TW201014135A - Adaptive power supply and related circuitry - Google Patents

Adaptive power supply and related circuitry Download PDF

Info

Publication number
TW201014135A
TW201014135A TW98118723A TW98118723A TW201014135A TW 201014135 A TW201014135 A TW 201014135A TW 98118723 A TW98118723 A TW 98118723A TW 98118723 A TW98118723 A TW 98118723A TW 201014135 A TW201014135 A TW 201014135A
Authority
TW
Taiwan
Prior art keywords
output voltage
power supply
current
adaptive
output
Prior art date
Application number
TW98118723A
Other languages
Chinese (zh)
Inventor
Praveen K Jain
Shang-Zhi Pan
Original Assignee
Chil Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/141,787 external-priority patent/US7902800B2/en
Application filed by Chil Semiconductor Corp filed Critical Chil Semiconductor Corp
Publication of TW201014135A publication Critical patent/TW201014135A/en

Links

Abstract

A power supply configuration includes a monitor circuit to monitor an output voltage and output current of a power supply. The output voltage can be used to supply power to a dynamic load. The power supply varies a rate of changing an adaptive output voltage reference value that tracks the output voltage. Based on a comparison of the output voltage with respect to the adaptive output voltage reference voltage value, a controller associated with the power supply controls switching operation of the power supply to maintain the output voltage within a voltage range. For example, modifying the rate of changing the adaptive output voltage reference value over time depending on current operating conditions of the power supply changes a responsiveness and ability of the power supply to provide current to the dynamic load.

