一形狀560説明該等形狀550、552、554、556及558之重疊 以進一步説明籍由改變該劑量可產生略有不同的圖案。該 等圖案550、552、554、556及558中的每一個可以是字符或 圖案’已知該等字符或圖案可籍由組合少數的符元發射得 到。一參數化字符可被用作更具有一般性之一更緊密表示 以在一單一描述中描述多個字符。一圖案560説明了 一劑量 量可以是表示具有一個表示形式之多個字符之一參數。描 述所有這些可能的字符550、552、554、556及558之一單一 描述的一參數化字符是一更緊密且更靈活的表示形式。略 有不同的圖案也可籍由把該等調整符元之相同的基本圖案 發射到不同的位置產生。參考第17圖,一圖案580及一圖案 582籍由把相同的1個耳狀物符元(諸如在第12圖中顯示的 19 201015234 該符元404)以不同的位置設置到該〇個耳狀物符元(諸如在 第12圖中的該符元400)而構成。籍由準備該等符元之多個 變化,在此情況下是中心符元之變化及調整符元之變化及 改變該劑量及相對位置,可使很多個略有不同之圖案被投 射到該表面上而僅使用兩次發射。使用三次或更多發射, 能夠投射到該表面上的可得字符圖案之數目按幾何級數增 加。其它的圖案,諸如圖案584、586、588及590也在第π 圖中顯示。例如’該圖案584籍由利用一調整符元412(在第 12圖中顯示)把符元400(第12圖中)與2個耳狀物之標準距離 之符元結合起來形成。該圖案586籍由利用第12圖中的該調 整符元432把該符元400與2個耳狀物之一長距離之符元結 合起來形成。該圖案588籍由利用第12圖中的該調整符元 424把第12圖中的符元4〇〇與3個耳狀物之一標準距離之符 元結合起來形成。該圖案590籍由利用第12圖中的一調整符 元434把第12圖中的符元4〇〇與3個耳狀物之一長距離之符 元結合起來形成。 現在參考第6A圖’顯示了另一模板圖案1〇〇,其可用在 試圖在一基體(諸如一矽晶圓)上形成一圖案以相似於第4 a 圖中所顯示的該理想圖案60。該模板圖案100包括一模板形 狀102 ’該模板形狀102在其每一轉角106、108、110及102 處具有一襯線104。該模板圖案100還具有一子解析度輔助 特徵(SRAF)114,其位於該等轉角106、108、11〇及112之每 ~'個之對角線處。該模板圖案100用以在一標線片上形成一 圖案116 ’如第6B圖所示。現在參考第6C圖,該圖案116接 201015234 著被用以在一基體上形成一圖案118。該圖案118相似於該 理想圖案60。 第7A圖説明了四個模板符元150、152、154及156,其 可用在一模板遮罩上以結合在一起來在一標線片上形成一 複雜形狀或圖案158 ’如第7B圖所示。尤其,第一個符元150 被發射或投射到該標線片上,接著第二個符元152被發射, 接著是第三個符元154及最後第四個符元156。這些符元是 曲線形狀而不是直線形狀。以此方式’諸如該圖案丨58之一 複雜圖案可在一標線片上形成。在該模板遮罩上的該等形 狀可被稱爲“符元”及在該標線片上形成的該圖案可被稱爲 一“字符”。也可能的是,除了利用形狀改變外,還利用劑 量控制來產生利用諸如該等符元15〇、152、154及156之相 同符元在一標線片上形成之圖案之更多略微變化。多個符 元之一結合可互相重疊在一起,籍由不同的劑量變化以增 加"T產生之可此形狀或圖案之變化。此外,一符元之位置 可改變以增加可產生之可能形狀或圖案之變化。由於該等 符元150、152、154及156之形狀是曲線的,這減少了必需 籍由一粒子束寫入系統使用以把該等符元15〇、152、154及 156發射或投射在一標線片上以寫入諸如該圖案158之一字 符圖案之發射數目。例如,該圖案158可只利用該四個符元 150、152、154及156被發射。而如果使用直線形狀,必需 使用更多的發射或VSB發射。可以看出,能夠使用符元而 非VSB發射降低了準備一標線片之時間。也可能的是,把 直線形狀和曲線形狀一起使用以在一標線片上形成一圖 21 201015234 案。儘營符元投射之此特徵在符元投射系統中可得,但對 於投射需要大量各種形狀之表面而言,可得以作爲單一元 素之符元之數目不足夠大。本方法及系統籍由可能的重疊 發射透過劑量、位置'部分投射變化把多個符元結合起來 以=著増加可得字符圖案之數目。籍由具有大量字符作爲 可朴圖案而非有限數目的字符作爲可得圖案,更複雜圖案 可被投射到該表面上,而不需明顯影響發射次數或寫入時 間。可選擇地,利用大量這樣可得的字符允許用少得多的 發射數目及寫人時間發射具有高度複祕狀之表面。 _ 現在參考第8A圖,顯示了可位於一模板遮罩上的一組 符元测之—範例。該經符元2GG可用以在-標線片上形成 圖案202 ’如第8Β圖中所示。該圖案观可形成自該組符 ' 元200中的一個或多個符元。然而,爲了更好地形成一理想 , 圖案以利用-標線片轉移到一石夕晶圓上,可使用在第扣圖 中可見之調整符元或發射2〇4以進一步提高該圖案2〇2。第 8D圖描% 了該圖案2〇2與該等調整符元2〇4之結合之一範 例’其可在-標線 >;之—抗餘劑中形成。該等調整符元2()4 ® 以虛線顯示’以指示相比於用以發射其它符元202之劑量, 用於這些符元2〇4之一較小劑量。第犯圖顯示了 一圖案 206 ’其以變化劑量使用該組符元200與該等調整符元204在 ’標線片上形成。諸如該組符元細之有限數目的符元可用 以形成多個不同形狀之圖案或多個略有不同形狀之圖案。 第9圖是如何準備一標線片以用於製造諸如一矽晶圓 上的一積體電路之一表面之-概念性流程圖250。在第一步 22 201015234 驟252中,一實體設計(諸如一積體電路之一實體設計)遭設 計。此實體設計可包括決定邏輯閘、電晶體 '金屬層及需 要在一實體設計中存在的其它項目,諸如在一積體電路中 之實體設計。下一步,在一步驟254中,決定光學鄰近校正。 在本揭露之一實施例中,其可包括把一預計算字符庫或一 參數化字符庫作爲輸入。此步驟還可以可選擇地或另外包Referring now to Figure 4A, there is shown an ideal pattern 6 (such as a contact point) to be placed on a substrate. The ideal pattern 6〇 is a square shape. The following steps are used in an attempt to provide a reticle for transferring the pattern 60 as close as possible to the substrate. Figure 43 shows two basic template shapes or symbols 62 and 64 which are used to write the ideal pattern 6 onto a reticle. The template shape 62 is a square shape 66 having a serif 68 at each of the corners 70, 72, 74 and 76. The template shape 64 is an adjustment symbol that can be repositioned to the shape 62 to change or vary the serif 68 at one or more corners of the corners 7〇, 72, 74, and 76 of the 16 201015234 shape. For example, in the 4th C-frame, the frequency (4) 彡_ is displayed, which overlaps with the (4) of the template shape 62. When the mode 哗Μ is used in a cell projection device (such as in the electron beam writing system (9) shown in Fig. i to write the pattern onto the - reticle, as shown in the A pattern 78 will appear. The pattern 78 has a -turn 8G which is longer or more pronounced than any of the other corners. This is due to the use of the template shape (10) to change the corner 7 [in-light resistance or - mark The pattern on the line is used in a conventional lithography apparatus to transfer the pattern 78 onto the substrate. For example, if a given shape affecting the optical proximity correction is given, it is as close as possible to the substrate. In the case where the pattern 60 is produced, if the second pattern 78 on the reticle is of a suitable shape, the pattern 82 depicted in the first side will be the result of the pattern 78 being transferred to the substrate. Or similar to the ideal pattern 60. Various other patterns may be formed by utilizing the template shapes 62 and 64. For example, two instances of the shape 64 may be combined to form a symbol 90 for use with such The corners 70 and 74 overlap to form a pattern %, which is in Figure 5A The template shapes 9〇 and 92 are overlapping shots on which the pattern 94 in Figure 5B can be produced. When given adjacent shapes that affect optical proximity correction, as close as possible to the substrate In the case of the pattern 6 ,, the pattern 94 on the reticle is a suitable pattern, and when the pattern 94 is used to project the substrate, the (4)-pattern % appears on the substrate in the 5th CW. The pattern 96 is substantially identical to the ideal pattern 6 。. It is also conceivable to change or vary the dose used in the electron beam writing system 17 201015234 1 以 to further modify or adjust on a reticle. These various patterns are formed. It will be appreciated that by using some template shapes, a large number or shapes can be formed on one of the surfaces such as a reticle. Referring now specifically to Figure 12, a set of 16 symbols 400, 402 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428, and 430 are shown as such symbols that appear on a surface after being projected by a symbol projection system. On the surface The "pattern" (shown by symbol 400) is designed to be a center CP, one of the symbols shown in Figure 13, to project a projection into a square (as shown in Figure 13). One of the "squares" 452) pattern. The "2 ears" pattern (shown by symbol 414) is designed to be one of the "ears at 23" 454 shown in Figure 13. Meta-projection, and the symbol is an example of an adjustment symbol. Similarly, 15 symbols 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428 and 430 are projected in combination with symbol 400 to produce 15 patterns 472, 474, 476, 478, 480, 482, 484, 486, 488, 190, 492, 494, 496, 498, and 500 on a surface. (as drawn in Figure 14). A pattern 470 (Fig. 14) is produced by projecting the symbol 400 with a dose. The 15 patterns 472, 474, 476, 478, 480, 482, 484, 486, 488 '490, 492, 494, 496 '498 and 500 in Fig. 14 are formed by combining one of two symbol emission A character that is an example of a large change in a slightly different pattern that can be produced on a surface from a small set of symbols. One of the potential reasons for the need for large variations is the use of optical lithography for optical proximity correction for final projection, in which case the surface is a reticle or a reticle. In order to project the square 452 on the substrate (shown as 18 201015234 in Fig. 13), a slightly different pattern (i.e., the "0 ears" (Fig. 12) is used because optical proximity correction is required. Large variations of the variants need to be produced on the reticle. However, this disclosure is not related to the need for a large change in the pattern that is slightly different. By varying the dose of the adjustment symbols, only the various patterns that can be emitted onto the surface by these symbols are further increased. Figure 15 represents dose examples 530, 532, 534, 536, and 538 that vary by 0%, -30%, -60%, +50%, and +100% to produce a critical dimension change from 1 〇 to i9 nm. . Furthermore, the dose of the central symbol represented by '0 ears, 400 (Fig. 12) can also be changed to produce further variations of slightly different patterns. Figure 16 shows different shapes 550, 552, 554, 556, and 558 can be produced by varying the dose by -40%, -20%, 0%, +25%, and +50%. A shape 560 illustrates the shapes 550, 552, 554 The overlap of 556 and 558 to further illustrate that a slightly different pattern can be produced by changing the dosage. Each of the patterns 550, 552, 554, 556, and 558 can be a character or pattern 'known to the character or The pattern can be derived by combining a small number of symbols. A parametric character can be used as one of the more generalized more compact representations to describe multiple characters in a single description. A pattern 560 illustrates that a dose amount can be Represents one of a plurality of characters having a representation. A parametric character describing one of all of these possible characters 550, 552, 554, 556, and 558 is a more compact and flexible representation. Different patterns can also be adjusted by The same basic pattern of symbols is emitted to different positions. Referring to Figure 17, a pattern 580 and a pattern 582 are represented by the same 1 ear symbol (such as 19 201015234 shown in Figure 12) Symbol 404) is configured with different locations to the one of the ear symbols (such as the symbol 400 in Figure 12). By preparing a plurality of variations of the symbols, in this case It is the change of the central symbol and the change of the adjustment symbol and the change of the dose and the relative position, so that a plurality of slightly different patterns can be projected onto the surface and only two shots are used. Using three or more shots, The number of available character patterns projected onto the surface is increased by geometric progression. Other patterns, such as patterns 584, 586, 588, and 590, are also shown in the πth image. For example, 'the pattern 584 is utilized by an adjuster Element 412 (shown in Fig. 12) is formed by combining symbol 400 (in Fig. 12) with the standard distance of the two ears. The pattern 586 is utilized by utilizing the adjuster in Fig. 12. Element 432 takes the symbol 400 and one of the two ears a long distance The symbols are formed in combination. The pattern 588 is formed by combining the symbol 4 第 in Fig. 12 with the symbol of one of the three ears by the adjustment symbol 424 in Fig. 12. The pattern 590 is formed by combining the symbol 4 第 in Fig. 12 with a symbol of a long distance of one of the three ears using an adjustment symbol 434 in Fig. 12. Referring now to Fig. 6A' Another template pattern is shown that can be used to attempt to form a pattern on a substrate, such as a wafer, similar to the ideal pattern 60 shown in Figure 4a. The template pattern 100 includes a Template shape 102 'The template shape 102 has a serif 104 at each of its corners 106, 108, 110 and 102. The stencil pattern 100 also has a sub-resolution assist feature (SRAF) 114 located at each of the diagonals 106, 108, 11 〇 and 112. The stencil pattern 100 is used to form a pattern 116' on a reticle as shown in Fig. 6B. Referring now to Figure 6C, the pattern 116 is connected to 201015234 to form a pattern 118 on a substrate. The pattern 118 is similar to the ideal pattern 60. Figure 7A illustrates four template symbols 150, 152, 154, and 156 that can be used on a template mask to join together to form a complex shape or pattern 158 on a reticle as shown in Figure 7B. . In particular, the first symbol 150 is transmitted or projected onto the reticle, then the second symbol 152 is transmitted, followed by the third symbol 154 and the last fourth symbol 156. These symbols are curved shapes rather than straight shapes. In this way, a complex pattern such as one of the pattern 丨 58 can be formed on a reticle. Such shapes on the stencil mask may be referred to as "symbols" and the pattern formed on the reticle may be referred to as a "character". It is also possible, in addition to utilizing shape changes, to utilize dose control to produce more slight variations in the pattern formed on a reticle using the same symbols such as the symbols 15 〇, 152, 154, and 156. The combination of one of the plurality of symbols can be overlapped with each other by a different dose change to increase the change in shape or pattern produced by "T. In addition, the position of a symbol can be varied to increase the variation in possible shapes or patterns that can be produced. Since the shapes of the symbols 150, 152, 154, and 156 are curvilinear, this reduces the need to use a particle beam writing system to transmit or project the symbols 15 〇, 152, 154, and 156. The number of shots of a character pattern such as one of the patterns 158 is written on the reticle. For example, the pattern 158 can be transmitted using only the four symbols 150, 152, 154, and 156. And if you use a straight shape, you must use more emissions or VSB emissions. It can be seen that the ability to use symbols instead of VSB transmission reduces the time to prepare a reticle. It is also possible to use a straight line shape and a curved shape together to form a Figure 21 201015234 on a reticle. This feature of the full-feature projection is available in the symbol projection system, but for projections that require a large number of various shapes, the number of symbols that can be used as a single element is not large enough. The method and system combine a plurality of symbols by a possible overlap of the transmitted dose and the positional partial projection change to = the number of available character patterns. By having a large number of characters as a simple pattern rather than a limited number of characters as a usable pattern, a more complex pattern can be projected onto the surface without significantly affecting the number of shots or the writing time. Alternatively, the use of a large number of such available characters allows a highly complex surface to be emitted with a much smaller number of shots and writer time. _ Referring now to Figure 8A, a set of symbol measurements that can be placed on a template mask is shown. The symbol 2GG can be used to form a pattern 202' on the - reticle as shown in Fig. 8. The pattern view can be formed from one or more symbols in the group of symbols '200. However, in order to better form an ideal, the pattern is transferred to a Shihua wafer using the - reticle, and the pattern can be further improved by using the adjustment symbol or the emission 2 〇 4 visible in the figure. . Fig. 8D depicts an example of the combination of the pattern 2〇2 and the adjustment symbols 2〇4, which may be formed in the anti-residue of the -mark line >; These adjustment symbols 2() 4 ® are shown in dashed lines to indicate a smaller dose for one of these symbols 2〇4 compared to the dose used to transmit other symbols 202. The first map shows a pattern 206' which is formed on the ' reticle using the set of symbols 200 and the adjustment symbols 204 in varying doses. A finite number of symbols such as the set of symbol details can be used to form a plurality of patterns of different shapes or a plurality of patterns of slightly different shapes. Figure 9 is a conceptual flow diagram 250 of how to prepare a reticle for fabricating a surface of an integrated circuit such as a germanium wafer. In the first step 22 201015234, a physical design (such as a physical design of an integrated circuit) is designed. This physical design can include determining the logic gate, the transistor 'metal layer, and other items that need to be present in a physical design, such as a physical design in an integrated circuit. Next, in a step 254, optical proximity correction is determined. In one embodiment of the present disclosure, it may include inputting a library of pre-computed characters or a library of parameterized characters. This step can also be optionally or additionally

