TW201014183A - Pulse-width modulation (PWM)-controlled soft ON/OFF circuit - Google Patents

Pulse-width modulation (PWM)-controlled soft ON/OFF circuit Download PDF

Info

Publication number
TW201014183A
TW201014183A TW97137176A TW97137176A TW201014183A TW 201014183 A TW201014183 A TW 201014183A TW 97137176 A TW97137176 A TW 97137176A TW 97137176 A TW97137176 A TW 97137176A TW 201014183 A TW201014183 A TW 201014183A
Authority
TW
Taiwan
Prior art keywords
switch
circuit
pulse width
width modulation
controllable
Prior art date
Application number
TW97137176A
Other languages
Chinese (zh)
Other versions
TWI370618B (en
Inventor
Jiang-Ping He
Original Assignee
Eutech Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eutech Microelectronics Inc filed Critical Eutech Microelectronics Inc
Priority to TW97137176A priority Critical patent/TW201014183A/en
Publication of TW201014183A publication Critical patent/TW201014183A/en
Application granted granted Critical
Publication of TWI370618B publication Critical patent/TWI370618B/zh

Links

Abstract

The present invention relates to a pulse-width modulation (PWM)-controlled soft ON/OFF circuit, comprising: an operation transconductance amplifier, a plurality of switches, a plurality of inverters, a controllable-start timer, a RC network and a reference voltage source. The present invention applies a simple design of the circuit structure to realize the controllable soft-start circuit, and it does not need very large capacitor for fitting into the IC chip. Therefore, the PWM-controlled soft ON/OFF circuit can be integrated into the LED driving chip. When the IC chip receives the PWM signal from the exterior, it can make the duty cycle of the feedback average input voltage of the external circuit to the PWM signal to increase proportional ratio to adjust LED brightness by utilizing the PWM signal.

Description

201014183 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 九、 發明說明: 【發明所屬之技術領域】 本發明係有關一種具脈波寬度調變功能之可控式軟啟動 及軟關閉電路,尤指一種能夠將電容以積體電路的方式來製 作且内置於晶片内部,並可在回授電路中使外部輸入之回授 端平均電壓與脈波寬度調變信號之占空比(Duty Cyde)成正 比之具脈波寬度調變功能之可控式軟啟動及軟關閉電路。 【先前技術】 請參閱第一〜四圖與第七圖,在一般之led驅動晶片 (2)内部均内置有習式之可控式軟啟動電路(4),如第一圖所 Ο 示,該可控式軟啟動電路(4) ’包括一運算轉導放大器(11)、 一基準電壓源(12)、一 RC網路與一回授電壓輸入端(182)及 一開關電路輸出端(183)。該運算轉導放大器(η)之正相輸入 端接該基準電壓源(12),該運算轉導放大器(11)之反相輸入 端接該回授電壓輸入端(182),而該運算轉導放大器(11)之輸 出端與地端之間則接該RC網路’且該運算轉導放大器(u) 之輸出端則連接至該開關電路輸出端(183);其中,該RC 網路是使用一電阻(171)與一電容(172)所串聯形成之RC網 5 201014183 路’且該電阻(171)之另一端則連接至該運算轉導放大器(u) 之輸出端’該電容(172)之另一端則連接至地端。 第2〜4圖,為習式之可控式軟啟動電路(4)之應用於 LED驅動晶片(2)時之相關電壓波形圖;此時,脈波寬度調 變信號(iWM)之頻率為IKHz,占空比(Duty Cyde)分別為 10%、4〇%及80%。在此應用中,該運算轉導放大器(u)之 轉VG/w為10uS ’ s亥電阻(171)為120千歐姆;由於晶片内部 面積的限制,因此’一般晶片内部所使用之電容最大僅能為 100pF〜200PF。從第2〜4圖之所示波形可知,LED驅動晶 片(2)之回授端電壓驅動晶片(2)之外部連接電路 之輸出端電壓F⑽Γ會隨者脈波寬度調變信號的改變 而變化,並且會在該LED驅動晶片之輸出端(〇切產生很大 之電壓紋波’進而在該LED驅動晶之輸出端(0^^所介接 之該電容產生音頻雜訊。 而-般為了避免LED驅動晶片⑺在以脈波寬度調變 來調光時所產生之不必要之音雜訊,賊種電路型態之可 控式軟啟動電路⑷中所使用之電容⑽)往往會很大,也因 此無法以顏電路的方式來製作於晶肋部所以,習式之 可控式軟啟動電路附之電容(172)便採用外接於晶片外部 的方式來介接。 6 201014183 【發明内容】 本發明係為一種具脈波寬度調變功能之可控式軟啟動及 軟關閉電路,係利用更為簡單之電路結構設計來實現可控式軟 啟動電路,且不需要很大之電容便可以完成可控式軟啟動及軟 關閉之功能’進而能夠將電容以積體電路的方式來製作且内置201014183 VIII. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of the invention] The present invention relates to a controllable soft start with pulse width modulation function and A soft-close circuit, in particular, a capacitor capable of being fabricated in an integrated circuit and built in the inside of the chip, and capable of externally inputting the feedback voltage of the feedback terminal and the pulse width modulation signal in the feedback circuit Controllable soft-start and soft-off circuit with pulse width modulation function proportional to Duty Cyde. [Prior Art] Please refer to the first to fourth and seventh figures. In the general led driver chip (2), there is a built-in controllable soft start circuit (4), as shown in the first figure. The controllable soft start circuit (4) 'includes an operational transconductance amplifier (11), a reference voltage source (12), an RC network and a feedback voltage input terminal (182), and a switching circuit output terminal ( 183). The non-inverting input terminal of the operational transconductance amplifier (n) is connected to the reference voltage source (12), and the inverting input terminal of the operational transconductance amplifier (11) is connected to the feedback voltage input terminal (182), and the operation is turned The output of the operational amplifier (11) is connected to the RC network 'and the output of the operational transconductance amplifier (u) is connected to the output of the switching circuit (183); wherein the RC network The RC network 5 201014183 is formed by using a resistor (171) in series with a capacitor (172), and the other end of the resistor (171) is connected to the output terminal of the operational transconductance amplifier (u). The other end of 172) is connected to the ground. Figures 2 to 4 are diagrams showing the relevant voltage waveforms of the controllable soft-start circuit (4) of the conventional application when applied to the LED driver chip (2); at this time, the frequency of the pulse width modulation signal (iWM) is IKHz, Duty Cyde is 10%, 4〇%, and 80%, respectively. In this application, the operational transconductance amplifier (u) has a VG/w of 10uS's resistance (171) of 120 kilohms; due to the limitation of the internal area of the wafer, the capacitance used in the general wafer is only the largest. Can be 100pF~200PF. As can be seen from the waveforms shown in Figures 2 to 4, the output terminal voltage F(10) of the external connection circuit of the feedback driver voltage of the LED driver chip (2) is changed according to the change of the pulse width modulation signal. And at the output end of the LED driver chip (the cut produces a large voltage ripple) and then at the output of the LED driver crystal (the capacitor that is interfaced with 0^^ generates audio noise. Avoid unnecessary noise noise generated by the LED driver chip (7) when dimming with pulse width modulation, and the capacitance (10) used in the controllable soft-start circuit (4) of the circuit type of the thief is often large. Therefore, it is not possible to fabricate the ribs in the form of a circuit, so that the capacitor (172) attached to the controllable soft-start circuit of the conventional mode is externally connected to the outside of the wafer. 6 201014183 [Summary of the Invention] The invention relates to a controllable soft start and soft shutdown circuit with a pulse width modulation function, which realizes a controllable soft start circuit by using a simpler circuit structure design, and does not require a large capacitance. Complete controllable soft start and soft The function of turning off, which in turn enables the capacitor to be fabricated as an integrated circuit and built in