Description

201014135 六、發明說明: 【發明所屬之技術領域】 本發明係有關調適性電源供應及相關電路。 【先前技術】 習知的電壓調整器模組(VRM )可用於調整供應至諸 如微處理器之負載的DC電壓已爲人所知。VRM可包含電 源轉換器,諸如DC-DC轉換器,並可能包含其他組件, 諸如用於控制該電源轉換器之作業的控制器。 DC-DC轉換器的範例係同步降壓轉換器,其具有極小 組件,且因此廣泛地使用在VRM應用中。在範例應用中 ,該降壓轉換器的輸入電壓典型地爲12VDC。由該VRM 產生的輸出電壓可能係5.0VDC、3.3VDC、或甚至更低。 習知之多相位交錯VRM電源供應拓撲可包含彼此並 聯地作業之二或多個電源轉換器相位,以轉換電源並供應 Φ 電源至對應負載。多相位電壓轉換器拓撲的實作(相較於 單電壓轉換器相位拓撲)可因此增強電源供應系統的輸出 電流容量。 諸如所謂的同步降壓轉換器之VRM的典型組態包含 —電感器、一高側開關、及一低側開關。與該降壓轉換器 關聯之控制器重覆地將該高側開關脈動爲開啓,以將電源 從電力來源經由該電感器輸送至動態負載。 爲將輸出電壓維持在相對固定値,該控制器在啓動高 側開關及低側開關間重覆地脈動,以在電感器之節點連接 -5- 201014135 至電壓源及接地間有效地交替’以控制該降壓轉換器的輸 出。儲存在該電感器中的能量在該高側開關爲開啓時的期 間增加,並在該低側開關爲開啓時的期間減少。在切換作 業期間,該電感器將能量從該轉換器的輸入轉移至輸出’ 以將該輸出電壓保持爲相對固定。 今日的微處理器及高效能ASIC晶片能在低電壓作業 並需要大範圍的電流,諸如從少於1安培至多於100安培 。負載可在此等極端的電流中長或短時間週期作業。 0 【發明內容】 如上文所討論的習知電壓轉換器電路可忍受一些缺點 。例如,爲符合瞬時需求,習知電壓調整器電路有時必須 使用許多電容器,以暫時儲存在有需求時將供應至動態負 載的能量。在個別電源供應電路中使用許多大型電容器增 加其尺寸及關聯成本二者。此外,具有數量過多之所謂大 型電容器的電源供應電路可能更容易故障,因爲該等零件 @ 自身會故障且該等電容器必須連接至電路板。至該電路板 的連接會故障。因此,通常不期望使用數量過多的大型/ 濾波電容器。 調適性電壓定位(亦稱爲AVP)的習知觀念已廣泛地 使用在更近期之習知電壓調整器設計中。調適性電壓定位 需要相對於固定參考電壓Vref控制電源供應輸出電壓Vo ’使得個別電源供應電路具有對應的固定輸出阻抗。 例如,一種習知的AVP方法包含在個別的習知電源 -6 - 201014135 供應電路中使用固定參考電壓。與該電源供應關聯的控制 器基於Vref-IoRESR控制電源供應輸出電壓,取代相對於 Vref驅動該電源供應的輸出電壓。在此種情形中,該電源 轉換器電路之行爲如同具有値爲Vref以及始終爲實阻抗 並等於Res r之輸出阻抗的電壓源。 經由電壓模式控制,有時不可能達成實質固定的電源 供應輸出阻抗。在所謂的電流模式控制應用中,該AVP φ 設計取決於該DC (直流電)增益的精確性。名爲主動下 降控制之技術可藉由使用無限DC增益設計用於解決此等 問題。然而,輸出濾波電容器的時間常數可具有對反饋迴 路設計及該轉換器效能的顯著影響。因此經由習知方法, 通常難以精確地維持期望的輸出阻抗。再者,當該電源供 應在線上時,不容易修改該輸出阻抗(例如,主動地維持 輸出電壓並驅動負載)。 本文所討論的技術脫離習知技術。例如,本文之特定 實施例相關於增強電源供應電路供應高瞬時電流至動態負 載的能力,在此種瞬時狀態下無須在該電源供應輸出電壓 上給予或產生實質「振鈴」。 更具體地說,範例電源供應可包含一監視器電路,以 監視一電源供應的一輸出電壓。該輸出電壓用於將電源供 應至一動態負載。該電源供應變更改變一調適性輸出電壓 參考値之一速率。基於該輸出電壓對該調適性輸出電壓參 考電壓値的比較,與該電源供應關聯之一控制器控制該電 源供應的切換作業,以將該輸出電壓維持在一電壓範圍內 -7- 201014135 。根據該電源供應之目前作業狀態,而隨時間通過修改改 變該調適性輸出電壓參考値的該速率會改變該電源供應提 供電流給該動態負載的一反應性及能力。 根據本文實施例之電源供應也可包含與該調適性輸出 電壓參考値調和地(相對其、隨其等)改變之調適性輸出 電流參考値。從而’該調適性輸出電壓參考値及該調適性 輸出電流參考値二者可係時間變化訊號。 在一實施例中,該時間變化調適性輸出電壓參考値可 _ 追循該電源供應輸出電壓(或與其成比例)。須注意可以 連續方式而非以逐步方式改變該調適性輸出電壓參考値。 經由該電源供應輸出電壓相對於該時間變化或調適性輸出 電壓參考値的比較及/或該輸出電流對該對應時間變化輸 出電流參考値之比較,與該電源供應關連之控制器電路控 制該電源供應的切換作業,以調整該電源供應輸出電壓。 在其他實施例中,對應參考電壓產生器產生該時間變 化輸出參考電壓(例如,如其名稱所啓示的,隨時間改變 ❹ 之可調整參考電壓値),以取決於該輸出電壓相對於該調 適性輸出電壓參考値的接近度、交叉等,在不同的步進電 壓値間觸變,諸如高及低步進電壓値。在一實施例中,該 參考電壓產生器週期地或偶而以步進量調整該時間變化輸 出參考電壓,使得該時間變化輸出電壓參考値追循該電源 供應輸出電壓。 在範例實施例中,在作業期間,該參考電壓產生器隨 著時間將該時間變化輸出電壓參考値及該對應時間變化輸 -8- 201014135 出電流參考値設定爲不同幅度之步進電壓値,使得該電源 供應具有實質固定的輸出阻抗値。 依據其他實施例’該等參考電壓可取決於該電源供應 目前的作業情況隨著時間以不同幅度的電壓步進調高及低 。當需要更多電流以將電源供應至負載時,相對於該等參 考電壓的該等電壓步進調整可相對較大,以增加該電源供 應驅動該動態負載的反應性及/或能力。 φ 爲維持電源供應之實質固定的輸出阻抗,當該時間變 化輸出參考電壓增加時,該對應時間變化輸出參考電流減 少,反之亦然。此說明該調適性輸出電壓參考値及該調適 性輸出電流參考値如何能相對於彼此調合地改變的範例。 由該調適性輸出電流參考値分割之該調適性輸出電壓參考 値可代表該電源供應的輸出阻抗。以合適量改變二者可將 該電源供應的輸出阻抗設定爲用於不同負載之相對固定或 受控制之輸出阻抗》 Φ 如上文所討論的,該控制器可組態成比較該電源供應 的輸出電壓及該調適性輸出電壓參考値。將調適性輸出電 壓參考値調整爲追循該輸出電壓。對應的調適性輸出電流 參考値係相對於該調適性輸出電壓參考値而調整。在個別 切換週期的開始,該控制器啓始該電源供應之高側調整器 開關的啓動,以將電源從—或多個來源經由諸如電感器之 儲存裝置傳送至該動態負載。高側開關的啓動增加與該電 源供應輸出電壓關聯之輸出電流量,使得該輸出電壓可將 該輸出電壓維持在一範圍內,即使該動態負載之消耗需求 -9- 201014135 改變。 該控制器也可監視供應至該動態負載的電流量。當供 應至該動態負載的電流量等於或超過由該調適性輸出電流 參考値所設定之臨界値時,該控制器啓始將該高側開關至 關閉狀態的切換。因此,根據本文實施例之電源供應可包 含尖峰電流模式控制器。 因此,根據本文實施例,該電源供應可包含電壓控制 迴路以及電流控制迴路。 回憶如本文所描述之該控制器可組態成取決該電源供 應的作業情況,隨著時間修改改變該調適性輸出電壓參考 値的速率。如所提及的,該調適性輸出電壓參考値及該調 適性輸出電流參考値的修改改變該電源供應的反應性。 例如,取決於該特定作業模式,該電源供應電路控制 與該輸出電壓關聯的輸出電流,使得該輸出電流受限於取 決於該調適性輸出電壓參考値而改變的該尖峰電流參考値 〇 在控制該輸出電流的第一線性控制模式中’該參考電 壓產生器在多個調整週期各者中以第一步進量調整該尖峰 電流參考値。 在控制該輸出電流的第二線性控制模式中’該參考電 壓產生器在多個調整週期各者中以第二步進量調整該尖峰 電流參考値。因此,本文實施例包含在第一作業模式期間 ,以第一步進量改變該調適性輸出電壓參考値或調適性輸 出電流參考値,使得該調適性輸出電壓參考値跟隨該輸出 -10- 201014135 電壓;並在第二作業模式期間,藉由以第二步進 調適性輸出電壓參考値而增加改變該調適性輸出 値或調適性輸出電流參考値的速率。 如稍後將於此說明書中所討論的,以步進量 加該等參考電壓可在多個後續週期各者或取樣時 。回應在一持續時間或情況中該輸出電壓大於該 出電壓參考値的偵測,諸如該調適性輸出電壓參 φ 調適性輸出電壓參考値與該輸出電壓比較之多個 時間各者大於該輸出電壓,根據本文實施例的參 生器可增加改變該調適性輸出電壓參考値的速率 該瞬時狀態。 如本文另行描述的,當該動態負載需要更多 流時,可使用其他方法偵測瞬時狀態。例如,可 電路組態成監視該輸出電壓之改變率或位準,以 狀態。 Ο 該第二步進量的幅度大於該第一步進量之幅 該等較大的步進電壓値,相較於與該第一控制模 用於調整該輸出電流的一回應,該第二線性控制 用於調整該輸出電流之一幅度的一較快回應,以 電壓維持在該範圍中。因此,該電源供應可啓始 性模式,或該電源供應在需要時可供應更多電源 負載之更有反應性的模式。 瞬時狀態不能由該第一或第二線性控制模式 他線性控制模式所滿足係可能的。回應對該動態 量改變該 電壓參考 減少或增 間上完成 調適性輸 考値在該 後續取樣 考電壓產 ,以解決 或更少電 將監視器 識別瞬時 度。因爲 式關聯之 模式提供 將該輸出 該第二線 至該動態 或任何其 負載消耗 -11 - 201014135 較該第一線性控制模式或該第二線性控制模式可供應之電 流爲多的額外電流之一瞬時狀態的偵測(諸如在預定時間 量內),該電源供應可組態成實行包含在該電源供應之多 電源轉換器相位各者中的至少一高側開關之同步啓動的一 非線性控制模式’該非線性控制模式供應電源至該動態負 載以防止該輸出電壓落在該範圍外側。多高側開關的同步 啓動致能該電源供應快速地產生大電流量,以滿足該動態 負載的消耗需求。 最終’作業情況可能保證該電源供應切換回用於調整 與該電源供應關聯之該輸出電壓及輸出電流的該等線性模 式之一者。該瞬態可包含從該非線性控制模式切換至該第 二線性控制模式,且之後,該至第一線性控制模式。該第 二線性控制模式可係連接模式,以將該電源供應從非線性 控制模式回到線性模式之轉移平滑化。 因此,本文實施例可包含將該電源供應的作業從線性 模式切換至非線性模式,且反之亦然,諸如從線性模式切 換至非線性模式,以取決於一或多個不同的電源供應參數 產生該輸出電壓,諸如與該輸出電壓關聯的改變率、該輸 出電壓與目標値的接近度、特定'模式提供合適的由該動態 負載消耗之輸出電流的能力等。因此,從一模式切換至其 他模式的線索可基於任何數量之不同的合適觸發事件。換 言之,該電源供應可組態成取決於該電源供應及/或負載 的目前作業情況,根據不同的轉換率輸出電流。例如,若 該電源供應的輸出電壓係接近目標値作業,該電源供應可 -12- 201014135 在具有相對較低之電流輸出轉換率的模式中作業。相反地 ,若該電源供應的輸出電壓係遠離目標値或範圔作業,該 電源供應可在具有相對較高之電流輸出轉換率的個別模式 中作業。 在一實施例中,該電源供應可從該第一線性控制模式 直接切換至同步啓動多電源轉換器相位之高側開關的非線 性控制模式,以供應電源至該動態負載。因此,本文實施 ❿ 例可包含偵測瞬時狀態。回應該瞬時狀態的偵測,啓始該 電源供應之多電源轉換器相位各者中的一或多個高側開關 之同步啓動,以在該瞬時狀態期間供應額外的電源至該動 態負載。 相反地,須注意瞬時狀態可包含電流消耗的突然減少 。在此種例子中,該電源供應可啓始多電源轉換器相位各 者中的一或多個低側開關之同步啓動,以快速地減少供應 至該負載的電流量。 • 如上文所討論的,及將於下文所討論的,本文之技術 相當適用於切換式電源供應電路,以增強電源供應電路在 瞬時狀態期間提供更多/更少電流,以及在瞬時電流狀態 期間提供穩定輸出電壓的能力。然而,應注意本文之實施 例並未限制使用在此等應用中,且本文所討論的該等技術 也相當適合其他應用。 也須注意本文所討論之不同特性、技術、組態等各者 可與本文描述之任何或所有其他特性獨立地或組合地執行 。因此,本發明可用許多不同方式嵌入、觀看、或申請專 -13- 201014135 利。 此簡短描述的目的不係指定本揭示或申請專利之發明 的每個實施例及/或漸增地新穎實施樣態。取而代之的, 此簡短描述僅提供不同實施例的初步討論以及超越習知技 術之新穎性對應點。針對本發明之其他細節及/或可能觀 點或變化,將讀者指引向實施方式及如下文另外討論之本 揭示的對應圖式。 ❹ 【實施方式】 調適性電壓定位(AVP )的觀念已廣泛地使用在用於 電腦微處理器之電壓調整器(VR)的設計中。在AVP控 制中,該調整器的輸出電壓(F。)隨著輸出電流(八)的 增加而減少,反之亦然。調適性電壓定位的使用可減少電 壓調整器中所需要之輸出電容器的數量,其可節省成本及 電路板面積。 AVP的基本槪念係達成該調整器的固定輸出阻抗(Λ。 ❹ )。在AVP中,該調整器的輸出電壓給定如下: V〇=Vomax-I0-R0 (方程式 1 ) 差分方程式(1),該調整器的輸出阻抗給定如下: R〇 = (方程式2 ) -14- 201014135 數位化方程式(2),該輸出阻抗的數位運算式給定 如下: 基於以上之方程式(3),本文提議新的數位控制器 電路,以達成所期望的AVP控制。該槪念係隨著時間調 φ 整該參考電壓及參考電流/〃/。當該參考電流增 加時,該參考電壓Fre/減少,亦即, 藉由實現一或多個封閉控制迴路,諸如降壓轉換器之 電源供應的輸出電壓可在 之關係中調整,其中Λ。係該調整器的期望輸出阻抗。 圖1係描繪根據本文實施例之數位控制器電路100的 範例圖。接收器100包含在模組140中的控制函數/⑺, 其界定L,/及/~/之間的關係函數,將其表示如下: AIre/=f(z)-AVref (方程式 4) 因爲該AVP與該調整器的穩態作業相關,若實現以 下方程式,將達成該AVP控制 f(z~>l):-\IR〇 (方程式 5) 簡易的控制函數爲 -15- 201014135 f(z) = -\/R〇 (方程式 6) 本文討論的AVP控制係用於穩態作業。如稍後將於 此規格中所討論的,該控制器100可在不同的作業模式間 切換。 圖2係描繪根據本文實施例之控制電路200的範例圖 。控制電路200包含數位控制器電路100以及電源轉換器 相位2 1 0。 在一實施例中,數位控制器電路1 00包含數位控制演 算法22 5、數位脈衝寬度調變電路23 0、參考電壓產生器 235-1,諸如電流參考電壓(Z^C/m/)、以及參考電壓產 生器23 5 -2,諸如輸出參考電壓(IMCFre/)。數位控制 器電路100也包含二比較器,比較器240-1 (比較器I)及 比較器240-2 (比較器V )。 可實作數位控制演算法225以得到期望之參考電流資 料及期望之參考電壓資料。例如,參考電壓產生器23 5-1 (IMCJre/)從數位控制演算法225接收參考電流電壓設 定點資料,並產生該尖峰電流電壓參考値Iref。 參考電壓產生器23 5-2從數位控制演算法225接收參 考電壓資料,並產生參考電壓Fre/。 在作業期間,比較器240-1比較已產生之尖峰參考電 流/re/與電感器電流iL,其係以電流監視器245所感應。 基於電源轉換器相位210所產生的電流與參考電壓產生器 201014135 23 5- 1所產生之參考電壓的比較,比較器240-1產生輸出 C/,其被傳送至數位控制演算法225及數位脈衝寬度調變 電路230。 數位脈衝寬度調變電路230產生閘驅動訊號,以控制 電源轉換器相位210中的諸如MOSFET ( Ml及M2 )之開 關裝置。 比較器240-2比較參考電壓產生器235-2所產生的已 φ 產生參考電壓,與電源轉換器相位210的輸出電壓 (輸出電壓180)。監視器電路246監視用於驅動標示爲 Rload 之動態負載的輸出電壓180。 比較器240-2產生比較結果CF,其發送至數位控制 演算法225。數位控制演算法225根據控制規則依次調整 參考電流資料及參考電壓資料。 在一實施例中,數位控制器電路1〇〇以定頻尖峰電流 模式控制(PCM )作業。高側開關Μ 1的開啓及低側同步 9 開關M2的關閉係藉由該數位脈衝寬度調變電路230所產 生的時序資訊而排程。數位脈衝寬度調變電路230基於比 較器240- 1之比較結果C/,啓始高側開關Ml的關閉及低 側同步開關M2之後續開啓。例如,若通過電感器Lf的電 感器電流增加至由參考電壓產生器235-1所設定的尖峰參 考電流(C/r e/),高側開關Μ 1將關閉且低側同步開關 M2將開啓。 在一實施例中,爲實現調適性電壓定位(A VP )技術 ,數位控制器電路1〇〇在參考電流增加時減少參考電 -17- 201014135 壓&e/,反之亦然。可調和地控制該二參考電壓,使得電 源轉換器相位210的輸出阻抗實質上固定。 參考電流的變化可藉由參考電壓之變化而緊 密地追循。然而,參考電流的變化係由參考電壓之變化所 驅動。根據一實施例,由數位控制器電路1〇〇所實現的控 制規則包含從參考電壓產生器235-2產生參考電壓Vref, 以追隨輸出電壓180。 若所需之負載電流突然增加,輸出電壓180將下降。 在此種例子中,數位控制演算法225將減少參考電壓Vref ,使得其跟隨輸出電壓180。數位控制器電路100將對應 地增加Iref,直到新穩態建立。 若所需之負載電流減少,該輸出電壓將上昇。在此種 例子中,數位控制演算法22 5將增加該參考電壓,使得其 跟隨輸出電壓180。該參考電流將由數位控制器電路100 減少,直到新穩態建立。 因此,根據本文實施例以實現AVP的範例控制總結 如下: a. 若由比較器240-2產生的邏輯訊號CV爲高位準( CV = 1 ),其指示輸出電壓180超過由參考電壓產生器 23 5-2所設定的參考電壓Vref,數位控制演算法225以量 AVref增加參考電壓 Vref,而以量Alref減少尖峰參考電 壓Iref。若 Vref到達或超過其之最大容許値,將不對 Vref作任何改變。 b. 若由比較器240-2產生的邏輯訊號CV爲低位準( 201014135 CV = 0 ),其指示輸出電壓180小於參考電壓Vref,數位 控制演算法225以量AVref減少參考電壓Vref,而以量 Alref增加尖峰參考電壓Iref。若Vref到達或超過其之最 小容許値,將不對Vref作任何改變。 圖3係根據本文實施例的範例時序圖。通常,圖3中 的時序圖顯示具有數位控制器電路100之範例降壓轉換器 的穩態作業波形。 Φ 如上文所述,在一實施例中,降壓轉換器以固定切換 頻率尖峰電流模式控制作業。高側開關Μ 1的開啓及低側 開關M2之關閉係依據該系統時鐘(標示爲時鐘)藉由數 位脈衝寬度調變電路23 0所產生的個別閘訊號而排程。 將調適性輸出電壓參考値調整爲追循該輸出電壓。對 應的調適性輸出電流參考値係相對於該調適性輸出電壓參 考値而調整,以維持用於該電源供應之受控制輸出阻抗。 在諸如時間to之個別切換週期的開始,該控制器啓始該 Φ 電源供應之高側調整器開關的啓動,以將電源從一或多個 來源經由諸如電感器之儲存裝置傳送至該動態負載。 通常,針對如圖所示之諸如在時間t0及t4間的給定 切換週期,數位脈衝寬度調變電路23 0在該切換週期的開 始啓始高側開關Ml的啓動。該開關的啓動導致能量傳送 至該電感器,依序提供電源至該動態負載。 電感器電流ΰ (諸如由電源轉換器相位提供之個別電 流)係由監視器電路245 (增益Λ,)所感應,並與參考電 壓產生器23 5- 1所產生之參考電流比較。當該電感器 -19- 201014135 電流到達由參考八v所指定之設定尖峰電流時,數位控制 器電路100經由數位脈衝寬度調變電路23 0及個別開關驅 動器啓始高側開關Μ 1的關閉及低側開p M2之開啓。 在一實施例中,產生下列假設以簡化該穩態的分析: 1) 該時鐘的功能如同用於目標FPGA及參考電壓產 生器23 5 (例如,二DAC )二者之操作時鐘: 2) 在一電源供應切換週期中可有四時鐘週期; 3) 可忽略輸出電壓180的輸出電壓漣波,以簡化該 分析; 4) 將電路延遲假設爲零。 該電源供應的穩態作業可解釋如下:在to之前,該 電源供應在穩態中作業。時間to代表一切換週期中之第 一時鐘的上昇邊緣。在此時,數位控制器電路1〇〇經由數 位脈衝寬度調變電路230所產生的訊號及個別驅動器開啓 開關Ml並關閉開關M2。當高側開關Ml爲開啓時,電感 器電流ΰ線性地增加。 在時間tl時,感應電感器電流ΰ到達尖峰參考電流 /re/,將由圖2所示之比較器240-1所產生的邏輯比較結果 C/設定爲高位準,邏輯「1」》依據此種情形,將開關Ml 關閉並將開關M2開啓。因爲該高側開關係在關閉狀態, 電感器電流ΰ線性地減少。 在時間tl及t2之間的第一時鐘週期期間,參考電壓 大於輸出電壓V。,並將邏輯比較結果CV設定成低位 準,邏輯「〇」。結果,在時間t2時’諸如該第一切換週 201014135 期中之第二時鐘的上昇邊緣,從而以小量AFre/減少參考 電壓而以小量A/re/增加尖峰參考電流'"。在該第二 時鐘期間’諸如在時間t3之後的週期,參考電壓Fre/小 於輸出電壓V。,從而該邏輯比較結果cr變爲高位準,邏 輯「1」。 結果,在時間t3,該第一切換週期之第三時鐘的上昇 邊緣,以小量A 增加參考電壓Fre/而以小量A/re/減少 尖峰參考電流/re/。根據在先前時鐘週期中的邏輯比較結 果等,參考電壓be/及參考電流/,e/二者以步進(Δ P%e/及 A/re/)變化。 時間t4標示新(或第二)切換週期的開始。 圖3之時序圖描繪該參考電壓及該參考電流隨著時間 變化。 例如,在該穩態模式中,當平均輸出電壓匕與平均 參考電壓<be/>之間的誤差在AFre/內時,平均輸出電壓匕 β 追循平均參考電壓<he/>。若AF,e/小於電壓漣波,該 參考電壓也將反映該電壓漣波的形狀。換言之,參考電壓 產生器235-2在每一時鐘週期以一步進量修改該參考電壓 Vref,使得其追循輸出電壓180。 另一方面,數位控制器電路1〇〇基於尖峰參考電流 /re/控制尖峰電感器電流八*。針對在連續電流模式(CCM )中的該降壓轉換器,平均電感器電流可估計爲: τ / Γ Γ Δ/ J Fo (1 - Ζ)) * Tsw Ιο = (< II >= Ιρκ~— = Ιρκ--—- C 方程式 6 ) 2 2Lf 201014135 其中β係該工作週期比率、係切換週期、且Δ/爲 該電流健波振幅。 針對給定設計,假設其具有固定輸入電壓及輸出電壓 ’該工作週期Ζ)爲常數,因此將具有: (方程式7) (方程式8) (方程式9) (方程式1 0)201014135 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to adaptive power supply and related circuits. [Prior Art] A conventional voltage regulator module (VRM) can be used to adjust the DC voltage supplied to a load such as a microprocessor. The VRM may include a power converter, such as a DC-DC converter, and may include other components, such as a controller for controlling the operation of the power converter. An example of a DC-DC converter is a synchronous buck converter, which has very small components and is therefore widely used in VRM applications. In an example application, the input voltage of the buck converter is typically 12 VDC. The output voltage produced by the VRM may be 5.0 VDC, 3.3 VDC, or even lower. A conventional multi-phase interleaved VRM power supply topology can include two or more power converter phases operating in parallel with each other to convert power and supply Φ power to a corresponding load. The implementation of a multiphase voltage converter topology (compared to a single voltage converter phase topology) can thus enhance the output current capacity of the power supply system. A typical configuration of a VRM such as a so-called synchronous buck converter includes an inductor, a high side switch, and a low side switch. A controller associated with the buck converter repeatedly pulses the high side switch to turn on to deliver power from the power source to the dynamic load via the inductor. In order to maintain the output voltage at a relatively constant 値, the controller repeatedly pulsates between the high-side switch and the low-side switch to effectively alternate between the node connection -5 - 201014135 of the inductor and the voltage source and ground. Control the output of the buck converter. The energy stored in the inductor increases during the period when the high side switch is open and decreases during the period when the low side switch is open. During the switching operation, the inductor transfers energy from the input of the converter to the output ' to maintain the output voltage relatively fixed. Today's microprocessors and high-performance ASIC chips can operate at low voltages and require a wide range of currents, such as from less than 1 amp to more than 100 amps. The load can operate for long or short periods of time at these extreme currents. 0 SUMMARY OF THE INVENTION A conventional voltage converter circuit as discussed above can tolerate some disadvantages. For example, to meet transient demands, conventional voltage regulator circuits sometimes must use a number of capacitors to temporarily store the energy that will be supplied to the dynamic load when needed. The use of many large capacitors in individual power supply circuits increases both their size and associated cost. In addition, power supply circuits with a large number of so-called large capacitors may be more susceptible to failure because the parts @ themselves will fail and the capacitors must be connected to the board. The connection to the board will malfunction. Therefore, it is generally undesirable to use an excessive number of large/filter capacitors. The notion of adaptive voltage positioning (also known as AVP) has been widely used in more recent known voltage regulator designs. The adaptive voltage positioning requires control of the power supply output voltage Vo' relative to the fixed reference voltage Vref such that the individual power supply circuits have corresponding fixed output impedances. For example, one conventional AVP method involves the use of a fixed reference voltage in an individual conventional power supply -6 - 201014135 supply circuit. The controller associated with the power supply controls the power supply output voltage based on the Vref-IoRESR instead of the output voltage that drives the power supply relative to Vref. In this case, the power converter circuit behaves as if it had a voltage source that is Vref and is always a real impedance and equal to the output impedance of Res. Through voltage mode control, it is sometimes impossible to achieve a substantially fixed power supply output impedance. In so-called current mode control applications, the AVP φ design depends on the accuracy of the DC (direct current) gain. A technique called Active Down Control can be used to solve these problems by using an infinite DC gain design. However, the time constant of the output filter capacitor can have a significant impact on the feedback loop design and the performance of the converter. Therefore, it is often difficult to accurately maintain the desired output impedance by conventional methods. Furthermore, when the power supply is supplied online, it is not easy to modify the output impedance (e.g., actively maintain the output voltage and drive the load). The techniques discussed herein are separate from the prior art. For example, a particular embodiment herein relates to the ability of an enhanced power supply circuit to supply a high instantaneous current to a dynamic load in which no substantial "ringing" is required or generated at the power supply output voltage. More specifically, the example power supply can include a monitor circuit to monitor an output voltage of a power supply. This output voltage is used to supply power to a dynamic load. This power supply change changes the rate at which one of the adaptive output voltages is referenced. Based on the comparison of the output voltage to the adaptive output voltage reference voltage ,, a controller associated with the power supply controls the switching operation of the power supply to maintain the output voltage within a voltage range -7-201014135. Depending on the current operating state of the power supply, the rate at which the adaptive output voltage reference 改 is changed over time by modification changes the reactivity and capability of the power supply to provide current to the dynamic load. The power supply according to embodiments herein may also include an adaptive output current reference 値 that is adjusted (relatively with, etc.) to the adaptive output voltage reference 値. Thus, the adaptive output voltage reference 値 and the adaptive output current reference 可 can be time varying signals. In one embodiment, the time varying adaptive output voltage reference _ can follow (or be proportional to) the power supply output voltage. It should be noted that the adaptive output voltage reference 可以 can be changed in a continuous manner rather than in a stepwise manner. Comparing the output voltage with the time change or the adaptive output voltage reference 及 and/or comparing the output current to the corresponding time varying output current reference ,, the controller circuit associated with the power supply controlling the power supply A switching operation is supplied to adjust the power supply output voltage. In other embodiments, the corresponding reference voltage generator generates the time varying output reference voltage (eg, as the name suggests, the adjustable reference voltage ❹ changes over time) to depend on the output voltage relative to the adaptability The output voltage refers to the proximity, crossover, etc. of the 値, and is thixotropic between different step voltages, such as high and low step voltages. In one embodiment, the reference voltage generator periodically or occasionally adjusts the time varying output reference voltage by a step amount such that the time varying output voltage reference 値 follows the power supply output voltage. In an exemplary embodiment, during operation, the reference voltage generator sets the time-varying output voltage reference 値 and the corresponding time-varying output -8-201014135 output current reference 随着 to a step voltage 不同 of different amplitudes over time. This power supply has a substantially fixed output impedance 値. According to other embodiments, the reference voltages may be stepped up and down with different magnitudes of voltage over time depending on the current operating conditions of the power supply. When more current is required to supply power to the load, the voltage step adjustments relative to the reference voltages can be relatively large to increase the reactivity and/or capability of the power supply to drive the dynamic load. φ is the substantially fixed output impedance of the power supply. When the time-varying output reference voltage increases, the corresponding time-varying output reference current decreases, and vice versa. This illustrates an example of how the adaptive output voltage reference 値 and the adaptive output current reference 値 can be blended in relation to each other. The adaptive output voltage reference 値 divided by the adaptive output current reference 値 can represent the output impedance of the power supply. Varying the two can set the output impedance of the power supply to a relatively fixed or controlled output impedance for different loads. Φ As discussed above, the controller can be configured to compare the output of the power supply. Voltage and the adaptive output voltage reference 値. Adjust the adaptive output voltage reference 为 to follow the output voltage. The corresponding adaptive output current reference 调整 is adjusted relative to the adaptive output voltage reference 値. At the beginning of an individual switching cycle, the controller initiates the activation of the high side regulator switch of the power supply to transfer power from the source or sources to the dynamic load via a storage device such as an inductor. The activation of the high side switch increases the amount of output current associated with the power supply output voltage such that the output voltage maintains the output voltage within a range even if the dynamic load consumption demand -9-201014135 changes. The controller can also monitor the amount of current supplied to the dynamic load. The controller initiates switching of the high side switch to the off state when the amount of current supplied to the dynamic load equals or exceeds the threshold set by the adaptive output current reference 。. Thus, a power supply in accordance with embodiments herein may include a spike current mode controller. Thus, in accordance with embodiments herein, the power supply can include a voltage control loop and a current control loop. Recall that the controller as described herein can be configured to vary the rate of the adaptive output voltage reference 随着 over time, depending on the operating conditions of the power supply. As mentioned, the adaptation output voltage reference 値 and the modification of the adaptive output current reference 改变 change the reactivity of the power supply. For example, depending on the particular mode of operation, the power supply circuit controls the output current associated with the output voltage such that the output current is limited by the peak current reference 値〇 that is varied depending on the adaptive output voltage