括把一預設計符元庫作爲輸入,該預設計符元庫包括在一 步驟262中在一模板260上可得之複雜符元。在本揭露之一 實施例中,一OPC步驟254還可包括同時最佳化發射次數或 寫入時間,且還可包括一斷裂操作、一發射定位操作、一 劑量分配操作,或還可包括一發射順序最佳化操作或其它 遮罩資料準備操作。—旦光學鄰近校正完成,在-步驟256 中,進打遮罩設計。接著,在—步驟258中,可包括—斷裂 操作 H位操作、-劑量分配操作或—發射順序最 佳化之―料㈣準備操作可發生。該GPC步驟254或該 MDP步驟258之步驟中的任一個或無關於這兩個步㈣4或 258之-獨立程式可包括—程式,其用於蚊需要在一模板 上出現的有限個模板符元或籍由透過改變劑量、位置、部 刀曝光私度把m要㈣於—模板上的該特元結合起來可 :少=射而發射到該表面上之大量的字符或參數化字 t揭露it案之全部或大部分寫到該標線片上。透過 揭露應§ 了㈣,該料:㈣準 備不包括QPC。幻^ w 喊罩貝抖準 一所二==:=: 23 201015234 步驟258,其可包括一斷裂操作,還可包含—圖案匹配操作 以匹配字符以產生接近地匹配該遮罩設計之—遮罩。遮罩 資料準備還可包含輸入要在_表面上形成之圖案,其中該 等圖案略有不同’選擇要用來形成該等多個圖案之一組符 元,該組符元適當齡在-模板遮罩上,且先组符元基於 改變符元劑量或改變符元位置或應用該組符元内的一符元 之部分曝光以降低該發射次數或總寫入時間。在該表面上 的一組略有不同圖案可被設計以在該基體上產生實質上相 同的圖案。而且,該組符元可選自預定的一組符元。在本 揭露之一個實施例中,在遮罩寫入步驟262期間可快速選擇 出的在一模板上可得的一組符元(在—步驟270中)可為一特 定遮罩設計做準備。在該實施例中,一旦該遮罩資料準備 步驟258完成,在一步驟260中準備一模板。在本揭露之另 一實施例中,先於或同步於該MDP步驟258,在該步驟260 中準備一模板,且可無關於該特定遮罩設計。在此實施例 中’在步驟272中,在該步驟270中可得的該等符元及模板 佈局被設計以輸出,普遍用於很多可能的遮罩設計256,以 包括略有不同的圖案,該等略有不同的圖案可能籍由以下 輸出··一特定OPC程式254或一特定MDP程式258或特徵化 該實體設計252之特定類型設計,諸如記憶體、快閃記憶 體、晶片上系統設計、或在實體設計252中設計的特定處理 技術、或在實體設計252中使用的一特定胞元庫、或可在遮 罩設計256中形成不同組略有不同圖案之任何其它一般特 徵。該模板可包括一組符元,諸如在步驟258中決定的有限 24 201015234 個符7L,其包括一組調整符元。一旦該模板完成,該模板 用以在諸如一電子束寫入系統之一遮罩寫入機器中產生 一表面。該特定步驟以步驟262表示。該電子束寫入系統經 由該模板把一束電子投射到一表面上以在一表面上形成圖 案,如一步驟264所示。該完成的表面接著可用在—光學微 影術機器中,其在步驟266中顯示。最後,在一步驟268中, 產生諸如—石夕晶圓之一基體。如上所述,在一步驟270中, 符元可提供給該OPC步驟254或該MDP步驟258。該步驟270 也提供符元給一符元與模板設計步驟272或一字符產生梦 驟274。該符元與模板設計步驟272提供輸入到該模板步驟 260及該符元步驟270。該字符產生步驟274提供資訊到—字 符或參數化字符步驟276。而且,如已經討論過的,該等字 符或參數化字符步驟276提供資訊到該OPC步驟254或該 MDP步驟258。A pre-designed symbol library is included as input, and the pre-designed symbol library includes complex symbols available in a template 260 in a step 262. In an embodiment of the present disclosure, an OPC step 254 may further include simultaneously optimizing the number of transmissions or the writing time, and may further include a breaking operation, a transmitting positioning operation, a dose dispensing operation, or may further include a Launch sequence optimization operations or other mask data preparation operations. Once the optical proximity correction is complete, in step 256, the mask design is entered. Next, in step 258, a preparation operation may be performed including - breaking operation H bit operation, - dose dispensing operation, or - emission order optimization. Any one of the GPC step 254 or the step of the MDP step 258 or the independent of the two steps (4) 4 or 258 may include a program for the finite number of template symbols that the mosquito needs to appear on a template. Or by changing the dose, position, and the degree of exposure of the knife, the combination of the special elements of the m-(4)--template can be: less = shot and a large number of characters or parameterized words transmitted to the surface t reveal it All or most of the case is written on the reticle. Through the disclosure should be § (4), the material: (4) Preparation does not include QPC.幻^ w shouting slamming a second two ==:=: 23 201015234 Step 258, which may include a framing operation, may also include a pattern matching operation to match the characters to produce a close match to the mask design. cover. The mask data preparation may further comprise inputting a pattern to be formed on the surface of the image, wherein the patterns are slightly different 'selecting one of the plurality of symbols to be used to form the plurality of patterns, the group of symbols being appropriately aged - template On the mask, and the first group symbol is based on changing the symbol dose or changing the symbol position or applying a partial exposure of a symbol within the group of symbols to reduce the number of transmissions or the total write time. A set of slightly different patterns on the surface can be designed to produce substantially the same pattern on the substrate. Moreover, the set of symbols can be selected from a predetermined set of symbols. In one embodiment of the present disclosure, a set of symbols (in step 270) available on a template that can be quickly selected during the mask writing step 262 can be prepared for a particular mask design. In this embodiment, once the mask data preparation step 258 is completed, a template is prepared in a step 260. In another embodiment of the present disclosure, a template is prepared in step 260 prior to or in synchronization with the MDP step 258, and may be unrelated to the particular mask design. In this embodiment, in step 272, the symbols and template layouts available in step 270 are designed to be output, commonly used in many possible mask designs 256 to include slightly different patterns, These slightly different patterns may be derived from the following output: a particular OPC program 254 or a particular MDP program 258 or a particular type of design that characterizes the physical design 252, such as memory, flash memory, system-on-chip design Or a particular processing technique designed in the physical design 252, or a particular cell library used in the physical design 252, or any other general feature that can form different sets of slightly different patterns in the mask design 256. The template may include a set of symbols, such as the finite 24 201015234 character 7L determined in step 258, which includes a set of adjustment symbols. Once the template is complete, the template is used to create a surface in a masking machine such as an electron beam writing system. This particular step is represented by step 262. The electron beam writing system projects a beam of electrons onto a surface via the template to form a pattern on a surface, as shown in step 264. The finished surface can then be used in an optical lithography machine, which is shown in step 266. Finally, in a step 268, a substrate such as a lithium wafer is produced. As described above, in a step 270, symbols can be provided to the OPC step 254 or the MDP step 258. This step 270 also provides a symbol 274 for a symbol and template design step 272 or a character. The symbol and template design step 272 provides input to the template step 260 and the symbol step 270. The character generation step 274 provides information to the - character or parameterized character step 276. Moreover, as already discussed, the character or parameterized character step 276 provides information to the OPC step 254 or the MDP step 258.