於晶片内部,並且可以消除電路中因脈波寬度調變信號在低頻 工作時在電容上所產生之音頻雜訊;也因此,該具脈波寬度調 變功能之可控式軟啟動及軟關閉電路便能整合於LED驅動晶 片内部,以使得LED驅動晶片可經由該具脈波寬度調變功能之 可控式軟啟動及軟關閉電路來啟動或是結束LED驅動晶片的 功忐。而當LED驅動晶片在外部輸入脈波寬度調變信號時,該 具脈波寬度調變功能之可控式軟啟動及軟關閉電路則可以在 整個晶片迴路之回授作用下,使得外部電路輸入之回授端電壓 與脈波寬度調變信號之占空比(Duty Cycle)成正比,從而實現 以脈波寬賴變健來調整⑽亮度的魏;所以,藉由該具 脈波寬度魏之可控式軟啟誠軟關電路的使用,來有 效簡化LED驅動晶片之内部電路結構,進而使得相關週邊之應 用更為簡單’且所需之週邊元件更少,成本更低。 一種具脈波寬度調變功能之可控式軟啟動及軟關閉電 路’包括:—運算轉導放大器、—第-電阻、-第二電阻、一 第開關帛一開關、—第三開關、一第四開關、一第一反 7 201014183 相器、一第二反相器、一可控式啟動計時器、一 RC網路― 基準電壓源與一脈波寬度調變信號輸入端、一回授電壓輸入端 及一開關電路輸出端;該第一開關與該第二電阻並聯,而該第 一開關與該第一電阻所形成並聯迴路之一端接該運算轉導放 大器之反相輸入端’並聯迴路之另一端則連接至該回授電壓輸 入端;該第二開關與該第一電阻串聯,而該第二開關之另一端 則接該運算轉導放大器之正相輸入端,該第一電阻之另一端則 接該運算轉導放大器之反相輸入端;該第三開關之一端接該運 算轉導放大器之正相輸入端,而該第三開關之另一端則接至地 端;該第四開關之一端接該運算轉導放大器之正相輸入端,而 該第四開關之另一端則接該基準電壓源之正端;而該運算轉導 放大器之輸出端與地端之間則接有該队網路,且該運算轉導 放大器之輸出端則連接至該開關電路輸出端;該脈波寬度調變 信號輸入端是分別連接至該第一反相器之輸入端、該第四開關 之控制端及該可控式啟動計時器之輸入端;其中,該第一反相 器之輸出端則連接至該第三開關之控制端,該可控式啟動計時 器之輸出端則是分別連接至該第二反相器之輸入端與該第一 開關之控制端,而該第二反相器之輸出端則是連接至該第二開 關之控制端。 俾使審查委員能對於本發明之技術特徵,有更進一步之 了解’以下謹以三個具體實施例’且佐以圖式作詳細說明。 8 201014183 【實施方式】 實施例一’請參閱第五圖、第六〜十二圖及第十五〜 十七圖,本發明是一種具脈波寬度調變功能之可控式軟啟動 及軟關閉電路(1),包括:一運算轉導放大器(11)、一第一 電阻(161)、一第二電阻(162)、一第一開關(151)、一第二 開關(152)、一第三開關(153)、一第四開關(154)、一第一 © 反相器(141)、一第二反相器(142)、一可控式啟動計時器 (13)、一 RC網路、一基準電壓源(12)與一脈波寬度調變信 號輸入端(181)、一回授電壓輸入端(182)及一開關電路輸出 端(183)。其中’該第一開關(ι51)、該第二開關(152)、該 第三開關(153)與該第四開關(154)均是使用場效電晶體,而 在實際應用上也可以使用雙載子電晶體;該基準電壓源(12) 是使用能隙基準電壓源’而在實際應用上也可以使用經能隙 φ 基準電壓源之分壓電路。 該第一開關(151)與該第二電阻(162)並聯,而該第一 開關(151)與該第二電阻(162)所形成並聯迴路之一端接該 運算轉導放大器(11)之反相輸入端,並聯迴路之另一端則連 接至該回授電壓輸入端(182);該第二開關(152)與該第一電 阻(161)串聯,而該第二開關U52)之另一端則接該運算轉導 放大器(11)之正相輸入端,該第一電阻之另一端則接 該運算轉導放大器(11)之反相輸入端;該第三開關(153)之 9 201014183 -端接該運算轉導放大器⑴)之正相輸人端,_第三_ (153)之另-端則接至地端;該第四_〇54)之一端接該運 异轉導放大器⑴)之正相輸人端,而該第四關(1⑷之另 -端則接該鱗f壓源(12)之正端;*該運算轉導放大器 (11)之輸出端與地端之間則接有該此網路,且該運算轉導 放大器(11)之輸出端則連接至該開關電路輸出端(183)。其 中,該rc網路是使用-電阻(171)與一電容(172)所串聯形 成之RC網路’且該電阻(171)之另一端則連接至該運算轉導 放大器(11)之輸出端,該電容〇72)之另一端則連接至地端。 該脈波寬度調變信號輸入端(181)是分別連接至該第 一反相器(141)之輸入端、該第四開關(154)之控制端及該可 控式啟動計時器(13)之輸入端;其中,該第一反相器(141) 之輸出端則連接至該第三開關(153)之控制端,該可控式啟 動計時器(13)之輸出端則是分別連接至該第二反相器(142) 之輸入端與該第一開關(151)之控制端,而該第二反相器 (142)之輸出端則是連接至該第二開關〇52)之控制端。 該脈波寬度調變信號輸入端(181)之脈波寬度調變信 號(19)控制該第四開關(154)之打開或閉合,並經由該第一 反相器(141)來控制該第三開關(153)之打開或閉合;該可控 式啟動計時器(13)是用來檢知脈波寬度調變信號(19)為高 電位或低電位的時間,並控制該第一開關(151)之打開或閉 201014183 合,且經由該第二反相器(142)來控制該第二開關(152)之打 開或閉合。 該脈波寬度調變信號輸入端(181)之脈波寬度調變信 號(19)為高電位時,則會使第四開關(154)閉合,並經由該 第一反相器(141)以使得該第三開關(153)打開;該脈波寬度 調變信號輸入端(181)之脈波寬度調變信號(19)為低電位 時,則會使第四開關(154)打開,並經由該第一反相器(141) 以使得該第三開關(153)閉合。 該脈波寬度調變信號輸入端(181)之脈波寬度調變信 號(19)為高電位或低電位的時間大於預先設定之時間時,該 可控式啟動計時器(13)則會輸出一電位使第一開關(151)閉 合,並經由該第二反相器(142)以使得該第二開關(152)打 開;該脈波寬度調變信號輸入端(181)之脈波寬度調變信號 (19)為高電位或低電位的時間小於預先設定之時間時,該可 控式啟動計時器(13)則會輸出一電位使第一開關(151)打 開,並經由該第二反相器(142)以使得該第二開關(152)閉 合。 該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 (1)有四種工作狀態:其中,圮為該第一電阻(161)之阻值; 及2為該第二電阻(162)之阻值;Gm為該運算轉導放大器(11) 之轉導;參考電壓為該基準電壓源(12)之輸出電壓;回 201014183 授電壓為該回授電壓輸入端(182)之電壓。 第一種工作狀態’即工作狀態(一),其等效電路如第 • 八圖所示:其中,輸入電壓為該運算轉導放大器(11)之 - 正相輸入端與反相輸入端之兩端電壓;輸出電流/0/為該運 算轉導放大器(11)之輸出端電流。 當該具脈波寬度調變功能之可控式軟啟動及軟關閉電 Φ 路(1)所輸入之脈波寬度調變信號(19)為高電位,且脈波寬 度調變信號(19 )為高電位的時間小於預先設定之可控式啟 動時間。 則此時該運算轉導放大器(11)之輸入電壓為: 〜:少卿 一 VFB)x —5— R,+Rl …式(1) 且該運算轉導放大器(11)之輸出電流/⑺為:Inside the chip, and can eliminate the audio noise generated in the capacitor during the low frequency operation of the pulse width modulation signal in the circuit; therefore, the controllable soft start and soft shutdown of the pulse width modulation function The circuit can be integrated into the interior of the LED driver chip so that the LED driver chip can initiate or end the operation of the LED driver chip via the controllable soft-start and soft-shutdown circuit with pulse width modulation function. When the LED driving chip inputs the pulse width modulation signal externally, the controllable soft start and soft closing circuit with the pulse width modulation function can make the external circuit input under the feedback function of the entire wafer circuit. The feedback terminal voltage is proportional to the Duty Cycle of the pulse width modulation signal, thereby realizing the adjustment of the brightness of the (10) brightness by the pulse width dependence; therefore, by the pulse width Wei The use of the controllable soft-opening soft-off circuit effectively simplifies the internal circuit structure of the LED driver chip, thereby making the application of the relevant periphery simpler and requiring fewer peripheral components and lower cost. A controllable soft start and soft shutdown circuit with pulse width modulation function includes: - operation transduction amplifier, - first resistance, - second resistance, a first switch, a third switch, a The fourth switch, a first reverse 7 201014183 phase device, a second inverter, a controllable start timer, an RC network - a reference voltage source and a pulse width modulation signal input terminal, a feedback a voltage input end and a switch circuit output end; the first switch is connected in parallel with the second resistor, and the first switch is connected to one end of the parallel circuit formed by the first resistor to be connected in parallel with the inverting input end of the operational transconductance amplifier The other end of the loop is connected to the feedback voltage input terminal; the second switch is connected in series with the first resistor, and the other end of the second switch is connected to the positive phase input terminal of the operational transconductance amplifier, the first resistor The other end is connected to the inverting input terminal of the operational transconductance amplifier; one of the third switches is terminated to the positive phase input terminal of the operational transconductance amplifier, and the other end of the third switch is connected to the ground end; One of the four switches is terminated Calculating a positive phase input terminal of the transconductance amplifier, and the other end of the fourth switch is connected to a positive end of the reference voltage source; and the team network is connected between the output end of the operational transconductance amplifier and the ground end, And the output end of the operational transduction amplifier is connected to the output end of the switch circuit; the pulse width modulation signal input end is respectively connected to the input end of the first inverter, the control end of the fourth switch, and the Controlling the input end of the timer; wherein the output of the first inverter is connected to the control end of the third switch, and the output of the controllable start timer is respectively connected to the second The input end of the inverter is connected to the control end of the first switch, and the output end of the second inverter is connected to the control end of the second switch. Further, the reviewing committee can have a further understanding of the technical features of the present invention. The following is a detailed description of the three specific embodiments and the drawings. 8 201014183 [Embodiment] Embodiment 1 'Please refer to the fifth, sixth to twelfth and fifteenth to seventeenth views. The present invention is a controllable soft start and soft with pulse width modulation function. The circuit (1) is closed, comprising: an operational transconductance amplifier (11), a first resistor (161), a second resistor (162), a first switch (151), a second switch (152), and a a third switch (153), a fourth switch (154), a first © inverter (141), a second inverter (142), a controllable start timer (13), an RC network The circuit, a reference voltage source (12) and a pulse width modulation signal input terminal (181), a feedback voltage input terminal (182) and a switching circuit output terminal (183). Wherein the first switch (ι 51), the second switch (152), the third switch (153) and the fourth switch (154) both use a field effect transistor, and in practical applications, a double can also be used. The carrier transistor; the reference voltage source (12) is a bandgap reference voltage source', and in practice, a voltage divider circuit with a bandgap φ reference voltage source can also be used. The first switch (151) is connected in parallel with the second resistor (162), and one of the parallel loops formed by the first switch (151) and the second resistor (162) is terminated opposite to the operational transconductance amplifier (11). a phase input end, the other end of the parallel circuit is connected to the feedback voltage input terminal (182); the second switch (152) is connected in series with the first resistor (161), and the other end of the second switch U52) Connected to the non-inverting input terminal of the operational transconductance amplifier (11), the other end of the first resistor is connected to the inverting input terminal of the operational transconductance amplifier (11); the third switch (153) is 9 201014183 - terminal Connected to the positive phase input terminal of the operational transconductance amplifier (1), the other end of the third_(153) is connected to the ground terminal; one of the fourth _〇54) is terminated to the different transconductance amplifier (1)) The positive phase is input to the human terminal, and the fourth terminal (the other end of the 1(4) is connected to the positive terminal of the scale f source (12); * between the output of the operational transconductance amplifier (11) and the ground terminal The network is connected, and the output of the operational transconductance amplifier (11) is connected to the output of the switch circuit (183), wherein the rc network is using a resistor (171) and The other end of the capacitor (172) is formed of a series RC network 'and the resistor (171) is connected to that of the operational transconductance amplifier (11) of the output terminal, the capacitive 〇72) of the other end is connected to the ground terminal. The pulse width modulation signal input terminal (181) is respectively connected to an input end of the first inverter (141), a control end of the fourth switch (154), and the controllable start timer (13) The input end of the first inverter (141) is connected to the control end of the third switch (153), and the output ends of the controllable start timer (13) are respectively connected to The input end of the second inverter (142) and the control end of the first switch (151), and the output end of the second inverter (142) is connected to the control of the second switch 〇 52) end. The pulse width modulation signal (19) of the pulse width modulation signal input terminal (181) controls opening or closing of the fourth switch (154), and controls the first via the first inverter (141) Opening or closing of the three switch (153); the controllable start timer (13) is for detecting the time when the pulse width modulation signal (19) is high or low, and controlling the first switch ( 151) is opened or closed 201014183, and the second switch (152) is controlled to open or close via the second inverter (142). When the pulse width modulation signal (19) of the pulse width modulation signal input terminal (181) is at a high potential, the fourth switch (154) is closed, and the first inverter (141) is The third switch (153) is turned on; when the pulse width modulation signal (19) of the pulse width modulation signal input terminal (181) is low, the fourth switch (154) is turned on and The first inverter (141) is such that the third switch (153) is closed. When the pulse width modulation signal input terminal (181) of the pulse width modulation signal input terminal (181) is at a high potential or a low potential for a time longer than a preset time, the controllable start timer (13) outputs a potential causes the first switch (151) to be closed, and the second switch (152) is turned on via the second inverter (142); the pulse width modulation of the pulse width modulation signal input terminal (181) When the variable signal (19) is at a high potential or a low potential for less than a preset time, the controllable start timer (13) outputs a potential to turn on the first switch (151), and via the second reverse The phaser (142) is such that the second switch (152) is closed. The controllable soft start and soft-off circuit (1) with pulse width modulation function has four working states: wherein 圮 is the resistance of the first resistor (161); and 2 is the second resistor ( 162) resistance value; Gm is the transduction of the operational transconductance amplifier (11); the reference voltage is the output voltage of the reference voltage source (12); back to 201014183, the voltage is the voltage of the feedback voltage input terminal (182) . The first working state is the working state (1), and its equivalent circuit is as shown in Fig. 8: wherein the input voltage is the positive phase input terminal and the inverting input terminal of the operational transconductance amplifier (11). The voltage at both ends; the output current /0/ is the output current of the operational transconductance amplifier (11). When the pulse width modulation signal (19) input by the controllable soft start and the soft-closed electric Φ circuit (1) with the pulse width modulation function is high, and the pulse width modulation signal (19) The time for the high potential is less than the preset controllable start-up time. Then, the input voltage of the operational transconductance amplifier (11) is: ~: Shaoqing-VFB)x-5-R, +Rl (1) and the output current of the operational transconductance amplifier (11) / (7) for:

Ο 7〇« =Gm-vn=Gmx (ymF ^vfb)x __L R'+R^ …式(2) 而在工作狀態㈠時,該運算轉導放大器⑻之輸出端電流 是對該電容(172)進行充電。 第二種工作狀態’即工作狀態(二),其等效電路如第 九圖所示:其中,輸入電机為該運算轉導放大器(11)之 正相輪入端與反相輸人端之兩端電壓;輸出電流^為該運 12 201014183 异轉導放大器(11)之輸出端電流。 當該具脈波寬度調變功能之可控式軟啟動及軟關閉電 路(1)所輪入之脈波寬度調變信號(19)為高電位,且脈波寬 度°周變彳5號(19)為南電位的時間大於預先設定之可控式啟 動時間。Ο 7〇« = Gm-vn=Gmx (ymF ^vfb)x __L R'+R^ (2) In the operating state (1), the output current of the operational transconductance amplifier (8) is the capacitance (172) ) to charge. The second working state is the working state (2), and its equivalent circuit is as shown in the ninth figure: wherein the input motor is the positive phase wheel input end and the reverse phase input end of the operational transduction amplifier (11) The voltage at both ends; the output current ^ is the output current of the 12121414 different transconductance amplifier (11). When the pulse width modulation signal (19) of the controllable soft start and soft-off circuit (1) with the pulse width modulation function is high, the pulse width is changed to 5 ( 19) The time for the south potential is greater than the preset controllable start-up time.