reference 値〇 In the first linear control mode of the output current, the reference voltage generator adjusts the peak current reference 以 in a first step amount in each of the plurality of adjustment periods. In the second linear control mode that controls the output current, the reference voltage generator adjusts the peak current reference 以 in a second step amount in each of the plurality of adjustment periods. Accordingly, embodiments herein include changing the adaptive output voltage reference 値 or the adaptive output current reference 以 at a first step amount during a first mode of operation such that the adaptive output voltage reference 値 follows the output -10- 201014135 Voltage; and during the second mode of operation, the rate at which the adaptive output current or the adaptive output current reference 値 is changed is increased by the second step adaptive output voltage reference 値. As will be discussed later in this specification, the addition of the reference voltages in steps can be performed in a plurality of subsequent cycles or samples. Responding to the detection of the output voltage being greater than the output voltage reference 在一 in a duration or condition, such as the adaptive output voltage reference φ. The adaptive output voltage reference 値 is compared with the output voltage for a plurality of times each of which is greater than the output voltage The ginseng according to embodiments herein may increase the instantaneous state of the rate at which the adaptive output voltage reference 改变 is changed. As described elsewhere herein, other methods can be used to detect transient conditions when the dynamic load requires more flow. For example, the circuit can be configured to monitor the rate of change or level of the output voltage to a state. Ο the magnitude of the second step amount is greater than the larger step voltage 该 of the first step amount, compared to a response for adjusting the output current with the first control mode, the second Linear control is used to adjust a faster response of one of the amplitudes of the output current to maintain the voltage in the range. Therefore, the power supply can be in a start-up mode, or a more reactive mode in which the power supply can supply more power loads when needed. The instantaneous state cannot be satisfied by the first or second linear control mode that his linear control mode is satisfied. In response to the change in the dynamics, the voltage reference is reduced or increased over the adaptive input. The subsequent sampling tests the voltage to resolve or less the power to identify the instantaneousity of the monitor. Because the mode associated with the mode provides the output of the second line to the dynamic or any of its load consumption -11 - 201014135 is greater than the current available in the first linear control mode or the second linear control mode a detection of a transient state (such as within a predetermined amount of time), the power supply being configurable to perform a non-linearity of synchronous activation of at least one of the high side switches included in each of the plurality of power converter phases of the power supply Control Mode 'This non-linear control mode supplies power to the dynamic load to prevent the output voltage from falling outside of this range. The synchronous start of the multi-high side switch enables the power supply to quickly generate a large amount of current to meet the consumption requirements of the dynamic load. Eventually, the operational condition may warrant that the power supply is switched back to one of the linear modes for adjusting the output voltage and output current associated with the power supply. The transient can include switching from the non-linear control mode to the second linear control mode, and thereafter, to the first linear control mode. The second linear control mode can be a connected mode to smooth the transfer of the power supply from the non-linear control mode back to the linear mode. Thus, embodiments herein may include switching the power supply job from a linear mode to a non-linear mode, and vice versa, such as switching from a linear mode to a non-linear mode, depending on one or more different power supply parameters. The output voltage, such as the rate of change associated with the output voltage, the proximity of the output voltage to the target 、, the ability of the particular 'mode to provide an appropriate output current consumed by the dynamic load, and the like. Thus, the clue to switch from one mode to the other can be based on any number of different suitable trigger events. In other words, the power supply can be configured to output current according to different conversion rates depending on the current operation of the power supply and/or load. For example, if the output voltage of the power supply is close to the target, the power supply can operate in a mode with a relatively low current output slew rate. Conversely, if the output voltage of the power supply is away from the target or the target operation, the power supply can operate in an individual mode with a relatively high current output slew rate. In one embodiment, the power supply can be switched directly from the first linear control mode to a non-linear control mode of the high side switch that synchronously activates the multi-power converter phase to supply power to the dynamic load. Therefore, examples of implementations herein may include detecting transient conditions. In response to the detection of the transient state, one or more of the high side switches of each of the plurality of power converter phases of the power supply are initiated to initiate simultaneous supply of additional power to the dynamic load during the transient state. Conversely, it must be noted that the transient state can include a sudden decrease in current consumption. In such an example, the power supply can initiate simultaneous activation of one or more of the low side switches of each of the multiple power converter phases to rapidly reduce the amount of current supplied to the load. • As discussed above, and as discussed below, the techniques herein are well suited for use in switched power supply circuits to enhance the power supply circuit to provide more/less current during transient conditions, and during transient current conditions. Provides the ability to stabilize the output voltage. However, it should be noted that the embodiments herein are not limited to use in such applications, and that the techniques discussed herein are also well suited for other applications. It is also noted that the various features, techniques, configurations, etc. discussed herein can be performed independently or in combination with any or all of the other features described herein. Thus, the present invention can be embedded, viewed, or applied in many different ways. This short description is not intended to identify each embodiment of the present invention or the invention, or the novel embodiments. Instead, this short description merely provides a preliminary discussion of the different embodiments and novelty corresponding points beyond the prior art. For additional details and/or possible observations or variations of the present invention, the reader is directed to the embodiments and the corresponding figures of the present disclosure as discussed below. ❹ [Embodiment] The concept of adaptive voltage positioning (AVP) has been widely used in the design of voltage regulators (VRs) for computer microprocessors. In AVP control, the regulator's output voltage (F.) decreases as the output current (8) increases, and vice versa. The use of adaptive voltage positioning reduces the number of output capacitors required in a voltage regulator, which saves cost and board area. The basic commemoration of the AVP is to achieve the fixed output impedance of the regulator (Λ. ❹ ). In the AVP, the output voltage of the regulator is given as follows: V〇=Vomax-I0-R0 (Equation 1) The difference equation (1), the output impedance of the regulator is given as follows: R〇= (Equation 2) - 14- 201014135 The digitization equation (2), the digital expression of the output impedance is given as follows: Based on equation (3) above, a new digital controller circuit is proposed to achieve the desired AVP control. The commemoration is adjusted by time to φ the reference voltage and the reference current / 〃 /. When the reference current is increased, the reference voltage Fre/ is reduced, i.e., by implementing one or more closed control loops, the output voltage of the power supply, such as the buck converter, can be adjusted in a relationship, where Λ. The desired output impedance of the regulator. FIG. 1 is a diagram showing an example of a digital controller circuit 100 in accordance with an embodiment herein. Receiver 100 includes a control function /(7) in module 140 that defines a relational function between L, / and /~/, which is represented as follows: AIre/=f(z)-AVref (Equation 4) The AVP is related to the steady-state operation of the regulator. If the following equation is implemented, the AVP control f(z~>l) will be achieved: -\IR〇 (Equation 5) The simple control function is -15- 201014135 f(z ) = -\/R〇 (Equation 6) The AVP control discussed in this paper is for steady-state operation. The controller 100 can switch between different operating modes as will be discussed later in this specification. 2 is a diagram depicting an example of a control circuit 200 in accordance with an embodiment herein. Control circuit 200 includes digital controller circuit 100 and power converter phase 2 1 0. In one embodiment, the digital controller circuit 100 includes a digital control algorithm 22 5 , a digital pulse width modulation circuit 23 0 , and a reference voltage generator 235-1, such as a current reference voltage (Z^C/m/). And a reference voltage generator 23 5 -2 such as an output reference voltage (IMCFre/). The digital controller circuit 100 also includes two comparators, a comparator 240-1 (comparator I) and a comparator 240-2 (comparator V). A digital control algorithm 225 can be implemented to obtain the desired reference current data and the desired reference voltage data. For example, reference voltage generator 23 5-1 (IMCJre/) receives reference current voltage set point data from digital control algorithm 225 and produces the peak current voltage reference 値Iref. The reference voltage generator 23 5-2 receives the reference voltage data from the digital control algorithm 225 and generates a reference voltage Fre/. During operation, comparator 240-1 compares the generated spike reference current /re/ with inductor current iL, which is sensed by current monitor 245. Based on the comparison of the current produced by the power converter phase 210 with the reference voltage generated by the reference voltage generator 201014135 23 5- 1, the comparator 240-1 produces an output C/ that is transmitted to the digital control algorithm 225 and the digital pulse. Width modulation circuit 230. The digital pulse width modulation circuit 230 generates a gate drive signal to control switching devices such as MOSFETs (M1 and M2) in the power converter phase 210. The comparator 240-2 compares the φ generated reference voltage generated by the reference voltage generator 235-2 with the output voltage of the power converter phase 210 (output voltage 180). Monitor circuit 246 monitors output voltage 180 for driving a dynamic load labeled Rload. Comparator 240-2 produces a comparison result CF that is sent to digital control algorithm 225. The digital control algorithm 225 sequentially adjusts the reference current data and the reference voltage data according to the control rules. In one embodiment, the digital controller circuit 1 operates in a fixed frequency spike current mode (PCM) operation. The high side switch Μ 1 is turned on and the low side is synchronized. 9 The switch M2 is turned off by the timing information generated by the digital pulse width modulation circuit 230. The digital pulse width modulation circuit 230 starts the closing of the high side switch M1 and the subsequent turning of the low side synchronous switch M2 based on the comparison result C/ of the comparator 240-1. For example, if the inductor current through the inductor Lf increases to the peak reference current (C/r e/) set by the reference voltage generator 235-1, the high side switch Μ 1 will be turned off and the low side synchronous switch M2 will be turned on. In one embodiment, to implement an adaptive voltage positioning (A VP ) technique, the digital controller circuit 1 reduces the reference voltage -17-201014135 voltage & e/ when the reference current increases, and vice versa. The two reference voltages are controllably controlled such that the output impedance of the power converter phase 210 is substantially fixed. The change in the reference current can be closely followed by a change in the reference voltage. However, the change in the reference current is driven by the change in the reference voltage. According to an embodiment, the control rules implemented by the digital controller circuit 1 include generating a reference voltage Vref from the reference voltage generator 235-2 to follow the output voltage 180. If the required load current suddenly increases, the output voltage 180 will drop. In such an example, the digital control algorithm 225 will reduce the reference voltage Vref such that it follows the output voltage 180. The digital controller circuit 100 will increase Iref accordingly until a new steady state is established. If the required load current is reduced, the output voltage will rise. In such an example, the digital control algorithm 22 5 will increase the reference voltage such that it follows the output voltage 180. This reference current will be reduced by the digital controller circuit 100 until a new steady state is established. Thus, the example control to implement AVP in accordance with embodiments herein is summarized as follows: a. If the logic signal CV generated by comparator 240-2 is at a high level (CV = 1), it indicates that output voltage 180 exceeds reference voltage generator 23 The reference voltage Vref set by 5-2, the digital control algorithm 225 increases the reference voltage Vref by the amount AVref, and decreases the peak reference voltage Iref by the amount Alref. If Vref reaches or exceeds its maximum allowable 値, no changes will be made to Vref. b. If the logic signal CV generated by the comparator 240-2 is low (201014135 CV = 0), which indicates that the output voltage 180 is less than the reference voltage Vref, the digital control algorithm 225 reduces the reference voltage Vref by the amount AVref, and Alref increases the spike reference voltage Iref. If Vref reaches or exceeds its minimum allowable 値, no changes will be made to Vref. 3 is an example timing diagram in accordance with an embodiment herein. In general, the timing diagram of Figure 3 shows the steady state operational waveform of an example buck converter with digital controller circuit 100. Φ As described above, in one embodiment, the buck converter controls operation in a fixed switching frequency spike current mode. The turning on of the high side switch Μ 1 and the turning off of the low side switch M2 are scheduled by the system clock (labeled as a clock) by the individual gate signals generated by the digital pulse width modulation circuit 230. Adjust the adaptive output voltage reference 为 to follow the output voltage. The corresponding adaptive output current reference 调整 is adjusted relative to the adaptive output voltage reference 维持 to maintain the controlled output impedance for the power supply. At the beginning of an individual switching cycle, such as time to, the controller initiates activation of the high side regulator switch of the Φ power supply to transfer power from one or more sources to the dynamic load via a storage device such as an inductor. . Typically, for a given switching period, such as between times t0 and t4, as shown, the digital pulse width modulation circuit 230 initiates the activation of the high side switch M1 at the beginning of the switching period. The activation of the switch causes energy to be delivered to the inductor, which in turn provides power to the dynamic load. The inductor current ΰ (such as the individual current supplied by the power converter phase) is sensed by the monitor circuit 245 (gain Λ,) and compared to the reference current generated by the reference voltage generator 23 5-1. When the inductor -19-201014135 current reaches the set spike current specified by reference VIII, the digital controller circuit 100 initiates the closing of the high-side switch Μ 1 via the digital pulse width modulation circuit 23 0 and the individual switch driver. And the low side opens p M2. In one embodiment, the following assumptions are made to simplify the analysis of the steady state: 1) The clock functions as the operating clock for both the target FPGA and the reference voltage generator 23 5 (eg, two DACs): 2) There may be four clock cycles in a power supply switching cycle; 3) the output voltage chopping of the output voltage 180 can be ignored to simplify the analysis; 4) The circuit delay is assumed to be zero. The steady state operation of this power supply can be explained as follows: Before the to, the power supply operates in steady state. The time to represents the rising edge of the first clock in a switching cycle. At this time, the digital controller circuit 1 turns on the switch M1 via the signal generated by the digital pulse width modulation circuit 230 and the individual driver and turns off the switch M2. When the high side switch M1 is on, the inductor current ΰ increases linearly. At time t1, the sense inductor current ΰ reaches the peak reference current /re/, and the logic comparison result C/ generated by the comparator 240-1 shown in FIG. 2 is set to a high level, and the logic "1" is based on this. In this case, the switch M1 is turned off and the switch M2 is turned on. Since the high side-off relationship is in the off state, the inductor current ΰ linearly decreases. The reference voltage is greater than the output voltage V during the first clock cycle between times t1 and t2. And set the logical comparison result CV to a low level, logically "〇". As a result, at time t2, such as the rising edge of the second clock in the first switching week 201014135, the peak reference current '" is increased by a small amount of A/re/ with a small amount of AFre/reduced reference voltage. During the second clock period 'such as the period after time t3, the reference voltage Fre / is smaller than the output voltage V. Therefore, the logical comparison result cr becomes a high level, and the logic is "1". As a result, at time t3, the rising edge of the third clock of the first switching period increases the reference voltage Fre/ by a small amount A and decreases the peak reference current /re/ by a small amount A/re/. The reference voltage be/ and the reference current /, e/ are varied in steps (Δ P%e/ and A/re/) depending on the logical comparison result or the like in the previous clock cycle. Time t4 indicates the beginning of a new (or second) switching cycle. The timing diagram of Figure 3 depicts the reference voltage and the reference current as a function of time. For example, in the steady state mode, when the error between the average output voltage 匕 and the average reference voltage <be/> is within AFre/, the average output voltage 匕β follows the average reference voltage <he/> . If AF, e/ is less than voltage chopping, the reference voltage will also reflect the shape of the voltage chopping. In other words, the reference voltage generator 235-2 modifies the reference voltage Vref by a step amount every clock cycle so that it follows the output voltage 180. On the other hand, the digital controller circuit 1 控制 based on the spike reference current /re/ controls the peak inductor current 八*. For this buck converter in continuous current mode (CCM), the average inductor current can be estimated as: τ / Γ Δ Δ / J Fo (1 - Ζ)) * Tsw Ιο = (< II >= Ιρκ ~— = Ιρκ---- C Equation 6) 2 2Lf 201014135 where β is the duty cycle ratio, the system switching period, and Δ/ is the current-wave amplitude. For a given design, assume that it has a fixed input voltage and the output voltage 'this duty cycle Ζ) is constant, so it will have: (Equation 7) (Equation 8) (Equation 9) (Equation 1 0)