現在參考第10圖,顯示了如何準備一表面以用於製造 諸如在一矽晶圓上的一積體電路之一基體之另—概念性流Referring now to Figure 10, there is shown how to prepare a surface for the fabrication of another conceptual flow of a substrate such as an integrated circuit on a germanium wafer.

積體電路 之一實體設計)被設計。此實體設計可以是設計者要轉移到 一基體上的理想圖案。下一步’在一步驟3〇4中,在兮·步驟 302中產生的該理想圖案之光學鄰近校正被決定。此步驟可 包括選擇需要準備的字符。光學鄰近校正還可包含輸入$ 能的字符,該等字符基於預定的符元,且該等字符利用 變一符元劑量或改變一符元位置或利用一符元之部分曝、> 之一計算被決定。而且,光學鄰近校正可包含從該等可& 25 201015234 的字符中選擇一字符、基於該已選定的字符計算在該基體 上的該等字符及如果出自該計算之誤差超出—預定臨限時 選擇另一字符。該等預定符元可來自幾何圖案之一列表。 一旦在一步驟304中光學鄰近校正完成,進行—遮罩設計。 接著在一步驟306中,準備一遮罩設計。—旦該遮罩設計被 準備,在一遮罩資料準備步驟308中,進一步增強該遮罩設 計發生。該遮罩資料準備步驟308可包括一程式,其用於決 定需要出現於一模板中的有限個模板符元以能夠在一標線 片上寫入所有需要的圖案。遮罩資料準備還可包含圖案匹 參 配以匹配字符以產生接近地匹配該遮罩設計之一遮罩。圖 案匹配、劑量分配及等效檢查之疊代也可執行,可能地, 在一正確建構(c〇rrect-by-construction)“決定性,,計算被執行 ' 時,只包括一次疊代。這些步驟將協助準備一增強的等效 , 遮罩設計。一旦該遮罩被增強,在一步驟31〇十產生一等效 遮罩設計。對於可用以判定該等效遮罩設計是否確實等效 於該遮罩設計之測試有兩個動機。一個動機是通過遮罩檢 驗。另一動機是確認一旦該晶片或積體電路已被製造,其 〇 將正常運作。一圖案匹配操作表明一匹配之接近度,可籍 由一組等效準則決定。一等效準則可至少部分籍由微影術 等效而定。微影術等效可籍由一組預定幾何規則、一組表 明一匹配、一部分匹配或不匹配之數學方程式或籍由運行 對在該表面設計上的該圖案之一微影術模擬與對一字符之 一微影術模擬且籍由利用一組預定幾何規則或籍由一級表 明一匹配、部分匹配或不匹配之數學方程式比較兩個結果 26 201015234 來判定。當確保一產生等效遮罩設計31〇被該等效準則接受 時,MDP步驟308可利用預定的一組可得符元、字符或參數 化子付來最佳化發射次數或寫入時間。在另一實施例中, OPC及MDP可合併在一正確建構方法中,在此情況下可沒 有從該等效遮罩設計310單獨產生的該遮罩設計3〇6。該等 效遮罩設計可用以準備一模板,如一步驟312中所示。—旦 該模板完成,該模板用以準備在諸如一電子束寫入系統之 一遮罩寫入機器中的一標線片。此步驟以一步驟314來表 示。該電子束寫入系統經由該模板把一束電子投射到—表 面上以在一表面上形成圖案。該表面在一步驟316中完成。 該完成的表面接著用在一光學微影術機器(其在一步驟318 中顯示)中以把出現在該表面上的該等圖案轉移到諸如— 石夕晶圓之一基體上以製造一積體電路。最後,在一步驟32〇 中,生產諸如一半導體晶圓之一基體。如上所述,在—步 驟322中,符元可被提供給該OPC步驟304或該MDP步驟 308。該步驟322還提供符元到一字符產生步驟326。符元與 模板設計步驟324提供輸入到該模板步驟3丨2或一符元步驟 322。該符元步驟322可提供輸入到該符元與模板設計步驟 324。該字符產生步驟326提供資訊到一字符或參數化字符 步驟328。而且,如上所討論,該等字符或參數化字符步驟 328提供資訊到該OPC步驟308或該MDP步驟308。 現在參考第18圖’顯示了如何準備一表面之另一概念 性流程圖700,δ玄表面被直接寫到諸如_石夕晶圓之一基體 上。在第一步驟702中,一實體設計(諸如一積體電路之— 27 201015234 實體設計)遭設計。其可以是該設計者想轉移到一基體上的 一理想圖案。下一步,在一步驟704中,鄰近效應校正(PEC) 及其它資料準備(DP)步驟被執行以準備輸入資料到一基體 寫入裝置,其中該實體設計之結果包含多個略有不同之圖 案。該步驟704還可包含輸入來自步驟724之可能的字符或 參數化字符,該等字符基於來自步驟718之預定符元且該等 字符利用字符產生步驟722中的對改變一符元劑量或改變 一符元位置或應用一符元之部分曝光之一計算來決定。該 步驟704還可包含圖案匹配以匹配字符以產生接近地匹配 於在步驟702中產生的該實體設計之一晶圓圖像。圖案匹 配、劑量分配及等效檢查之叠代也可執行,可能地,在一 正確建構“決定性”計算被執行時,只包括一次疊代。在一 步驟708中準備一模板且接著被提供給在一步驟710中的一 晶圓寫入器。一旦該模板完成,該模板被用以在諸如一電 子束寫入系統之一晶圓寫入機器中準備一晶圓。該步驟以 步驟710表示。該電子束寫入系統經由該模板把一束電子投 射到一表面上以在一表面上形成圖案。該表面在一步驟712 中凡成。進一步,在一步驟中符元可被提供給該PEC及 資料準備步驟704。該步驟718還提供符元到一字符產生步 驟722 4付元與模板設計步驟72〇提供輸入到模板步驟 或提供輸入到符元步驟718。該符元步驟718可提供輸入到 邊符7L與模板設計步驟720。該字符產生步驟722提供資訊 到—字符或參數化字符步驟724。該字符或參數化字符步驟 724提供資訊到該PEC及該資料準備步驟7〇4。該步驟71〇可 28 201015234 包括針對處理的每一層按需要重複應用,可能地,其中一 -層利用結合第9圖與第ig圖描述的方法處理及其它層利 用關於上述第18圖之方法處理或其它層利用用以在該石夕晶 圓上生産積體電路之任何其它晶圓寫入方法處理。 第11圖顯示了各種其它的基本模板形狀或符元35〇、 352、354、356、358、360及362,其可用作一模板上的一 組符元以在一標線片上形成各種圖案。當利用符元投射 時,该等模板符元可籍由三種方法略微修改。第一種方式 疋修改符元之形狀及大小。例如,在一單一符元可籍由部 分曝光改變該符元之一部分時,可變符元投射可被利用。 第二種方式是當發射一符元之一給定形狀及大小時略微修 改劑量量。一粒子投射發射之一“劑量,,是快門速度,即用 於一給定發射投射到一標線片之表面上之時間長度。“劑量 校正”是一處理步驟’其中用於任一給定符元投射發射之該 劑量量被略微修改,例如用於鄰近效應校正(PEC)。在此特 定實施例中,另有或結合其它劑量校正,該劑量被有目的 地改變以略微修改被投射到一標線片之該表面上以在該標 線片上形成圖案或字符之該等符元之大小及形狀。也可能 的是,籍由利用該等符元350、352、354及356之多個重疊 發射修改發射到一標線片上的該等圖案以產生很多種圖案 或字符。該等圖案或字符可以是直線、接近直線、線或曲 線形狀。進一步地,還考慮到的是,結合利用重疊符元修 改該劑量以產生更多種圖案或字符。而且,一組模板符元 可與VSB發射(其是一簡單符元之一範例)一起使用以在一 29 201015234 表面上形成更多圖案或字符。VSB發射及符元可與分配之 劑量量結合起來以產生很多各種各樣的圖案或字符。第三 個略微修改該等模板符元之方法是藉由位置變化。該等符 元358、360及362顯示了相同符元之三個位置變化。除改變 該等符元之幾何形狀及該等符元關於彼此的相對位置外, 籍由改變劑量量,來自—給定符元投射符元之集合中之可 快速被發射之遮罩圖像分割塊之數目成倍增加。需要少數 符元之大量字符成爲可得的,以用減少的投射次數或寫入 時間投射複雜的圖案。 φ 籍由利用一組符元,可形成包括直線形狀、連接任意 角度之邊緣之形狀及包括任意曲率之形狀之連接或未連接 之群組之複雜圖案。任意曲率可包括圓、半圓及四分之— —· 圓。一組符元投射符元被設計且被包括在安裝於寫入一標 線片之一粒子束投射系統中的該模板上。一光學鄰近校正 系統可用以選擇可能包括V S B發射之具有可能的變化劑量 量及部分投射程度之符元投射符元之一組合以產生大量圖 案。一組符元可被預先設計,特定的用於一特定設計或較 參 一般的用於一組具有某些共性(諸如一特定半導體製造技 術節點)之一組設計及潛在的未來設計。該光學鄰近校正系 統可斷裂重疊符元,每一符元具有可變的劑量量。這允許 在該標線片上產生複雜形狀。 也可能的是,該光學鄰近校正系統可以以一大的預先 運算或預先計算的字符庫開始。該光學鄰近校正系統接著 可試圖在執行從該積體電路之原始實體設計到該標線片設 30 201015234 ❿One of the integrated circuit designs is designed. This physical design can be an ideal pattern that the designer wants to transfer to a substrate. Next, in a step 3〇4, the optical proximity correction of the ideal pattern generated in step 302 is determined. This step can include selecting the characters you need to prepare. The optical proximity correction may also include inputting a character of $ can be based on a predetermined symbol, and the characters are changed by a symbolic dose or by changing a symbol position or using a partial exposure of a symbol, > The calculation is decided. Moreover, the optical proximity correction can include selecting a character from the characters of the & 25 201015234, calculating the characters on the base based on the selected character, and selecting if the error from the calculation exceeds a predetermined threshold Another character. The predetermined symbols can be from a list of geometric patterns. Once the optical proximity correction is complete in a step 304, a mask design is performed. Next in a step 306, a mask design is prepared. Once the mask design is prepared, in a mask data preparation step 308, the mask design is further enhanced. The mask data preparation step 308 can include a program for determining a limited number of template symbols that need to be present in a template to enable writing of all desired patterns on a reticle. The mask data preparation may also include pattern matching to match the characters to produce a mask that closely matches the mask design. The iteration of pattern matching, dose distribution, and equivalence checking can also be performed, possibly, in a correct construction (c〇rrect-by-construction) "decisive, calculation is performed", including only one iteration. These steps Will assist in preparing an enhanced equivalent, mask design. Once the mask is reinforced, an equivalent mask design is produced in a step 31. It can be used to determine if the equivalent mask design is indeed equivalent to the There are two motivations for the mask design test. One motivation is to pass the mask test. Another motivation is to confirm that once the wafer or integrated circuit has been fabricated, it will function normally. A pattern matching operation indicates the proximity of a match. Can be determined by a set of equivalence criteria. An equivalent criterion can be at least partially determined by lithography equivalence. The lithography equivalent can be determined by a set of predetermined geometric rules, a set indicating a match, a part of the match Or a mismatched mathematical equation or by running a lithography simulation of the pattern on the surface design and simulating one of the characters and using a predetermined set of geometric rules or by a The stage indicates that a matching, partially matched, or mismatched mathematical equation compares two results 26 201015234 to determine. When it is ensured that an equivalent mask design 31 is produced, the MDP step 308 can utilize a predetermined set. The symbols, characters, or parameterizations may be used to optimize the number of transmissions or write times. In another embodiment, OPC and MDP may be combined in a correct construction method, in which case there may be no such The mask design 310 is separately produced by the mask design 3〇 6. The equivalent mask design can be used to prepare a template, as shown in step 312. Once the template is completed, the template is used to prepare for an electronic One of the beam writing systems masks a reticle written into the machine. This step is represented by a step 314. The electron beam writing system projects a beam of electrons onto the surface via the template to a surface The pattern is formed. The surface is completed in a step 316. The finished surface is then used in an optical lithography machine (which is shown in a step 318) to transfer the patterns appearing on the surface to, for example, stone Forming an integrated circuit on one of the substrates of the wafer. Finally, in a step 32, a substrate such as a semiconductor wafer is produced. As described above, in step 322, the symbol can be supplied to the substrate. OPC step 304 or the MDP step 308. This step 322 also provides a symbol to a character generation step 326. The symbol and template design step 324 provides input to the template step 3丨2 or a symbol step 322. The symbol step 322 can provide input to the symbol and template design step 324. The character generation step 326 provides information to a character or parameterized character step 328. Also, as discussed above, the character or parameterized character step 328 provides information to the OPC step 308 or the MDP step 308. Referring now to Figure 18, another conceptual flow diagram 700 showing how to prepare a surface is shown, the δ metasurface being written directly onto one of the substrates, such as the Shishi wafer. In a first step 702, a physical design (such as an integrated circuit - 27 201015234 physical design) is designed. It can be an ideal pattern that the designer would like to transfer to a substrate. Next, in a step 704, proximity effect correction (PEC) and other data preparation (DP) steps are performed to prepare the input data to a matrix writing device, wherein the result of the entity design includes a plurality of slightly different patterns . The step 704 can also include inputting possible characters or parameterized characters from step 724 based on predetermined symbols from step 718 and the characters are changed by a symbol in the character generation step 722 to change a symbol dose or change one The position of the symbol or the calculation of one of the partial exposures of a symbol is used to determine. The step 704 can also include pattern matching to match the characters to produce a wafer image that closely matches the one of the physical designs generated in step 702. Iterative generation of pattern matching, dose dispensing, and equivalence checking can also be performed, possibly including only one iteration when a properly constructed "deterministic" calculation is performed. A template is prepared in a step 708 and then provided to a wafer writer in a step 710. Once the template is complete, the template is used to prepare a wafer in a wafer writing machine such as an electron beam writing system. This step is represented by step 710. The electron beam writing system projects a beam of electrons onto a surface via the template to form a pattern on a surface. The surface is formed in a step 712. Further, symbols in one step can be provided to the PEC and data preparation step 704. This step 718 also provides a symbol to a character generation step 722 4 and a template design step 72 to provide an input to the template step or provide an input to the symbol step 718. The symbol step 718 can provide input to the edge character 7L and template design step 720. The character generation step 722 provides information to the - character or parameterized character step 724. The character or parameterized character step 724 provides information to the PEC and the data preparation step 7〇4. This step 71 〇 28 201015234 includes repeating the application as needed for each layer of the process, possibly one of which is processed by the method described in connection with FIG. 9 and the ig diagram and the other layer is processed by the method of FIG. 18 above. Or other layers are processed using any other wafer writing method used to produce integrated circuitry on the Shihua wafer. Figure 11 shows various other basic template shapes or symbols 35〇, 352, 354, 356, 358, 360, and 362 that can be used as a set of symbols on a template to form various patterns on a reticle . When using symbol projection, these template symbols can be slightly modified by three methods. The first way is to modify the shape and size of the symbol. For example, variable symbol projection can be utilized when a single symbol can be changed by partial exposure to change a portion of the symbol. The second way is to slightly modify the dose amount when one of the symbols is given a given shape and size. One of the particle projection emissions "dose, is the shutter speed, which is the length of time for a given shot to be projected onto the surface of a reticle. "Dose correction" is a processing step 'which is used for any given The dose amount of the symbolic projection is slightly modified, for example for proximity effect correction (PEC). In this particular embodiment, in addition or in combination with other dose corrections, the dose is purposefully altered to be slightly modified to be projected onto The surface of a reticle is sized and shaped to form a pattern or character on the reticle. It is also possible to utilize multiple of the symbols 350, 352, 354 and 356 The overlapping emission modifies the patterns emitted onto a reticle to produce a wide variety of patterns or characters. The patterns or characters may be straight lines, near straight lines, lines or curved shapes. Further, it is also contemplated that The symbol modifies the dose to produce more patterns or characters. Also, a set of template symbols can be used with a VSB shot (which is an example of a simple symbol) on a surface of 29 201015234 More patterns or characters are formed. The VSB shots and symbols can be combined with the assigned dose amount to produce a wide variety of patterns or characters. The third method of slightly modifying the template symbols is by positional change. Equal symbols 358, 360, and 362 show three positional changes of the same symbol. In addition to changing the geometry of the symbols and the relative positions of the symbols relative to each other, by varying the dose amount, from - given The number of mask image segmentation blocks that can be quickly emitted in the collection of symbol projection symbols is multiplied. A large number of characters requiring a few symbols are available to project complex with reduced number of projections or write time. φ By using a set of symbols, a complex pattern comprising a straight line shape, a shape connecting edges of any angle, and a connected or unconnected group of shapes including arbitrary curvatures can be formed. Any curvature can include circles, semicircles And a quarter---circle. A set of symbol projection symbols are designed and included on the template mounted in a particle beam projection system that writes a reticle. An optical proximity The correction system can be used to select one of a combination of symbolic projection symbols that may include a possible varying dose amount and a partial degree of projection of the VSB emission to produce a plurality of patterns. A set of symbols can be pre-designed, specific for a particular design Or a more general design for a group of designs with some commonalities (such as a particular semiconductor fabrication technology node) and potential future designs. The optical proximity correction system can break overlapping symbols, each symbol has a variable A dose amount that allows for the creation of complex shapes on the reticle. It is also possible that the optical proximity correction system can begin with a large pre-computed or pre-computed character library. The optical proximity correction system can then be attempted to perform From the original physical design of the integrated circuit to the reticle setting 30 201015234 ❿