則此時該運算轉導放大器(11)之輸入電壓為: K2 = VreF-vfb …式(3) 且該運算轉導放大器(11)之輸出電流/〇2為: I〇2=^-K2=Gmx(VR£F-FFg)..式⑷ 第一種工作狀態,即工作狀態(三),其等效電路如第十圖所 不.其中,輸入電壓6為該運算轉導放大器(n)之正相輸Then, the input voltage of the operational transconductance amplifier (11) is: K2 = VreF-vfb (3) and the output current / 〇2 of the operational transconductance amplifier (11) is: I〇2=^-K2 =Gmx(VR£F-FFg).. (4) The first working state, that is, the working state (3), the equivalent circuit is as shown in the tenth figure. The input voltage 6 is the operational transconductance amplifier (n ) the right phase

入端與反相輸入端之兩端電壓;輸出電流心』為該運算轉導 放大器(11)之輸出端電流。 當該具脈波寬度輕魏之可控式軟啟誠軟關閉電 路⑴所輸人之脈波寬度賴⑽為低電位,並且脈波 寬度調變錢⑽為低電位的_小於魏蚊的可控式 啟動時間。 此時該運算轉導放大H⑴)之輸人電壓^為: 13 201014183 式(5) 則該運算轉導放大器⑴)之輪出電流〜為 …式(6) 而在工作狀悲(二)時,式⑹巾之該運算轉導放大器(⑴之 輸出電流是為-負值’即表示該電容(172)此時是處於放 電狀態路徑是由該電容〇72)反向流入該運算 轉導放大H(ll)之輸出端,因此,該電容(172)之放電電流 即為該運算轉導放大器(11)之輸出電流。 第四種工作狀態,即工作狀態⑻,其等效電路如第 十-圖所不:其中’輸人電壓6為該運算轉導放大器(⑴ 之正相輸入端與反相輸入端之兩端電壓;輸出電流7 〜為該 運算轉導放大器(11)之輸出端電流。 當該具脈波寬度調變功能之可控式軟啟動及軟關閉電 路(1)所輸入之脈波寬度調變信號(19)為低電位 ,並且脈波 見度調變信號(19)為低電位的時間大於預先設定的可控式 啟動時間。 此時該運算轉導放大器(11)之輸入電壓匕:The voltage across the input and inverting inputs; the output current is the output current of the operational amplifier (11). When the pulse width is light, the controllable soft-opening soft-close circuit (1) converts the pulse width of the human (10) to a low potential, and the pulse width modulation (10) is a low potential _ less than the Wei mosquito. Controlled startup time. At this time, the input voltage of the operation transduction amplification H(1)) is: 13 201014183 Equation (5) Then the operational current of the operational transconductance amplifier (1) is ... (6) and in the case of work sorrow (2) The operation of the (6) towel of the operational transconductance amplifier ((1) the output current is - negative value means that the capacitance (172) is in the discharge state at this time, the path is reversed from the capacitance 〇 72) to the operational transduction amplification The output of H(ll), therefore, the discharge current of the capacitor (172) is the output current of the operational transconductance amplifier (11). The fourth working state, that is, the working state (8), its equivalent circuit is as shown in the tenth-figure: where the input voltage 6 is the two ends of the positive-phase input terminal and the inverting input terminal of the operational transduction amplifier ((1) Voltage; output current 7 ~ is the output current of the operational transconductance amplifier (11). When the pulse width modulation function is controlled by the soft-start and soft-close circuit (1) The signal (19) is low, and the pulse-wave modulation signal (19) is low for a longer time than the preset controllable start-up time. At this time, the input voltage of the operational transconductance amplifier (11) is:

V^=-VFBX ^1+^2 ..式(7) 201014183 則該運算轉導放大器⑴)之輸出電流心為: ...式⑻ 而在工作狀態(四)時,式(8)中之該運算轉導放大器(n)之 輪出電流是為一負值,即表示該電容(172)此時是處於放 電狀態,而放電電流路徑是由該電容(172)反向流入該運算 轉導放大器(11)之輸出端,因此,該電容(172)之放電電流 即為該運算轉導放大器(11)之輸出電流。 請參閱第六圖,本發明之應用於LED驅動晶片之實施 例圖;LED驅動晶片(2)之致能端(EN)是由外部連接電路輸 入脈波寬度調變信號CPfFM)後,再經由LED驅動晶片(2)内 部之致能電路(21)將脈波寬度調變信號(19)輸入至該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路(丨)之該脈波 寬度調變信號輸入端(181);而LED驅動晶片(2)之回授端 (FB)則是由外部連接電路輸入回授電壓後,即直接將回授電 壓輸入至該具脈波寬度調變功能之可控式軟啟動及軟關閉 電路(1)之該回授電壓輸入端(182);而該具脈波寬度調變功 能之可控式軟啟動電路(1)之該開關電路輸出端(183)則是 連接輸入至LED驅動晶片(2)内部之脈波寬度調變比較器 (221)之一輸入端。 其中,輸出電壓G為該具脈波寬度調變功能之可控式 15 201014183 軟啟動及軟關電路⑴之該運算轉導放大器⑴)之輪出端 電壓;參考電壓^為該具脈波寬賴變魏之可控式軟啟 動及軟關閉電路(1)之該基準電壓源(⑵之輸出電壓;輪出 電壓匕餅為LED驅動晶片(2)之外部連接電路之輸出端電 壓,回授電壓^^為〇:0驅動晶片(2)之回授端(FB)電壓,亦 為該具脈波寬度調變功能之可控式軟啟動及軟關閉電路G) 之該回授電壓輸入端(182)之電壓。 當LED驅動晶片(2)啟動時,該具脈波寬度調變功能之 可控式軟啟動及軟關閉電路(1)之該脈波寬度調變信號輸入 端(181)之脈波寬度調變信號(19)為高電位,且該可控式啟 動δ十時器(13)之輸出為低電位;因此,該具脈波寬度調變功 能之可控式軟啟動及軟關閉電路(1)是處於工作狀態(一)。 則該運算轉導放大器(11)之輸出電壓是經由該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路之該開關 電路輸出端(183)來連結至脈波寬度調變比較器(221)之輸 入’並經過RS觸發器(23)和功率驅動模組(24),進而產生功 率電晶體(25)之驅動信號,藉以開啟功率電晶體(25)。 該運算轉導放大器(11)之輸出電流是對該電容(172) 進行充電,進而使得該運算轉導放大器(11)之輸出電壓心 開始逐漸上升;隨著該運算轉導放大器(11)之輪出電壓心 的上升,功率電晶體(25)則開始動作。 201014183 而藉由第六圖之電路結構與習式開關電源之相關理論 可知’外部連接電路之輸出電壓匕抓開始上升,則電阻(3) 上的電流逐漸增大,且LE:D驅動晶片(2)之回授電壓^^與外 部連接電路之輸出電壓則成比例上升,直到回授電壓 與該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 (1)之該基準電壓源(12)之輸出參考電壓相等。 由式(2)可知,與習式之可控式軟啟動電路相比,該運 算轉導放大器(11)之輸出電流/0/是習式之可控式軟啟動電 路之輸出電流的倍。而為了要達到相同的輸出 電壓上升速度,則該具脈波寬度調變功能之可控式軟啟動及 軟關閉電路(1)中之該電容(172)所需之電容值大小僅為習 式之可控式軟啟動電路之電容值的&/(及倍,而減少 原本電路中所需之電容值。 當LED驅動晶片(2)之致能端(EN)由外部連接電路輸入 脈波寬度調變信號(ΡΚΛ/)持續為高電位的時間超過預先設 疋之可控式啟動時間時’則該具脈波寬度調變功能之可控式 軟啟動及軟關閉電路(1)之該可控式啟動計時器(13)即輸出 咼電位,進而使得該具脈波寬度調變功能之可控式軟啟動及 軟關閉電路(1)進入工作狀態(二)。 則LED驅動晶片(2)之回授電壓會被鉗制在與該具 脈波寬度調變功能之可控式軟啟動及軟關閉電路(丨)之該基 17 201014183 準電壓源(12)之輸出參考電壓相等之電壓值。 當LED驅動晶片⑵之致能端(EN)由外部連接電路輸入 脈波寬度調變信號從高電位變成低電位時,則該具 脈波寬度調變功能之可控式軟啟動及軟關閉電路之該可 控式啟動計時器(13)即輸出高電位,進而使得該具脈波寬度 調變功能之可控式軟啟動及軟關閉電路(丨)進入工作狀態 (三)。 而該運算轉導放大器(11)之輸出電壓4是經由該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路G)之該開關 電路輸出端(183)來連結至脈波寬度調變比較器(221)之輸 入’並經過RS觸發器(23)和功率驅動模組(24),進而產生功 率電晶體(25)之驅動信號。此時,該電容(172)是處於放電 狀態’其放電電流大小即為式(6)中之該運算轉導放大器(11) 之輸出電流J⑺;而當該運算轉導放大器(11)之輸出電壓匕 逐漸降低時,則間接使得功率電晶體(25)之每一週期之工作 時間逐漸減小’直至功率電晶體(25)完全關閉。 由式(6)可知,與習式之可控式軟啟動電路相比,該電 容(172)之放電電流即為該運算轉導放大器(11)之輪出電流 “是習式之可控式軟啟動電路的倍。而為了達 到相同的輸出電壓下降速度,則該具脈波寬度調變功能之可 控式軟啟動及軟關閉電路(1)中之該電容(IK)所需之電容 201014183 值大小僅為習式之可控式軟啟動電路之電容值的 倍,而減少原本電路中所需之電容值。 當LED驅動晶片(2)之致能端(EN)由外部連接電路輸入 脈波寬度調變信號(尸fTM)持續為低電位的時間超過預先設 定之可控式啟動時間時,則該具脈波寬度調變功能之可控式 軟啟動及軟關閉電路(1)之該可控式啟動計時器(13)即輸出 高電位,進而使得該具脈波寬度調變功能之可控式軟啟動及 軟關閉電路(1)進入工作狀態(四)。 則LED驅動晶片(2)之回授電壓F/τβ會被钳制在零電位 之電壓值。 當LED驅動晶片(2)之致能端(EN)由外部連接電路輸入 如第十二圖所示之脈波寬度調變信號(PPFM)時,由於脈波 寬度調變信號(P灰M)的週期通常遠小於預先設定之可控式 啟動時間’則該具脈波寬度調變功能之可控式軟啟動及軟關 閉電路(1)之該可控式啟動計時器(13)即輸出低電位;此 時’該具脈波寬度調變功能之可控式軟啟動及軟關閉電路(1 ) 之工作狀態將在工作狀態(一)與工作狀態(三)之間做週期 性的轉換’且轉換頻率與脈波寬度調變信號(ΡπΜ)的頻率 相同。 當電路穩定並達到動態平衡後,該具脈波寬度調變功 能之可控式軟啟動及軟關閉電路(1)之該運算轉導放大器 19 201014183 (Η)之輸出電壓、LED驅動晶片(2)之回授電壓厂抑及外部 連接電路之輸出健^的平均值龍持不變,且該電容 (172)上之平均電荷保持不變,進而可以得到如下列之等 式,其中,占空比(Duty Cycle) D為脈波寬度調變信號(户灰从) 之占空比:V^=-VFBX ^1+^2 .. Equation (7) 201014183 The output current of the operational transconductance amplifier (1) is: (8) and in the working state (4), in equation (8) The operating current of the operational transconductance amplifier (n) is a negative value, that is, the capacitance (172) is in a discharging state at this time, and the discharging current path is reversely flown by the capacitor (172) into the operation. The output of the amplifier (11), therefore, the discharge current of the capacitor (172) is the output current of the operational transconductance amplifier (11). Please refer to the sixth figure, the embodiment of the present invention applied to the LED driving chip; the enabling end (EN) of the LED driving chip (2) is input to the pulse width modulation signal CPfFM) by the external connection circuit, and then The enabling circuit (21) inside the LED driving chip (2) inputs the pulse width modulation signal (19) to the controllable soft start and soft-close circuit (丨) of the pulse width modulation function. The wave width modulation signal input terminal (181); and the feedback terminal (FB) of the LED driver chip (2) is input by the external connection circuit, and the feedback voltage is directly input to the pulse width. The feedback voltage input end (182) of the controllable soft start and soft turn off circuit of the modulation function; and the switch circuit of the controllable soft start circuit (1) with the pulse width modulation function The output terminal (183) is an input terminal connected to the pulse width modulation comparator (221) input to the LED driving chip (2). Wherein, the output voltage G is the controllable type of the pulse width modulation function 15 201014183 soft start and soft turn off circuit (1) of the operational transconductance amplifier (1)) of the wheel terminal voltage; the reference voltage ^ is the pulse width The control voltage source of the controllable soft start and soft shutdown circuit (1) of Wei (the output voltage of (2); the voltage of the output voltage of the external connection circuit of the LED driver chip (2), feedback The voltage ^^ is 〇: 0 drives the feedback terminal (FB) voltage of the chip (2), and is also the feedback voltage input terminal of the controllable soft start and soft-off circuit G) with pulse width modulation function (182) voltage. When the LED driving chip (2) is activated, the pulse width modulation of the pulse width modulation signal input terminal (181) of the controllable soft start and soft-close circuit (1) with pulse width modulation function The signal (19) is high, and the output of the controllable δ-timer (13) is low; therefore, the controllable soft-start and soft-off circuit with pulse width modulation function (1) Is in working condition (1). The output voltage of the operational transconductance amplifier (11) is connected to the pulse width modulation by the switchable circuit output terminal (183) of the controllable soft start and soft-close circuit with the pulse width modulation function. The input of the device (221) passes through the RS flip-flop (23) and the power driving module (24), thereby generating a driving signal of the power transistor (25), thereby turning on the power transistor (25). The output current of the operational transconductance amplifier (11) is to charge the capacitor (172), so that the output voltage of the operational transconductance amplifier (11) begins to rise gradually; with the operation of the transconductance amplifier (11) As the voltage of the wheel rises, the power transistor (25) starts to operate. 201014183 By the theory of the circuit diagram of the sixth figure and the related theory of the switching power supply, it can be known that the output voltage of the external connection circuit starts to rise, the current on the resistor (3) gradually increases, and the LE:D drive wafer ( 2) The feedback voltage ^^ increases in proportion to the output voltage of the external connection circuit until the feedback voltage and the reference voltage of the controllable soft-start and soft-off circuit (1) with the pulse width modulation function The output reference voltage of source (12) is equal. It can be seen from equation (2) that the output current /0/ of the operational transconductance amplifier (11) is twice the output current of the conventional controllable soft-start circuit compared to the conventional controllable soft-start circuit. In order to achieve the same output voltage rise speed, the capacitance value of the capacitor (172) in the controllable soft start and soft-shutdown circuit (1) with pulse width modulation function is only the formula. The capacitance value of the controllable soft-start circuit is &/ (and times the capacitance value required in the original circuit is reduced. When the enable terminal (EN) of the LED driver chip (2) is input to the pulse wave by the external connection circuit When the width modulation signal (ΡΚΛ/) continues to be high for more than the preset controllable start-up time, the controllable soft-start and soft-off circuit (1) with the pulse width modulation function The controllable start timer (13) outputs the zeta potential, so that the controllable soft start and soft-close circuit (1) with the pulse width modulation function enters the working state (2). Then the LED drive chip (2) The feedback voltage is clamped to the voltage equivalent of the output reference voltage of the quasi-voltage source (12) of the controllable soft-start and soft-off circuit (丨) with the pulse width modulation function. When the enable terminal (EN) of the LED driver chip (2) is connected by an external circuit When the input pulse width modulation signal changes from a high potential to a low potential, the controllable soft start of the pulse width modulation function and the controllable start timer (13) of the soft shutdown circuit output a high potential. Further, the controllable soft start and soft-off circuit (丨) with the pulse width modulation function enters the working state (3), and the output voltage 4 of the operational transconductance amplifier (11) is via the pulse width. The switchable circuit output (183) of the programmable soft start and soft-shutdown circuit G) is coupled to the input of the pulse width modulation comparator (221) and passes through the RS flip-flop (23) and power The driving module (24) further generates a driving signal of the power transistor (25). At this time, the capacitor (172) is in a discharging state, and the magnitude of the discharging current is the output current J(7) of the operational transconductance amplifier (11) in the equation (6); and when the output of the operational transconductance amplifier (11) When the voltage 匕 is gradually reduced, the operating time of each cycle of the power transistor (25) is indirectly reduced until the power transistor (25) is completely turned off. It can be seen from equation (6) that the discharge current of the capacitor (172) is the output current of the operational transconductance amplifier (11) compared with the controllable soft-start circuit of the conventional formula. The soft start circuit is doubled. In order to achieve the same output voltage drop speed, the capacitor required for the pulse width modulation function and the capacitor (IK) in the soft-start circuit and soft-close circuit (1) 201014183 The value is only twice the capacitance of the controllable soft-start circuit of the conventional method, and reduces the capacitance value required in the original circuit. When the enable terminal (EN) of the LED driver chip (2) is input from the external connection circuit When the wave width modulation signal (the corpse fTM) continues to be low for more than a preset controllable start-up time, the controllable soft start and soft-off circuit (1) with the pulse width modulation function The controllable start timer (13) outputs a high potential, so that the controllable soft start and soft-close circuit (1) with the pulse width modulation function enters the working state (4). Then the LED drive chip (2) The feedback voltage F/τβ will be clamped to the voltage value of zero potential When the enable terminal (EN) of the LED driver chip (2) is input to the pulse width modulation signal (PPFM) as shown in Fig. 12 by the external connection circuit, the pulse width modulation signal (P gray M) is used. The period of the control is usually much smaller than the preset controllable start-up time'. The controllable soft start circuit with the pulse width modulation function and the soft start circuit (1) have the output of the controllable start timer (13). Potential; at this time, the working state of the controllable soft-start and soft-off circuit (1) with the pulse width modulation function will be periodically converted between the working state (1) and the working state (3). And the switching frequency is the same as the frequency of the pulse width modulation signal (ΡπΜ). When the circuit is stable and reaches the dynamic balance, the operation of the controllable soft start and soft-off circuit (1) with the pulse width modulation function The average voltage of the output voltage of the transconductance amplifier 19 201014183 (Η), the feedback voltage of the LED driver chip (2), and the output of the external connection circuit are unchanged, and the average charge on the capacitor (172) Keep unchanged, and then you can get the following equation, where Duty Cycle D is the duty cycle of the pulse width modulation signal (household gray):