AI〇 = (A<lL>) = Mpk = (A<Ire/>) = AIref AV0 = (A<V0>) = (A<Vre/>) = AVre/ 2m AT/ χτ 〜Vtol AVref = N- 其中’ A/re/係該尖峰參考電流/rg/的預定調整步進, 其係參考電壓產生器235-1中的電流DA C(m位元, Z)JC/re/)之最低有效位元(LSB)的Μ倍,且Δ Fre/係用 於參考電壓Fre/的預定調整步進値,其係參考電壓產生器 23 5 -2中的電壓DAC ( η位元,DJCFre/)之最低有效位元 © (LSB )的N倍’且AF,。,係最大容許電壓容差。 如前文所討論的,數位控制器電路1 〇〇控制由參考電 壓產生器235所產生的參考電壓’使得電源供應電路具有 受控制之輸出阻抗。 圖4係描繪根據本文實施例之電源供應系統4〇〇的範 例圖。 根據上文所述之控制規則,當輸入電流J。增加Δ/。時 ,輸出電壓h減少ΔΓ。,反之亦然。在無負載期間(/。), -22- 201014135 輸出電壓將具有其之最大値(假設此値爲)。所 以,具有建議之數位控制器電路的該降壓轉換器可模型化 爲與等效電阻器Λ。串聯之理想電壓源。 如圖4所示,Λ。可近似爲: R〇 =AI〇= (A<lL>) = Mpk = (A<Ire/>) = AIref AV0 = (A<V0>) = (A<Vre/>) = AVre/ 2m AT/ χτ ~Vtol AVref = N- where 'A/re/ is the predetermined adjustment step of the peak reference current /rg/, which is the lowest current DA C (m bits, Z) JC/re/) in the reference voltage generator 235-1 Μ times the effective bit (LSB), and Δ Fre/ is used for the predetermined adjustment step 参考 of the reference voltage Fre/, which is the voltage DAC (n bit, DJCFre/) in the reference voltage generator 23 5 -2 The least significant bit © (LSB) is N times 'and AF,. , is the maximum allowable voltage tolerance. As previously discussed, the digital controller circuit 1 〇〇 controls the reference voltage generated by the reference voltage generator 235 such that the power supply circuit has a controlled output impedance. 4 is a diagram depicting a sample of a power supply system 4A in accordance with an embodiment herein. According to the control rules described above, when the current J is input. Increase Δ/. At time, the output voltage h decreases by ΔΓ. ,vice versa. During no load (/.), -22- 201014135 output voltage will have its maximum 値 (assuming this is )). Therefore, the buck converter with the proposed digital controller circuit can be modeled as an equivalent resistor. The ideal voltage source for series connection. As shown in Figure 4, Λ. Can be approximated as: R〇 =