計之轉移之光學鄰近校正中,盡可能多地利用可得字符。 字符可每-個都標有-個相_的發射次數及寫人5 佳化值或多個值n學鄰近校正系統、—遮罩資二 備系統或-些獨立程式可籍由選擇較少發射次數或寫 間來最佳化發射次數或寫入時間。該最佳化可以枯 式來執行,其中每-字符被_以進行最佳化來針 次數及寫人_選出最佳字符,其巾以某―順序選料符 來匹配-B案’或者以-錢最佳化方絲執行諸= 用模擬退*,其巾字符選擇之交換最佳化總發射次數戍寫 入時間。可能的是,要在-標線片上形成的—些理想圖案 可能尚無法藉由任何可得字符獲匹配^這樣的圖案可能需 要籍由利用VSB發射形成。 現在參考第19圖’顯示了籍由光學鄰近校正、斷裂、 鄰近效應校正或遮罩資料之任何其它步驟可利用之字符 1000、1002、1004及 1006之範例。該等字符1()()()、1〇〇2、 10〇4及1_可以或可以不籍由相同符元之—組合被產生或 者它們也可以是產生自該四個不同符元之字符。不考慮產 生該等字符之方法,該等字符表示可能的圖案,可能的圖 案被知曉為可籍由少數次發射或寫入時間被產生在該表面 上的可能的圖案。每-字符可已與產生該字符所需的符元 之規格、用於該等符元之每一個之部分曝光指令、每一符 元之投射所需劑量及該等符元之相對位置相關聯。 第20圖顯示了參數化字符1010及1012之範例。該字符 1010説明了用可變化尺寸之規格描述的一般形狀,在此實 31 201015234 例中,長度X從10到25之間的長度單位值變化。該字符1〇12 説明了在一更具限制性的方式下之同一一般形狀,其中該 長度X只可以是特定值中的一個,例如,10、15、2〇或25。 5玄參數化字符1010説明了這些描述考慮到不適用於未被來 數化的字符之牧舉方法之大量的各種可能的字符。 用於該字符1 (H 0之一參數化字符描述之一範例可如下: pglyph upsideDownLShape (x : nanometers where ((x — 10) or ((x >10) and (x<25)) or (x = 25)))· rect (0, 0, 5, 15); ❹ rect (0, 15, x,20); end pglyph; 用於該子符1012之一參數化字符描述之·—範可如下: pglyph upsideDownLShape2 (x : nanometers where ' ((x = 10) or (x = 15) or (x = 20) or (x = 25))); rect (0, 0, 5, 15); rect (0, 15, x, 20); end pglyph; 這些範例描述基於參數,該等參數提供一邏輯測試, 該邏輯測試決定哪些參數值符合諸如“其_((X = 10)或(x = 15)或(X = 20)或(X = 25))”或“其中((X = 1〇)或((χ>ι〇)且 (χ<25))或(χ = 25))”之某一準則。有很多其它方式以描述一 參數化字符。説明一建設性方法之另一範例如下: pglyph upsideDownLShape2 (x : nanometers); glyphFor(x =10, x + x+5 ; x>25) 32 201015234 rect (0, Ο, 5, 15); rect (Ο, 15, χ, 20); end pglyph;. 儘營士 a、/ 承説明書已關於特定的實施例被詳細描述,但應 當注意的县 ^ & ,热於此技者一經理解上文,可容易設想到這In the optical proximity correction of the transfer, the available characters are utilized as much as possible. The characters can be marked with - the number of times of the phase _ and the number of times the writer is 5 or more values. The proximity correction system, the masking system, or some independent programs can be selected less. The number of shots or writes to optimize the number of shots or write times. The optimization can be performed in a dry manner, in which each character is _ to be optimized for the number of stitches and the writer _ selects the best character, and the towel matches the -B case with a certain order selector or - The money optimizes the square wire to execute = = Simulate back *, the exchange of the towel character selection optimizes the total number of shots 戍 write time. It may be that the patterns that are to be formed on the - reticle may not yet be matched by any available characters. Such a pattern may need to be formed by the use of VSB emission. Referring now to Figure 19, there is shown an example of the characters 1000, 1002, 1004 and 1006 available by any other steps of optical proximity correction, rupture, proximity effect correction or masking of data. The characters 1()()(), 1〇〇2, 10〇4, and 1_ may or may not be generated by a combination of the same symbols or they may be generated from the four different symbols. character. Regardless of the method by which the characters are produced, the characters represent possible patterns, and the possible patterns are known as possible patterns that can be produced on the surface by a few times of transmission or writing time. Each character may have been associated with the specification of the symbol required to produce the character, the partial exposure command for each of the symbols, the required dose for each symbol, and the relative position of the symbols. . Figure 20 shows an example of parameterized characters 1010 and 1012. This character 1010 illustrates the general shape described by the specification of the variable size, in which the length X varies from 10 to 25 in unit length values. The character 1 〇 12 illustrates the same general shape in a more restrictive manner, wherein the length X can only be one of a specific value, for example, 10, 15, 2 or 25. The 5 parametric character 1010 illustrates that these descriptions take into account a large variety of possible characters that are not applicable to the pastoral method of undecided characters. An example of one of the parametric character descriptions for this character 1 (H 0 can be as follows: pglyph upsideDownLShape (x : nanometers where ((x - 10) or ((x >10) and (x<25)) or ( x = 25)))· rect (0, 0, 5, 15); ❹ rect (0, 15, x, 20); end pglyph; used to describe the parameterized character of one of the sub-elements 1012 As follows: pglyph upsideDownLShape2 (x : nanometers where ' ((x = 10) or (x = 15) or (x = 20) or (x = 25))); rect (0, 0, 5, 15); rect ( 0, 15, x, 20); end pglyph; These paradigm descriptions are based on parameters that provide a logic test that determines which parameter values match such as "its _((X = 10) or (x = 15) Or (X = 20) or (X = 25)) or "where ((X = 1〇) or ((χ>ι〇) and (χ<25)) or (χ = 25))" There are many other ways to describe a parametric character. Another example of a constructive approach is as follows: pglyph upsideDownLShape2 (x : nanometers); glyphFor(x =10, x + x+5 ; x>25) 32 201015234 Rect (0, Ο, 5, 15); rect (Ο, 15, χ, 20); end pglyph;. The book has been described in detail with respect to specific embodiments, but it should be noted that the county ^ &