Vfb=DxVref …式⑼ 由式(9)可知,LED驅動晶片(2)之回授電壓驅動晶 片(2)之致能端(EN)由外部連接電路輸入之脈波寬度調變信 號(PifM)之占空比成正比。 實施例·一 ’清參閱第十三圖、第六〜九圖及第十五〜 十七圖,本發明是一種具脈波寬度調變功能之可控式軟啟動 及軟關閉電路(1),包括:一運算轉導放大器(11)、一第— 電阻(161)、一第二電阻(162)、一第一開關(151)、一第二 開關(152)、一第二反相器(142)、一可控式啟動計時器 (13)、一 RC網路、一基準電壓源(12)與一脈波寬度調變信 號輸入端(181)、一回授電壓輸入端(182)及一開關電路輸出 端(183);其中,該第一開關(151)與該第二開關(152)均是 使用場效電晶體,而在實際應用上也可以使用雙載子電晶 體;該基準電壓源(12)是使用能隙基準電壓源,而在實際應 20 201014183 用上也可錢舰_基準電壓源之分壓電路。 該第-開關(151)與該第二電阻⑽)並聯,而該第一 開關(151)與該第二電阻⑽)所形成並聯迴路之一端接該 導^ α 1)之反相輸人端,並聯迴路之另一端則連 接至该回授電壓輸人端(182);該第項關⑽)與該第一電 阻(161)串聯’而該第二開關(152)之另一端則分別連接至該 運算轉導放大ϋ(11)之正純人端與該基準電壓源⑽之 正端’该第-電阻(161)之另—端難該運算轉導放大器⑴) 之反相輸入端。該縣轉導放大器(11)之輸出端與地端之間 則接有該RG網路’且該運算轉導放大器(11)之輸出端則連 接至該開關電路輸出端(183);其中,該此網路是使用一電 阻(171)與一電谷(172)所串聯形成之此網路,且該電阻 (171)之另一端則連接至該運算轉導放大器(11)之輸出端’ 該電容(172)之另一端則連接至地端。 該脈波寬度調變信號輸入端(181)是連接至該可控式 啟動計時器(13)之輸入端;該可控式啟動計時器(丨3)之輸出 端則是分別連接至該第二反相器(142 )之輸入端與該第一開 關(151)之控制端,而該第二反相器(丨42)之輸出端則是連接 至該第二開關(152)之控制端。 該可控式啟動計時器(13)是用來檢知脈波寬度調變信 號(19)為高電位或低電位的時間,並控制該第一開關(ι51) 21 201014183 之打開或閉合’且經由該第二反相器(142)來控制該第二開 關(152)之打開或閉合。 該脈波寬度調變信號輸入端(181)之脈波寬度調變信 號(19)為高電位或低電位的時間大於預先設定之時間時,該 可控式啟動計時器(13)則會輸出一高電位使該第一開關 (151) 閉合,並經由該第二反相器(142)以使得該第二開關 (152) 打開;該脈波寬度調變信號輸入端(181)之脈波寬度調 變k號(19)為高電位或低電位的時間小於預先設定之時間 時’該可控式啟動計時器(13)則會輸出一低電位使該第一開 關(151)打開’並經由該第二反相器(142)以使得該第二開關 (152)閉合。 該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 a)有二種工作狀態:其中,圮為該第一電阻(161)之阻值; A為該第三電阻(162)之阻值;⑼為該運算轉導放大器⑴) 之轉導;參考電壓厂娜為該基準電壓源(12)之輸出電壓;回 授電壓為該回授電壓輸入端(182)之電壓。 第-種工作狀態,即工作狀態㈠,其等效電路如第 八圖所示:其中,輸入電壓^"為該運算轉導放大器(⑴之 ,相輪入端與反相輸人端之兩端電壓;輸㈣流〜為該運 算轉導放大器(11)之輸出端電流; 曰"亥具脈波寬度調變功能之可控式軟啟動及軟關閉電 22 201014183 路⑴所輸入之脈波寬度調變信號(19)為高電位,且脈波寬 度调變信號(19)為高電位的時間小於預先設定之可控式啟 動時間。 & 則此時該運算轉導放大器(11)之輸入電壓。為 ·..式(1)Vfb=DxVref (9) From equation (9), the feedback voltage of the LED driver chip (2) drives the enable (EN) of the chip (2) to be pulse-width modulated (PifM) input from the external connection circuit. The duty cycle is proportional. Embodiments - A clear view of the thirteenth, sixth to nineth and fifteenth to seventeenth, the present invention is a controllable soft start and soft turn off circuit with pulse width modulation function (1) The method includes: an operational transconductance amplifier (11), a first-resistor (161), a second resistor (162), a first switch (151), a second switch (152), and a second inverter. (142), a controllable start timer (13), an RC network, a reference voltage source (12) and a pulse width modulation signal input terminal (181), and a feedback voltage input terminal (182) And a switching circuit output terminal (183); wherein the first switch (151) and the second switch (152) both use field effect transistors, and in practical applications, a bipolar transistor can also be used; The reference voltage source (12) is a voltage-gap reference voltage source, and in actual use 20 201014183 can also be used as a voltage divider circuit. The first switch (151) is connected in parallel with the second resistor (10)), and one of the parallel loops formed by the first switch (151) and the second resistor (10) is terminated to the inverting end of the guide The other end of the parallel circuit is connected to the feedback voltage input terminal (182); the first item (10) is connected in series with the first resistor (161) and the other end of the second switch (152) is respectively connected To the positive terminal of the operational amplifier ϋ (11) and the positive terminal of the reference voltage source (10), the other end of the first resistor (161) is difficult to operate the inverting input of the transconductance amplifier (1). The output of the operational transconductance amplifier (11) is connected to the output of the switching circuit (183); The network is formed by using a resistor (171) and a valley (172) in series, and the other end of the resistor (171) is connected to the output of the operational transconductance amplifier (11). The other end of the capacitor (172) is connected to the ground. The pulse width modulation signal input terminal (181) is connected to the input end of the controllable start timer (13); the output end of the controllable start timer (丨3) is respectively connected to the first The input end of the second inverter (142) and the control end of the first switch (151), and the output end of the second inverter (丨42) is connected to the control end of the second switch (152) . The controllable start timer (13) is used to detect the time when the pulse width modulation signal (19) is high or low, and controls the opening or closing of the first switch (1, 51, 51,183,183) The opening or closing of the second switch (152) is controlled via the second inverter (142). When the pulse width modulation signal input terminal (181) of the pulse width modulation signal input terminal (181) is at a high potential or a low potential for a time longer than a preset time, the controllable start timer (13) outputs a high potential causes the first switch (151) to be closed, and the second switch (152) is turned on via the second inverter (142); the pulse width of the pulse width modulation signal input terminal (181) When the width modulation k number (19) is high or low for less than the preset time, the controllable start timer (13) outputs a low potential to turn the first switch (151) on. The second switch (152) is closed via the second inverter (142). The controllable soft start and soft-off circuit a) having the pulse width modulation function has two working states: wherein 圮 is the resistance of the first resistor (161); A is the third resistor (162) The resistance value is (9) is the transduction of the operational transconductance amplifier (1); the reference voltage is the output voltage of the reference voltage source (12); and the feedback voltage is the voltage of the feedback voltage input terminal (182). The first working state, that is, the working state (1), its equivalent circuit is as shown in the eighth figure: wherein the input voltage ^" is the operational transconductance amplifier ((1), the phase wheel input end and the inverting input end two Terminal voltage; input (four) current ~ is the output current of the operational transconductance amplifier (11); 曰 " Hai with pulse width modulation function of the controllable soft start and soft shutdown 22 201014183 road (1) input pulse The wave width modulation signal (19) is high, and the pulse width modulation signal (19) is at a high potential for less than a preset controllable start-up time. & At this time, the operational transconductance amplifier (11) The input voltage is .. formula (1)

且該運算轉導放大器(11)之輸出電流/0/為· 701 =Gm-Vn= Gm X (V^ - rra)x Ά…式⑵ 而在工作狀態㈠時,該運算轉導放大器⑽之輸出端電流 Λ?/是對該電容(172)進行充電。And the output current /0/ of the operational transconductance amplifier (11) is · 701 = Gm - Vn = Gm X (V^ - rra) x Ά (2). In the operating state (1), the operational transconductance amplifier (10) The output current Λ?/ is to charge the capacitor (172).