^ AVref SIref^ AVref SIref

AVt〇i N_ Iref max M (方程式11) • 如上文所討論,實質固定的輸出阻抗Λ。可使用此建 議之數位控制器電路100達成,與輸出電容器C/之等效 串聯電阻五以無關。從該等效電路,可推斷: y〇=vomax-i0,ji0 (方程式 12) 因此,可實現調適性電壓定位(AVP )控制系統。改 變該比率JV/Μ將調整輸出阻抗L。通常,爲使設計簡化 ,將使#等於M ( )。 3.瞬時負載作業 若大負載瞬時電流發生並發生在輸出電壓180上,該 參考電壓及該參考電流可改變得夠快以建立新平衡,使得 該輸出電壓不會下降或過衝。根據不同的應用需求,在瞬 時負載期間可施用不同的控制模式。例如,可使用三種控 制模式,彼等總結如下: 1 )如同在穩態中作業(控制模式I ); -23- 201014135 2) 快速捜尋模式(控制模式π); 3) 瞬時模式(控制模式III) 4 )雙電壓迴路控制(控制模式IV ) 控制模式I係作爲其他控制模式的基礎使用。在控制 模式I中’在瞬態及穩態間沒有不同。例如,當瞬時上昇 之負載發生時(諸如負載增加對更多電流的需求),該參 考電壓將減少且該參考電流將增加,直到新穩態建立。當 瞬時下降的負載發生時(諸如該負載要求較少的電流), 該參考電壓將增加且該參考電流將減少,直到新穩態建立 。在此控制模式中,無須判斷其是否在該瞬態中。可使用 高作業時鐘頻率以達成快速瞬時回應速度,使得甚至在該 輸出電壓落在作業範圍外側之前,可在該負載消耗之電流 中提供較小改變。 控制模式II可支援快速搜尋及較快速的電源供應回應 。例如,可實作控制規則以判斷該動態負載是否經歷瞬態 。在一實施例中,當追循或企圖過度使用輸出電壓180時 ’可使用計數器TU (在下文於圖7中討論)以計數參考 電壓產生器23 5 -2所產生之參考電壓的減少次數。另一計 數器(計數器TD)保持對由參考電壓產生器23 5-2產生 的該參考電壓之增加次數的追循。 若計數器TU抵達特定數字(預先界定在該程式中) ’當該負載需要更多電流時,此指示負載瞬時上昇之瞬時 狀態。若計數器TD抵達特定數字(預先界定在程式中) ,將判斷具有瞬時下降負載。 -24- 201014135 在瞬時狀態期間,用於該參考電壓/電流之調整步進 的幅度在幅度上可較在穩態中所使用步進之幅度增加。當 實作較大的步進幅度時,該參考電壓及該參考電流將較該 步進幅度較小時更快地抵達該新平衡値。實作該較大幅度 之步進以調整由參考電壓產生器23 5所產生之該參考電壓 ,增加該電源供應的反應性及其供應適當電流量至該負載 的能力。 • 控制模式I及Π係以上文討論的方式作業。然而,控 制模式II對由參考電壓產生器23 5產生的參考電壓實作較 大幅度的步進電壓調整。 在控制模式III中(諸如瞬時模式),當較大幅度之 瞬時狀態發生時,該控制單元判斷其不能由控制模式I及 II處理。當在此瞬時模式中時,非線性控制可由數位控制 器電路1〇〇實施。在模式I及II之穩態或低瞬態中時,施 用如上文所討論之尖峰電流模式控制(線性控制)。但在 • 該瞬時模式中,該尖峰電流模式控制可除能,且相較於正 常作業,該參考電壓/電流的調整步進將增加至較大的( 預先界定)量。 控制模式III可提供非常快速的瞬時負載速度以管理 該瞬時狀態,特別係在該多相位VRM中,其中,可同步 啓動多電源轉換器相位中的個別高側開關以解決該瞬時狀 態。更具體地說,在該多相位VRM中,在負載瞬時上昇 狀態期間,可關閉所有高側開關並可開啓所有低側開關。 在負載瞬時下降狀態期間,可開啓所有高側開關並可關閉 -25- 201014135 或開啓所有低側開關。因此,控制模式Π!較控制模式Ϊ J 或控制模式I具有更快的瞬時負載速度。 在控制模式IV中’可使用二電壓迴路以將負載瞬時 轉移平滑化。一者係慢速電壓迴路,另一者係快速電壓迴 路。加入專用瞬時偵測電路,以偵測對該動態負載供電時 的瞬態。 如稍後將於此說明書中所討論的,控制模式IV包含 二種模式·正常作業模式、瞬時模式、以及連接模式。例 如,在一實施例中,尖峰電流模式控制係在該正常作業模 式及連接模式中使用。該低速電壓迴路在該正常作業模式 中關閉’但該快速電壓迴路在該連接模式中關閉。非線性 控制係在該瞬時模式中使用,而將尖峰電流模式控制除能 。該連接模式致能該電源供應,以產生從一模式至另一模 式的瞬時平滑。 圖5係描繪根據本文實施例之瞬時狀態及電源供應控 制的偵測之範例時序圖。在時間t5,所謂的負載瞬時上昇 發生,其中該動態負載消耗更多電流或功率。由於已增加 負載之狀態,輸出電壓V。開始下降。該數位控制器電路 可在控制模式I或控制模式II中作業,以解決該瞬時狀態 〇 因爲動態負載所要求的額外電流,輸出電壓V。小;^ 參考電壓he/。基於所施用的控制規則,參考電壓Fre/逐 步地下降一小量△ Fre/,而尖峰參考電流將逐步地增加 小對應量。因爲該輸出電壓在該時鐘的許多上昇邊緣 201014135 低於Vref,數位控制器電路100在參考電壓Vref對輸出 電壓180進行比較之多個後續取樣時間各者啓始減少該調 適性輸出參考電壓値Vref。 但假定甚至在該參考電壓調整了多個週期以後,該電 感器電流繼續下降。在時間t6,數位控制器電路100啓始 由數位脈衝寬度調變電路23 0所排程之開關Μ 1的開啓並 開關M2之關閉。然後該電感器電流開始增加。在時間t7 φ ,該電感器電流抵達該動態負載目前所消耗之値。在時間 t8,藉由比較邏輯C/,將開關Ml關閉並將開關M2開啓 。之後,該數位控制器電路建立新穩態。 圖6係描繪根據本文實施例之瞬時下降狀態的取樣波 形之範例圖。 在時間t9,負載瞬時下降發生,且該輸出電壓v。因 此開始上昇,因爲該負載消耗較少功率、電流等。輸出電 壓νβ('亦即,輸出電壓180)大於參考電壓Fre/。基於該 ❹ 控制規則的實作,數位控制器電路1 00在逐步的基礎上以 小步進量△ Le/增加參考電壓。 如圖所示,數位控制器電路1 0 0在逐步的基礎上以小 量減少尖峰參考電流八e/。電感器電流ζ·£繼續減少。 在時間tl 0 ’若電感器電流q小於尖峰參考電壓八",如 脈衝寬度調變電路230所排程的,將開關Ml開啓並將開 關M2關閉。在此狀態中,該電感器電流開始增加。在時 間11 1 ’藉由比較邏輯c/,將開關Μ1關閉並將開關M2 開啓。且該電感器電流開始減少。在時間tl2,該電感器 -27- 201014135 電流抵達其新的負載電流,其變爲該穩態。 若該目標FPGA及D/A轉換器的作業時鐘/η*夠高, 可達成非常快速的瞬時負載速度。若作業時鐘Λα符合下 列條件,僅有該電感(〇)將影響該電感器電流瞬時速度 負載瞬時上昇·· fclk . hdref > —一 t (方程式1 3 )AVt〇i N_ Iref max M (Equation 11) • As discussed above, the substantially fixed output impedance Λ. This can be achieved using the proposed digital controller circuit 100, independent of the equivalent series resistance of the output capacitor C/. From this equivalent circuit, it can be inferred that: y 〇 = vomax - i0, ji0 (Equation 12) Therefore, an adaptive voltage positioning (AVP) control system can be realized. Changing the ratio JV/Μ will adjust the output impedance L. Usually, to simplify the design, # will be equal to M ( ). 3. Instantaneous Load Operation If a large load transient current occurs and occurs on the output voltage 180, the reference voltage and the reference current can be changed fast enough to establish a new balance so that the output voltage does not drop or overshoot. Depending on the application requirements, different control modes can be applied during transient loads. For example, three control modes can be used, which are summarized as follows: 1) as if operating in steady state (control mode I); -23- 201014135 2) fast seek mode (control mode π); 3) instantaneous mode (control mode III) 4) Dual voltage loop control (Control Mode IV) Control Mode I is used as the basis for other control modes. In control mode I there is no difference between transient and steady state. For example, when a transient rising load occurs (such as a load increase for more current demand), the reference voltage will decrease and the reference current will increase until a new steady state is established. When a momentary falling load occurs (such as a current that requires less load), the reference voltage will increase and the reference current will decrease until a new steady state is established. In this control mode, it is not necessary to determine if it is in the transient. A high operating clock frequency can be used to achieve a fast instantaneous response speed so that even small changes in the current consumed by the load can be provided before the output voltage falls outside of the operating range. Control Mode II supports fast search and faster power supply response. For example, a control rule can be implemented to determine if the dynamic load is experiencing transients. In an embodiment, a counter TU (discussed below in Figure 7) may be used when counting or attempting to overuse the output voltage 180 to count the number of reductions of the reference voltage produced by the reference voltage generator 23 5-2. The other counter (counter TD) keeps track of the number of increments of the reference voltage generated by the reference voltage generator 23 5-2. If the counter TU reaches a certain number (predefined in the program) ' when the load requires more current, this indicates the instantaneous state of the load transient rise. If the counter TD arrives at a specific number (predefined in the program), it will be judged to have a transient descent load. -24- 201014135 During the transient state, the amplitude of the adjustment step for this reference voltage/current can be increased in amplitude over the magnitude of the step used in steady state. When a larger step size is implemented, the reference voltage and the reference current will reach the new balance faster than when the step size is smaller. This larger step is implemented to adjust the reference voltage produced by the reference voltage generator 23 5 to increase the reactivity of the power supply and its ability to supply an appropriate amount of current to the load. • Control Mode I and the following are the methods discussed above. However, the control mode II implements a relatively large step voltage adjustment for the reference voltage generated by the reference voltage generator 235. In control mode III (such as instantaneous mode), when a relatively large instantaneous state occurs, the control unit determines that it cannot be processed by control modes I and II. When in this transient mode, the non-linear control can be implemented by the digital controller circuit. In the steady state or low transient of modes I and II, the spike current mode control (linear control) as discussed above is applied. However, in this transient mode, the spike current mode control can be disabled and the reference voltage/current adjustment step will increase to a larger (predefined) amount than normal operation. Control Mode III provides a very fast instantaneous load speed to manage the transient state, particularly in the multi-phase VRM, where individual high side switches in the multi-power converter phase can be synchronized to resolve the transient state. More specifically, in the multi-phase VRM, all high side switches can be turned off and all low side switches can be turned on during the load transient rise state. During the load transient state, all high side switches can be turned on and -25- 201014135 can be turned off or all low side switches turned on. Therefore, the control mode Π has a faster instantaneous load speed than the control mode Ϊ J or control mode I. In control mode IV, a two voltage loop can be used to smooth the load transient transfer. One is a slow voltage loop and the other is a fast voltage loop. A dedicated transient detection circuit is added to detect transients when powering the dynamic load. As will be discussed later in this specification, control mode IV includes two modes: normal operation mode, instantaneous mode, and connection mode. For example, in one embodiment, spike current mode control is used in the normal mode of operation and the connected mode. The low speed voltage loop is turned off in the normal mode of operation 'but the fast voltage loop is turned off in the connected mode. The nonlinear control system is used in this transient mode to disable the spike current mode control. This connection mode enables the power supply to produce instantaneous smoothing from one mode to another. 5 is an example timing diagram depicting transient state and power supply control detection in accordance with embodiments herein. At time t5, a so-called load transient rise occurs, where the dynamic load consumes more current or power. The output voltage V is output because the state of the load has been increased. begin descending. The digital controller circuit can operate in either Control Mode I or Control Mode II to resolve the transient state 输出 Output voltage V due to the additional current required by the dynamic load. Small; ^ reference voltage he/. Based on the applied control rules, the reference voltage Fre/ is gradually decreased by a small amount of Δ Fre/, and the peak reference current is gradually increased by a small corresponding amount. Because the output voltage is lower than Vref at many rising edges 201014135 of the clock, the digital controller circuit 100 begins to reduce the adaptive output reference voltage 値Vref at a plurality of subsequent sampling times in which the reference voltage Vref compares the output voltage 180. . However, it is assumed that the current of the inductor continues to drop even after the reference voltage is adjusted for a plurality of cycles. At time t6, the digital controller circuit 100 initiates the opening of the switch Μ 1 scheduled by the digital pulse width modulation circuit 230 and the closing of the switch M2. The inductor current then begins to increase. At time t7 φ, the inductor current reaches the current consumption of the dynamic load. At time t8, switch M1 is turned off and switch M2 is turned on by comparing logic C/. Thereafter, the digital controller circuit establishes a new steady state. Figure 6 is a diagram showing an example of a sampling waveform of an instantaneous descent state in accordance with an embodiment herein. At time t9, a load transient drop occurs and the output voltage v. Therefore, it starts to rise because the load consumes less power, current, and the like. The output voltage νβ ('that is, the output voltage 180) is greater than the reference voltage Fre/. Based on the implementation of the ❹ control rule, the digital controller circuit 100 increases the reference voltage by a small step amount Δ Le/ on a step-by-step basis. As shown, the digital controller circuit 100 reduces the peak reference current by eight e/ on a step-by-step basis. The inductor current ζ·£ continues to decrease. At time t10', if the inductor current q is less than the peak reference voltage ", as scheduled by the pulse width modulation circuit 230, the switch M1 is turned on and the switch M2 is turned off. In this state, the inductor current begins to increase. At time 11 1 ', switch Μ1 is turned off and switch M2 is turned on by comparison logic c/. And the inductor current begins to decrease. At time t12, the inductor -27-201014135 current reaches its new load current, which becomes the steady state. If the target FPGA and D/A converter's operating clock / η * is high enough, a very fast instantaneous load speed can be achieved. If the operating clock Λα meets the following conditions, only the inductance (〇) will affect the instantaneous current of the inductor current. The load will rise instantaneously. · fclk . hdref > — one t (Equation 1 3 )

Lf 負載瞬時下降: fdk.MrefA (方程式14)Lf load transient drop: fdk.MrefA (Equation 14)

Lf 其中,A/re/係於方程式(9)中界定。在此控制模式 豪| 中,通常,將Μ設定爲1,以利用參考電壓產生器23 5-1 中的該以電流爲基之數位至類比轉換器的全部範圍。Lf where A/re/ is defined in equation (9). In this control mode 豪|, normally, Μ is set to 1 to utilize the current-based digits in the reference voltage generator 23 5-1 to the full range of the analog converter.

控制模式II 在此控制模式中,使用控制單元以決定該電壓調整器 模組的作業狀態。該等典型作業波形與上文所討論之與控 制模式I相關的波形相似。然而,在該瞬態級中的參考調 整步進量(AFu/及 A/re/)可設定成較在控制模式I中實作 〇 之步進量更大的步進量。 可能爲該作業時鐘針選擇相對低的頻率。計數器TU 可用於計數與該參考電壓關聯之步進減少數量。另一計數 器TD可用於計數與該參考電壓關聯之步進增加數量。若 計數器TU抵達臨界値或限制値(LMT_TU,預先界定在 該程式中),數位控制器電路1 〇〇偵測該動態負載消耗較 該電源供應在控制模式I中能立即供應之電流更多的電流 之負載瞬時上昇狀態。若計數器TD抵達該限制値( -28- 201014135 LMT_TD,預先界定在該程式中)’其將判斷具有負載瞬 時下降。該等臨界値可決定如下: LMT TU > mini int ,int AVo,r - 1 _2A_ ^AVref ^ LMT TD > mini int fdk ,int 'byo,r -1 2>_ _AVKf\ ί + 1 + 1 (方程式15 ) (方程式16) 其中D係工作週期、/〃係切換頻率、人^係目標 FPGA及DAC的作業時鐘、AFa,r係尖峰-對-尖峰輸出漣波 電壓、係取得大於X之最小整數的函數、且 少7係從X及少取得較小一者的函數。 在穩態級之方程式(9 )中,假設。可選擇用於 該瞬態級的M,以實現如下之良好動態效能:Control Mode II In this control mode, the control unit is used to determine the operating status of the voltage regulator module. These typical operating waveforms are similar to the waveforms discussed above in relation to control mode I. However, the reference adjustment step amount (AFu/ and A/re/) in the transient stage can be set to a step amount larger than the step size of the actual operation in the control mode I. It is possible to select a relatively low frequency for this job clock pin. The counter TU can be used to count the number of step reductions associated with the reference voltage. Another counter TD can be used to count the number of step increases associated with the reference voltage. If the counter TU reaches a critical threshold or limit 値 (LMT_TU, pre-defined in the program), the digital controller circuit 1 detects that the dynamic load consumption is more current than the power supply can supply immediately in the control mode I. The load of the current rises instantaneously. If the counter TD reaches the limit (-28-201014135 LMT_TD, pre-defined in the program), it will judge that there is a load transient drop. These thresholds can be determined as follows: LMT TU > mini int , int AVo, r - 1 _2A_ ^AVref ^ LMT TD > mini int fdk , int 'byo,r -1 2>_ _AVKf\ ί + 1 + 1 (Equation 15) (Equation 16) where D is the duty cycle, /〃 switching frequency, the operating clock of the target FPGA and DAC, AFa, r-system spike-to-spike output chopping voltage, which is greater than X The function of the smallest integer, and the lesser 7 is the function of taking the smaller one from X and less. In equation (9) of the steady state level, assume. The M for this transient stage can be selected to achieve the following good dynamic performance:

負載瞬時上昇: 負載瞬時下降: M >int M > 'mtInstantaneous load rise: Instantaneous load drop: M >int M > 'mt

Vin — Vo Alref · Lf * fclk V〇 AIrrf · Lf · fclk (方程式17) (方程式18 ) 其中,A/re/係該參考電流在穩態中的調整量、且 取得大於X之最小整數的函數。 若方程式(9)中的Λ/係由用於該瞬態級之方程式( 17)及(18)所選擇,在該瞬時負載級期間,將始終可滿 足如方程式(13)及(14)所指定之該等狀態。 圖7係描繪與根據本文實施例之數位控制器電路100 關聯的範例處理之圖。 -29- 201014135 如圖所示並如上文所討論的,數位控制器電路1 00可 包含一對計數器,換言之,計數器TD及計數器TU。針對 各時鐘週期,數位控制器電路1〇〇檢查輸出電壓180是否 大於參考電壓Vref的目前値。若爲真,該數位控制器電 路將TD計數器加一並將該TU計數器重設爲零。此外, 數位控制器電路1〇〇以合適的步進量增加該參考電壓,使 得該參考電壓追循該輸出電壓。相反地,若輸出電壓180 在該取樣週期不大於該參考電壓,數位控制器電路100將 υ 計數器TU加一並將計數器TD重設爲零。此外,數位控 制器電路1〇〇以合適的步進量減少該參考電壓,使得該參 考電壓追循該輸出電壓。 在取樣期間,若數位控制器電路1 〇〇偵測到計數器 TU或計數器TD少於個別臨界値,則數位控制器電路1 00 繼續在該穩態控制模式中作業(亦即,控制模式I或控制 模式II)。 若輸出電壓180在數量多於臨界値之連續週期中大於 Q 參考電壓Vref,則數位控制器電路1 00偵測該動態負載即 時地要求較該電源供應所提供之電流爲少的電流之瞬時下 降狀態。相反地,針對一給定取樣週期,若輸出電壓180 在數量多於臨界値之連續週期中少於參考電壓Vref,則數 位控制器電路1 〇〇偵測該動態負載即時地要求較該電源供 應所提供之電流更多的電流之瞬時上昇狀態。數位控制器 電路1〇〇能藉由,諸如監視輸出電流或輸出電壓隨時間的 改變、監視輸出電壓之位準等,而識別瞬時狀態。 -30- 201014135Vin — Vo Alref · Lf * fclk V〇AIrrf · Lf · fclk (Equation 17) (Equation 18) where A/re/ is the function of the adjustment of the reference current in the steady state and takes a function smaller than the smallest integer of X . If the Λ/system in equation (9) is selected by equations (17) and (18) for the transient stage, during the transient load stage, equations (13) and (14) will always be satisfied. Specify these states. FIG. 7 depicts a diagram of an example process associated with digital controller circuit 100 in accordance with an embodiment herein. -29- 201014135 As shown and as discussed above, the digital controller circuit 100 can include a pair of counters, in other words, a counter TD and a counter TU. For each clock cycle, the digital controller circuit 1 checks whether the output voltage 180 is greater than the current value of the reference voltage Vref. If true, the digital controller circuit increments the TD counter and resets the TU counter to zero. In addition, the digital controller circuit 1 increases the reference voltage by a suitable step amount so that the reference voltage follows the output voltage. Conversely, if the output voltage 180 is not greater than the reference voltage during the sampling period, the digital controller circuit 100 increments the 计数器 counter TU by one and resets the counter TD to zero. In addition, the digital controller circuit 1 reduces the reference voltage by a suitable amount of step so that the reference voltage follows the output voltage. During the sampling period, if the digital controller circuit 1 detects that the counter TU or the counter TD is less than the individual threshold 値, the digital controller circuit 100 continues to operate in the steady state control mode (ie, control mode I or Control mode II). If the output voltage 180 is greater than the Q reference voltage Vref in a continuous period of more than the critical threshold, the digital controller circuit 100 detects that the dynamic load immediately requires an instantaneous drop in current less than the current supplied by the power supply. status. Conversely, for a given sampling period, if the output voltage 180 is less than the reference voltage Vref in a continuous period of more than the critical threshold, the digital controller circuit 1 detects the dynamic load and immediately requests the power supply. The instantaneous current rise of the current supplied by the current. The digital controller circuit 1 can recognize the transient state by, for example, monitoring the output current or the change of the output voltage with time, monitoring the level of the output voltage, and the like. -30- 201014135

控制模式III 用於判斷瞬態存在與否的控制函數也可在控制模式 ΠΙ中實現。此模式中之模式控制函數的處理與控制模式I 或π中的處理相同’如先前相關於圖7所討論的。在—實 施例中,當在控制模式III中時,數位控制器電路100在 非線性模式中作業。 圖8係描繪根據本文實施例之不同控制模式的範例圖 。如圖所示,基於模式控制單元810中的決定邏輯,數位 控制器電路100可在線性模式(例如,尖峰電流控制模式 ’諸如,控制模式I或控制模式II )或在非線性模式(例 如,非尖峰控制模式)中作業。 如先前所討論的,當在該穩態中時,數位控制器電路 1 〇〇實行尖峰電流模式控制(線性控制)。當該瞬時狀態 相對地最小時,圖8將此顯示爲正常作業模式。 • 當在該瞬時模式中時,諸如當該動態負載經歷瞬時狀 態時,數位控制器電路1 00將尖峰電流模式除能,並將該 等參考電壓/電流的調整步進調整成較正常作業期間所實 現之步進更大的步進量(預先界定)。 更具體地說,在負載瞬時上昇狀態期間,當該動態負 載要求額外的電源時,可藉由數位控制器電路100將所有 高側開關調爲開啓狀態,以解決該瞬時狀態。該等高側開 關幾乎可立即地開啓,以解決負載中的突然改變,之後該 電源供應可再度在穩態模式或線性控制模式中作業。 -31 - 201014135 在負載瞬時下降狀態期間,諸如當該動態負載即時地 消耗較少的功率時’可將所有高側開關關閉。在該瞬時狀 態之後,當該功率消耗不隨時間略微改變時’數位控制器 電路1 00在穩態狀態期間可再度實行該線性控制模式。根 據一實施例,此瞬時模式提供較控制模式I及11更快的瞬 時負載回應速度。然而’與控制模式I及II不同’該瞬時 模式並不基於尖峰電流模式控制作業。 0Control Mode III The control function used to determine the presence or absence of a transient can also be implemented in Control Mode . The processing of the mode control function in this mode is the same as the processing in control mode I or π' as previously discussed in relation to Figure 7. In the embodiment, when in control mode III, the digital controller circuit 100 operates in a non-linear mode. Figure 8 is a diagram depicting an example of different control modes in accordance with embodiments herein. As shown, based on the decision logic in mode control unit 810, digital controller circuit 100 can be in a linear mode (eg, a spike current control mode such as control mode I or control mode II) or in a non-linear mode (eg, Work in non-spike control mode). As previously discussed, the digital controller circuit 1 performs peak current mode control (linear control) when in this steady state. When this transient state is relatively minimal, Figure 8 shows this as the normal mode of operation. • When in the transient mode, such as when the dynamic load experiences an instantaneous state, the digital controller circuit 100 de-energizes the spike current mode and adjusts the adjustment of the reference voltage/current to a more normal operating period The step size achieved by the step is larger (predefined). More specifically, during the load transient rise state, when the dynamic load requires additional power, all of the high side switches can be turned "on" by the digital controller circuit 100 to resolve the transient condition. The contour switch is turned on almost immediately to resolve a sudden change in load, after which the power supply can again operate in steady state mode or linear control mode. -31 - 201014135 All high side switches can be turned off during a load transient drop state, such as when the dynamic load consumes less power on the fly. After the transient state, the digital controller mode can be re-executed during the steady state state when the power consumption does not change slightly with time. According to an embodiment, this transient mode provides faster transient load response speeds than control modes I and 11. However, 'different from control modes I and II' this transient mode does not control the operation based on the spike current mode. 0

控制模式IV 圖9係描繪根據本文實施例之雙電壓迴路控制模式( 諸如控制模式IV )的範例圖。在此種實施例中’迴路以 不同速度作業:一電壓迴路係低速迴路且另—電壓迴路係 快速迴路。 二電壓迴路的一目的係將該瞬時控制模式及非瞬時控 制模式之間的轉移平滑化。可實作專用的瞬時負載偵測電 路900以偵測該瞬態及非瞬態,及何時在其間切換。 〇 圖10係描繪用於根據本文實施例之瞬時負載偵測電 路900的電壓間隙限制之範例圖。該電壓間隙跟隨參考電 壓匕"。在穩態中,該參考電壓跟隨輸出電壓V〇,其係藉 由該慢速電壓迴路的反饋。 若瞬時上昇負載發生,其爲該快速電壓迴路之反饋的 輸出電壓Vq將領先輸出電壓Vo及參考電壓Vref下降。 當輸出電壓Vq抵達並變得小於該電壓限制間隙的下限 hz)時,該瞬時偵測電路將發布指示該瞬時上昇負載狀態 -32- 201014135 的訊號。在此種例子中,數位控制器電路100將進入該瞬 時(上昇)模式。 當在該瞬時上昇模式中時,除能尖峰電流模式控制並 施用非線性控制,使得可迅速地滿足該瞬態。例如,數位 控制器電路100同時開啓多個高側開關,以達成高電感器 電流轉換率。可使用相對大的參考電流/電壓步進以追循 該新平衡點。 • 當 輸出電壓V q回到該電壓間隙限制時,數位控制器 電路1〇〇將進入連接模式。在一實施例中,該連接模式部 位提供從該瞬時模式回到該正常模式的平滑轉移。然而, 當從該正常模式轉移至該瞬時模式時,須注意可能期望跳 過該連接模式並在該正常模式及該瞬時模式間實施轉移, 因爲在需要時,該瞬時模式能更快地將電流提供至該動態 負載。 當在該連接模式中時,快速電壓迴路係關閉的且該慢 速電壓迴路係開啓的。參考電壓 Vref追隨輸出電壓Vq。 可使用中等幅度的參考電流/電壓步進追循該新平衡點。 可實行尖峰電流模式控制。 當該參考電壓再度越過輸出電壓Vo時,在追隨該輸 出電壓多個週期之後,數位控制器電路100將從該連接模 式進入該正常作業模式。在此模式中,該慢速電壓迴路係 關閉的且該快速電壓迴路係開啓的。如先前所討論的,數 位控制器電路100可實行相對小幅度的參考電流/電壓步 進以改變該等參考電壓。也施用尖峰電流模式。 -33- 201014135 相似地,若瞬時下降負載發生時(諸如該動態負載突 然要求較少電流),其爲該快速電壓迴路之反饋的輸出電 壓Vq將在領先輸出電壓Vo及參考電壓Vref增加。當輸 出電壓Vq抵達並變得大於該電壓限制間隙的上限Fit;時 ,該瞬時偵測電路900將發布指示該負載瞬時下降狀態的 訊號。在此種例子中,數位控制器電路1〇〇將進入該瞬時 下降模式。 在該瞬時下降模式中,藉由該數位控制器電路100將 _ 該尖峰電流模式控制除能並施用非線性控制,以控制個別 之高及低側開關。例如,爲適應該瞬時下降狀態,數位控 制器電路100可同時啓動該電源供應之多電源轉換器相位 中的多個個別低側開關並停止該等個別高側開關,以達成 高電感器電流轉換率。Control Mode IV FIG. 9 is a diagram depicting an example of a dual voltage loop control mode, such as control mode IV, in accordance with an embodiment herein. In such an embodiment the circuit operates at different speeds: one voltage loop is a low speed loop and the other - the voltage loop is a fast loop. One purpose of the two voltage loops is to smooth the transition between the instantaneous control mode and the non-instantaneous control mode. A dedicated transient load detection circuit 900 can be implemented to detect the transient and non-transient and when to switch between them. FIG. 10 is a diagram showing an example of voltage gap limitations for a transient load detection circuit 900 in accordance with an embodiment herein. This voltage gap follows the reference voltage 匕". In steady state, the reference voltage follows the output voltage V〇, which is fed back by the slow voltage loop. If the instantaneous rising load occurs, the output voltage Vq which is the feedback of the fast voltage loop will fall toward the leading output voltage Vo and the reference voltage Vref. When the output voltage Vq arrives and becomes less than the lower limit hz) of the voltage limiting gap, the transient detecting circuit will issue a signal indicating the instantaneous rising load state -32-201014135. In such an example, the digital controller circuit 100 will enter the instantaneous (rising) mode. When in the instantaneous rise mode, the spike current mode control is applied and nonlinear control is applied so that the transient can be quickly satisfied. For example, the digital controller circuit 100 simultaneously turns on a plurality of high side switches to achieve a high inductor current slew rate. A relatively large reference current/voltage step can be used to follow this new balance point. • When the output voltage V q returns to this voltage gap limit, the digital controller circuit 1〇〇 will enter the connected mode. In an embodiment, the connected mode portion provides a smooth transition from the transient mode back to the normal mode. However, when transitioning from the normal mode to the transient mode, care must be taken to skip the connection mode and implement a transition between the normal mode and the transient mode because the transient mode can bring current faster when needed. Provided to the dynamic load. When in the connected mode, the fast voltage loop is closed and the slow voltage loop is open. The reference voltage Vref follows the output voltage Vq. This new balance point can be followed by a medium amplitude reference current/voltage step. Peak current mode control is available. When the reference voltage again crosses the output voltage Vo, after a number of cycles following the output voltage, the digital controller circuit 100 will enter the normal mode of operation from the connection mode. In this mode, the slow voltage loop is closed and the fast voltage loop is open. As previously discussed, the digital controller circuit 100 can implement a relatively small magnitude of reference current/voltage step to vary the reference voltages. A spike current mode is also applied. -33- 201014135 Similarly, if the instantaneous descent load occurs (such as the dynamic load suddenly requires less current), the output voltage Vq that is the feedback of the fast voltage loop will increase at the leading output voltage Vo and the reference voltage Vref. When the output voltage Vq arrives and becomes greater than the upper limit Fit of the voltage limiting gap, the transient detecting circuit 900 will issue a signal indicating the instantaneous falling state of the load. In such an example, the digital controller circuit 1 will enter the instantaneous drop mode. In the instantaneous descent mode, the digital current mode control is disabled by the digital controller circuit 100 and a non-linear control is applied to control the individual high and low side switches. For example, to accommodate the transient descent state, the digital controller circuit 100 can simultaneously activate a plurality of individual low side switches of the power supply's multiple power converter phases and stop the individual high side switches to achieve high inductor current switching. rate.