實知例之改變、變化及等效。用於利用符元投射微影術 製造—_ π深片之本系統及方法之這些及其它改進及變化可 §項域内具有一般技藝者實施,而不脫離本標的之精 神及範圖,4- ^ β,本標的之精神及範圍較特定地於後附申請專利 …提出。而且,在該領域内具有_般技藝者將了解到, ^說^是舉例,且並不意在限制。因此,意圖是,本 k的涵蓋从细中請專利範圍及其等效物 類修改及變化。 耵此Changes, changes, and equivalences of known examples. These and other improvements and variations of the present system and method for the use of symbol projection lithography - _ π deep film can be implemented by those skilled in the art without departing from the spirit and scope of the subject matter. ^ β, the spirit and scope of this standard is more specific than the attached patent application. Moreover, those skilled in the art will appreciate that ^ is an example and is not intended to be limiting. Therefore, the intent is that the scope of this k is modified and changed from the scope of the patent and its equivalents. Here

【圖式簡單說明】 第1圖是用以製造-表面之1元投射系統; 第2A圖說明了要位於—基體上的-圖案之一設計; 第加圖說明自第2A圖中顯示的該設計在一標線片上 形成的一圖案; 第兀圖說明了利用第2B圖中的該標線片在一基體之 光阻中形朗,説明未經料鄰近校正_像幾乎 不相似於第2A圖中顯示的該設計; 第3A圖說明了第2A圖中顯示的該圖案之—已光學鄰 33 201015234 近校正之版本; /第糊説明了第3A圖中顯示的該圖案在該標線片上 形成之後的一已光學鄰近校正之版本; 第3C圖説明了利用第祀圖中的該標線片在一石夕晶圓 的該光阻中形成之一圖案; 第4A圖說明了要位於—基體切-理想圖案; 第4β圖說明了兩個基本模板形狀; 參 —重m說明了第侧令顯示的兩個基本模板形狀於 第4D圖說明了利用第4 狀在—標線片上形成之-圖案,·的5亥等重叠模板形 第4E圖說明了利用第4〇 上形成之-圖案;帛財顯示的該圖案在-基體 第5A圖説明了以一重晷 中該等模板㈣由 方式之兩個基本模板形狀,其 '中的一個由兩個不連貫的正方形έ且成. 第5Β圖說明了利用 -、且成’ ❹ 狀在—標線片上形成之-圖案的该等重疊模板形 第5C圖説明了利用第 上形成之1案; 不的该圓案在-基體 第6八圖説明了用於在__绩g 形狀; 標線片上形成—圖案之-模板BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a one-dimensional projection system for manufacturing a surface; FIG. 2A illustrates a design of a pattern to be located on a substrate; the additional drawing illustrates the one shown in FIG. 2A. Designing a pattern formed on a reticle; the second figure illustrates the use of the reticle in Figure 2B to shape the photoresist in a substrate, indicating that the uncorrected proximity correction _ is almost not similar to the second The design shown in the figure; Figure 3A illustrates the near-corrected version of the pattern of the optical neighbor 33 201015234 shown in Figure 2A; / the second embodiment shows that the pattern shown in Figure 3A is on the reticle a version of the optical proximity correction after formation; FIG. 3C illustrates the use of the reticle in the second diagram to form a pattern in the photoresist of the wafer; FIG. 4A illustrates the substrate to be located Cut-ideal pattern; 4th figure illustrates two basic template shapes; reference-weight m illustrates the two basic template shapes shown in the first side of the figure. Figure 4D illustrates the formation of the fourth shape on the ----- Pattern, 5 hai, etc. overlapping template shape Figure 4E illustrates Using the pattern formed on the fourth layer; the pattern shown in Fig. 5 is shown in Fig. 5A. The two basic template shapes in the manner of the template (4) in one 晷, one of the 'two' The coherent squares are merged into one. The fifth figure illustrates the overlapping template shapes of the pattern formed by using - and forming the pattern on the reticle - Figure 5C illustrates the case of using the first formation; The round case is illustrated in Figure 6 of the base - for forming a pattern on the __ g shape;

第6B圖説明了利用在第6A —標線片上形成之-圖案; 模板形狀在 第6C圖說明了彻在第6B时所示的_案在-基 34 201015234 體上形成之一圖案; 第7A圖説明了用以在一表面上形成一圖案之四個模板 形狀; 第7B圖説明了利用在第7A圖中所示的該等模板形狀 在一表面上形成之一圖案; 第8A圖説明了在一模板遮罩上形成之一組符元; 第8B圖説明了利用第8A圖中所示的該組符元在一表 面上形成之一圖案; 第8C圖説明了一組調整符元; 第8D圖利用實線及虛線形狀説明了變化的劑量度,每 一符元及調整符元以變化的劑量度籍由利用第8A圖中顯示 的該組符元及第8C圖中顯示的該等調整符元被曝光在一表 面之抗触劑中; 第8E圖説明了利用第8A圖中顯示的該組符元及第8C 圖中顯示的該等調整符元在一表面上形成之一圖案; 第9圖説明了如何準備一表面以用於製造諸如一矽晶 圓上的一積體電路之一基體的一概念性流程圖; 第10圖説明了如何準備一表面以用於製造諸如一矽晶 圓上的一積體電路之一基體的另一概念性流程圖; 第11圖説明了一組符元; 第12圖説明了一組符元及具有形狀變化之調整字符; 第13圖説明了一組符元及具有位置變化之調整符元; 第14圖説明了籍由調整符元之形狀變化產生之一組圖案; 第15圖説明了籍由調整符元之各種劑量量產生之一組 35 201015234 圖案; 第16圖説明了籍由一單一符元之各種劑量量產生之— 組圖案; 第17圖説明了籍由調整符元之位置變化產生之一組圖案; 第18圖説明了如何準備一表面以用於製造諸如—石夕晶 圓上的一積體電路之一基體的一概念性流程圖; 第19圖説明了字符之範例;及 第20圖説明了參數化字符之範例。 【主要元件符號說明】 _ 10.. .電子束寫入系統 12.. .表面、標線片 14.. .電子束源 · 16、22、30.··電子束 ... 18.. .孔徑板 20、26…孔徑 24.. .矩形孔徑板、模板遮罩 參 28、400、402、404、406、408、410、412、414、416、418、420、 422、424、426、428、430...符元 32、42、44、50、54、78、82、94、96、116、118、202、206、 580、582、584、586、588、590...圖案 40、60...理想圖案 52.. .襯線元素 56.. .輸出圖案 62、64...模板形狀、符元 36 201015234 66…正方形形狀 68、i〇4..·襯線 70、72、74、76、8〇、106、108、110、112··.轉角 90···符元、模板形狀 92…模板形狀、圖案 100…模板圖案 102.··模板形狀Fig. 6B illustrates the use of a pattern formed on the 6A-reticle; the template shape illustrates a pattern formed on the body of the base 34 201015234 as shown in Fig. 6C; The figure illustrates four template shapes for forming a pattern on a surface; FIG. 7B illustrates the formation of a pattern on a surface using the template shapes shown in FIG. 7A; FIG. 8A illustrates Forming a group of symbols on a template mask; Figure 8B illustrates forming a pattern on a surface using the group of symbols shown in Figure 8A; Figure 8C illustrates a set of adjustment symbols; Figure 8D illustrates the varying dose levels using solid and dashed shapes, each symbol and modifier being utilized with varying doses using the set of symbols shown in Figure 8A and the display shown in Figure 8C. The adjustment symbols are exposed to the anti-contact agent on a surface; Figure 8E illustrates the formation of one of the symbols on the surface using the set of symbols shown in Figure 8A and the adjustment symbols shown in Figure 8C. Pattern; Figure 9 illustrates how to prepare a surface for fabrication such as a wafer A conceptual flow diagram of a substrate of one of the integrated circuits; Figure 10 illustrates another conceptual flow diagram of how to prepare a surface for fabricating a substrate such as an integrated circuit on a germanium wafer; Figure 11 illustrates a set of symbols; Figure 12 illustrates a set of symbols and adjustment characters with shape changes; Figure 13 illustrates a set of symbols and adjustment symbols with positional changes; Figure 14 illustrates A set of patterns is generated by the change of the shape of the adjustment symbol; Figure 15 illustrates a set of 35 201015234 patterns generated by various dose amounts of the adjustment symbols; Figure 16 illustrates various types of a single symbol The dose amount is generated - a set of patterns; Figure 17 illustrates a set of patterns produced by the change in position of the adjustment symbol; Figure 18 illustrates how to prepare a surface for fabrication on a wafer such as - A conceptual flow diagram of a substrate of an integrated circuit; Figure 19 illustrates an example of a character; and Figure 20 illustrates an example of a parameterized character. [Major component symbol description] _ 10.. . Electron beam writing system 12.. Surface, reticle 14 .. . Electron beam source · 16, 22, 30. · · Electron beam... 18.. Aperture plates 20, 26... apertures 24. rectangular aperture plates, template masks 28, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428 430... symbols 32, 42, 44, 50, 54, 78, 82, 94, 96, 116, 118, 202, 206, 580, 582, 584, 586, 588, 590... 60...ideal pattern 52.. serif element 56.. output pattern 62, 64... template shape, symbol 36 201015234 66... square shape 68, i〇4..·serif 70, 72, 74, 76, 8〇, 106, 108, 110, 112··. Corner 90··· Symbol, template shape 92... Template shape, pattern 100... Template pattern 102.··Template shape