+ Τ?2 第二種工作狀態,即工作狀態(二),其等效電路如第 九圖所示:其中,輸入電壓6為該運算轉導放大器(11)之 正相輸入端與反相輸入端之兩端電壓;輸出電流/〇2為該運 算轉導放大器(11)之輸出端電流: 當該具脈波寬度調變功能之可控式軟啟動及軟關閉電 路(1)所輸入之脈波寬度調變信號(19)為高電位,且脈波寬 度》周變k號(19)為南電位的時間大於預先設定之可控式啟 動時間。 23 201014183 則此時該運算轉導放大器(11)之輸入電壓κί2為: V'2=VREF~VFB ...式(3) 且該運鼻轉導放大器(11)之輸出電流/切為: 式(4) I02 = Gm · Vi2 = GM X - VF8) 請參閱第六圖,本發明之應用於LED驅動晶片之實施 例圖;LED驅動晶片(2)之致能端(EN)是由外部連接電路輸 ® 入脈波寬度調變信號(尸FM)後,再經由LED驅動晶片(2)内 部之致能電路(21)將脈波寬度調變信號(19)輸入至該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路(1)之該脈波 寬度調變信號輸入端(181);而LED驅動晶片(2)之回授端 (FB)則是由外部連接電路輸入回授電壓後,即直接將回授電 壓輸入至該具脈波寬度調變功能之可控式軟啟動及軟關閉 電路(1)之該回授電壓輸入端(182);而該具脈波寬度調變功 Ο 能之可控式軟啟動及軟關閉電路(1)之該開關電路輸出端 (183)則是連接輸入至LED驅動晶片(2)内部之脈波寬度調 變比較器(221)之一輸入端。 其中,輸出電壓為該具脈波寬度調變功能之可控式 軟啟動及軟關閉電路(1)之該運算轉導放大器(U)之輸出端 電壓;參考電壓為該具脈波寬度調變功能之可控式軟啟 動及軟關閉電路(1)之該基準電壓源(12)之輸出電壓;輸出 24 201014183 電壓為LED驅動晶片(2)之外部連接電路之輸出端電 虔;回授電麼厂z^LED驅動晶片⑵之回授端⑽)電麼,亦 為該具脈波寬度調變功能之可控式軟啟動及軟關閉電路(1) 之該回授電壓輸入端(182)之電壓。 當LED驅動晶片(2)啟動時,該具脈波寬度調變功能之 可控式軟啟動及軟關閉電路(1)之該脈波寬度調變信號輸入 端(181)之脈波寬度調變信號(19)為高電位,且該可控式啟 動4½'器(13)之輸出為低電位;因此,該具脈波寬度調變功 能之可控式軟啟動及軟關閉電路(D是處於工作狀態(一)。 則該運算轉導放大器(11)之輸出電壓G是經由該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路(1)之該開關 電路輸出端(183)來連結至脈波寬度調變比較器(221)之輸 入,並經過RS觸發器(23)和功率驅動模組(24),進而產生功 率電晶體(25)之驅動信號,藉以開啟功率電晶體(25)。 該運算轉導放大器(11)之輸出電流/〇/是對該電容(172) 進行充電,進而使得該運算轉導放大器(丨丨)之輸出電壓心 開始逐漸上升;隨著該運算轉導放大器(Π)之輸出電壓心 的上升’功率電晶體(25)則開始動作。 而藉由第六圖之電路結構與習式開關電源之相關理論 可知’外部連接電路之輸出電壓開始上升,則電阻(3) 上的電流逐漸增大,且LED驅動晶片(2)之回授電壓與外 25 201014183 部連接電路之輸出電壓κ0ί/Γ則成比例上升,直到回授電壓 與該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 (1)之該基準電壓源(12)之輸出參考電壓厂^相等。 由式(2)可知,與習式之可控式軟啟動電路相比,該運 算轉導放大器(11)之輸出電流/〇/是習式之可控式軟啟動電 路之輸出電流的圮/(/?/+/?2)倍。而為了要達到相同的輸出 電壓上升速度’則該具脈波寬度調變功能之可控式軟啟動及 軟關閉電路(1)中之該電容(172)所需之電容值大小僅為習 式之可控式軟啟動電路之電容值的圮/⑻他)倍,而減少 原本電路中所需之電容值。 當LED驅動晶片(2)之致能端(EN)由外部連接電路輸入 脈波寬度調變信號(PWM)持續為高電位的時間超過預先設 疋之可控式啟動時間時,則該具脈波寬度調變功能之可控式 軟啟動及軟關閉電路(1)之該可控式啟動計時器(13)即輸出 高電位,進而使得該具脈波寬度調變功能之可控式軟啟動及 軟關閉電路(1)進入工作狀態(二)。 則LED驅動晶片(2)之回授電壓會被鉗制在與該具 脈波寬度調變功能之可控式軟啟動及軟關閉電路(1)之該基 準電壓源(12)之輸出參考電壓厂^相等之電壓值。 實施例二’請參閱第十四圖、第六〜八圖、第十圖、 第十二圖及第十五〜十七圖’本發明是一種具脈波寬度調變 26 201014183 功能之可控式軟啟動及軟關閉電路,包括:一運算轉導 放大器(11)、一第一電阻(161)、一第二電阻(162)、一第三 開關(153)、一第四開關(154)、一第一反相器(141)、一 rc 網路、一基準電壓源(丨2)與一脈波寬度調變信號輸入端 (181)、一回授電壓輸入端(182)及一開關電路輸出端 (183);其中,該第三開關(153)與該第四開關(154)均是使 用場效電晶體,而在實際應用上也可以使用雙載子電晶體; 該基準電壓源(12)是使用能隙基準電壓源,而在實際應用上 也可以使用經能隙基準電壓源之分壓電路。 該第二電阻(162)之一端接該運算轉導放大器(丨丨)之 反相輸入端,而該第二電阻(162)之另一端則連接至該回授 電壓輸入端(182);該第一電阻(161)之一端接該運算轉導放 大器(11)之反相輸入端,而該第一電阻(161)之另一端則接 該運算轉導放大器(11)之正相輸入端;該第三開關(153)之 一端接該運算轉導放大器(11)之正相輸入端,而該第三開關 (153)之另一端則接至地端;該第四開關(154)之一端接該運 算轉導放大器(11)之正相輸入端,而該第四開關(154)之另 一端則接該基準電壓源(12)之正端;而該運算轉導放大器 (11)之輸出端與地端之間則接有該RC網路,且該運算轉導 放大器(11)之輸出端則連接至該開關電路輸出端(183);其 中,該RC網路是使用一電阻(171)與一電容(172)所串聯形 27 201014183 成之RC網路,且該電阻(17ι)之另一端則連接至該運算轉導 放大器(11)之輸出端,該電容(172)之另一端則連接至地端。 - 該脈波寬度調變信號輸入端(181)是分別連接至該第 一反相器(141)之輸入端與該第四開關(154)之控制端;其 中’該第一反相器(141)之輸出端則連接至該第三開關(153) 之控制端。 該脈波寬度調變信號輸入端(181)之脈波寬度調變信 號(19)控制該第四開關(154)之打開或閉合,並經由該第一 反相器(141)來控制該第三開關(153)之打開或閉合。 該脈波寬度調變信號輸入端(181)之脈波寬度調變信 號(19)為南電位時,則會使第四開關(154)閉合,並經由該 第一反相器(141)以使得該第三開關(153)打開;該脈波寬度 調變信號輸入端(181)之脈波寬度調變信號(19)為低電位 時,則會使第四開關(154)打開,並經由該第一反相器(141) © 以使得該第三開關(153)閉合。 該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 (1)有二種工作狀態:其中,A為該第一電阻(161)之阻值; 圮為該第二電阻(162)之阻值;«為該運算轉導放大器(u) 之轉導;參考電壓K狀F為該基準電壓源(12)之輸出電壓;回 授電壓為該回授電壓輸入端(182)之電壓。 第一種工作狀態,即工作狀態(一),其等效電路如第 28 201014183 八圖所示:其中,輸入電壓匕為該運算轉導放大器(u)之 正相輸入端與反相輸人端之_電壓;輸㈣流心為該運 算轉導放大器(11)之輸出端電流。 當該具脈波寬度調變功能之可控式軟啟動及軟關閉電 路⑴所輸入之脈波寬度調變信號(19)為高電位,且脈波寬 ❹ 度調變信號(19)為高電位的咖小於預先設定之可控式啟 動時間。 則此時該運算轉導放大器(11)之輸入電壓厂〃為:+ Τ? 2 The second working state, ie working state (2), its equivalent circuit is shown in Figure IX: where the input voltage 6 is the non-inverting input and inverting phase of the operational transconductance amplifier (11) The voltage across the input terminal; the output current / 〇2 is the output current of the operational transconductance amplifier (11): when the controllable soft start and soft-close circuit (1) with pulse width modulation function is input The pulse width modulation signal (19) is high, and the pulse width "cycle" k (19) is the south potential for a time greater than a preset controllable startup time. 23 201014183 At this time, the input voltage κί2 of the operational transconductance amplifier (11) is: V'2=VREF~VFB (3) and the output current/cut of the nasal transduction amplifier (11) is: Equation (4) I02 = Gm · Vi2 = GM X - VF8) Please refer to the sixth figure, the embodiment of the present invention applied to the LED driving chip; the enabling end (EN) of the LED driving chip (2) is external After connecting the circuit to the pulse width modulation signal (cadence FM), the pulse width modulation signal (19) is input to the pulse width through the internal enabling circuit (21) of the LED driving chip (2). The pulse width modulation signal input terminal (181) of the controllable soft start and soft turn off circuit of the modulation function (1), and the feedback terminal (FB) of the LED drive chip (2) is connected by an external circuit After inputting the feedback voltage, the feedback voltage is directly input to the feedback voltage input terminal (182) of the controllable soft start and soft-off circuit (1) having the pulse width modulation function; Wave width modulation function The controllable soft start and soft shutdown circuit (1) of the switch circuit output (183) is connected to the LED drive chip (2) Pulse width modulation comparators (221) one of the inputs. Wherein, the output voltage is the output voltage of the operational soft-start and soft-shutdown circuit (1) of the operational transconductance amplifier (U); the reference voltage is the pulse width modulation Functionally controlled soft-start and soft-off circuit (1) The output voltage of the reference voltage source (12); output 24 201014183 Voltage is the output terminal of the external connection circuit of the LED driver chip (2); The feedback terminal (10) of the factory's z^LED driver chip (2) is also the feedback voltage input terminal (182) of the controllable soft-start and soft-off circuit (1) with pulse width modulation function. The voltage. When the LED driving chip (2) is activated, the pulse width modulation of the pulse width modulation signal input terminal (181) of the controllable soft start and soft-close circuit (1) with pulse width modulation function The signal (19) is high, and the output of the controllable starter (13) is low; therefore, the controllable soft start and soft-shutdown circuit with the pulse width modulation function (D is at Working state (1) The output voltage G of the operational transconductance amplifier (11) is the output of the switching circuit via the controllable soft-start and soft-shutdown circuit (1) with pulse width modulation function (183). ) to connect to the input of the pulse width modulation comparator (221), and through the RS flip-flop (23) and the power drive module (24), thereby generating a driving signal of the power transistor (25), thereby turning on the power Crystal (25). The output current / 〇 / of the operational transconductance amplifier (11) is to charge the capacitor (172), so that the output voltage of the operational transconductance amplifier (丨丨) begins to rise gradually; The operation of the operational amplifier (Π) is the rise of the output voltage core 'power transistor ( 25) Then the action starts. However, according to the theory of the circuit structure of the sixth figure and the related theory of the switching power supply, the output voltage of the external connection circuit starts to rise, and the current on the resistor (3) gradually increases, and the LED drives the chip. (2) The feedback voltage is proportional to the output voltage κ0ί/Γ of the connection circuit of 201014183, until the feedback voltage and the controllable soft-start and soft-off circuit with the pulse width modulation function (1) The output voltage reference voltage of the reference voltage source (12) is equal to 2. According to equation (2), the output current of the operational transconductance amplifier (11) is compared with the controllable soft start circuit of the conventional formula. / is the output current of the controllable soft-start circuit of 习 / (/? / + / ? 2) times. In order to achieve the same output voltage rise speed ' then the pulse width modulation function can be The capacitance required for the capacitor (172) in the soft-start and soft-close circuit (1) is only 圮/(8) times the capacitance value of the controllable soft-start circuit of the conventional type, and the original circuit is reduced. The required capacitance value. When the enable terminal (EN) of the LED driver chip (2) is input to the pulse width modulation signal (PWM) by the external connection circuit and continues to be high for more than a preset controllable start-up time, then the pulse The controllable soft start of the wave width modulation function and the soft start circuit (1) of the controllable start timer (13) output a high potential, thereby enabling the controllable soft start of the pulse width modulation function And the soft shutdown circuit (1) enters the working state (2). The feedback voltage of the LED driver chip (2) is clamped to the output reference voltage factory of the reference voltage source (12) of the controllable soft-start and soft-off circuit (1) with the pulse width modulation function. ^ Equal voltage value. Embodiment 2 'Please refer to the fourteenth, sixth to eighth, tenth, twelfth and fifteenth to seventeenth drawings. 'The present invention is a controllable function with pulse width modulation 26 201014183 The soft start and soft turn off circuit comprises: an operational transconductance amplifier (11), a first resistor (161), a second resistor (162), a third switch (153), and a fourth switch (154) a first inverter (141), an rc network, a reference voltage source (丨2) and a pulse width modulation signal input terminal (181), a feedback voltage input terminal (182) and a switch a circuit output terminal (183); wherein the third switch (153) and the fourth switch (154) both use field effect transistors, and in practical applications, a bipolar transistor can also be used; the reference voltage source (12) is to use a bandgap reference voltage source, and in practice, a voltage divider circuit with a bandgap reference voltage source can also be used. One of the second resistors (162) is terminated to the inverting input of the operational transconductance amplifier (丨丨), and the other end of the second resistor (162) is coupled to the feedback voltage input terminal (182); One of the first resistors (161) is terminated to the inverting input terminal of the operational transconductance amplifier (11), and the other end of the first resistor (161) is connected to the non-inverting input terminal of the operational transconductance amplifier (11); One of the third switch (153) is terminated to the non-inverting input of the operational transconductance amplifier (11), and the other end of the third switch (153) is connected to the ground end; one end of the fourth switch (154) Connected to the non-inverting input of the operational transconductance amplifier (11), and the other end of the fourth switch (154) is connected to the positive terminal of the reference voltage source (12); and the output of the operational transconductance amplifier (11) The RC network is connected between the terminal and the ground, and the output of the operational transconductance amplifier (11) is connected to the output of the switch circuit (183); wherein the RC network uses a resistor (171). ) is connected to a capacitor (172) in the form of a 27 201014183 RC network, and the other end of the resistor (17 i) is connected to the operational transduction At the output of the amplifier (11), the other end of the capacitor (172) is connected to the ground. - the pulse width modulation signal input terminal (181) is respectively connected to an input end of the first inverter (141) and a control terminal of the fourth switch (154); wherein the first inverter ( The output of 141) is connected to the control terminal of the third switch (153). The pulse width modulation signal (19) of the pulse width modulation signal input terminal (181) controls opening or closing of the fourth switch (154), and controls the first via the first inverter (141) The three switches (153) are opened or closed. When the pulse width modulation signal (19) of the pulse width modulation signal input terminal (181) is at the south potential, the fourth switch (154) is closed, and the first inverter (141) is The third switch (153) is turned on; when the pulse width modulation signal (19) of the pulse width modulation signal input terminal (181) is low, the fourth switch (154) is turned on and The first inverter (141) © causes the third switch (153) to close. The controllable soft start and soft-off circuit (1) with pulse width modulation function has two working states: wherein A is the resistance of the first resistor (161); 圮 is the second resistor (162) The resistance value of the transconductance amplifier (u); the reference voltage K-shaped F is the output voltage of the reference voltage source (12); the feedback voltage is the feedback voltage input terminal (182) Voltage. The first working state, that is, the working state (1), its equivalent circuit is as shown in the eighth diagram of the 28th 201014183: wherein the input voltage 匕 is the positive phase input terminal and the reverse phase input of the operational transconductance amplifier (u) The voltage of the terminal is the output current of the operational transconductance amplifier (11). When the pulse width modulation signal (19) input by the controllable soft start and soft-off circuit (1) with the pulse width modulation function is high, the pulse width modulation signal (19) is high. The potential coffee is less than the preset controllable start-up time. Then, the input voltage of the operational transconductance amplifier (11) is:

Vi\ =(Vref~Kb)x ———Vi\ = (Vref~Kb)x ———

Rl+R2 …式(1) 且該運算轉導放大器⑻之輸出電流“為: m % ura) χ '+Rl …式(2) 而在工作狀態㈠時’該運算轉導放大器(11)之輸出端電流 ’〇/是對該電容(172)進行充電。 第二種工作狀態,即工作狀態(三),其等效電路如第 十圖所示:其巾,輸人電壓6為該運算轉導放大器(11)之 正相輸入端與反相輸入端之兩端電壓;輸出電流7仍為該運 异轉導放大器(11)之輸出端電流。 當該具脈波寬度調變功能之可控式軟啟動及軟關閉電 29 201014183 路⑴所輸入之脈波寬度調變信號(19)為低電位,並且脈波 寬度調變魏⑽為低電位㈣則、_先設定的可控式 啟動時間。 此時該運㈣導放大器⑻之輸人電壓^為 ^+r2Rl+R2 (1) and the output current of the operational transconductance amplifier (8) is: m % ura) χ '+Rl (Expression (2) and in the operating state (1) 'The operational transconductance amplifier (11) The output current '〇/ is the capacitor (172) is charged. The second working state, that is, the working state (3), the equivalent circuit is as shown in the tenth figure: its towel, the input voltage 6 is the operation The voltage between the non-inverting input terminal and the inverting input terminal of the transconductance amplifier (11); the output current 7 is still the output current of the transconductance transconductance amplifier (11). When the pulse width modulation function is used Controllable soft start and soft power off 29 201014183 The pulse width modulation signal (19) input by the road (1) is low, and the pulse width modulation Wei (10) is low (four), _ first set controllable Start-up time. At this time, the input voltage of the (four) lead amplifier (8) is ^+r2

Vi3=~Vfbx …式(5) ❹ 則該運算轉導放大器(11)之輸出電流/〇3為 J〇3^Gm-Vi3=-GmxVFB:Vi3=~Vfbx (5) ❹ The output current / 〇3 of the operational transconductance amplifier (11) is J〇3^Gm-Vi3=-GmxVFB:

Rl+R^ …式(6) 而在工作狀態(三)時,式(6)中之該運算轉導放大器(11)之 輸出電流是為一負值,即表示該電容(172)此時是處於放 電狀態’而放電電流路徑是由該電容(172)反向流入該運算 轉導放大器(11)之輸出端’因此,該電容(172)之放電電流 即為該運算轉導放大器(11)之輸出電流。 請參閱第六圖’本發明之應用於LED驅動晶片之實施 例圖;LED驅動晶片(2)之致能端(EN)是由外部連接電路輸 入脈波寬度調變信號(iWM)後,再經由LED驅動晶片(2)内 部之致能電路(21)將脈波寬度調變信號(19)輸入至該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路(1)之該脈波 寬度調變信號輸入端(181);而LED驅動晶片(2)之回授端 201014183 (FB)則是由外部連接電路輸入回授電壓後即直接將回授電 壓輸入至該具脈錢度清魏之可控錢啟動及軟關閉 電路(1)之該回授電壓輸入端(182);而該具脈波寬度調變功 能之可控式軟啟動及軟關電路⑴之該開_路輸出端 (183)則是連接輸入至LE:D驅動晶片(2)内部之脈波寬度調 變比較|§ (221)之一輸入端。 其中,輸出電壓G為該具脈波寬度調變功能之可控式 軟啟動及軟關閉電路(1)之該運算轉導放大器〇丨)之輸出端 電壓;參考電壓^脏為該具脈波寬度調變功能之可控式軟啟 動及軟關閉電路(1)之該基準電壓源(12)之輸出電壓;輸出 電壓為LED驅動晶片(2)之外部連接電路之輸出端電 壓;回授電壓b為LED驅動晶片(2)之回授端(FB)電壓,亦 為該具脈波寬度調變功能之可控式軟啟動及軟關閉電路(工) 之該回授電壓輸入端(182)之電壓。 當LED驅動晶片(2)啟動時,該具脈波寬度調變功能之 可控式軟啟動及軟關閉電路(1)之該脈波寬度調變信號輸入 端(181)之脈波寬度調變信號(19)為高電位,且該可控式啟 動計時器(13)之輸出為低電位;因此,該具脈波寬度調變功 能之可控式軟啟動及軟關閉電路(1)是處於工作狀態(一)。 則該運鼻轉導放大器(11)之輸出電壓是經由該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路(1)之該開關 31 201014183 電路輸出端(183)來連結至脈波寬度調變比較器(221)之輸 入’並經過RS觸發器(23)和功率驅動模組(24),進而產生功 率電晶體(25)之驅動信號,藉以開啟功率電晶體(25)。 該運算轉導放大器(11)之輸出電流/0/是對該電容(172) 進行充電,進而使得該運算轉導放大器(11)之輸出電壓匕 開始逐漸上升;隨著該運算轉導放大器(11)之輸出電壓心 的上升,功率電晶體(25)則開始動作。 而藉由第六圖之電路結構與習式開關電源之相關理論 可知,外部連接電路之輸出電壓開始上升,則電阻(3) 上的電流逐漸增大,且LED驅動晶片(2)之回授電壓與外 連接電路之輸出電壓厂ot/r則成比例上升,直到回授電壓 厂與該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 (1)之該基準電壓源(12)之輸出參考電壓^斤相等。 由式(2)可知,與習式之可控式軟啟動電路相比,該運 算轉導放大器(11)之輸出電流/〇/是習式之可控式軟啟動電 路之輸出電流的倍。而為了要達到相同的輸出 電壓上升速度,則該具脈波寬度調變功能之可控式軟啟動及 軟關閉電路(1)中之該電容(172)所需之電容值大小僅為習 式之可控式軟啟動電路之電容值的圮/(Λ/+/ω倍,而減少 原本電路中所需之電容值。 當LED驅動晶片(2)之致能端(ΕΝ)由外部連接電路輸入 32 201014183 脈波寬度調變信號CPfFA/)從高電位變成低電位時,則該具 脈波寬度調變功能之可控式軟啟動及軟關閉電路(U之該可 控式啟動計時器(13)即輸出高電位,進而使得該具脈波寬度 調變功能之可控式軟啟動及軟關閉電路(丨)進入工作狀態 (三)。 而該運算轉導放大器(11)之輸出電壓是經由該具脈 波寬度調變功能之可控式軟啟動及軟關閉電路〇)之該開關 電路輸出端(183)來連結至脈波寬度調變比較器(221)之輸 入’並經過RS觸發器(23)和功率驅動模組(24),進而產生功 率電晶體(25)之驅動信號。此時,該電容(172)是處於放電 狀態,其放電電流大小即為式(6)中之該運算轉導放大器(11) 之輸出電流/OJ ;而當該運算轉導放大器(11)之輸出電壓匕 逐漸降低時’則間接使得功率電晶體(25)之每一週期之工作 時間逐漸減小’直至功率電晶體(25)完全關閉。 由式(6)可知’與習式之可控式軟啟動電路相比,該電 谷(172)之放電f流即為該運算解放Α||(11)之輸出電流 k是習式之可控式軟啟動電路的⑻说)倍 。而為了達 到相同的輸出電壓下降速度,則該具脈波寬度調變功能之可 控式軟啟動及軟關電路⑴巾找電容(172)所需之電容 值大J、僅為習式之可控式軟啟動電路之電容值的 及//(A+D倍’而減少原本電路巾所需之電容值。 33 201014183 當LED驅動晶片(2)之致能端(εν)由外部連接電路輸入 如第十二圖所示之脈波寬度調變信號CP阶Μ)時,由於脈波 寬度調變信號(PFM)的週期通常遠小於預先設定之可控式 啟動時間’則該具脈波寬度調變功能之可控式軟啟動及軟關 閉電路(1)之該可控式啟動計時器(13)即輸出低電位;此 時’該具脈波寬度調變功能之可控式軟啟動及軟關閉電路 之工作狀態將在工作狀態(一)與工作狀態(三)之間做週期 性的轉換,且轉換頻率與脈波寬度調變信號(户灰^的頻率 相同。 當電路穩定並達到動態平衡後,該具脈波寬度調變功 能之可控式軟啟動及軟關閉電路(1)之該運算轉導放大器 (11)之輸出電壓厂〇、LED驅動晶片(2)之回授電壓厂抑及外部 連接電路之輸出電壓厂的平均值則保持不變,且該電容 (172)上之平均電荷保持不變,進而可以得到如下列之等 式’其中’占空比(Duty Cycle) D為脈波寬度調變信號(ρ奶V/) 之占空比: Άν赃...式⑼ 由式⑼可知,[ED驅動晶 ⑵之回授電壓^與[ED驅動晶 片(2)之致能端(EN)由外部連接電路輸入之脈波寬度調變信 34 201014183 號Cpwm)之占空比成正比。 上述實施例僅為說明本發明之原理及其功效,並非限制 本創作。因此習於此技術之人士對上述實施例近進行修改及 變化仍不脫本創作之精神。本創作已具備產業上利用性、新 穎性及進步性,並符合新型專利要件,爰依法提起申請。 【圖式簡單說明】Rl+R^ (6) In the working state (3), the output current of the operational transconductance amplifier (11) in the equation (6) is a negative value, that is, the capacitance (172) is at this time. Is in a discharged state' and the discharge current path is reversely flown from the capacitor (172) into the output of the operational transconductance amplifier (11). Therefore, the discharge current of the capacitor (172) is the operational transconductance amplifier (11). ) The output current. Please refer to the sixth embodiment of the present invention for applying the LED driver chip. The enable terminal (EN) of the LED driver chip (2) is input from the external connection circuit to input the pulse width modulation signal (iWM). Transmitting the pulse width modulation signal (19) to the controllable soft start and soft shutdown circuit (1) with the pulse width modulation function via the enable circuit (21) inside the LED driver chip (2) The pulse width modulation signal input terminal (181); and the feedback terminal 201014183 (FB) of the LED driver chip (2) is input directly from the external connection circuit to directly input the feedback voltage to the pulse money. The feedback voltage input terminal (182) of Wei's controllable money start-up and soft-off circuit (1); and the controllable soft start and soft-off circuit (1) with pulse width modulation function The circuit output (183) is one of the inputs connected to the pulse width modulation comparison |§ (221) of the input to the LE:D driver chip (2). Wherein, the output voltage G is the output voltage of the controllable soft start of the pulse width modulation function and the operation of the soft turn-off circuit (1) (the operational transconductance amplifier 〇丨); the reference voltage ^ dirty is the pulse wave The controllable soft start of the width modulation function and the output voltage of the reference voltage source (12) of the soft-off circuit (1); the output voltage is the output voltage of the external connection circuit of the LED driver chip (2); the feedback voltage b is the feedback terminal (FB) voltage of the LED driver chip (2), and is also the feedback voltage input terminal (182) of the controllable soft start and soft shutdown circuit (168) with pulse width modulation function. The voltage. When the LED driving chip (2) is activated, the pulse width modulation of the pulse width modulation signal input terminal (181) of the controllable soft start and soft-close circuit (1) with pulse width modulation function The signal (19) is at a high potential, and the output of the controllable start timer (13) is low; therefore, the controllable soft start and soft-off circuit (1) with the pulse width modulation function is at Working status (1). The output voltage of the nasal transduction amplifier (11) is connected to the switch output 31 (183) of the controllable soft start and soft-close circuit (1) with the pulse width modulation function. The pulse width modulation comparator (221) inputs 'and passes through the RS flip-flop (23) and the power drive module (24), thereby generating a driving signal of the power transistor (25), thereby turning on the power transistor (25) . The output current /0/ of the operational transconductance amplifier (11) charges the capacitor (172), so that the output voltage of the operational transconductance amplifier (11) begins to rise gradually; with the operation of the transconductance amplifier ( 11) The output voltage core rises and the power transistor (25) starts to operate. According to the correlation between the circuit structure of the sixth figure and the conventional switching power supply, the output voltage of the external connection circuit starts to rise, the current on the resistor (3) gradually increases, and the LED drive chip (2) is fed back. The voltage rises in proportion to the output voltage of the externally connected circuit, ot/r, until the voltage source and the controllable soft-start and soft-close circuit (1) of the pulse width modulation function are referenced ( 12) The output reference voltage is equal to each other. It can be seen from equation (2) that the output current / 〇 / of the operational transconductance amplifier (11) is twice the output current of the conventional controllable soft-start circuit compared to the conventional controllable soft-start circuit. In order to achieve the same output voltage rise speed, the capacitance value of the capacitor (172) in the controllable soft start and soft-shutdown circuit (1) with pulse width modulation function is only the formula. The capacitance value of the controllable soft-start circuit is 圮/(Λ/+/ω times, and the capacitance value required in the original circuit is reduced. When the enable terminal (ΕΝ) of the LED driver chip (2) is connected by an external circuit Input 32 201014183 When the pulse width modulation signal CPfFA/) changes from high potential to low potential, the controllable soft start and soft shutdown circuit with pulse width modulation function (the controllable start timer of U) 13) The output high potential, so that the controllable soft start and soft-close circuit (丨) with the pulse width modulation function enters the working state (3). The output voltage of the operational transconductance amplifier (11) is The switch circuit output terminal (183) via the controllable soft start and soft-shutdown circuit of the pulse width modulation function is coupled to the input of the pulse width modulation comparator (221) and is triggered by the RS. (23) and the power drive module (24), thereby generating work Crystal electrical drive signal (25) of. At this time, the capacitor (172) is in a discharged state, and the discharge current is the output current /OJ of the operational transconductance amplifier (11) in the equation (6); and when the operational transconductance amplifier (11) When the output voltage 匕 is gradually reduced, the operating time of each cycle of the power transistor (25) is indirectly reduced until the power transistor (25) is completely turned off. It can be seen from equation (6) that compared with the controllable soft-start circuit of the conventional mode, the discharge f-flow of the electric valley (172) is the output current k of the operation liberation |||(11) is a custom The controlled soft start circuit (8) says) times. In order to achieve the same output voltage drop speed, the controllable soft start and soft-off circuit with pulse width modulation function (1) the capacitance required for the capacitor (172) is large, and is only a customary formula. The capacitance value of the controlled soft-start circuit and / / (A + D times ' reduce the capacitance value required for the original circuit board. 33 201014183 When the enable terminal (εν) of the LED driver chip (2) is input by an external connection circuit As shown in the twelfth figure, the pulse width modulation signal CP stage Μ), since the period of the pulse width modulation signal (PFM) is usually much smaller than the preset controllable start time 'the pulse width The controllable soft start of the modulation function and the soft start circuit (1) of the controllable start timer (13) output low potential; at this time, the controllable soft start with the pulse width modulation function and The working state of the soft-off circuit will be periodically converted between the working state (1) and the working state (3), and the switching frequency is the same as the pulse width modulation signal (the frequency of the household ash ^. When the circuit is stable and reaches After dynamic balancing, the controllable softness of the pulse width modulation function The output voltage of the operational transconductance amplifier (11), the feedback voltage of the LED driver chip (2), and the output voltage of the external connection circuit remain unchanged. And the average charge on the capacitor (172) remains unchanged, and thus the equation "Wut the duty cycle (Duty Cycle) D is the duty of the pulse width modulation signal (ρ milk V/)] Ratio: Άν赃... Equation (9) From equation (9), the [ED drive crystal (2) feedback voltage ^ and the [ED drive wafer (2) enable (EN) are modulated by the pulse width of the external connection circuit input. The duty cycle of letter 34 201014183 Cpwm) is proportional. The above embodiments are merely illustrative of the principles and effects of the present invention and are not intended to limit the present invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the present invention. This creation has the industrial applicability, novelty and progress, and meets the requirements of new patents. [Simple description of the map]