當在該瞬時下降模式中時,可使用相對大的參考電流 /電壓步進追循該新平衡點。當輪出電壓Vq最終回到該電 壓間隙限制時,該控制器將進入該連接模式。 D 在該連接模式中,快速電壓迴路係關閉的且該慢速電 壓迴路係開啓的。參考電壓Vref追隨輸出電壓Vq。中等 幅度的參考電流/電壓步進可由數位控制器電路100使用 ,以追循該新平衡點。可施用尖峰電流模式控制。當該參 考電壓再度越過輸出電壓Vo時,可將數位控制器電路 1 〇〇組態爲進入該正常作業模式。 在該正常模式中,該慢速電壓迴路係關閉的且該快速 電壓迴路係開啓的。可使用小參考電流/電壓步進。也施 -34- 201014135 用尖峰電流模式。 圖11係描繪根據本文實施例之多個模式及模式 移的範例圖。如先前所討論的,數位控制器電路100 於該雙電壓控制迴路初始模式間的轉移(諸如該正常 、瞬時模式、及連接模式),如先前相關於圖ίο所 的。 應注意,取決於較高之瞬時負載電流狀態的偵測 φ 位控制器電路100將較早進入該瞬時模式並提供所需 高的負載電流轉換率。如先前所討論的,若該負載電 進量相對低或所需之負載電流轉換率低,數位控制器 1〇〇可能不進入瞬時模式,因爲該正常作業模式(嵌 快速搜尋模式)能處理此種瞬時負載。 圖12係描繪根據本文實施例之包含多電源轉換 位之電源供應的範例圖。在此範例組態中,電源供應 包含由數位控制器電路1 00控制之多電源轉換器相位 # 常模式期間,數位控制器電路1 00以異相操作該等電 換器相位。在瞬時狀態期間,數位控制器電路100可 多個高側開關或多個低側開關的同時啓動,以解決不 型的瞬時狀態。 多電源轉換器相位的交錯不僅降低總輸出®流中 流漣波,也增加總輸出電流頻率。總電感器電流的漣 率係各頻道(亦即,電源轉換器相位)之頻率的^^倍 此,多電源轉換器相位的使用顯著地降低與該電源供 聯之輸出濾波電容器的需求。相似地,多電源轉換器 間轉 可基 模式 討論 ,數 之較 流步 電路 入式 器相 1200 。正 源轉 初始 同類 的電 波頻 。因 應關 相位 -35- 201014135 的交錯也可顯著地降低輸入濾波電容器的需求 然而,多電源轉換器相位的交錯可能包含 制器,不僅因爲需要更多控制訊號,也因爲在 之控制訊號的時序及匹配。根據一實施例,數 路100在不同頻道(例如,相位)間實行電流 以平衡多電源轉換器相位或頻道對該負載的驅丨 如圖所示,圖12顯示具有所建議之數位 100之相位降壓轉換器的電路組態,其中 #+ / )比較器。 一比較器係用於將與各電源轉換器相位關 對對應參考電流電壓値進行比較。 使用在該電壓迴路中的另一比較器將輸出 參考電壓値Vref進行比較。 各相位的電感器電流係分別受感測並與參 器23 5 _1所產生之尖峰參考電流進行比較 考電流設定爲相位尖峰參考電流。各相位 邏輯訊號分別用於關閉其所擁有的個別高側開 所擁有之低側開關。高側開關的開啓訊號及低 閉訊號係由脈衝寬度調變電路23 0產生。在一 脈衝寬度調變電路23 0係用計數器-比較器法 相位降壓轉換器,該計數器位元《給定如下 〇 更複雜的控 不同頻道中 位控制器電 分享控制, 訪。 控制器電路 總共使用( 聯之該電流 霪壓180對 考電壓產生 。將尖峰參 之比較器的 關並開啓其 側開關的關 實施例中, 實作。針對 n = int[log2iV] (方程式19) 201014135 其中函數r;採用該結果之高捨去整數値。 圖13係描繪與根據本文實施例之控制應用程式140-1 關聯的用於執行指令、方法、技術等之範例架構的圖。數 位控制器電路1 00可能組態爲包含,諸如DSP (數位訊號 處理器)、FPGA (場效可規劃閘極陣列)、微控制器、 如本文所描述之其他相關電路等之處理器,以實行上文及 下文所討論的技術。 (Ρ 在此種實施例中,控制電路1 40可包含耦合記憶體系 統1312、處理器1313、輸入/輸出介面1314、及通訊介面 1317之互連1311。 該記憶體系統可用控制應用程式140-1編碼,此致能 該處理器支援合適的資料、控制、以及通訊訊號的產生, 以經由一或多個電壓轉換器相位調整輸出電壓180。因此 ,可將對應的控制應用程式140-1嵌入爲支援根據本文描 述之不同實施例的處理功能性之軟體碼,諸如資料及/或 φ 邏輯指令(例如,儲存在該記憶體或在其他電腦可讀媒體 ,諸如硬碟,中的碼)。 在根據一實施例的作業期間,處理器1313經由使用 互連1311存取記憶體系統1312,以發動、運行、執行、 解譯、或以其他方式實施該控制應用程式14 0-1的邏輯指 令。該控制應用程式的執行在控制程序140-2中產生處理 功能性。換言之,該控制程序140-2代表在處理器13 13 內或上執行之控制應用程式140_1的一或多個部分。 應注意,除了實施如本文所討論之範例方法作業的該 -37- 201014135 等控制程序外,本文的其他實施例包含該控制應用程式 140-1自身,諸如用於產生控制訊號之未執行或不實施之 邏輯指令及/或資料,以控制該電源供應系統中的一或多 個電壓轉換器相位各者、參考電壓產生器等。 控制應用程式1 40-1可能儲存在電腦可讀媒體(例如 ,儲存庫)中,諸如軟式磁碟、硬式磁碟、或光學媒體。 根據其他實施例,該控制應用程式140-1也可儲存在記憶 體類型的系統中,諸如在韌體、唯讀記憶體(ROM )中、 或如同此範例,作爲在該記憶體系統(例如,在隨機存取 記憶體或RAM內)內的可執行碼等。 須注意在其他範例實施例中,可將數位控制器電路 1 00的任何部分組態爲硬體,諸如組合邏輯,數位電路等 〇 數位控制器電路1 〇〇及相關電路所支援的功能性現在 將經由在個別之圖14至17中的流程圖而討論。須注意將 與上文所討論的觀念部分重疊。再者,須注意在下列流程 圖中的步驟不必始終以所示之順序執行。 更具體地說,圖14係描繪根據本文實施例之改善電 源供應效率技術的流程圖1400。 在步驟1410中,數位控制器電路100監視該電源供 應的輸出電壓180。如先前所討論的,輸出電壓180係用 於供應電源至動態負載,諸如Rload。 在步驟1 420中,數位控制器電路100變更改變由參 考電壓產生器235-2所產生之一調適性輸出電壓參考値( 201014135 諸如Vref)的速率。 在步驟1 43 0中,數位控制器電路100比較輸出電壓 180與該調適性輸出電壓參考値。基於該比較,數位控制 器電路1〇〇控制該電源供應的切換作業,以將輸出電壓 180維持在電壓範圍內。 將圖15及16組合以形成流程圖1500(例如,流程圖 1 500-1及流程圖1 500-2 ),其描繪根據本文實施例之至少 φ 部分地基於在不同作業模式間的切換而改善電源供應反應 性之技術。 在步驟15 10中,數位控制器電路100監視個別電源 供應的輸出電壓180。如先前所討論的,輸出電壓180可 用於將電源供應至動態負載(Rload ),諸如隨著時間消 耗不同功率量的處理器裝置、或其他電路。 在步驟1515中,數位控制器電路100監視輸出電壓 180並偵測與輸出電壓180關聯的改變率,諸如藉由在該 參 調適性輸出電壓參考値對輸出電壓180進行比較之多個後 續取樣時間各者中偵測調適性輸出電壓參考値Vref大於 輸出電壓1 80。 在步驟1 520中,數位控制器電路100至少部分地基 於與輸出電壓180關聯的改變率,更改改變該調適性輸出 電壓參考値(亦即,Vref)的速率。換言之,若輸出電壓 180迅速地改變,使得在該調適性輸出電壓參考値中的小 步進改變不能追上輸出電壓180,則數位控制器電路100 實行較大步進幅度,從而增加該電源供應的反應性以供應 -39- 201014135 電源至該動態負載。因此,該電源供應的模式設定反映目 前所需,以供應適當的電流量至該負載。 在次步驟1 52 5中,爲回應在一持續時間內輸出電壓 1 80大於該調適性輸出電壓參考値之偵測,數位控制器電 路1〇〇增加改變該調適性輸出電壓參考値的速率,使得 Vref隨著時間更快地改變。 在次步驟1 5 3 0中,在第一作業模式期間,數位控制 器電路100以第一步進量改變調適性輸出電壓參考値Vref ,使得該調適性輸出電壓參考値追隨輸出電壓180。 在步驟1 5 3 5中,在第二作業模式期間,數位控制器 電路100以第二步進量改變調適性輸出電壓參考値Vref, 而增加改變該調適性輸出電壓參考値的速率。該第二步進 量大於該第一步進量。相較於與該第一控制模式關聯之用 於調整該輸出電流的回應,該第二線性控制模式提供用於 調整該輸出電流之幅度的較快回應,以將該輸出電壓維持 在該範圍中。因此,該第二模式更有回應性,以將電源供 應至該動態負載。 在步驟1540中,數位控制器電路100依據該調適性 輸出電壓參考値(由參考電壓產生器235-2所的Vref訊號 )調整輸出電流參考値(由參考電壓產生器23 5- 1所產生 的Iref訊號),以控制該電源供應的輸出阻抗。 在步驟1545中,如同先前所討論之使用電壓及電流 控制迴路,經由輸出電壓180對該調適性輸出電壓參考値 的比較及該供應電流對該調適性輸出電流參考値的比較, -40- 201014135 數位控制器電路1 00控制該電源供應的切換作業,以將輸 出電壓180維持在電壓範圍內。 在步驟1550中,爲回應該動態負載在預定時間量內 消耗可由該第一線性控制模式及該第二線性控制模式供應 的額外電流之瞬時狀態的偵測,數位控制器電路1 0 0在非 線性控制模式中作業。當在該非線性控制模式中時,數位 控制器電路100啓始該電源供應之多電源轉換器相位各者 φ 中的一或多個高側開關之同時啓動,以將電源提供給該動 態負載,以防止輸出電壓1 80落至該範圍外側。 在步驟1555中,取決於與輸出電壓180關聯的改變 率或該動態負載即時地要求更多或更少電流之瞬時狀態的 偵測,數位控制器電路1 〇〇在該電源供應在線性模式及非 線性模式作業間切換,以產生輸出電壓1 80。 在一實施例中,如先前所討論的,數位控制器電路 100可監視輸出電壓180以偵測瞬時狀態。回應需要更多 • 電流之瞬時狀態的偵測,數位控制器電路1 00啓始多電源 轉換器相位中的高側開關之同時啓動,以在該瞬時狀態期 間供應額外的電源至該動態負載。 圖17係描繪根據本文實施例之基於不同作業模式間 的切換而改善電源供應效率及反應性之技術的流程圖1700 〇 在步驟1710中,數位控制器電路100控制與輸出電 壓180關聯之輸出電流以限制在尖峰電流參考値(lref) ,該尖峰電流參考値對該調適性輸出電壓參考値(Vref) -41 - 201014135 依比例改變。如本文所描述的,該尖峰電流參考値與該調 適性輸出電流參考値共同用於將該電源供應維持在實質上 爲常數之輸出阻抗範圍內。若有需要,須注意數位控制器 電路1 00也可組態成控制非固定値(例如,變化値)之輸 出阻抗。 在步驟1715中,當在控制該輸出電流的第一線性控 制模式中,數位控制器電路100在多個調整週期各者中以 第一步進量調整尖峰電流參考値Iref。 在步驟1 72 0中,當在控制該輸出電流的第二線性控 制模式中,數位控制器電路1 〇〇在多個調整週期各者中以 第二步進量調整尖峰電流參考値Iref,該第二步進量大於 該第一步進量,使得該電源供應更有反應性,以在需要時 輸出額外電流至該動態負載。 在步驟1 725中,當在線性控制模式中時,回應對該 動態負載在預定時間量內消耗較可由該第一線性控制模式 及該第二線性控制模式充分地供應之電流爲多的額外電流 之瞬時狀態的偵測,數位控制器電路100實行包含同步啓 動該電源供應之多電源轉換器相位各者中的至少一高側開 關之非線性控制模式,以供應電源至該動態負載,防止該 輸出電壓落在期望電壓範圍180的外側。 在步驟1 730中,在以根據該非線性控制模式之切換 作業滿足該瞬時狀態後,數位控制器電路100藉由首先實 行該第二線性模式(例如,連接模式)而轉移回以該第一 線性控制模式控制該輸出電壓,以控制輸出電壓1 80。 -42- 201014135 須注意本文之技術適於在電源供應'應用中使用。然而 ,應注意本文之實施例並未限制使用在此等應用中,且本 文所討論的該等技術也適合其他應用。 當已參考至較佳實施例而明確地顯示及描述此發明後 ,熟悉本發明之人士將理解可能在形式及細節其中產生不 同改變,而不脫離如隨附之申請專利範圍所界定的本申請 案之精神及範圍。此等變化傾向於由本申請案之範圍所含 0 括。就此論之,無意將本申請案之實施例的先前描述視爲 係限制。更確切地說,本發明的任何限制呈現在以下之申 請專利範圍中。 【圖式簡單說明】 本發明之上述及其他目的、特性、以及優點將從如該 等隨附圖式所描繪的本文之較佳實施例中的更明確描述而 變得明顯,在該,等圖式中,相似的參考字元在不同圖之各 Φ 處參考至相同零件。該等圖式不必依比例,而係將重點置 於描繪該等實施例、原理、以及觀念。 圖1係根據本文實施例之包含電流控制迴路及電壓控 制迴路的電源供應系統之範例圖。 圖2係根據本文實施例之電源供應的範例圖。 圖3係根據本文實施例的範例時序圖。 圖4係描繪根據本文實施例之電源供應模型模式的範 例圖.。 圖5及6係根據本文實施例的範例時序圖。 -43- 201014135 圖7係描繪根據本文實施例之用於偵測瞬時狀態的方 法之範例圖。 圖8係描繪根據本文實施例之模式轉移的範例圖。 圖9係描繪根據本文實施例之電源供應組態的範例圖 〇 圖1 〇係根據本文賓施例的範例時序圖。 圖11係描繪根據本文實施例之模式轉移的範例圖。 圖12係根據本文實施例之包含多電源轉換器相位的 電源供應系統之範例圖。 圖13係描繪根據本文實施例之用於執行作業之電路 的範例圖。 圖14至17係描繪根據本文實施例之範例方法的範例 流程圖。 【主要元件符號說明】 1〇〇 :數位控制器電路 140 :控制函數 140-1 :控制應用程式 140-2 :控制程序 180 :輸出電壓 200 :控制電路 210:電源轉換器相位 225 :數位控制演算法 230 :數位脈衝寬度調變電路 201014135 235-1、235-2:參考電壓產生器 240-1、240-2 :比較器 245 :電流監視器 246 :監視器電路 400 :電源供應系統 8 1 0 :模式控制單元 900 :暫時負載偵測電路 1 2 0 0 .電源供應 1 3 1 1 :互連 1 3 1 2 :記憶體系統 1313 :處理器 1314:輸入/輸出介面 1 3 1 7 :通訊介面 Cf :輸出電容器 :輸出 • CV :邏輯訊號 ESR :等效串聯電阻 /。·’輸出電流 iL :電感器電流 Iref :參考電流 Lf :電感器 LMT_TD、LMT_TU : P艮制値When in the instantaneous descent mode, the new balance point can be followed using a relatively large reference current/voltage step. When the turn-off voltage Vq eventually returns to the voltage gap limit, the controller will enter the connected mode. D In this connection mode, the fast voltage loop is closed and the slow voltage loop is open. The reference voltage Vref follows the output voltage Vq. A medium amplitude reference current/voltage step can be used by the digital controller circuit 100 to follow this new balance point. Peak current mode control can be applied. When the reference voltage crosses the output voltage Vo again, the digital controller circuit 1 can be configured to enter the normal operating mode. In this normal mode, the slow voltage loop is closed and the fast voltage loop is open. Small reference current/voltage steps can be used. Also apply -34- 201014135 with spike current mode. Figure 11 is a diagram showing an example of multiple modes and mode shifts in accordance with embodiments herein. As previously discussed, the digital controller circuit 100 transitions between the initial modes of the dual voltage control loop (such as the normal, transient mode, and connected mode) as previously described in relation to Figure ί. It should be noted that depending on the detection of a higher instantaneous load current state, the φ bit controller circuit 100 will enter the transient mode earlier and provide the desired high load current slew rate. As previously discussed, if the load current is relatively low or the required load current conversion rate is low, the digital controller 1 may not enter the transient mode because the normal operating mode (embedded fast seek mode) can handle this Instantaneous load. Figure 12 is a diagram depicting an example of a power supply including multiple power conversion bits in accordance with an embodiment herein. In this example configuration, the power supply includes multiple power converter phases controlled by digital controller circuit 100. During normal mode, digital controller circuit 100 operates the converter phases out of phase. During the transient state, the digital controller circuit 100 can be activated simultaneously with multiple high side switches or multiple low side switches to account for transient transient conditions. The interleaving of multiple power converter phases not only reduces the ripple in the total output ® stream, but also increases the total output current frequency. The frequency of the total inductor current is twice the frequency of each channel (i.e., the phase of the power converter). The use of multiple power converter phases significantly reduces the need for output filter capacitors that are coupled to the power supply. Similarly, the multi-power converter inter-transfer can be discussed in the base mode, and the number is compared to the flow-step circuit input stage 1200. The source is converted to the original radio frequency. Interleaving in phase-35-201014135 can also significantly reduce the need for input filter capacitors. However, the interleaving of multiple power converter phases may include not only the need for more control signals, but also the timing of the control signals. match. According to an embodiment, the way 100 implements a current between different channels (e.g., phase) to balance the multi-power converter phase or channel drive to the load as shown, and Figure 12 shows the phase with the suggested digit 100. The circuit configuration of the buck converter, where the #+ / ) comparator. A comparator is used to compare the phase of the respective power converters with the corresponding reference current voltage 値. The output reference voltage 値Vref is compared using another comparator in the voltage loop. The inductor currents of each phase are sensed and compared with the peak reference current generated by the parameter 23 5 _1 . The current is set to the phase peak reference current. Each phase logic signal is used to turn off the low side switches owned by the individual high side switches it owns. The turn-on signal and the low-close signal of the high side switch are generated by the pulse width modulation circuit 230. In a pulse width modulation circuit 23 0 is a counter-comparator method phase buck converter, the counter bit "given as follows 〇 more complex control of the different channels of the bit controller power sharing control, access. The controller circuit is used in total (in conjunction with the current voltage 180 to generate the test voltage. In the embodiment where the peak is turned off and the side switch is turned on, the implementation is performed. For n = int[log2iV] (Equation 19) 201014135 where function r; uses the result of the high rounding of integers. Figure 13 is a diagram depicting an example architecture for executing instructions, methods, techniques, etc., associated with control application 140-1 in accordance with embodiments herein. The controller circuit 100 may be configured to include a processor such as a DSP (digital signal processor), an FPGA (field effect programmable gate array), a microcontroller, other related circuits as described herein, to implement The techniques discussed above and below. (In such an embodiment, control circuitry 140 may include an interconnect 1311 of coupled memory system 1312, processor 1313, input/output interface 1314, and communication interface 1317. The memory system can be encoded by the control application 140-1, which enables the processor to support the generation of appropriate data, control, and communication signals for phase adjustment via one or more voltage converters. The overall output voltage is 180. Accordingly, the corresponding control application 140-1 can be embedded as a software code that supports processing functionality in accordance with various embodiments described herein, such as data and/or φ logic instructions (eg, stored in the memory) Or a code in another computer readable medium, such as a hard disk. During a job in accordance with an embodiment, the processor 1313 accesses the memory system 1312 via the use of the interconnect 1311 to launch, run, execute, and resolve. The logic instructions of the control application 14 0-1 are translated or otherwise implemented. The execution of the control application generates processing functionality in the control program 140-2. In other words, the control program 140-2 represents the processor 13. One or more portions of control application 140_1 executed within or on 13. It should be noted that other embodiments of the present application include the control application in addition to the control program such as -37-201014135 that implements the example method operations as discussed herein. Program 140-1 itself, such as logic instructions and/or data for generating control signals that are not executed or implemented, to control one of the power supply systems A plurality of voltage converter phases, a reference voltage generator, etc. The control application 1 40-1 may be stored in a computer readable medium (eg, a repository) such as a floppy disk, a hard disk, or an optical medium. According to other embodiments, the control application 140-1 may also be stored in a memory type system, such as in firmware, read only memory (ROM), or as in this example, as in the memory system (eg, Executable code, etc. in random access memory or RAM. It should be noted that in other exemplary embodiments, any part of the digital controller circuit 100 can be configured as a hardware, such as combinatorial logic, digital circuit The functionality supported by the equal-digit digital controller circuit 1 and associated circuitry will now be discussed via the flowcharts in Figures 14 through 17 respectively. It should be noted that it will partially overlap with the concepts discussed above. Furthermore, it should be noted that the steps in the following flow diagrams are not always required to be performed in the order shown. More specifically, Figure 14 depicts a flow diagram 1400 of techniques for improving power supply efficiency in accordance with embodiments herein. In step 1410, digital controller circuit 100 monitors the output voltage 180 of the power supply. As previously discussed, the output voltage 180 is used to supply power to a dynamic load, such as Rload. In step 1 420, the digital controller circuit 100 changes the rate at which an adaptive output voltage reference 値 (201014135 such as Vref) generated by the reference voltage generator 235-2 is changed. In step 143, the digital controller circuit 100 compares the output voltage 180 with the adaptive output voltage reference 値. Based on the comparison, the digital controller circuit 1 controls the switching operation of the power supply to maintain the output voltage 180 within the voltage range. 15 and 16 are combined to form a flowchart 1500 (e.g., flowchart 1 500-1 and flowchart 1 500-2) depicting that at least φ according to embodiments herein is improved based in part on switching between different modes of operation Power supply reactive technology. In step 15 10, digital controller circuit 100 monitors the output voltage 180 of the individual power supplies. As previously discussed, the output voltage 180 can be used to supply power to a dynamic load (Rload), such as processor devices, or other circuits that consume different amounts of power over time. In step 1515, the digital controller circuit 100 monitors the output voltage 180 and detects a rate of change associated with the output voltage 180, such as a plurality of subsequent sampling times by comparing the output voltage 180 at the parametric adaptive output voltage reference 値. The detection adaptive output voltage reference 値Vref is greater than the output voltage 1 80 in each. In step 1 520, the digital controller circuit 100 changes the rate at which the adaptive output voltage reference 値 (i.e., Vref) is changed based, at least in part, on the rate of change associated with the output voltage 180. In other words, if the output voltage 180 changes rapidly such that a small step change in the adaptive output voltage reference 不能 cannot catch up with the output voltage 180, the digital controller circuit 100 implements a larger step size, thereby increasing the power supply. The reactivity is supplied to the -39-201014135 power supply to the dynamic load. Therefore, the mode setting of the power supply reflects what is currently required to supply the appropriate amount of current to the load. In a sub-step 1 52 5 , in response to the detection that the output voltage 1 80 is greater than the adaptive output voltage reference 在一 for a duration, the digital controller circuit 1 〇〇 increases the rate at which the adaptive output voltage reference 改变 is changed, Make Vref change faster with time. In a second step 1 5 3 0, during the first mode of operation, the digital controller circuit 100 changes the adaptive output voltage reference 値Vref by a first step amount such that the adaptive output voltage reference 値 follows the output voltage 180. In step 1 5 3 5, during the second mode of operation, the digital controller circuit 100 changes the adaptive output voltage reference 値Vref by a second step amount, increasing the rate at which the adaptive output voltage reference 改变 is changed. The second step is greater than the first step. The second linear control mode provides a faster response for adjusting the amplitude of the output current to maintain the output voltage in the range compared to the response associated with the first control mode for adjusting the output current . Therefore, the second mode is more responsive to supply power to the dynamic load. In step 1540, the digital controller circuit 100 adjusts the output current reference 依据 (generated by the reference voltage generator 23 5- 1 according to the adaptive output voltage reference 値 (Vref signal from the reference voltage generator 235-2). Iref signal) to control the output impedance of the power supply. In step 1545, a comparison of the adaptive output voltage reference 经由 via output voltage 180 and a comparison of the supply current to the adaptive output current reference ,, as used previously discussed using voltage and current control loops, -40- 201014135 The digital controller circuit 100 controls the switching operation of the power supply to maintain the output voltage 180 within the voltage range. In step 1550, the digital controller circuit 1 0 0 is in response to detecting that the dynamic load consumes an instantaneous state of the additional current that can be supplied by the first linear control mode and the second linear control mode for a predetermined amount of time. Job in nonlinear control mode. When in the non-linear control mode, the digital controller circuit 100 initiates simultaneous activation of one or more high side switches of the plurality of power converter phase φ of the power supply to provide power to the dynamic load, To prevent the output voltage 1800 from falling outside the range. In step 1555, depending on the rate of change associated with the output voltage 180 or the dynamic load promptly requires more or less detection of the instantaneous state of the current, the digital controller circuit 1 is in the power supply in linear mode and Non-linear mode switching between jobs to produce an output voltage of 180. In one embodiment, as previously discussed, the digital controller circuit 100 can monitor the output voltage 180 to detect transient conditions. The response requires more • the detection of the instantaneous state of the current, the digital controller circuit 100 starts the simultaneous start of the high side switch in the multi-supply converter phase to supply additional power to the dynamic load during this transient state. 17 is a flow diagram 1700 depicting techniques for improving power supply efficiency and reactivity based on switching between different modes of operation in accordance with embodiments herein. In step 1710, digital controller circuit 100 controls the output current associated with output voltage 180. To limit the peak current reference 値(lref), the peak current reference 依 varies proportionally to the adaptive output voltage reference 値(Vref) -41 - 201014135. As described herein, the spike current reference 値 is used in conjunction with the adaptive output current reference 値 to maintain the power supply within a substantially constant output impedance range. If necessary, it should be noted that the digital controller circuit 100 can also be configured to control the output impedance of an unfixed 値 (eg, varying 値). In step 1715, when in the first linear control mode that controls the output current, the digital controller circuit 100 adjusts the peak current reference 値Iref by a first step amount in each of the plurality of adjustment periods. In step 1702, when in the second linear control mode controlling the output current, the digital controller circuit 1 adjusts the peak current reference 値Iref by a second step amount in each of the plurality of adjustment periods, The second step amount is greater than the first step amount such that the power supply is more reactive to output additional current to the dynamic load when needed. In step 1 725, when in the linear control mode, responding to the dynamic load consuming more than a current that is sufficiently supplied by the first linear control mode and the second linear control mode for a predetermined amount of time The detection of the instantaneous state of the current, the digital controller circuit 100 performs a non-linear control mode including at least one of the high side switches of the plurality of power converter phases that synchronously activate the power supply to supply power to the dynamic load to prevent The output voltage falls outside of the desired voltage range 180. In step 1 730, after the switching operation according to the nonlinear control mode satisfies the transient state, the digital controller circuit 100 shifts back to the first line by first executing the second linear mode (eg, the connected mode). The control mode controls the output voltage to control the output voltage 180. -42- 201014135 It should be noted that the techniques in this document are suitable for use in power supply applications. However, it should be noted that the embodiments herein are not limited to use in such applications, and that the techniques discussed herein are also suitable for other applications. Having clearly described and described the invention with reference to the preferred embodiments, it will be understood by those skilled in the <RTIgt; The spirit and scope of the case. Such variations are intended to be encompassed by the scope of this application. In this regard, the foregoing description of the embodiments of the present application is not intended to be a limitation. Rather, any limitations of the invention are presented in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become apparent from the In the drawings, similar reference characters are referenced to the same part at each Φ of the different figures. The figures are not necessarily to scale, the emphasis is placed on the description of the embodiments, principles, and concepts. 1 is an illustration of a power supply system including a current control loop and a voltage control loop in accordance with an embodiment herein. 2 is an exemplary diagram of a power supply in accordance with an embodiment herein. 3 is an example timing diagram in accordance with an embodiment herein. 4 is a diagram depicting a pattern of power supply model modes in accordance with embodiments herein. 5 and 6 are example timing diagrams in accordance with embodiments herein. -43- 201014135 Figure 7 is a diagram depicting an example of a method for detecting transient conditions in accordance with embodiments herein. FIG. 8 is a diagram showing an example of mode transitions in accordance with embodiments herein. 9 is a diagram depicting an example of a power supply configuration in accordance with an embodiment herein. FIG. 1 is an exemplary timing diagram in accordance with the present application. 11 is a diagram of an example depicting mode transitions in accordance with embodiments herein. Figure 12 is an illustration of a power supply system including multiple power converter phases in accordance with an embodiment herein. Figure 13 is a diagram depicting an example of circuitry for performing a job in accordance with an embodiment herein. 14 through 17 are diagrams showing an example flow diagram of an example method in accordance with embodiments herein. [Main component symbol description] 1〇〇: Digital controller circuit 140: Control function 140-1: Control application 140-2: Control program 180: Output voltage 200: Control circuit 210: Power converter phase 225: Digital control calculation Method 230: Digital Pulse Width Modulation Circuit 201014135 235-1, 235-2: Reference Voltage Generator 240-1, 240-2: Comparator 245: Current Monitor 246: Monitor Circuit 400: Power Supply System 8 1 0: mode control unit 900: temporary load detection circuit 1 2 0 0 . power supply 1 3 1 1 : interconnection 1 3 1 2 : memory system 1313 : processor 1314 : input / output interface 1 3 1 7 : communication Interface Cf: Output Capacitor: Output • CV: Logic Signal ESR: Equivalent Series Resistance /. ·' Output current iL: Inductor current Iref: Reference current Lf: Inductor LMT_TD, LMT_TU : P艮

Ml、M2 :開關裝置 *·.Ml, M2: Switching device *·.

Ri _·增益 -45- 201014135Ri _·gain -45- 201014135

Rload :動態負載 A。:輸出阻抗 TD、TU :計數器 V L D :下限 VLU :上限 L、V。、Vq :輸出電壓 :參考電壓 △ I :電流漣波振幅 Alref、ΔVref :量Rload: Dynamic load A. : Output impedance TD, TU: Counter V L D : Lower limit VLU : Upper limit L, V. , Vq : output voltage : reference voltage △ I : current chopping amplitude Alref, ΔVref : quantity

-46 --46 -

Claims (1)

201014135 七、申請專利範圍: 1. 一種方法,包含: 監視一電源供應的一輸出電壓,該輸出電壓用於將電 力供應至一動態負載; 變更改變一調適性輸出電壓參考値之一速率;以及 經由該輸出電壓對該調適性輸出電壓參考電壓値的比 較,控制該電源供應之切換作業,以將該輸出電壓維持在 g —電壓範圍內。 2. 如申請專利範圍第1項之方法,另包含: 偵測與該輸出電壓關聯之一改變率;以及 根據與該輸出電壓關聯的該改變率,變更改變該調適 性輸出電壓參考値的該速率。 3. 如申請專利範圍第1項之方法,另包含: 在一第一作業模式期間,以一第一步進量改變該調適 性輸出電壓參考値,使得該調適性輸出電壓參考値跟隨該 φ 輸出電壓;以及 在一第二作業模式期間,藉由以一第二步進量改變該 調適性輸出電壓參考値而增加改變該調適性輸出電壓參考 値的速率,該第二步進量大於該第一步進量。 4-如申請專利範圍第1項之方法,另包含: 回應在一持續時間中該輸出電壓大於該調適性輸出電 壓參考値之偵測,增加改變該調適性輸出電壓參考値的一 速率。 5.如申請專利範圍第1項之方法,其中控制該電源 -47- 201014135 供應之切換作業以將該電源供應輸出電壓維持在一電壓範 圍內的步驟包含: 取決於與該輸出電壓關聯的該改變率,將該電源供應 的作業從一線性模式切換至一非線性模式,以產生該輸出 電壓。 6. 如申請專利範圍第5項之方法,另包含: 基於在比較該調適性輸出電壓參考値與該輸出電壓之 多個後續取樣時間各者中該調適性輸出電壓參考値大於該 輸出電壓的偵測,偵測與該輸出電壓關聯的該改變率。 7. 如申請專利範圍第6項之方法,另包含: 針對該多個後續取樣時間各者,減少該調適性輸出電 壓參考値。 &gt; 8. 如申請專利範圍第1項之方法,其中監視該電源 供應之該輸出電壓的步驟包含偵測一瞬時狀態,該方法另 包含: 回應該瞬時狀態的偵測,啓始該電源供應之多電源轉 換器相位中的高側開關之同步啓動,以在該瞬時狀態期間 供應額外的電力至該動態負載。 9. 如申請專利範圍第1項之方法,另包含: 控制與該輸出電壓關聯之一輸出電流以限制在一尖峰 電流參考値,該尖峰電流參考値相對於該調適性輸出電壓 參考値依比例地改變,該尖峰電流參考値與該調適性輸出 電流參考値共同用於維持具有實質上爲常數之一輸出阻抗 的該電源供應;且 -48- 201014135 在控制該輸出電流的一第一線性控制模式中,在多個 調整週期各者中以一第一步進量調整該尖峰電流參考値; 且 在控制該輸出電流的一第二線性控制模式中,在多個 調整週期各者中以一第二步進量調整該尖峰電流參考値, 該第二步進量大於該第一步進量。 ίο.如申請專利範圍第9項之方法,其中相較於與該 φ 第一線性控制模式關聯之用於調整該輸出電流的回應,該 第二線性控制模式提供用於調整該輸出電流之一幅度的一 較快回應,以將該輸出電壓維持在該範圍中。 11. 如申請專利範圍第9項之方法,另包含: 回應對該動態負載在一預定時間量內消耗較該第一線 性控制模式或該第二線性控制模式可供應之電流爲多的額 外電流之一瞬時狀態的偵測,實行包含在該電源供應之多 電源轉換器相位各者中的至少一高側開關之同步啓動的一 非線性控制模式,以供應電力至該動態負載而防止該輸出 電壓落在該範圍外側。 12. —種系統,包含: 一處理器; 一記憶體單元,儲存與由該處理器所執行之一應用程 式關連的指令;以及 一互連,耦合該處理器及該記憶體單元,致能該處理 器以執行該等指令並實施以下作業: 監視一電源供應的一輸出電壓,該輸出電壓用於將電 -49- 201014135 力供應至一動態負載; 變更改變一調適性輸出電壓參考値之一速率;以及 經由該輸出電壓對該調適性輸出電壓參考電壓値的比 較,控制該電源供應之切換作業,以將該輸出電壓維持在 一電壓範圍內。 1 3 ·如申請專利範圍第1 2項之系統,其中該等指令 的執行另支援以下作業: 偵測與該輸出電壓關聯之一改變率;以及 根據與該輸出電壓關聯的該改變率,變更改變該調適 性輸出電壓參考値的該速率。 14. 如申請專利範圍第12項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 當在一第一作業模式中時,以一第一步進量改變該調 適性輸出電壓參考値,使得該調適性輸出電壓參考値跟隨 該輸出電壓;以及 當在一第二作業模式中時,藉由以一第二步進量改變 該調適性輸出電壓參考値而增加改變該調適性輸出電壓參 考値之速率,該第二步進量大於該第一步進量。 15. 如申請專利範圍第12項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 回應在一持續時間中該輸出電壓大於該調適性輸出電 壓參考値之偵測,增加改變該調適性輸出電壓參考値的一 速率。 16. 如申請專利範圍第12項之系統,其中控制該電 -50- 201014135 源供應之切換作業以將該電源供應輸出電壓參考値維持在 一電壓範圍內的步驟包含: 取決於與該輸出電壓關聯的該改變率,將該電源供應 的作業從一線性模式切換至一非線性模式,以產生該輸出 電壓。 17. 如申請專利範圍第16項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 0 基於在多個後續取樣時間各者中該調適性輸出電壓參 考値大於該輸出電壓的偵測,偵測與該輸出電壓關聯的該 改變率,該調適性輸出電壓參考値在該等取樣時間中與該 輸出電壓比較。 18. 如申請專利範圍第17項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 針對該多個後續取樣時間各者,減少該調適性輸出電 壓參考値。 φ 19 如申請專利範圍第12項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 偵測一瞬時狀態;以及 回應該瞬時狀態的偵測,啓始該電源供應之多電源轉 換器相位中的高側開關之同步啓動,以在該瞬時狀態期間 供應額外的電力至該動態負載.。 2〇·如申請專利範圍第12項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 控制與該輸出電壓關聯之一輸出電流以限制在一尖峰 -51 - 201014135 電流參考値,該尖峰電流參考値相對於該調適性輸出電壓 參考値依比例地改變,該尖峰電流參考値與該調適性輸出 電流參考値共同用於維持具有實質上爲常數之一輸出阻抗 的該電源供應;且 在控制該輸出電流的一第一線性控制模式中,在多個 調整週期各者中以一第一步進量調整該尖峰電流參考値; 且 在控制該輸出電流的一第二線性控制模式中,在多個 調整週期各者中以一第二步進量調整該尖峰電流參考値, 該第二步進量大於該第一步進量。 21. 如申請專利範圍第20項之系統,其中相較於與 該第一線性控制模式關聯之用於調整該輸出電流的一回應 ,該第二線性控制模式提供用於調整該輸出電流之一幅度 的一較快回應,以將該輸出電壓維持在該範圍中。 22. 如申請專利範圍第20項之系統,其中該等指令 藉由該處理器的執行另支援以下作業: 回應對該動態負載在一預定時間量內消耗較該第一線 性控制模式及該第二線性控制模式可供應之電流爲多的額 外電流之一瞬時狀態的偵測,實行包含在該電源供應之多 電源轉換器相位各者中的至少一高側開關之同步啓動的一 非線性控制模式,以供應電力至該動態負載而防止該輸出 電壓落在該範圍外側。 23. —種有形的電腦可讀媒體,具有儲存於其中之指 令,該等指令在由一處理裝置執行時,致能該處理裝置實 -52- 201014135 施以下作業: 監視一電源供應的一輸出電壓,該輸出電壓用於將電 力供應至一動態負載; 調整一調適性輸出電壓參考値;且 經由該輸出電壓對該調適性輸出電壓參考電壓値的比 較,控制該電源供應之切換作業,以將該輸出電壓維持在 一電壓範圍內。 2 4 ·如申請專利範圍第2 3項之有形的電腦可讀媒體 ,其中該等指令在由一處理裝置執行時,致能該處理裝置 實施以下作業: 監視一電源供應的一輸出電流,該輸出電流用於將電 力供應至一動態負載; 設定改變一調適性輸出電流參考値的一速率;以及 經由該輸出電流對該調適性輸出電流參考値的比較, 控制該電源供應之切換作業,以將該輸出電壓維持在一電 壓範圍內。 25_如申請專利範圍第24項之有形的電腦可讀媒體 ,其中該等指令在由一處理裝置執行時,致能該處理裝置 實施以下作業: 偵測一瞬時狀態;以及 回應該瞬時狀態的偵測,啓始該電源供應之多電源轉 換器相位中的高側開關之同步啓動,以在該瞬時狀態期間 供應額外的電力至該動態負載。 -53-201014135 VII. Patent Application Range: 1. A method comprising: monitoring an output voltage of a power supply for supplying power to a dynamic load; changing a rate of an adaptive output voltage reference ;; The switching of the power supply is controlled via the comparison of the output voltage to the adaptive output voltage reference voltage , to maintain the output voltage within the g-voltage range. 2. The method of claim 1, further comprising: detecting a rate of change associated with the output voltage; and changing the change in the adaptive output voltage reference 根据 based on the rate of change associated with the output voltage rate. 3. The method of claim 1, further comprising: changing the adaptive output voltage reference 以 by a first step amount during a first mode of operation such that the adaptive output voltage reference 値 follows the φ Outputting a voltage; and during a second mode of operation, increasing a rate at which the adaptive output voltage reference 改变 is changed by changing the adaptive output voltage reference 以 by a second step amount, the second step amount being greater than the The first step amount. 4- The method of claim 1, further comprising: responsive to detecting that the output voltage is greater than the adaptive output voltage reference 在一 for a duration, increasing a rate at which the adaptive output voltage reference 改变 is changed. 5. The method of claim 1, wherein the step of controlling the switching operation of the power supply - 47 - 201014135 to maintain the power supply output voltage within a voltage range comprises: depending on the output voltage associated with the output voltage The rate of change is switched from a linear mode to a non-linear mode to produce the output voltage. 6. The method of claim 5, further comprising: based on comparing the adaptive output voltage reference 値 with a plurality of subsequent sampling times of the output voltage, wherein the adaptive output voltage reference 値 is greater than the output voltage Detecting, detecting the rate of change associated with the output voltage. 7. The method of claim 6, wherein the method further comprises: reducing the adaptive output voltage reference 针对 for each of the plurality of subsequent sampling times. &lt; 8. The method of claim 1, wherein the step of monitoring the output voltage of the power supply comprises detecting a transient state, the method further comprising: detecting the instantaneous state, starting the power supply The high side switches of the plurality of power converter phases are synchronously activated to supply additional power to the dynamic load during the transient state. 9. The method of claim 1, further comprising: controlling an output current associated with the output voltage to limit a peak current reference 値, the peak current reference 値 relative to the adaptive output voltage reference ratio Ground change, the spike current reference 値 is used in conjunction with the adaptive output current reference 用于 to maintain the power supply having an output impedance that is substantially constant; and -48-201014135 is controlling a first linearity of the output current In the control mode, the peak current reference 调整 is adjusted by a first step amount in each of the plurality of adjustment periods; and in a second linear control mode that controls the output current, in each of the plurality of adjustment periods A second step amount adjusts the peak current reference 値, the second step amount is greater than the first step amount. The method of claim 9, wherein the second linear control mode provides for adjusting the output current as compared to the response for adjusting the output current associated with the φ first linear control mode. A faster response of a magnitude to maintain the output voltage in the range. 11. The method of claim 9, further comprising: responding to the dynamic load consuming a greater amount of current than the first linear control mode or the second linear control mode for a predetermined amount of time Detecting one of the instantaneous states of the current, performing a non-linear control mode including simultaneous activation of at least one of the plurality of power converter phases of the power supply to supply power to the dynamic load to prevent the The output voltage falls outside of this range. 12. A system comprising: a processor; a memory unit storing instructions associated with an application executed by the processor; and an interconnect coupling the processor and the memory unit to enable The processor executes the instructions and performs the following operations: monitoring an output voltage of a power supply for supplying a power of -49-201014135 to a dynamic load; changing the change to an adaptive output voltage reference a rate; and a comparison of the adaptive output voltage reference voltage 经由 via the output voltage, controlling a switching operation of the power supply to maintain the output voltage within a voltage range. 1 3 - The system of claim 12, wherein the execution of the instructions further supports the following operations: detecting a rate of change associated with the output voltage; and changing according to the rate of change associated with the output voltage The rate of the adaptive output voltage reference 値 is changed. 14. The system of claim 12, wherein the instructions further support the following operations by execution of the processor: when in a first mode of operation, changing the adaptive output by a first step amount The voltage reference 値 is such that the adaptive output voltage reference 値 follows the output voltage; and when in a second mode of operation, the adaptation is increased by changing the adaptive output voltage reference 以 by a second step amount The rate of the output voltage reference 値 is greater than the first step amount. 15. The system of claim 12, wherein the instructions further support the following operations by execution of the processor: responding to the detection of the output voltage being greater than the adaptive output voltage reference for a duration, increasing A rate at which the adaptive output voltage reference 値 is changed. 16. The system of claim 12, wherein the step of controlling the switching operation of the source--50-201014135 source supply to maintain the power supply output voltage reference 値 within a voltage range comprises: depending on the output voltage The rate of change associated with the power supply is switched from a linear mode to a non-linear mode to produce the output voltage. 17. The system of claim 16, wherein the instructions further support the following operations by execution of the processor: 0 based on the adaptive output voltage reference 値 greater than the output voltage in each of a plurality of subsequent sampling times The detecting detects a rate of change associated with the output voltage, the adaptive output voltage reference 比较 being compared to the output voltage during the sampling times. 18. The system of claim 17, wherein the instructions further support the operation by the execution of the processor: reducing the adaptive output voltage reference for each of the plurality of subsequent sampling times. Φ 19 as in the system of claim 12, wherein the instructions support the following operations by the execution of the processor: detecting a transient state; and detecting the transient state, starting the power supply The high side switches in the phase of the power converter are synchronously activated to supply additional power to the dynamic load during the transient state. 2. A system as claimed in claim 12, wherein the instructions further support the following operations by execution of the processor: controlling one of the output currents associated with the output voltage to limit the current at a spike -51 - 201014135 The peak current reference 改变 is proportionally changed with respect to the adaptive output voltage reference ,, and the peak current reference 値 is used in conjunction with the adaptive output current reference 用于 to maintain the power supply having an output impedance that is substantially constant. Supplying; and in a first linear control mode controlling the output current, adjusting the peak current reference 以 in a first step amount in each of the plurality of adjustment periods; and controlling a second of the output current In the linear control mode, the peak current reference 调整 is adjusted by a second step amount in each of the plurality of adjustment periods, and the second step amount is greater than the first step amount. 21. The system of claim 20, wherein the second linear control mode provides for adjusting the output current as compared to a response associated with the first linear control mode for adjusting the output current. A faster response of a magnitude to maintain the output voltage in the range. 22. The system of claim 20, wherein the instructions further support the operation by execution of the processor: responding to the dynamic load being consumed for a predetermined amount of time compared to the first linear control mode and The second linear control mode is capable of supplying a current with one of a plurality of additional currents, and detecting a transient state of at least one high side switch included in each of the plurality of power converter phases of the power supply The mode is controlled to supply power to the dynamic load to prevent the output voltage from falling outside of the range. 23. A tangible computer readable medium having instructions stored therein that, when executed by a processing device, enable the processing device to: - monitor an output of a power supply a voltage, the output voltage is used to supply power to a dynamic load; adjusting an adaptive output voltage reference 値; and controlling the switching of the power supply via the comparison of the output voltage reference voltage 値The output voltage is maintained within a voltage range. 2. A tangible computer readable medium as claimed in claim 2, wherein the instructions, when executed by a processing device, enable the processing device to perform the following operations: monitoring an output current of a power supply, The output current is used to supply power to a dynamic load; setting a rate of changing an adaptive output current reference ;; and controlling the switching of the power supply via the comparison of the output current reference 値The output voltage is maintained within a voltage range. The tangible computer readable medium of claim 24, wherein the instructions, when executed by a processing device, enable the processing device to perform the following operations: detecting a transient state; and responding to a transient state Detecting, synchronizing the start of the high side switch in the multi-supply converter phase of the power supply to supply additional power to the dynamic load during the transient state. -53-
TW98118723A 2008-06-18 2009-06-05 Adaptive power supply and related circuitry TW201014135A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/141,787 US7902800B2 (en) 2007-07-13 2008-06-18 Adaptive power supply and related circuitry

Publications (1)

Publication Number Publication Date
TW201014135A true TW201014135A (en) 2010-04-01

Family

ID=44829561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118723A TW201014135A (en) 2008-06-18 2009-06-05 Adaptive power supply and related circuitry

Country Status (1)

Country Link
TW (1) TW201014135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511427B (en) * 2014-04-02 2015-12-01 Green Solution Tech Co Ltd Buck converting controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511427B (en) * 2014-04-02 2015-12-01 Green Solution Tech Co Ltd Buck converting controller

Similar Documents

Publication Publication Date Title
US7902800B2 (en) Adaptive power supply and related circuitry
US8624571B2 (en) DC-DC converters with pulse generators shared between PWM and PFM modes
US8570015B2 (en) DC-DC converter
TWI495243B (en) Switching regulator circuit and method performed by a switching regulator circuit
US8242759B2 (en) Power supply circuit and multi-phase control based on peak and average current
US7535210B2 (en) Predictive duty ratio generating circuit and method for synchronous boost converters operating in PFM mode
US7872456B2 (en) Discontinuous conduction mode pulse-width modulation
EP1691473B1 (en) PWM controller with dual-edge modulation using dual ramps for fast response
US9219411B2 (en) DC/DC converter, method for providing an output voltage on the basis of an input voltage and computer program
US8134347B2 (en) Apparatus and method for recycling the energy from load capacitance
CN107919798B (en) Switching type capacitive DC-DC converter and control method thereof
US7489118B2 (en) Method and apparatus for high-efficiency DC stabilized power supply capable of effectively reducing noises and ripples
KR102028318B1 (en) Low power dc-dc converter and operating method thereof
US9048863B2 (en) Pulse density digital-to-analog converter with slope compensation function
CN110311559A (en) For reconfiguring the self adaptive control of electric power converter
TWI683520B (en) Multi-phase dc-dc power converter and driving method of the same
TW201338366A (en) On time sampling prevention
US9071134B2 (en) Power supply controller having selectable PWM and RPM modes and method therefor
TW201014135A (en) Adaptive power supply and related circuitry
JP5841223B2 (en) Reverse current detection circuit
CN213305259U (en) Control circuit, multiphase converter device and multiphase converter circuit
US20240048131A1 (en) Control circuit for a switching stage of an electronic converter and corresponding converter device
US20230216404A1 (en) Voltage regulator device
US9614436B2 (en) Circuit and method for dynamic switching frequency adjustment in a power converter
JP2001286132A (en) Power-source unit and control method for the unit