114…子解析度輔助特徵 150…模板符元、第—個符元 152…模板符元、第二個符元 154…模板符元、第三個符元 156…模板符元、第四個符元 158…複雜形狀、複雜圖案 200…一組符元、其它符元 204…調整符元或發射 250、300、700...概念性流程圖 252…步驟、實體設計 254…步驟、特定OPC程式 258…步驟、特定MDP程式 256、260、262、264、266、268、270、272、274、276、302、 304、306、308、310、312、316、318、320、322、324、326、 328、702、704、706、708、710、712、714、716、718、720、 722、724...步驟 362.··基本模板形狀或符元 350、352、354、356、358、360、 37 201015234114... sub-resolution auxiliary feature 150... template symbol, first symbol 152... template symbol, second symbol 154... template symbol, third symbol 156... template symbol, fourth symbol 158... complex shape, complex pattern 200... a set of symbols, other symbols 204... adjust symbols or emit 250, 300, 700... conceptual flow chart 252... steps, physical design 254... steps, specific OPC program 258...steps, specific MDP programs 256, 260, 262, 264, 266, 268, 270, 272, 274, 276, 302, 304, 306, 308, 310, 312, 316, 318, 320, 322, 324, 326 , 328, 702, 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, ... step 362.. basic template shape or symbol 350, 352, 354, 356, 358, 360, 37 201015234

432、434…調整符元 450…中心CP 452.. .正方形 454…耳狀物在23處 470、472、474、476、478、480、482、484、486、488、490 492、494、496、498、500…圖案 530、532、534、536、538…劑量實例 550、552、554、556、558…形狀、圖案、字符 560.. .形狀、圖案 1000、1002、1004、1006·.·字符 1010、1012...參數化字符432, 434... adjustment symbol 450... center CP 452.. square 454... ears at 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490 492, 494, 496 498, 500...patterns 530, 532, 534, 536, 538... dose examples 550, 552, 554, 556, 558... shapes, patterns, characters 560.. shapes, patterns 1000, 1002, 1004, 1006.. Character 1010, 1012...parameterized characters

Claims (1)

201015234 七、申請專利範圍: 1. 一種用於製造一表面之方法,該表面具有多個略有不同 之圖案,該方法包含以下步驟: 利用在一模板遮罩上的一組符元來在該表面上形 成該等圖案,及 籍由利用一符元改變技術減少發射次數及總寫入 時間201015234 VII. Patent Application Range: 1. A method for manufacturing a surface having a plurality of slightly different patterns, the method comprising the steps of: utilizing a set of symbols on a template mask Forming these patterns on the surface, and reducing the number of shots and total write time by using a symbol change technique 2. 如申請專利範圍第1項所述之方法,其中該符元改變技 術包含改變一符元劑量。 3. 如申請專利範圍第1項所述之方法,其中來自該組符元 中多個符元之發射重疊。 其中該符元改變技 4. 如申請專利範圍第1項所述之方法 術包含改變一符元位置。 其中該符元改變技 5. 如申請專利範圍第1項所述之方法 術包含應用該組符元中的一符元之部分曝光。 6. 如申請專利範圍第1項所述之方法,其中該表面是一標 線片。 7. 如申請專利範圍第6項所述之方法,其中在該表面上的 略有不同的圖案在一基體上產生實質上相同的圖案。 8. 如申請專利範圍第7項所述之方法,其中一等效準則判 定在該基體上的該等圖案是否實質上相同。 9. 如申請專利範圍第8項所述之方法,其中該等效準則基 於微影術模擬。 10. 如申請專利範圍第1項所述之方法,其中該表面是一基體。 39 201015234 11. 如申請專利範圍第1項所述之方法,其進一步包含利用 符元投射微影術之步驟。 12. 如申請專利範圍第1項所述之方法,其進一步包含以下 步驟: 設計要在一表面上形成之多個圖案,該等圖案略有 不同; 自該等多個圖案設計要使用的一組符元;及 準備具有該組符元之一模板遮罩。 13. —種用於製造一表面之系統,該表面具有多個略有不同 之圖案,該系統包含: 具有用於在該表面上形成該等圖案之一組符元之 一模板遮罩;及 用於籍由利用一符元改變技術減少發射次數及總 寫入時間之一裝置。 14. 如申請專利範圍第13項所述之系統,其中該符元改變技 術包含改變一符元劑量。 15. 如申請專利範圍第13項所述之系統,其中來自該組符元 中多個符元之發射重疊。 16. 如申請專利範圍第13項所述之系統,其中該符元改變技 術包含改變一符元位置。 17. 如申請專利範圍第13項所述之系統,其中該符元改變技 術包含應用該組符元中的一符元之部分曝光。 18. —種用於製造一積體電路之方法,該積體電路具有一表 面,該表面具有多個略有不同之圖案,該方法包含以下 201015234 步驟: 利用在一模板遮罩上的一組符元來在該表面上形 成該等圖案;及 籍由利用一符元改變技術減少該發射次數及總寫 入時間。 19. 如申請專利範圍第18項所述之方法,其中該符元改變技 術包含改變一符元劑量。 20. 如申請專利範圍第18項所述之方法,其中來在該組符元 中的多個符元之發射重疊。 21. 如申請專利範圍第18項所述之方法,其中該符元改變技 術包含改變一符元位置。 22. 如申請專利範圍第18項所述之方法,其中該符元改變技 術包含應用該組符元中的一符元之部分曝光。 23. 如申請專利範圍第18項所述之方法,其進一步包含利用 符元投射微影術之步驟。 24. 如申請專利範圍第18項所述之方法,其進一步包含如下 步驟: 設計要在一表面上形成之多個圖案,該等圖案略有 不同; 自該等多個圖案設計要使用的一組符元;及 準備具有該組符元之一模板遮罩。 25. —種用於利用一光學微影術製程製造一積體電路之方 法,該光學微影術製程利用具有多個略有不同之圖案之 一標線片,該方法包含以下步驟: 41 201015234 利用在一模板遮罩上的一組符元來在該標線片上 形成該等圖案;及 籍由利用一符元改變技術減少該發射次數或總寫 入時間。 26. 如申請專利範圍第25項所述之方法,其中該符元改變技 術包含改變一符號劑量。 27. 如申請專利範圍第25項所述之方法,其中來自該組符元 中多個符元之發射重疊。 28. 如申請專利範圍第25項所述之方法,其中該符元改變技 術包含改變一符元位置。 29. 如申請專利範圍第25項所述之方法,其中該符元改變技 術包含應用該組符元中的一符元之部分曝光。 30. 如申請專利範圍第25項所述之方法,其中在該標線片上 的略有不同之圖案在一基體上產生實質上相同的圖案。 31. 如申請專利範圍第30項所述之方法,其中一等效準則判 定在該基體上的該等圖案是否實質上相同。 32. 如申請專利範圍第31項所述之方法,其中該等效準則基 於微影術模擬。 33. 如申請專利範圍第25項所述之方法,其進一步包含利用 符元投射微影術之步驟。 34. 如申請專利範圍第25項所述之方法,其進一步包含以下 步驟: 設計要在一標線片上形成之多個圖案,該等圖案略 有不同; 201015234 自該等多個圖案設計要使用之一組符元;及 準備具有該組符元之一模板遮罩。 35. —種用於對包含一表面上的一組圖案之一設計之光學 鄰近校正之方法,該表面在一光學微影術製程中使用以 把該組圖案轉移到一基體上,該方法包含以下步驟: 輸入用於該基體之期望圖案;及 輸入其中一些是複雜符元之一組符元,該組符元可 用於在該表面上形成該等圖案。 36. 如申請專利範圍第35項所述之方法,其進一步包含以下 步驟:計算符元劑量或符元位置之改變或該組符元中的 一符元之部分曝光。 37·如申請專利範圍第35項所述之方法,其進一步包含以下 步驟:決定發射次數或總寫入時間,其中該發射次數或 總寫入時間被減少。 38. 如申請專利範圍第35項所述之方法,其進一步包含以下 步驟:重疊該組符元中的多個符元以在該表面上形成該 等圖案。 39. 如申請專利範圍第35項所述之方法,其中在該表面上的 該等圖案之一子集由互為彼此之略有不同之變體之圖 案組成。 40. 如申請專利範圍第39項所述之方法,其中該表面上的該 等略有不同之圖案在該基體上產生實質上相同的圖案。 41. 如申請專利範圍第40項所述之方法,其中一等效準則判 定在該基體上的該等圖案是否實質上相同。 43 201015234 42. 如申請專利範圍第41項所述之方法,其中該等效準則基 於微影術模擬。 43. —種用於對包含一表面上的一組圖案之一設計之一光 學鄰近校正之方法,該表面用在一光學微影術製程中以 把該組圖案轉移到一基體上,該方法包含輸入可能字符 之步驟,該等字符基於一組預定的符元中的符元,且該 等字符利用對改變一符元劑量或改變一符元位置或應用 該組預定符元中的一符元之部分曝光之一計算來決定。 44. 如申請專利範圍第43項所述之方法,其包含以下步驟: 自該等可能字符選擇一字符; 基於該已選字符計算在該基體上的該等轉移圖案;及 如果來自該計算步驟之一誤差超出一預定臨限,自 該等可能字符選擇另一字符。 45. 如申請專利範圍第43項所述之方法,其中該等可能的字 符是參數化字符。 46. —種產生字符之方法,其包含以下步驟: 獲得作爲該等字符之基礎之一組預定符元;及 計算一符元劑量之改變或一符元位置之改變或該 組預定符元中的一符元之部分曝光之應用以產生附加 的字符。 47. 如申請專利範圍第46項所述之方法,其中該等字符是參 數化字符。 48. 如申請專利範圍第46項所述之方法,其中該等產生之字 符包括字符之子集且各該子集中的該等字符包括多個 201015234 略有不同之圖案。 49.如申請專利範圍第46項所述之方法,其進一步包含以下 步驟:計算來自該組預定符元中的一個或多個符元之多 個重疊發射。 50·—種用於對包含一表面上的一組圖案之一設計之光學 鄰近校正之系統,該表面用在一光學微影術製程中以把 該組圖案轉移到一基體上,該系統包含: 用於該基體之期望圖案;及 其中一些是複雜符元之一組符元,其等用於在該表 面上形成該等圖案之一些圖案。 51. 如申請專利範圍第50項所述之系統,其進一步包含用於 計算符元劑量或符元位置之改變或該組符元中的一符 元之部分曝光之一裝置。 52. 如申請專利範圍第50項所述之系統,其進一步包含用於 決定發射次數或總寫入時間之一裝置,其中該發射次數 或該總寫入時間遭減少。 53. 如申請專利範圍第50項所述之系統,其中在該組符元中 的多個符元被重疊。 54. —種用於對包含一表面上的一組圖案之一設計之光學 鄰近校正之系統,該表面用在一光學微影術製程中以把 該組圖案轉移到一基體上,該系統包含用於輸入可能字 符之一裝置,該等字符基於一組預定符元中的符元,且 該等字符利用對改變一符元劑量或改變一符元位置或 應用該組預定符元中的一符元之部分曝光之一計算來 45 201015234 決定。 55. 如申請專利範圍第54項所述之系統,其中自該等可能字 符選擇一字符,在該基體上的該等轉移圖案基於該已選 字符被計算,且如果來自該計算步驟之誤差超出一預定 臨限時自該等可能字符選擇另一字符。 56. —種用於產生字符之系統,其包含: 用於獲得作爲該等字符之基礎之一組預定符元之 一裝置;及 用於計算一符元計量之改變或一符元位置之改變 或該組預定符元中的一符元之部分曝光之應用以產生 該等字符之一裝置。 57. 如申請專利範圍第56項所述之系統,其中該等產生的字 符是參數化字符。 58. 如申請專利範圍第56項所述之系統,其中該等產生的字 符包括字符之子集且各該子集中的該等字符形成多個 略有不同之圖案。 59. 如申請專利範圍第56項所述之系統,其中來自該組預定 符元中的一個或多個符元之多個發射被重疊以產生該 等字符中的至少一個字符。 60. —種用於斷裂或遮罩資料準備或鄰近效應校正之方 法,其包含以下步驟: 輸入在一表面上形成之圖案,該等圖案之一子集互 為彼此之略有不同之變體;及 選擇一組符元,其中一些是複雜符元,以用以形成 201015234 該等多個圖案; 其中發射次數或總寫入時間籍由利用一符元改變 技術被減少。 61.如申請專利範圍第60項所述之方法,其中在該表面上的該 等略有不同之圖案在一基體上產生實質上相同之圖案。 62_如申請專利範圍第61項所述之方法,其中一等效準則判 定在該基體上的該等圖案是否實質上相同。 63_如申請專利範圍第62項所述之方法,其中該等效準則基 於微影術模擬。 64.如申請專利範圍第60項所述之方法,其中該組符元是預 定的。 65_如申請專利範圍第64項所述之方法,其進一步包含輸入 可能字符之步驟,該等字符基於預定的該組符元。 66. 如申請專利範圍第65項所述之方法,其中該等字符是預 定字符。 67. 如申請專利範圍第65項所述之方法,其進一步包含決定 使用哪些字符以匹配該等輸入圖案中的一個或多個圖 案之步驟。 68. 如申請專利範圍第65項所述之方法,其進一步包含基於 發射次數或寫入時間來最佳化斷裂或遮罩資料準備或 鄰近效應校正之步驟。 69. 如申請專利範圍第65項所述之方法,其中該等字符包括字 符之子集且字符之每一子集包括多個略有不同之圖案。 70. 如申請專利範圍第60項所述之方法,其中該符元改變技 47 201015234 術是改變符元劑量。 71. 如申請專利範圍第60項所述之方法,其中該符元改變技 術是改變符元位置。 72. 如申請專利範圍第60項所述之方法,其中該符元改變技 術是應用該組符元中的一個符元之部分曝光。 73. 如申請專利範圍第60項所述之方法,其中該符元改變技 術重疊符元。 74. —種用於斷裂或遮罩資料準備或鄰近效應校正之系 統,其包含: 用於輸入要在一表面上形成之圖案之一裝置,該等 圖案之一子集互為彼此之略有不同之變體;及 用於選擇其中一些是複雜圖案之一組符元以用來 形成該等多個圖案之一裝置; 其中該組符元適當位於一模板遮罩上,且其中發射 次數或總寫入時間籍由利用一符元改變技術被減少。 75. 如申請專利範圍第74項所述之系統,其中在該表面上的 略有不同之圖案在該基體上產生實質上相同之圖案。 76. 如申請專利範圍第75項所述之系統,其中一等效準則判 定在該基體上的該等圖案是否實質上相同。 77. 如申請專利範圍第76項所述之系統,其中該等效準則基 於微影術模擬。 78. 如申請專利範圍第74項所述之系統,其進一步包含用於 輸入可能字符及決定使用哪些字符以匹配該等輸入圖 案之一個或多個圖案之一裝置。 201015234 79. 如申請專利範圍第78項所述之系統,其進一步包含用於 基於發射次數或寫入時間來最佳化斷裂或遮罩資料準 備或鄰近效應校正之一裝置。 80. 如申請專利範圍第78項所述之系統,其中該等字符包括字 符之子集且字符之每一子集包括多個略有不同之圖案。 81. 如申請專利範圍第74項所述之系統,其中該符元改變技 術是改變符元劑量。 8 2.如申請專利範圍第7 4項所述之系統,其中該符元改變技 術是改變符元位置。 8 3.如申請專利範圍第7 4項所述之系統,其中該符元改變技 術是應用該組符元中的一個符元之部分曝光。 84.如申請專利範圍第74項所述之系統,其中該符元改變技 術是重疊符元。 492. The method of claim 1, wherein the symbol change technique comprises changing a one-element dose. 3. The method of claim 1, wherein the emission from the plurality of symbols in the set of symbols overlaps. Wherein the symbol change technique 4. The method of claim 1 includes changing the position of a symbol. Wherein the symbol change technique 5. The method of claim 1 includes applying a partial exposure of a symbol in the set of symbols. 6. The method of claim 1, wherein the surface is a reticle. 7. The method of claim 6 wherein the slightly different patterns on the surface produce substantially the same pattern on a substrate. 8. The method of claim 7, wherein an equivalent criterion determines whether the patterns on the substrate are substantially identical. 9. The method of claim 8, wherein the equivalent criterion is based on a lithography simulation. 10. The method of claim 1, wherein the surface is a substrate. 39. The method of claim 1, further comprising the step of projecting lithography using symbol. 12. The method of claim 1, further comprising the steps of: designing a plurality of patterns to be formed on a surface, the patterns being slightly different; one to be used from the plurality of pattern designs Group symbol; and prepare a template mask with one of the group symbols. 13. A system for fabricating a surface having a plurality of slightly different patterns, the system comprising: a template mask having one of a set of symbols for forming the pattern on the surface; A device for reducing the number of transmissions and the total write time by using a symbol change technique. 14. The system of claim 13, wherein the symbol change technique comprises changing a one-element dose. 15. The system of claim 13 wherein the emissions from the plurality of symbols in the set of symbols overlap. 16. The system of claim 13, wherein the symbol change technique comprises changing a symbol position. 17. The system of claim 13, wherein the symbol change technique comprises applying a partial exposure of a symbol in the set of symbols. 18. A method for fabricating an integrated circuit having a surface having a plurality of slightly different patterns, the method comprising the following steps 201015234: utilizing a set of masks on a template The symbols are formed on the surface; and the number of shots and the total write time are reduced by utilizing a symbol change technique. 19. The method of claim 18, wherein the symbol change technique comprises changing a one-element dose. 20. The method of claim 18, wherein the emission of the plurality of symbols in the set of symbols overlaps. 21. The method of claim 18, wherein the symbol change technique comprises changing a symbol position. 22. The method of claim 18, wherein the symbol change technique comprises applying a partial exposure of a symbol in the set of symbols. 23. The method of claim 18, further comprising the step of projecting lithography using symbol. 24. The method of claim 18, further comprising the steps of: designing a plurality of patterns to be formed on a surface, the patterns being slightly different; one to be used from the plurality of pattern designs Group symbol; and prepare a template mask with one of the group symbols. 25. A method for fabricating an integrated circuit using an optical lithography process, the optical lithography process utilizing a reticle having a plurality of slightly different patterns, the method comprising the steps of: 41 201015234 The patterns are formed on the reticle using a set of symbols on a stencil mask; and the number of shots or total write time is reduced by utilizing a symbol change technique. 26. The method of claim 25, wherein the symbol change technique comprises changing a symbol dose. 27. The method of claim 25, wherein the emissions from the plurality of symbols in the set of symbols overlap. 28. The method of claim 25, wherein the symbol change technique comprises changing a symbol position. 29. The method of claim 25, wherein the symbol change technique comprises applying a partial exposure of a symbol in the set of symbols. 30. The method of claim 25, wherein the slightly different pattern on the reticle produces substantially the same pattern on a substrate. 31. The method of claim 30, wherein an equivalent criterion determines whether the patterns on the substrate are substantially identical. 32. The method of claim 31, wherein the equivalent criterion is based on a lithography simulation. 33. The method of claim 25, further comprising the step of using a symbol projection lithography. 34. The method of claim 25, further comprising the steps of: designing a plurality of patterns to be formed on a reticle, the patterns being slightly different; 201015234 from which the plurality of patterns are to be used One of the group symbols; and prepare a template mask with one of the group of symbols. 35. A method for optical proximity correction of a design comprising a set of patterns on a surface, the surface being used in an optical lithography process to transfer the set of patterns to a substrate, The method comprises the steps of: inputting a desired pattern for the substrate; and inputting some of the symbols of the complex symbol, the set of symbols being operable to form the pattern on the surface. 36. The method of claim 35, further comprising the step of: calculating a change in symbol or symbol position or a partial exposure of a symbol in the group of symbols. 37. The method of claim 35, further comprising the step of determining a number of shots or a total write time, wherein the number of shots or the total write time is reduced. 38. The method of claim 35, further comprising the step of overlapping a plurality of symbols in the set of symbols to form the pattern on the surface. 39. The method of claim 35, wherein the subset of the patterns on the surface consists of patterns of variants that are slightly different from one another. 40. The method of claim 39, wherein the slightly different patterns on the surface produce substantially the same pattern on the substrate. 41. The method of claim 40, wherein an equivalent criterion determines whether the patterns on the substrate are substantially identical. 43. The method of claim 41, wherein the equivalent criterion is based on a lithography simulation. 43. A method for optical proximity correction of a design comprising one of a set of patterns on a surface, the surface being used in an optical lithography process to transfer the set of patterns to a substrate, The method includes the steps of inputting possible characters based on a set of symbols in a predetermined symbol, and the characters are changed by using a pair of symbols or changing a symbol position or applying the set of predetermined symbols One of the partial exposures of a symbol is calculated to determine. 44. The method of claim 43, wherein the method comprises the steps of: selecting a character from the possible characters; calculating the transfer pattern on the substrate based on the selected character; and if from the calculating step One of the errors exceeds a predetermined threshold and another character is selected from the possible characters. 45. The method of claim 43, wherein the possible characters are parameterized characters. 46. A method of generating characters, comprising the steps of: obtaining a set of predetermined symbols as a basis for the characters; and calculating a change in a symbol dose or a change in a symbol position or in the set of predetermined symbols The application of a portion of a symbol is exposed to produce additional characters. 47. The method of claim 46, wherein the characters are parameterized characters. 48. The method of claim 46, wherein the generated characters comprise a subset of characters and the characters in the subset comprise a plurality of 201015234 slightly different patterns. 49. The method of claim 46, further comprising the step of calculating a plurality of overlapping transmissions from one or more symbols in the set of predetermined symbols. a system for optical proximity correction designed for one of a set of patterns on a surface, the surface being used in an optical lithography process to transfer the set of patterns onto a substrate, The system comprises: a desired pattern for the substrate; and some of which are a set of symbols of a complex symbol, such as to form some pattern of the patterns on the surface. 51. The system of claim 50, further comprising means for calculating a change in a symbol dose or symbol position or a partial exposure of a symbol in the set of symbols. 52. The system of claim 50, further comprising means for determining a number of transmissions or a total write time, wherein the number of transmissions or the total write time is reduced. 53. The system of claim 50, wherein the plurality of symbols in the set of symbols are overlapped. 54. A system for optical proximity correction designed for one of a set of patterns on a surface, the surface being used in an optical lithography process to transfer the set of patterns to a substrate, The system includes means for inputting a possible character based on a symbol in a predetermined set of symbols, and the characters are used to change a symbol dose or change a symbol position or apply the set of predetermined symbols One of the partial exposures of a symbol is calculated to 45 201015234 decision. 55. The system of claim 54, wherein a character is selected from the possible characters, the transfer pattern on the substrate is calculated based on the selected character, and if the error from the calculation step exceeds Select another character from the possible characters at a predetermined threshold. 56. A system for generating characters, comprising: means for obtaining a set of predetermined symbols as a basis for the characters; and for calculating a change in a symbol or a change in a symbol position Or the application of a portion of a symbol in the predetermined set of symbols to produce a device of the characters. 57. The system of claim 56, wherein the characters produced are parametric characters. 58. The system of claim 56, wherein the generated characters comprise a subset of characters and the characters in each of the subsets form a plurality of slightly different patterns. 59. The system of claim 56, wherein the plurality of transmissions from the one or more symbols in the set of predetermined symbols are overlapped to produce at least one of the characters. 60. A method for rupturing or masking data preparation or proximity effect correction, comprising the steps of: inputting a pattern formed on a surface, a subset of the patterns being slightly different from each other And selecting a set of symbols, some of which are complex symbols, to form 201015234 of the plurality of patterns; wherein the number of transmissions or the total write time is reduced by using a symbol change technique. 61. The method of claim 60, wherein the slightly different patterns on the surface produce substantially the same pattern on a substrate. 62. The method of claim 61, wherein an equivalent criterion determines whether the patterns on the substrate are substantially identical. 63. The method of claim 62, wherein the equivalent criterion is based on a lithography simulation. 64. The method of claim 60, wherein the set of symbols is predetermined. 65. The method of claim 64, further comprising the step of entering a possible character based on the predetermined set of symbols. 66. The method of claim 65, wherein the characters are predetermined characters. 67. The method of claim 65, further comprising the step of deciding which characters to use to match one or more of the input patterns. 68. The method of claim 65, further comprising the step of optimizing the fracture or mask data preparation or proximity effect correction based on the number of shots or the write time. 69. The method of claim 65, wherein the characters comprise a subset of characters and each subset of characters comprises a plurality of slightly different patterns. 70. The method of claim 60, wherein the symbol change is a change in the symbol dose. 71. The method of claim 60, wherein the symbol change technique is to change the symbol position. 72. The method of claim 60, wherein the symbol change technique is to apply a partial exposure of a symbol in the set of symbols. 73. The method of claim 60, wherein the symbol changes a technical overlap symbol. 74. A system for breaking or masking data preparation or proximity effect correction, comprising: means for inputting a pattern to be formed on a surface, a subset of the patterns being slightly adjacent to each other a different variant; and means for selecting one of the complex patterns to form one of the plurality of patterns; wherein the set of symbols is suitably located on a template mask, and wherein the number of shots or The total write time is reduced by using a symbol change technique. 75. The system of claim 74, wherein the slightly different pattern on the surface produces substantially the same pattern on the substrate. 76. The system of claim 75, wherein an equivalent criterion determines whether the patterns on the substrate are substantially identical. 77. The system of claim 76, wherein the equivalent criterion is based on a lithography simulation. 78. The system of claim 74, further comprising means for inputting possible characters and determining which characters to use to match one or more patterns of the input patterns. The system of claim 78, further comprising a device for optimizing fracture or mask data preparation or proximity effect correction based on the number of shots or the write time. 80. The system of claim 78, wherein the characters comprise a subset of characters and each subset of characters comprises a plurality of slightly different patterns. 81. The system of claim 74, wherein the symbol change technique is to change the symbol dose. 8 2. The system of claim 7, wherein the symbol change technique is to change the symbol position. 8. The system of claim 7, wherein the symbol change technique is a partial exposure of a symbol in the set of symbols. 84. The system of claim 74, wherein the symbol change technique is an overlapping symbol. 49
TW098128666A 2008-09-01 2009-08-26 Method for optical proximity correction, design and manufacturing of a reticle using character projection lithography TW201015234A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/202,364 US7759026B2 (en) 2008-09-01 2008-09-01 Method and system for manufacturing a reticle using character projection particle beam lithography
US12/202,365 US7901845B2 (en) 2008-09-01 2008-09-01 Method for optical proximity correction of a reticle to be manufactured using character projection lithography
US12/202,366 US7759027B2 (en) 2008-09-01 2008-09-01 Method and system for design of a reticle to be manufactured using character projection lithography
US12/269,777 US7745078B2 (en) 2008-09-01 2008-11-12 Method and system for manufacturing a reticle using character projection lithography