第一圖習式之可控式軟啟動電路圖; 第二圖習式之可控式軟啟動電路之應用於LED驅動晶片 時’ LED驅動晶片之致能端所輸入之頻率為 ΙΚΗζ、占空比為1〇〇/0之脈波寬度調變信號;>_、 LED驅動晶片之回授端電壓與led驅動晶片之 外部連接電路之輸出端電壓\/oiyr之電壓波形圖 (一); 第三圖習式之可控式軟啟動電路之應用於LED驅動晶片 時,LED驅動晶片之致能端所輸入之頻率為 ΙΚΗζ、占空比為40%之脈波寬度調變信號户_、 LED驅動晶片之回授端電壓〜與1^0驅動晶片之 外部連接電路之輸出端電壓\/ου7·之電壓波形圖 (二); 第四圖習式之可控式軟啟動電路之應用於LED驅動晶片 時,LED驅動晶片之致能端所輸入之頻率為 35 201014183 ΙΚΗζ占工比為80%之脈波寬度調變信號、 LED驅動晶片之回授端電壓^與LED驅動晶片之 外部連接電路之輸出端電壓vour之電壓波形圖 (三); 第五圖本發明之電路圖(一); 第六圖本發明之應用於LED驅動晶片之實施例圖; 第七圖LED驅動晶片之外部應用電路圖; 第八圖本發明之工作狀態(一)之等效電路圖; 第九圖本發明之工作狀態(二)之等效電路圖; 第十圖本發明之工作狀態(三)之等效電路圖; 第十一圖本發明之工作狀態(四)之等效電路圖; 第十二圖脈波寬度調變信號户_之波形示意圖; 第十三圖本發明之電路圖(二); 第十四圖本發明之電路圖(三); 第十五圖本發明之應用於LED驅動晶#時,led驅動晶片 之致能端所輸入之頻率為IKJ^Z、占空比為10〇/〇 之脈波寬度調變信號/?_、LED驅動晶片之回授 知電壓驅動晶片之外部連接電路之輸 出端電壓V0UT之電壓波形圖(一)·, 第十六圖本發明之應用於LE:D驅動晶片時,LED驅動晶片 之致能端所輸入之頻率為ΙΚΗζ、占空比為4〇0/〇 36 201014183 之脈波寬度調變信號户_、LED驅動晶片之回授 端電壓與LED驅動晶片之外部連接電路之輸 出端電壓\/0177·之電壓波形圖(二;); 第十七圖本發明之應用於led驅動晶片時,LED驅動晶片 之致月&端所輸入之頻率為lKpjz、占空比為8〇% 之脈波寬度調變信號/WW、驅動晶片之回授 4電壓驅動晶片之外部連接電路之輸 出端電壓\/0町之電壓波形圖(三)。 【主要元件符號說明】 (I) 具脈波寬度調變功能之可控式軟啟動及軟關閉電路 (II) 運算轉導放大器 (12) 基準電壓源 (13) 可控式啟動計時器 (141) 第一反相器 (142) 第二反相器 (151) 第一開關 (152) 第二開關 (153) 第三開關 (154) 第四開關 (161) 第一電阻 (162) 第二電阻 37 201014183 (171) 電阻 (172) 電容 . (181)脈波寬度調變信號輸入端 (182) 回授電壓輸入端 (183) 開關電路輸出端 (19)脈波寬度調變信號 (2)LED驅動晶片The controllable soft-start circuit diagram of the first figure is used; when the controllable soft-start circuit of the second figure is applied to the LED driver chip, the input frequency of the LED driver chip is ΙΚΗζ, the duty ratio Is a pulse width modulation signal of 1〇〇/0; >_, voltage waveform of the output terminal voltage of the LED driver chip and the output voltage of the external connection circuit of the LED driver chip (1); When the controllable soft-start circuit of the three-picture mode is applied to the LED driver chip, the input frequency of the LED driver chip is ΙΚΗζ, the duty ratio is 40%, and the pulse width modulation signal is _, LED The voltage waveform of the output voltage of the external connection circuit of the driving chip and the voltage of the output voltage of the external connection circuit of the driving chip (2); the application of the controllable soft-start circuit of the fourth figure to the LED When the chip is driven, the frequency input to the enable terminal of the LED driver chip is 35 201014183 脉 the pulse width modulation signal of 80% of the work ratio, the feedback terminal voltage of the LED driver chip, and the external connection circuit of the LED driver chip Voltage waveform of the output voltage vour ( FIG. 5 is a circuit diagram of the present invention (a); FIG. 6 is a diagram showing an embodiment of the present invention applied to an LED driver chip; FIG. 7 is an external application circuit diagram of the LED driver chip; 1) equivalent circuit diagram; ninth diagram equivalent circuit diagram of the working state (2) of the present invention; eleventh diagram equivalent circuit diagram of the working state (3) of the present invention; eleventh diagram working state of the invention (four Equivalent circuit diagram of Fig. 12; waveform diagram of the pulse width modulation signal of the twelfth figure; Fig. 13 is a circuit diagram of the invention (2); Fig. 14 is a circuit diagram of the invention (3); When the LED driving crystal# of the present invention is applied, the frequency of the input end of the LED driving chip is IKJ^Z, the pulse width modulation signal of the duty ratio is 10〇/〇, and the LED driving chip is used. Voltage waveform diagram of the output terminal voltage VOUT of the external connection circuit of the feedback voltage driving chip (1)·, FIG. 16 is applied to the LE:D driving chip of the present invention, and the input terminal of the LED driving chip is input. The frequency is ΙΚΗζ, the duty ratio is 4〇0/〇36 201014183 Pulse wave width modulation signal household _, LED driver chip feedback terminal voltage and LED driver chip external connection circuit output terminal voltage \/0177 · voltage waveform diagram (two;); When the LED is driven by the chip, the input frequency of the LED driver chip is 1Kpjz, the pulse width modulation signal/WW of the duty ratio is 8〇%, and the feedback of the driving chip is external to the 4 voltage driving chip. The voltage waveform of the output voltage of the connected circuit is (0). [Main component symbol description] (I) Controllable soft-start and soft-off circuit with pulse width modulation function (II) Operational transduction amplifier (12) Reference voltage source (13) Controllable start timer (141) First inverter (142) second inverter (151) first switch (152) second switch (153) third switch (154) fourth switch (161) first resistor (162) second resistor 37 201014183 (171) Resistor (172) Capacitance. (181) Pulse Width Modulation Signal Input (182) Feedback Voltage Input (183) Switch Circuit Output (19) Pulse Width Modulation Signal (2) LED Driver chip

A ^ (21)致能電路 (221)(222)比較器 (23) RS觸發器 (24) 功率驅動模組 (25) 功率電晶體 (26) 震盪電路 (27) 斜率轉換電路 ❹ (3)電阻 (4) 可控式軟啟動電路 脈波寬度調變信號 (L)低電位 (Η)高電位 (R)RS觸發器之輸入端 (5) RS觸發器之輸入端 38 201014183 (Q)RS觸發器之輸出端 (IN) LED驅動晶片之輸入端 (OUT) LED驅動晶片之輸出端 (LX) LED驅動晶片之電感連接端 (FB) LED驅動晶片之回授端 (EN) LED驅動晶片之致能端 (GND) LED驅動晶片之接地端 (VIN) LED驅動晶片之外部連接電路之輸入端電壓; (LED驅動晶片之外部連接電路之輸出端電壓; (Fra) LED驅動晶片之回授端電壓A ^ (21) enable circuit (221) (222) comparator (23) RS flip-flop (24) power drive module (25) power transistor (26) oscillating circuit (27) slope conversion circuit ❹ (3) Resistor (4) Controllable soft start circuit Pulse width modulation signal (L) Low potential (Η) High potential (R) RS trigger input (5) RS flip-flop input 38 201014183 (Q)RS Output of the Trigger (IN) LED Driver Chip Input (OUT) LED Driver Chip Output (LX) LED Driver Chip Inductor Terminal (FB) LED Driver Wafer Feedback Terminal (EN) LED Driver Chip The terminal (GND) of the LED driver chip (VIN) The input voltage of the external connection circuit of the LED driver chip; (the output voltage of the external connection circuit of the LED driver chip; (Fra) the feedback terminal of the LED driver chip Voltage

3939

Claims (1)