Publications (1)

Publication Number Publication Date
TW201015234A true TW201015234A (en) 2010-04-16

Family

ID=43857605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098128666A TW201015234A (en) 2008-09-01 2009-08-26 Method for optical proximity correction, design and manufacturing of a reticle using character projection lithography

Country Status (6)

Country Link
EP (1) EP2321701A2 (en)
JP (1) JP5676449B2 (en)
KR (1) KR20110065493A (en)
CN (1) CN102138106A (en)
TW (1) TW201015234A (en)
WO (1) WO2010025031A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985514B2 (en) 2009-10-21 2011-07-26 D2S, Inc. Method for fracturing a pattern for writing with a shaped charged particle beam writing system using dragged shots
US8039176B2 (en) 2009-08-26 2011-10-18 D2S, Inc. Method for fracturing and forming a pattern using curvilinear characters with charged particle beam lithography
KR20110069044A (en) * 2008-09-01 2011-06-22 디2에스, 인코포레이티드 Method for optical proximity correction, design and manufacturing of a reticle using variable shaped beam lithography
US8669023B2 (en) 2008-09-01 2014-03-11 D2S, Inc. Method for optical proximity correction of a reticle to be manufactured using shaped beam lithography
US20120219886A1 (en) 2011-02-28 2012-08-30 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US20130070222A1 (en) * 2011-09-19 2013-03-21 D2S, Inc. Method and System for Optimization of an Image on a Substrate to be Manufactured Using Optical Lithography
US8473875B2 (en) 2010-10-13 2013-06-25 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
TWI496182B (en) 2009-08-26 2015-08-11 D2S Inc Method and system for manufacturing a surface using charged particle beam lithography with variable beam blur
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US8703389B2 (en) 2011-06-25 2014-04-22 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US8719739B2 (en) 2011-09-19 2014-05-06 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
NL2009979A (en) 2012-01-12 2013-07-15 Asml Netherlands Bv A lithography apparatus, an apparatus for providing setpoint data, a device manufacturing method, a method for providing setpoint data and a computer program.
US9343267B2 (en) 2012-04-18 2016-05-17 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography
WO2013158574A1 (en) 2012-04-18 2013-10-24 D2S, Inc. Method and system for critical dimension uniformity using charged particle beam lithography
CN108268688B (en) * 2017-01-04 2021-11-02 复旦大学 Character disk optimization design method based on character projection electron beam lithography technology

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114549A (en) * 1991-10-23 1993-05-07 Matsushita Electric Ind Co Ltd Electron-beam exposing method
JPH06252036A (en) * 1993-02-24 1994-09-09 Hitachi Ltd Exposure method and preparation of pattern data used for the method and aligner
JP2002075830A (en) * 2000-08-29 2002-03-15 Nikon Corp Charged-particle beam exposure method, reticle and manufacturing method of device
JP4814651B2 (en) * 2006-02-22 2011-11-16 富士通セミコンダクター株式会社 Charged particle beam exposure method and program used therefor
US7897522B2 (en) * 2006-11-21 2011-03-01 Cadence Design Systems, Inc. Method and system for improving particle beam lithography
US7902528B2 (en) * 2006-11-21 2011-03-08 Cadence Design Systems, Inc. Method and system for proximity effect and dose correction for a particle beam writing device
US7772575B2 (en) * 2006-11-21 2010-08-10 D2S, Inc. Stencil design and method for cell projection particle beam lithography
US7579606B2 (en) * 2006-12-01 2009-08-25 D2S, Inc. Method and system for logic design for cell projection particle beam lithography

Also Published As

Publication number Publication date
JP5676449B2 (en) 2015-02-25
EP2321701A2 (en) 2011-05-18
CN102138106A (en) 2011-07-27
JP2012501473A (en) 2012-01-19
WO2010025031A2 (en) 2010-03-04
WO2010025031A3 (en) 2010-04-22
KR20110065493A (en) 2011-06-15

Similar Documents

Publication Publication Date Title
TW201015234A (en) Method for optical proximity correction, design and manufacturing of a reticle using character projection lithography
TWI525399B (en) Method for optical proximity correction, design and manufacturing of a reticle using variable shaped beam lithography
US7759027B2 (en) Method and system for design of a reticle to be manufactured using character projection lithography
US7901845B2 (en) Method for optical proximity correction of a reticle to be manufactured using character projection lithography
JP5797556B2 (en) Method for reticle design and fabrication using variable shaped beam lithography
US8202672B2 (en) Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US7745078B2 (en) Method and system for manufacturing a reticle using character projection lithography
JP2003525470A (en) Method and apparatus for mixed mode optical proximity correction
TW201314484A (en) Method and system for optimization of an image on a substrate to be manufactured using optical lithography
TW201021091A (en) Method for fracturing and forming circular patterns on a surface and for manufacturing a semiconductor device
JP2013502729A (en) Method and apparatus for producing a surface with variable magnification using character projection lithography
US11763057B2 (en) Critical dimension uniformity
JP2004302263A (en) Method for correcting mask pattern and photomask
TW201245897A (en) Method and system for design of enhanced patterns for charged particle beam lithography
TW202328803A (en) Method of generating curve sub-resolution assist feature (sraf), method of verifying mask rule check (mrc) for sraf, and method of manufacturing mask