201014183 十、申請專利範圍: 1. 一種具脈波寬度調變功能之可控式軟啟動及軟關閉電路,包 括:一運算轉導放大器、一第一電阻、一第二電阻、一第一開 關、一第二開關、一第三開關、一第四開關、一第一反相器、 一第二反相器、一可控式啟動計時器、一 RC網路、一基準電 壓源與一脈波寬度調變信號輸入端、一回授電壓輸入端及一開 關電路輸出端; 該第一開關與該第二電阻並聯,而該第一開關與該第二電阻所 形成並聯迴路之一端接該運算轉導放大器之反相輸入端,並聯 迴路之另一端則連接至該回授電壓輸入端; 該第二開關與該第一電阻串聯,而該第二開關之另一端則接該 運算轉導放大器之正相輸入端,該第一電阻之另一端則接該運 算轉導放大器之反相輸入端; 該第三開關之-端接該運算轉導放大器之正相輸入端,而該第 三開關之另一端則接至地端; 該第四開關之-端接該運算轉導放大器之正相輸入端,而該第 四開關之另一端則接該基準電壓源之正端; 而該運算轉導放大器之輸出端與地端之間則接有該rc網路, 且該運算轉導放大器之輸出端則連接至該開關電路輸出端; 该脈波寬度浦信號輸人端是分別連接錢第—反相器之輪 入端、該細關之控_及該可控式啟動計時器之輸入t 201014183 其中’ δ亥第一反相ι§之輸出端則連接至該第三開關之控制端, 該可控式啟動計時器之輸出端則是分別連接至該第二反相器 之輸入端與該第一開關之控制端’而該第二反相器之輸出端則 是連接至該第二開關之控制端; 該脈波寬度調變信號輸入端之脈波寬度調變信號控制該第四 開關之打開或閉合’並經由該第一反相器來控制該第三開關之 打開或閉合; β , 该可控式啟動計時器是用來檢知脈波寬度調變信號為高電位 或低電位的時間,並控制該第一開關之打開或閉合,且經由該 第二反相器來控制該第二開關之打開或閉合。 2.—種具脈波寬度調變功能之可控式軟啟動及軟關閉電路,包 括.一運算轉導放大器、一第一電阻、一第二電阻、一第一開 關、-第二開關、—第二反相器、—可控式啟動計時器、一 _ Rc網路基準電壓源與一脈波寬度調變信號輸入端、-回 授電壓輸入端及一開關電路輸出端; 該第-開酿該第二電阻並聯,碼第—關與該第二電阻所 形成並聯轉之—端猶運轉較大H之肋輸人端,並聯 迴路之另一端則連接至該回授電壓輸入端; 該第二開關與該第-電阻串聯,而該第二開關之另一端則分別 連接至該運算料放大!!之正相輸人端與絲準電壓源之正 端該第t阻之另-端則接該運算轉導放大器之反相輸入 201014183 端; 該運算轉導放大n之輪出端與地端之間職有該rc網路,且 該運算轉導放大it之輸出频連接至該酬電路輸出端; 該脈波寬度調變錢輸人端是連接雜可控式啟動計時器之 輸入端; 該可控式啟動計時器之輸出端則是分別連接至該第二反相器 之輸入端與該第一開關之控制端’而該第二反相器之輸出端則 是連接至該第二開關之控制端; 該可控式啟動計時器是用來檢知脈波寬度調變信號為高電位 或低電位的時間,並控制該第一開關之打開或閉合,且經由該 第二反相器來控制該第二開關之打開或閉合。 3.—種具脈波寬度調變功能之可控式軟啟動及軟關閉電路,包 括:一運算轉導放大器、一第一電阻、一第二電阻、一第三開 關、一第四開關、一第一反相器、一RC網路、一基準電壓源 與一脈波寬度調變信號輸入端、一回授電壓輸入端及一開關電 路輪出端; 該第二電阻之一端接該運算轉導放大器之反相輸入端’而該第 二電阻之另一端則連接至該回授電壓輸入端; 該第一電阻之一端接該運算轉導放大器之反相輸入端’而該第 一電阻之另一端則接該運算轉導放大器之正相輸入端; 該第三開關之一端接該運算轉導放大器之正相輸入端,而該第 42 201014183 三開關之另一端則接至地端; 該第四開關之一端接該運算轉導放大器之正相輸入端,而該第 四開關之另一端則接該基準電壓源之正端; 而該運算轉導放大器之輸出端與地端之間則接有該RC網路, 且該運算轉導放大器之輸出端則連接至該開關電路輸出端; 该脈波寬度調變信號輸入端是分別連接至該第一反相器之輸 入端與該第四開關之控制端;其中,該第一反相器之輸出端則 連接至該第三開關之控制端; 該脈波寬度調變信號輸入端之脈波寬度調變信號控制該第四 開關之打開或閉合’並經由該第一反相器來控制該第三開關之 打開或閉合。 4. 如申明專利範圍第1至3項其中之任一項所述之具脈波寬度調 變功能之可控式軟啟動及軟關閉電路,其中,該路尤係 指一電阻與一電容所串聯形成之RC網路,且該電阻之另一端 則連接至該運算轉導放大器之輸出端,該電容之另一端則連接 至地端,而該基準電壓源尤係指一能隙基準電壓源或一經能隙 基準電壓源之分壓電路。 5. 如申明專利範圍第1至3項其巾之任-項所述之具脈波寬度調 變功月b之可控式軟啟動及軟關閉電路,其中,該第一開關或該 第二開關或該第三開關或該第四開關尤係指一雙載子電晶體 或一場效電晶體。 43201014183 X. Patent application scope: 1. A controllable soft start and soft shutdown circuit with pulse width modulation function, comprising: an operational transduction amplifier, a first resistor, a second resistor, a first switch a second switch, a third switch, a fourth switch, a first inverter, a second inverter, a controllable start timer, an RC network, a reference voltage source and a pulse a wave width modulation signal input end, a feedback voltage input end and a switch circuit output end; the first switch is connected in parallel with the second resistor, and the first switch is terminated with one of the parallel circuits formed by the second resistor An inverting input terminal of the operational transconductance amplifier, the other end of the parallel circuit is connected to the feedback voltage input terminal; the second switch is connected in series with the first resistor, and the other end of the second switch is connected to the operation transduction a non-inverting input terminal of the amplifier, the other end of the first resistor is connected to an inverting input end of the operational transconductance amplifier; the third switch is terminated to a positive phase input end of the operational transconductance amplifier, and the third The other end of the switch Connected to the ground; the fourth switch is terminated to the positive phase input terminal of the operational transconductance amplifier, and the other end of the fourth switch is connected to the positive terminal of the reference voltage source; and the output of the operational transduction amplifier The rc network is connected between the terminal and the ground, and the output of the operational transduction amplifier is connected to the output of the switch circuit; the pulse width and the signal input end are respectively connected to the money-inverter The wheel end, the control of the fine control_ and the input of the controllable start timer t 201014183, wherein the output end of the 'δ海 first phase ι§ is connected to the control end of the third switch, the controllable The output of the start timer is respectively connected to the input end of the second inverter and the control end of the first switch and the output of the second inverter is connected to the control of the second switch The pulse width modulation signal of the pulse width modulation signal input terminal controls the opening or closing of the fourth switch and controls the opening or closing of the third switch via the first inverter; Controllable start timer is used to detect pulse width Time varying signal is a high potential or low potential, and controlling the opening or closing of the first switch, via the second inverter and controlling the second switch of the open or closed. 2. A controllable soft-start and soft-off circuit with a pulse width modulation function, comprising: an operational transconductance amplifier, a first resistor, a second resistor, a first switch, a second switch, a second inverter, a controllable start timer, a _ Rc network reference voltage source and a pulse width modulation signal input terminal, a feedback voltage input terminal and a switching circuit output terminal; The second resistors are connected in parallel, and the code first-off and the second resistor are formed in parallel, the terminal ends to run a larger H rib input end, and the other end of the parallel circuit is connected to the feedback voltage input end; The second switch is connected in series with the first resistor, and the other end of the second switch is respectively connected to the positive phase of the input device and the positive terminal of the wire quasi-voltage source. The terminal is connected to the inverting input of the operational transconductance amplifier at the end of 201014183; the operational transduction amplifying the round end of the n wheel and the ground end of the rc network, and the output of the operational transduction amplification it is connected to the The output of the compensation circuit; the pulse width modulation is the connection of the controllable An input end of the timer; the output end of the controllable start timer is respectively connected to an input end of the second inverter and a control end of the first switch, and an output end of the second inverter is Is connected to the control end of the second switch; the controllable start timer is used to detect the time when the pulse width modulation signal is high or low, and controls the opening or closing of the first switch, and The opening or closing of the second switch is controlled via the second inverter. 3. A controllable soft start and soft shutdown circuit with a pulse width modulation function, comprising: an operational transduction amplifier, a first resistor, a second resistor, a third switch, a fourth switch, a first inverter, an RC network, a reference voltage source and a pulse width modulation signal input terminal, a feedback voltage input terminal and a switch circuit wheel terminal; one of the second resistors is terminated by the operation The inverting input terminal of the transconductance amplifier is connected to the feedback voltage input terminal; the first resistor is terminated to the inverting input terminal of the operational transconductance amplifier and the first resistor The other end is connected to the non-inverting input terminal of the operational transconductance amplifier; one of the third switches is terminated to the non-inverting input terminal of the operational transconductance amplifier, and the other end of the 42th 201014183 three-switch is connected to the ground end; One of the fourth switches is terminated to the positive phase input of the operational transconductance amplifier, and the other end of the fourth switch is connected to the positive terminal of the reference voltage source; and the output of the operational transduction amplifier is connected to the ground terminal Then the RC network is connected. The output end of the operational transconductance amplifier is connected to the output end of the switch circuit; the pulse width modulation signal input end is respectively connected to the input end of the first inverter and the control end of the fourth switch; wherein The output end of the first inverter is connected to the control end of the third switch; the pulse width modulation signal of the pulse width modulation signal input terminal controls the opening or closing of the fourth switch An inverter controls the opening or closing of the third switch. 4. A controllable soft start and soft-shutdown circuit having a pulse width modulation function according to any one of claims 1 to 3, wherein the circuit is a resistor and a capacitor. An RC network formed in series, and the other end of the resistor is connected to the output of the operational transconductance amplifier, and the other end of the capacitor is connected to the ground, and the reference voltage source is especially a gap reference voltage source Or a voltage divider circuit that passes through a bandgap reference. 5. The controllable soft start and soft-close circuit of the pulse width modulation power cycle b, as recited in claim 1 to 3 of the patent scope, wherein the first switch or the second The switch or the third switch or the fourth switch refers in particular to a dual carrier transistor or a field effect transistor. 43
TW97137176A 2008-09-26 2008-09-26 Pulse-width modulation (PWM)-controlled soft ON/OFF circuit TW201014183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97137176A TW201014183A (en) 2008-09-26 2008-09-26 Pulse-width modulation (PWM)-controlled soft ON/OFF circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97137176A TW201014183A (en) 2008-09-26 2008-09-26 Pulse-width modulation (PWM)-controlled soft ON/OFF circuit

Publications (2)

Publication Number Publication Date
TW201014183A true TW201014183A (en) 2010-04-01
TWI370618B TWI370618B (en) 2012-08-11

Family

ID=44829568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97137176A TW201014183A (en) 2008-09-26 2008-09-26 Pulse-width modulation (PWM)-controlled soft ON/OFF circuit

Country Status (1)

Country Link
TW (1) TW201014183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270430A (en) * 2010-06-03 2011-12-07 罗姆股份有限公司 Led driving device and electrical apparatus using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270430A (en) * 2010-06-03 2011-12-07 罗姆股份有限公司 Led driving device and electrical apparatus using the same
CN102270430B (en) * 2010-06-03 2015-11-25 罗姆股份有限公司 Light emitting diode drive device and possess its electronic equipment
TWI563868B (en) * 2010-06-03 2016-12-21 Rohm Co Ltd Led driving device and electrical apparatus using the same

Also Published As

Publication number Publication date
TWI370618B (en) 2012-08-11

Similar Documents

Publication Publication Date Title
JP5772191B2 (en) Switching power supply
US7646185B2 (en) Automatic external switch detection in synchronous switching regulator controller
EP3361615B1 (en) Switching regulator and control device therefor
US9240720B2 (en) Emulation based ripple cancellation for a DC-DC converter
JP2012235564A (en) Switching power supply device
CN109962615B (en) Stable on-time switch-modulator for zero ESR output capacitor without output voltage offset
JP5415879B2 (en) PWM dimming circuit
TW201220657A (en) Switching regulator
JP2008131746A (en) Step-up/down switching regulator
US9170588B2 (en) Compensation circuit and switching power supply thereof
TW201025813A (en) Voltage converters and voltage generating methods
TWI394356B (en) Control device for dc-dc converter and related dc-dc converter
TWI358185B (en)
TWI473400B (en) Dc-dc controller and control method thereof
US9000735B2 (en) DC-DC controller and operation method thereof
TW200822558A (en) Triangular waveform generating circuit, generating method, inverter using them, light emitting device and liquid crystal television
US20220149729A1 (en) Automatic frequency oscillator for pulse-regulated switch-mode power supply
JP6993867B2 (en) Switching regulator and its control device
JP5160210B2 (en) DC-DC converter drive circuit
CN101754513B (en) Controllable soft starting and soft shut-off circuit with pulse width modulation function
TWI387192B (en) Method for reducing energy loss in dc-dc converter and related control device and dc-dc converter
EP1587208A1 (en) Buck converter with low loss current measurement
TW201014183A (en) Pulse-width modulation (PWM)-controlled soft ON/OFF circuit
TWI463803B (en) Duty cycle generator and power converter
TWI627823B (en) Power converting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees