TW201013236A - Optical filter for compensating for color shift and display device having the same - Google Patents

Optical filter for compensating for color shift and display device having the same Download PDF

Info

Publication number
TW201013236A
TW201013236A TW098131794A TW98131794A TW201013236A TW 201013236 A TW201013236 A TW 201013236A TW 098131794 A TW098131794 A TW 098131794A TW 98131794 A TW98131794 A TW 98131794A TW 201013236 A TW201013236 A TW 201013236A
Authority
TW
Taiwan
Prior art keywords
green
layer
filter
film layer
light
Prior art date
Application number
TW098131794A
Other languages
Chinese (zh)
Other versions
TWI401477B (en
Inventor
Seong-Sik Park
Seung-Won Park
Sung-Nim Jo
In-Sung Sohn
Sang-Cheol Jung
Ji-Yoon Yeom
Eui-Soo Kim
Original Assignee
Samsung Corning Prec Glass Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Prec Glass Co filed Critical Samsung Corning Prec Glass Co
Publication of TW201013236A publication Critical patent/TW201013236A/en
Application granted granted Critical
Publication of TWI401477B publication Critical patent/TWI401477B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/286Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10449Wavelength selective transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

An optical filter for compensating for color shift is provided in front of a display panel of a display device. The optical filter includes a background layer and a green wavelength absorption pattern provided with a predetermined thickness on the background layer. The green wavelength absorption pattern absorbs a green wavelength of light. The green wavelength absorption pattern contains a material that absorbs a green wavelength of light in the range of 510 nm to 560 nm, and can also contain a white light absorbing material. A green's complementary color absorbing part absorbs a wavelength of light complementary to green, and contains at least one of a material absorbing a blue wavelength of light in the range of 440 nm to 480 nm and a material absorbing a red wavelength of light in the range of 600 nm to 650 nm. A first thick-film layer, a first thin-film layer, and a second thick-film layer are stacked over one another in the order named.

Description

201013236 六、發明說明: 本申請案主張以下韓國專利申請案之優先權:2008年 9月 22日申請之韓國專利申請案第10-2008-0092655 號、2008年9月 22日申請之韓國專利申請案第 10-2008_0092656號、2008年9月22日申請之韓國專利 申請案第10-2008-0092657號、2008年10月7曰申請之 ' 韓國專利申請案第10-2008-0098120號、2009年2月6 • 日申請之韓國專利申請案第10-2009-0009883號,及2009 ® 年9月17日申請之韓國專利申請案第10-2009-0087906 號,該等申請案之全部内容出於所有目的均以引用之方 式併入本文。 【發明所屬之技術領域】 本發明係關於一種用於補償顏色偏移之濾光器’尤相 關於一種提供於一顯示面板之前以最小化根據視角增加 之顏色偏移之渡光器’且係關於一種具有其之顯示裝置° _ 【先前技術】 因應高階資訊社會之最近出現’與影像顯示器有關之 - 組件及裝置正得以顯著改良且迅速分佈。其中’待用於 . 電視、個人電腦之監視器等之影像顯示裝置正得以廣泛 分佈。此外,嘗試擴大顯示裝置之大小同時減小其厚度。 一般而言,液晶顯示器(LCD )為使用液晶顯示影像 之一種類型之平板顯示器。LCD廣泛用於工業中,因為 其與其他顯示裝置相比具有諸如重量輕、驅動電壓低及 201013236 功率消耗低的優點。 第1圖為示意性圖示LCD 100之基本結構及操作原理 的概念圖。 舉例而言’價用垂直對準(VA) LCD包括兩個極化膜 110及120,其光軸彼此垂直。具有雙折射特性之液晶分 子150配置於兩個透明基板130之間,該兩個透明基板 130塗有透明電極ι4〇β當自電源單元ι8〇施加電場時, ' 液晶分子移動且對準成垂直於電場。 自背光單元發射之光在傳遞通過第一極化膜12〇後線 性極化。 如第1圖之左側所示,液晶在電源切斷時保持垂直於 基板。液晶在此狀態下可能不對光之極化具有任何效 應。結果’維持線性極化狀態之光被第二極化膜i丨〇阻 擋’第二極化膜110之光袖垂直於第一極化膜120之光 軸 〇 . Φ 如第1圖之右側所示,當施加電壓時,.液晶回應於電 場而在兩個正交極化膜110及120之間偏移至平行於基 . 板之水平位置。因此’來自第一極化膜之線性極化光轉 換為另一線性極化光’該另一線性極化光之極化方向垂 直於自該第一極化膜傳遞之線性極化光、圓形極化光或 橢圓極化光之極化方向.,同時在其恰好到達第二極化膜 之前傳遞通過液晶分子,轉換光接著能夠傳遞通過第二 極化膜。有可能藉由調整電場之強度將液晶之定向自垂 直位置逐漸改變至水平位置,且藉此控制光發射之強度。 201013236 第2圖為圖示取決於視角之液晶之定向及透光率的概 念圖。 當液晶分子在像素220中在預定方向上對準時,液晶 分子之定向根據視角看起來彼此不同。 當沿著線210自左上側觀看時,液晶分子看起來如同 其在大體上水平定向212上對準,且影像相對較亮。當 沿著線230自上方觀看時,液晶分子被觀察為在定向232 上對準,該定向232與像素220内之液晶分子之實際定 向相同。此外,當沿著線25〇自右上側觀看時,液晶分 子看起來如同其在大體上水平定向252上對準,且影像 相對較暗。 因此,LCD之視角與自發地發光之其他顯示器相比極 大地受限’因為LCD之光之強度及顏色根據視角之改變 而變化。為了改良視角,已進行許多研究。 第3圖為圖示減少取決於視角之對比度之變化及顏色 偏移的慣用做法的概念圖。 參考第3圖,一像素分成兩個像素部分,亦即,第一 像素部分320及第二像素部分34(),其液晶之定向彼此 對稱。可看見第一像素部分32〇中之液晶之定向與第二 像素部分340中之液晶之定向兩者。到達使爆者之光之 強度為來自兩個像素部分之光的總強度❶ 當沿著線3 10自左上侧觀看時,第一像素部分32〇中 之液晶分子看起來如同其在水平定向312上對準,且第 -像素部分320中之液晶分子看起來如同其在垂直定向 201013236 ❹ 參 川上對準。繼而,第一像素部| 32g可看起來亮。同 樣’當沿著線350自右上側觀看時,第—像素部分32〇 中之液晶分子看起來如同其在垂直定肖352上對準,且 第一像素部分340中之液晶分子看起來如同其在水平定 向354上對準、繼而,第二像素部分34〇可看起來亮。 此外,當自上方觀看時,液晶分子被觀察為在定向332 及334上對準,定向332及334與像素部分32〇及3扣 内之液晶分子之實際定向相同。因此,使用者觀察到之 影像之亮度甚至在視角改變且關於影像之垂直中心線對 稱時亦保持相同或相似。因此,此使得有可能減少取決 於視角之對比度之變化及顏色偏移。 第4圖為圖示減少取決於視角之對比度之變化及顏色 偏移的另一慣用做法的概念圖。 參考第4圖,添加具有雙折射特性之光學膜42〇。光 學膜420之雙折射特性與1CD面板之像素_·440 内之液晶 分子的雙折射特性相同且具有與液晶分子之定向對轉的 定向。歸因於像素440内之液晶分子與光學膜之雙折射 材料兩者的定向,到達使用者之光之強度為傳遞通過光 學膜420與像素440兩者之光的總強度。 具體而言,當沿著線410自左上側觀看時,像素440 内之液晶分子看起來如同其在水平定向414上對準且光 學膜420之假想液晶分子看起來如同其在垂直定向412 上對準。光之合成強度為傳遞通過光學膜420與像素440 兩者之光的總強度。同樣,當沿著線450自右上側觀看 201013236 時,像素440内之液晶分子看起來如同其在垂直定向454 上對準且光學膜420之假想液晶分子看起來如同其在水 平定向452上對準。光之合成強度為傳遞通過光學膜420 與像素440兩者之光的總強度。此外,當自上方觀看時, 液sa分子被觀察為在定向434及432上對準,.定向434 及432分別與像素440内之液晶分子及光學膜420之假 想液晶分子之定向相同。 然而,即使應用第3圖與第4圖中所示之做法,顏色 偏移仍因為視角存在’且因此顏色隨視角增加而改變。 章節中所揭示之資訊僅用於增強對先前技術之理解, 且不應被視為認可或以任何形式暗示此資訊形成熟習此 項技術者已知之先前技術。 【發明内容】 本發明之各種態樣提供一種能夠確保廣視角且藉由最 小化根據視角增加之顏色偏移來改良顯示裝置之影像品 質的據光器。._ _ 本發明之各種態樣亦提供一種能夠在視角增加時關於 全部複合顏色最小化顏色偏移的濾光器,該等全部複合 顏色包括基於紅色之複合顏色(諸如,.索尼紅及中度紅) 及基於藍色之複合顏色(諸如’索尼藍、紫色及紫藍色)。 在本發明之一態樣中,提供於一顯示裝置之顯示面板 之前的用於補償顏色偏移之濾光器可包括:一背景層; 及一在該背景層上具備一厚度的綠色波長吸收圖案。該 201013236 綠色波長吸收圖案可吸收一綠色波長之光。 該綠色波長吸收圖案可含有一吸收在51〇 nm至560 nm之範圍中的一綠色波長之光的綠色波長吸收材料。 該綠色波長吸收圖案可進一步含有一白光吸收材料。 該濾光器可進一步包括一吸收一與綠色互補之波長之 光的綠色互補色吸收部分。 該綠色互補色吸收部分可含有選自由以下各者組成之 群中之至少一者:一吸收在44〇 nm至48〇 nm之範圍中 的一藍色波長之光的藍色波長吸收材料及一吸收在6〇〇 nm至650 nm之範圍中的一紅色波長之光的紅色波長吸 收材料。 該濾光器可進一步包括一第一厚膜層、一第一薄膜層 及一第二厚膜層,其以上述次序彼此堆疊。 根據如上所述之本發明之示範性實施例,該濾光器可 確保廣視角且藉由使用該綠色波長吸收圖案最小化根據 視角之增加之顏色偏移來改良顯示裝置之影像品質。 此外,本發明之示範性實施例亦可隨著視角增加關於 全部複合顏色最小化顏色偏移,該等全部複合顏色包括 基於紅色之複合顏色(諸如,索尼紅及中度紅)及基於 藍色之複合顏色(諸如,索尼藍、紫色及紫藍色)。 此外,該綠色波長吸收圖案經提供以補償根據視角增 加之顏色偏移,且該綠色互補色吸收部分經提供以防止 自顯不器前向方向上發射之光的顏色致變,以使得顯示 器之原始顏色可得以維持。 201013236 本發明之方法及設備具有其他特徵及優點,該等特徵 及優點將自併入本文中的隨附圖式及以下【實施方式】 (其共同用於解釋本發明之特定原理)顯而易見或較詳 細地陳述於其中。 【實施方式】 現將詳細參考本發明之各種實施例,其實例圖示於隨 附圖式中並於下文描述。雖然本發明將結合示範性實施 例加以描述,但應理解本說明書不欲將本發明限於彼等 示範性實施例。相反,本發明意欲不僅涵蓋該等示範性 實施例且涵蓋各種替代、修改、均等物及其他實施例, 各種替代、修改、均等物及其他實施例可包括於如由隨 附申請專利範圍界定之本發明之精神與範峰内。 比較會施彻 第5囷為圖示當慣用LCD被應用第3圖與第4圖t所 示之補償顏色偏移之做法兩者後以全灰階顯示白光時光 譜根據視角增加之變化的一對圖表。 如該圖中所示’光譜之強度與視角成反比逐漸降低。 虽藉由將該等光譜中之每一者除以其最大值來正規化該 等光譜以便根據波長範圍準確地檢查降低程度時,可瞭 解正規化光譜之強度根據視角之增加在400 nm至500 nm之藍色波長範圍中降低’即使強度根據視角之增加在 其他波長範圍内相同亦如此。此指示光之光譜之強度根 據視角之增加在400 nm至500 nm之藍色波長範面中比 201013236 在其他波長範圍中降低得多。因此,與藍色互補之黃色 隨著視角增加而增加。此顏色改變使影像品質降級。 第6圖為圖示本申請人之先前申請之申請案中所提議 的用於補償顏色偏移之濾光器700的橫截面圖。 第6圖中所示之渡光器700包括一薄膜層742及第一 厚膜層744與第二厚膜層746以便減少根據視角之增加 的顏色偏移。薄媒層7 42具有780 nm或更小之厚度及— 第一折射率。第一厚膜層744提供於薄膜層742之一表 ® 面上’厚於薄膜層742.且具有一第二折射率。第二厚膜 層746提供於薄膜層742之相對表面上,厚於薄膜層742 且具有一第三折射率。 濾光器可減少根據LCD之視角之增加的在3〇〇 nm至 500 nm之波長範圍中的相對較大之明度降低,該降低在 光傳遞通過液晶時發生。濾光器可藉此減少根據視角之 增加的、白光在全灰階下之顏色偏移。 Φ 第7圖為圖示第6圖中所示之濾光器補償顏色偏移之 原理的簡圖。 • 薄膜層742之厚度相同於或小於可見光之波長範圍。 . 因此薄膜層742之厚度為780 nm或更小。若薄膜層 742之厚度大於78〇 nm,則在可見光範圍中不發生相長 或相消干涉。 此外’遠第一厚膜層744與該第二厚膜層與746厚於 該薄辑層742。因此’厚膜層744與746之厚度大於780 nm且可甚至為若干mm。該第一厚膜層744與該第二厚 201013236 膜層與746可具有相同厚度或不同厚度。 該薄膜層742、該第一厚膜層744及該第二厚膜層746 分別具有第一、第二及第三折射率。該第一折射率可低 於或高於該第二折射率及/或該第三折射率。 可藉由將具有較低折射率之薄膜層夾在具有較高折射 率之厚膦層之間來製造濾光器。舉例而言,該第一厚膜 層744與該第二厚膜層746之折射率可在2至4之範圍 •中’且該薄膜層之折射率可在1至2之範圍中。 © 相反的,具有較高折射率之薄膜層可夾在具有較低折 射率之厚膜層之間。在此情況下,該等厚膜層中之一或 多者可由玻璃製成。若基底基板由強化玻璃製成,則其 可用作具有較低折射率之厚膜層,因為強化玻璃具有約 1.5之折射率。除基底基板外,黏著劑層或空氣層亦可用 作具有較也折射率之厚膜層。當然,諸如防反射膜、防 眩光膜及防霧膜之功能膜亦可用作厚膜層。 ❹ 因而,該第一厚膜層.、該第二厚膜層及該薄膜層之折 射率可加以不同地修改以便調整光之透射率及反射率。 該薄臈層742之折射率用η表示,且該第一厚膜層744 . 與該第二厚膜層746之折射率用nt表示。為便利起見, 假設該第一厚膜層744與該第二厚膜層746具有相同折 射率,但本發明不限於此。該第一厚膜層之折射率及該 第二厚膜層之折射率可較佳為相同的或具有丨或更小的 差' 該第一厚膜層744定位成面對顯示面板,且該第二厚 12 201013236 膜層746定位成面對使用者。入射於該第-厚膜廣744 上之光滿足自司乃耳(Snell)定律導出的等式卜 ntsinet = n〇sin9〇 ...等式、201013236 VI. Description of the Invention: This application claims the priority of the following Korean Patent Application: Korean Patent Application No. 10-2008-0092655, filed on Sep. 22, 2008, and Korean Patent Application, filed on Sep. 22, 2008 Korean Patent Application No. 10-2008-0092657, filed on September 22, 2008, and Korean Patent Application No. 10-2008-0098120, 2009, filed on September 22, 2008 Korean Patent Application No. 10-2009-0009883, filed on the date of February 6, and Korean Patent Application No. 10-2009-0087906, filed on Sep. 17, 2009, the entire contents of which are All objects are incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for compensating for color shifts, particularly relating to a pulverizer that is provided before a display panel to minimize color shift depending on viewing angles. Regarding a display device having the same _ [Prior Art] In response to the recent emergence of the high-order information society, the components and devices are being significantly improved and rapidly distributed. Among them, image display devices to be used for televisions, personal computer monitors, etc. are widely distributed. In addition, attempts have been made to increase the size of the display device while reducing its thickness. In general, a liquid crystal display (LCD) is a type of flat panel display that uses liquid crystal display images. LCDs are widely used in the industry because of their advantages such as light weight, low driving voltage, and low power consumption of 201013236 compared to other display devices. Fig. 1 is a conceptual diagram schematically showing the basic structure and operation principle of the LCD 100. For example, a vertical alignment (VA) LCD includes two polarized films 110 and 120 whose optical axes are perpendicular to each other. The liquid crystal molecules 150 having birefringence characteristics are disposed between two transparent substrates 130 coated with transparent electrodes ι4 〇 β. When an electric field is applied from the power source unit ι8 ,, the liquid crystal molecules move and are aligned vertically. In the electric field. Light emitted from the backlight unit is linearly polarized after being transmitted through the first polarizing film 12. As shown on the left side of Fig. 1, the liquid crystal remains perpendicular to the substrate when the power is turned off. The liquid crystal may not have any effect on the polarization of light in this state. As a result, the light that maintains the linear polarization state is blocked by the second polarization film i. The light sleeve of the second polarization film 110 is perpendicular to the optical axis of the first polarization film 120. Φ is as shown on the right side of FIG. It is shown that when a voltage is applied, the liquid crystal is shifted between the two orthogonally polarizing films 110 and 120 to a horizontal position parallel to the substrate by responding to the electric field. Therefore, 'linearly polarized light from the first polarized film is converted to another linearly polarized light'. The polarization direction of the other linearly polarized light is perpendicular to the linearly polarized light, the circle transmitted from the first polarized film. The polarization direction of the polarized light or the elliptically polarized light is transmitted through the liquid crystal molecules before it just reaches the second polarized film, and the converted light can then be transmitted through the second polarized film. It is possible to gradually change the orientation of the liquid crystal from the vertical position to the horizontal position by adjusting the intensity of the electric field, and thereby control the intensity of the light emission. 201013236 Fig. 2 is a conceptual diagram illustrating the orientation and transmittance of a liquid crystal depending on the viewing angle. When liquid crystal molecules are aligned in a predetermined direction in the pixel 220, the orientations of the liquid crystal molecules appear to be different from each other depending on the viewing angle. When viewed along the line 210 from the upper left side, the liquid crystal molecules appear to align as they are in a generally horizontal orientation 212, and the image is relatively bright. When viewed from above along line 230, the liquid crystal molecules are observed to be aligned on orientation 232 which is the same as the actual orientation of the liquid crystal molecules within pixel 220. Moreover, when viewed along line 25 from the upper right side, the liquid crystal molecules appear to align as if they were in a substantially horizontal orientation 252, and the image is relatively dark. Therefore, the viewing angle of the LCD is extremely limited compared to other displays that emit light spontaneously' because the intensity and color of the light of the LCD vary depending on the viewing angle. Many studies have been conducted to improve the perspective. Figure 3 is a conceptual diagram illustrating a conventional practice of reducing the variation in contrast and color shift depending on the viewing angle. Referring to Fig. 3, a pixel is divided into two pixel portions, i.e., the first pixel portion 320 and the second pixel portion 34 (), the orientations of which are symmetrical with each other. Both the orientation of the liquid crystal in the first pixel portion 32A and the orientation of the liquid crystal in the second pixel portion 340 can be seen. The intensity of the light reaching the blaster is the total intensity of the light from the two pixel portions ❶ when viewed from the upper left side along line 3 10, the liquid crystal molecules in the first pixel portion 32 看起来 appear as if they were in the horizontal orientation 312 The upper alignment, and the liquid crystal molecules in the first-pixel portion 320 appear as if they are aligned on the vertical orientation 201013236. Then, the first pixel portion | 32g may appear bright. Similarly, when viewed from the upper right side along line 350, the liquid crystal molecules in the first pixel portion 32 are aligned as if they were aligned on the vertical alignment 352, and the liquid crystal molecules in the first pixel portion 340 look like Aligned on the horizontal orientation 354, and then, the second pixel portion 34 can appear bright. Moreover, when viewed from above, the liquid crystal molecules are observed to be aligned on orientations 332 and 334 which are the same as the actual orientation of the liquid crystal molecules within pixel portions 32 and 3 of the buckle. Therefore, the brightness of the image observed by the user remains the same or similar even when the viewing angle changes and symmetry with respect to the vertical centerline of the image. Therefore, this makes it possible to reduce variations in contrast and color shift depending on the viewing angle. Figure 4 is a conceptual diagram illustrating another conventional practice of reducing the variation in contrast and color shift depending on the viewing angle. Referring to Fig. 4, an optical film 42A having birefringence characteristics is added. The birefringence characteristic of the optical film 420 is the same as that of the liquid crystal molecules in the pixel _·440 of the 1CD panel and has an orientation opposite to the orientation of the liquid crystal molecules. Due to the orientation of both the liquid crystal molecules within the pixel 440 and the birefringent material of the optical film, the intensity of light reaching the user is the total intensity of light transmitted through both the optical film 420 and the pixel 440. In particular, as viewed from the upper left side along line 410, the liquid crystal molecules within pixel 440 appear to align as they are in horizontal orientation 414 and the imaginary liquid crystal molecules of optical film 420 appear as if they were in vertical orientation 412. quasi. The combined intensity of light is the total intensity of light transmitted through both optical film 420 and pixel 440. Likewise, when 201013236 is viewed from the upper right side along line 450, the liquid crystal molecules within pixel 440 appear to align as they are in vertical orientation 454 and the imaginary liquid crystal molecules of optical film 420 appear to align as they are in horizontal orientation 452. . The resultant intensity of light is the total intensity of light transmitted through both optical film 420 and pixel 440. Moreover, liquid sa molecules are observed to be aligned on orientations 434 and 432 when viewed from above, and orientations 434 and 432 are the same as the orientation of the liquid crystal molecules in pixel 440 and the optical liquid crystal molecules of optical film 420, respectively. However, even if the methods shown in Figs. 3 and 4 are applied, the color shift is still present because the angle of view 'and thus the color changes as the angle of view increases. The information disclosed in the section is only for enhancement of understanding of the prior art, and should not be considered as an admission or in any way suggesting that this information is a prior art known to those skilled in the art. SUMMARY OF THE INVENTION Various aspects of the present invention provide a light fixture that can ensure a wide viewing angle and improve the image quality of a display device by minimizing the color shift depending on the viewing angle. ._ _ Various aspects of the present invention also provide a filter capable of minimizing color shift with respect to all composite colors as the viewing angle is increased, the composite colors including red based composite colors (such as, Sony Red and Medium) Degree red) and composite colors based on blue (such as 'Sony Blue, Purple and Violet Blue'). In one aspect of the present invention, a filter for compensating for color shift before a display panel of a display device may include: a background layer; and a green wavelength absorption having a thickness on the background layer pattern. The 201013236 green wavelength absorption pattern absorbs light of a green wavelength. The green wavelength absorbing pattern may comprise a green wavelength absorbing material that absorbs light of a green wavelength in the range of 51 〇 nm to 560 nm. The green wavelength absorbing pattern may further comprise a white light absorbing material. The filter may further comprise a green complementary color absorbing portion that absorbs light of a wavelength complementary to green. The green complementary color absorbing portion may include at least one selected from the group consisting of: a blue wavelength absorbing material that absorbs light of a blue wavelength in a range of 44 〇 nm to 48 〇 nm, and a A red wavelength absorbing material that absorbs light of a red wavelength in the range of 6 〇〇 nm to 650 nm. The filter may further include a first thick film layer, a first film layer, and a second thick film layer stacked on each other in the above-described order. According to an exemplary embodiment of the present invention as described above, the filter can ensure a wide viewing angle and improve the image quality of the display device by minimizing the color shift according to the viewing angle by using the green wavelength absorbing pattern. Moreover, exemplary embodiments of the present invention may also minimize color shift with respect to all composite colors as the viewing angle increases, including all composite colors based on red (such as Sony Red and Medium Red) and based on blue Composite colors (such as Sony Blue, Purple, and Violet Blue). Furthermore, the green wavelength absorbing pattern is provided to compensate for an increase in color shift according to viewing angle, and the green complementary color absorbing portion is provided to prevent color change of light emitted from the forward direction of the display to cause display The original color can be maintained. 201013236 The method and apparatus of the present invention have other features and advantages, which will be apparent from or in conjunction with the accompanying drawings and the following <RTIgt; It is stated in detail. [Embodiment] Reference will now be made in detail to the preferred embodiments embodiments While the invention will be described in conjunction with the exemplary embodiments, it should be understood that Rather, the invention is not intended to be limited to the singular embodiments, and the various alternatives, modifications, equivalents, and other embodiments may be included. The spirit of the present invention is within the scope of Fan Feng. The comparison will be carried out to the fifth point as a diagram showing the change in the spectrum according to the increase in the angle of view when the white light is displayed in full gray scale when both the conventional LCD is applied with the compensated color shift shown in FIG. 3 and FIG. For the chart. As shown in the figure, the intensity of the spectrum is gradually reduced in inverse proportion to the viewing angle. Although the spectra are normalized by dividing each of the spectra by their maximum values to accurately check the degree of decrease according to the wavelength range, it can be understood that the intensity of the normalized spectrum increases from 400 nm to 500 depending on the viewing angle. The decrease in the blue wavelength range of nm is the same even if the intensity is the same in other wavelength ranges depending on the viewing angle. The intensity of this indicator light spectrum is much lower in the blue wavelength range from 400 nm to 500 nm depending on the viewing angle than in 201013236 in other wavelength ranges. Therefore, the yellow color complementary to blue increases as the viewing angle increases. This color change degrades the image quality. Figure 6 is a cross-sectional view of a filter 700 for compensating for color shifts as proposed in the applicant's prior application. The pulverizer 700 shown in Fig. 6 includes a thin film layer 742 and a first thick film layer 744 and a second thick film layer 746 to reduce color shift depending on the viewing angle. The thin dielectric layer 7 42 has a thickness of 780 nm or less and a first refractive index. The first thick film layer 744 is provided on one of the surface layers 742 of the film layer 742 to be thicker than the film layer 742. and has a second refractive index. A second thick film layer 746 is provided on the opposite surface of the film layer 742, thicker than the film layer 742 and having a third index of refraction. The filter reduces the relatively large decrease in brightness in the wavelength range from 3 〇〇 nm to 500 nm depending on the increase in viewing angle of the LCD, which occurs when light is transmitted through the liquid crystal. The filter can thereby reduce the color shift of the white light at full gray level according to the increase in viewing angle. Φ Fig. 7 is a diagram showing the principle of the filter for compensating for the color shift shown in Fig. 6. • The thickness of the film layer 742 is the same or smaller than the wavelength range of visible light. Therefore, the thickness of the film layer 742 is 780 nm or less. If the thickness of the film layer 742 is greater than 78 〇 nm, no constructive or destructive interference occurs in the visible light range. Further, the 'far first thick film layer 744 and the second thick film layer 746 are thicker than the thin layer 742. Thus the thickness of the thick film layers 744 and 746 is greater than 780 nm and may even be a few mm. The first thick film layer 744 and the second thick layer 201013236 may have the same thickness or different thicknesses. The film layer 742, the first thick film layer 744 and the second thick film layer 746 have first, second and third refractive indices, respectively. The first index of refraction may be lower or higher than the second index of refraction and/or the third index of refraction. The filter can be fabricated by sandwiching a thin film layer having a lower refractive index between thick phosphide layers having a higher refractive index. For example, the refractive index of the first thick film layer 744 and the second thick film layer 746 may be in the range of 2 to 4 and the refractive index of the film layer may be in the range of 1 to 2. © Conversely, a film layer with a higher refractive index can be sandwiched between thick film layers with a lower refractive index. In this case, one or more of the thick film layers may be made of glass. If the base substrate is made of tempered glass, it can be used as a thick film layer having a lower refractive index because the tempered glass has a refractive index of about 1.5. In addition to the base substrate, the adhesive layer or the air layer can also be used as a thick film layer having a relatively high refractive index. Of course, a functional film such as an antireflection film, an antiglare film, and an antifogging film can also be used as the thick film layer. Accordingly, the refractive indices of the first thick film layer, the second thick film layer, and the film layer can be modified differently to adjust the transmittance and reflectance of light. The refractive index of the thin layer 742 is represented by η, and the refractive index of the first thick film layer 744 and the second thick film layer 746 is represented by nt. For the sake of convenience, it is assumed that the first thick film layer 744 and the second thick film layer 746 have the same refractive index, but the present invention is not limited thereto. The refractive index of the first thick film layer and the refractive index of the second thick film layer may preferably be the same or have a difference of 丨 or less. The first thick film layer 744 is positioned to face the display panel, and the Second Thickness 12 201013236 The film layer 746 is positioned to face the user. The light incident on the first thick film 744 satisfies the equation derived from Snell's law, nt ntsinet = n〇sin9〇 ...

當光㈣穿過該第一厚膜層744與該薄膜層742之間 的界面自該顯示面板進入該薄膜層742時,光8⑽之一 部分在其通過界面時折射’而光88〇之另一部分在該界 面處反射。在等式⑴中,θι表示光88〇相對於界面之 法線之角度(入射角),且θ表示進入該薄膜層之折射光 881相對於界面之法線之角度(折射角)。 在該薄膜層742與該第二厚膜層746之界面處光881 再次分為透射光882 (其在傳遞通過界面時折射)及反 射光883 (其在界面處反射八透射光882相對於該薄膜 層742與該第二厚臈層746之間的界面之法線的角度係 由該薄膜層742之折射率與該第二厚膜層746之折射率 之間的差確定。只要該第一厚膜層744與該第二厚膜層 740具有相同折射率,進入該第二厚膜層746之光882 相對於該薄膜層742與該第二厚膜層746之間的界面之 法線的角度為基於司乃耳定律,角度0t可由自顯示 面板入射於濾光器上之光889的角度θ〇、厚膜層之折射 率nt及空氣之折射率ηΌ ( =1 )表達。 當來自顯示面板之光889傳遞通過濾光器時,根據司 乃耳定律’離開濾光器之光之角度與入射角θ〇相同。因 此,入射角θ〇對應於使用者之視角。 各別界面處的反射率可由下文等式2及3表達 13 201013236When light (4) passes through the interface between the first thick film layer 744 and the film layer 742 from the display panel into the film layer 742, one portion of the light 8 (10) refracts as it passes through the interface and another portion of the light 88 Reflect at this interface. In the equation (1), θι denotes the angle (incident angle) of the light 88 〇 with respect to the normal to the interface, and θ denotes the angle (refraction angle) of the refracted light 881 entering the film layer with respect to the normal to the interface. At the interface of the film layer 742 and the second thick film layer 746, the light 881 is again divided into transmitted light 882 (which is refracted as it passes through the interface) and reflected light 883 (which reflects the transmitted light 882 at the interface relative to the The normal angle of the interface between the film layer 742 and the second thick layer 746 is determined by the difference between the refractive index of the film layer 742 and the refractive index of the second thick film layer 746. As long as the first The thick film layer 744 has the same refractive index as the second thick film layer 740, and the light 882 entering the second thick film layer 746 is normal to the interface between the film layer 742 and the second thick film layer 746. The angle is based on the Snell's law, and the angle 0t can be expressed by the angle θ 光 of the light 889 incident on the filter from the display panel, the refractive index nt of the thick film layer, and the refractive index η Ό (=1) of the air. When the light 889 of the panel passes through the filter, the angle of the light exiting the filter according to Snell's law is the same as the angle of incidence θ 。. Therefore, the angle of incidence θ 〇 corresponds to the angle of view of the user. The reflectance can be expressed by Equations 2 and 3 below. 13 201013236

Rp = [(ntcose - ncos0t)/(ntcos0 + ncos0t)]2 ...等式 2Rp = [(ntcose - ncos0t) / (ntcos0 + ncos0t)] 2 ... Equation 2

Rs - [(ncosG - ntcos0t)/(ncos0 + ntcos0t)]2 等式 3 在上文等式2及3中,Rp表示p極化光之反射率,且Rs - [(ncosG - ntcos0t) / (ncos0 + ntcos0t)] 2 Equation 3 In the above Equations 2 and 3, Rp represents the reflectance of p-polarized light, and

Rs表示s極化光之反射率y可瞭解,反射率%及反射率Rs represents the reflectance y of s-polarized light, and the reflectance % and reflectance are known.

Rs根據薄膜層之折射率n、厚膜層之折射率、、入射角^ 及折射角θ而變化。 在下文等式4中,反射率R為等式2之~及等式3之 Rs之平均值。 反射光883再次分為光線887 (其在界面處折射)及 光線884 (其在界面處反射)。界面處之此折射與反射過 程得以重複。 在下文等式4中,透射率τ為透射光882之透射率1 與透射光885之透射率T:2之總和。雖然在第7圖中僅展 示兩條折射光線,但反射與折射在界面處重複發生,且 透射率T為所有折射光線之總透射率。 _ 在下文等式4中’界面之反射率r為光gw之反射率 R1與光888之反射率R2之總和。同樣,雖然在第7圖 . 中僅展示兩條反射光線,但反射率r為自界面反射之所 . 有光線之總反射率。 在光被由該第一厚膜層744、該薄膜層742及該第二 厚膜層746界定之兩個界面重複反射的過程中,透射率 可歸因於干涉而根據波長變化。 為了補償根據視角之增加.的具有高灰.階之白光的顏色 偏移,該薄膜層之厚度卜該薄膜層之折射率广及該第一 201013236 厚膜層與該薄膜層之間的界面處的反射率R經調整以使 得根據等式4之透射率τ之平均值可在藍色波長範圍中 得以最大化。 τ = (1 - R)2/(l+R2 - 2RCOS8) ...等式 4 在等式4中,δ表示光882與光之間的相差光 882與光885兩者均傳遞通過該薄膜層,如下文等式$ 中所表達。 Ο δ = (2π/λ)2η€ο〇8θ ( 〇〇 ^ θ ^ 8〇〇)…等式 5 在等式5中,相差S係由折射率η、厚度卜折射角0 及波長λ球定。 可根據相差發生相長或相消干涉。當光m與光奶 (兩者均傳遞通過該薄膜層)之間的光^彳ϋ 波長之整數倍時,可獲得最大透射率。 當針對教波長範圍確㈣薄膜層之折射率η、厚&quot; :折射角β時相差“寻以確定。此處,折射角0為在; 疋該薄膜層之折射率η、該等厚 &quot; τ斤联增之折射率及 時自動得以確定之值。 見角〇 可自上文等式1至3蝽鈾 瞭解,反射率根據薄臈層 率η及厚膜層之折射率^以 a 、 、 視角θ0而變化。田α 藉由相對於視角θ。調整薄膜層之 因此,可 射率〜來確定反射率。 ’、11及厚膜層之折 如自上文等式4所見’在設定反射率R及“ 射率τ得以確定。因此,可 及相差δ時透 及厚膜層之折射率η以及蓮:選擇薄骐層之折射率η 羊…薄膜層之厚度錄調整相對於 15 201013236 特疋視角及特定波長之光的透射率。 舉例而3,可藉由將薄膜層之厚度選擇為780 nm或更 小且將該薄膜層之折射率設定在1至2之範圍中並將厚 膜層之折射率*定在2 i 4之範圍巾來增加特定波長之 光在大視角下的透射率。若調換折射率設定(其中,該 薄膜層之折射率設定在2至4之範圍中且該等厚膜層之 . 折射率設定在1至2之範圍中),則可獲得相同結果。 ❹ 在具有厚膜/薄膜/厚膜結構之濾光器中,在38〇11111至 780 nm之可見光之波長範圍中的最小透射率與最大透射 率之比可在0.5至0.9之範圍中。 因此,多光束干涉使得有可能補償光之強度根據視角 之增加在藍色波長範圍中以相對較大量降低的現象。具 體而言,在高達約80度之大視角範圍中,透射率歸因於 相長干涉在藍色波長範圍中升高,但歸因於相消干涉在 綠色及紅色波長範圍中降低。此可藉由將光強度之遞減 _ 量調整為在整個波長範圍内相同或相似來補償甚至在大 視角下藍色波長範圍之不平衡。第6圖中所示之具有厚 膜/薄膜/厚膜結構的滤光器可有效地補償根據視角之增 • 加、白光在全灰階下的顏色偏移。 然而’第6圖中所示之濾光器無法最小化根據視角之 增加的全部顏色的顏色偏移。 第8圖為圖示當慣用[CD被應用第3圖與第4圖中所 不之補償顏色偏移之做法兩者後以低灰階顯示白光時光 譜根據視角增加之變化的一對圖表。 201013236 因為LCD在再現實際影像或移動圖片時表現出各種顏 色以及白色,所以顏色偏移補償對確保廣視角起重要作 用。 顯示器工業通常使用諸如白色、紅色、藍色、綠色、 膚色、索尼紅、索尼藍、索尼綠、青色、紫色、黃色、 中度紅及紫藍色的十三個(13)顏色作為評估標準。第 6圖中所示之濾光器無法單獨最小化全部顏色之顏色偏 移。Rs varies depending on the refractive index n of the film layer, the refractive index of the thick film layer, the incident angle ^, and the refraction angle θ. In Equation 4 below, the reflectance R is the average of Rs of Equation 2 and Equation 3. The reflected light 883 is again divided into a light ray 887 (which is refracted at the interface) and a light ray 884 (which is reflected at the interface). This refraction and reflection process at the interface is repeated. In Equation 4 below, the transmittance τ is the sum of the transmittance 1 of the transmitted light 882 and the transmittance T: 2 of the transmitted light 885. Although only two refracted rays are shown in Fig. 7, reflection and refraction occur repeatedly at the interface, and the transmittance T is the total transmittance of all the refracted rays. _ In the following Equation 4, the reflectance r of the interface is the sum of the reflectance R1 of the light gw and the reflectance R2 of the light 888. Similarly, although only two reflected rays are shown in Fig. 7, the reflectance r is reflected from the interface. The total reflectance of the light. In the process of repeated reflection of light by the two interfaces defined by the first thick film layer 744, the film layer 742, and the second thick film layer 746, the transmittance may vary depending on the wavelength due to interference. In order to compensate for the color shift of the white light having a high gray level according to the increase of the viewing angle, the thickness of the film layer has a wide refractive index and the interface between the first 201013236 thick film layer and the film layer The reflectance R is adjusted such that the average of the transmittances τ according to Equation 4 can be maximized in the blue wavelength range. τ = (1 - R) 2 / (l + R2 - 2RCOS8) Equation 4 In Equation 4, δ represents that both phase difference light 882 and light 885 between light 882 and light are transmitted through the film. Layer, as expressed in the following equation $. δ δ = (2π/λ) 2η€ο〇8θ ( 〇〇^ θ ^ 8〇〇) Equation 5 In Equation 5, the phase difference S is determined by the refractive index η, the thickness, the refraction angle 0, and the wavelength λ sphere. set. Constructive or destructive interference can occur depending on the phase difference. The maximum transmittance is obtained when an integral multiple of the wavelength of light between the light m and the light milk (both passed through the film layer). When the refractive index η, thickness &quot;: refraction angle β of the film layer is determined for the teaching wavelength range, the phase difference is "determined. Here, the refraction angle 0 is at; 疋 the refractive index η of the film layer, the thickness is equal" The refractive index of the τ 斤 联 增 增 增 增 增 增 。 见 见 见 见 见 见 τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ The angle α is changed by the angle of view θ0. Field α adjusts the film layer by adjusting the film layer with respect to the angle of view θ. Therefore, the reflectance is determined by the absorbance ratio. ', 11 and the thick film layer are as shown in the above equation 4' The reflectance R and the "radiance τ are determined. Therefore, the phase difference δ is transparent and the refractive index η of the thick film layer and the lotus: the refractive index η of the thin layer is selected. The thickness of the film layer is adjusted relative to 15 201013236. The transmittance of the special viewing angle and the specific wavelength of light. . For example, 3, by selecting the thickness of the film layer to be 780 nm or less and setting the refractive index of the film layer in the range of 1 to 2 and setting the refractive index* of the thick film layer to 2 i 4 A range of towels to increase the transmission of light of a particular wavelength at a large viewing angle. The same result can be obtained by changing the refractive index setting (wherein the refractive index of the film layer is set in the range of 2 to 4 and the refractive index of the thick film layers is set in the range of 1 to 2). ❹ In a filter having a thick film/film/thick film structure, the ratio of the minimum transmittance to the maximum transmittance in the wavelength range of visible light of 38〇11111 to 780 nm may be in the range of 0.5 to 0.9. Therefore, multi-beam interference makes it possible to compensate for the phenomenon that the intensity of light is reduced by a relatively large amount in the blue wavelength range in accordance with the increase in the viewing angle. In particular, in a wide viewing angle range of up to about 80 degrees, the transmittance is attributed to the increase in constructive interference in the blue wavelength range, but is due to the destructive interference decreasing in the green and red wavelength ranges. This can compensate for the imbalance of the blue wavelength range even at large viewing angles by adjusting the decreasing amount of light intensity to be the same or similar over the entire wavelength range. The filter having a thick film/film/thick film structure as shown in Fig. 6 can effectively compensate for the color shift according to the increase in viewing angle and the white light at the full gray level. However, the filter shown in Fig. 6 cannot minimize the color shift of all colors according to the increase in viewing angle. Fig. 8 is a pair of graphs showing changes in the spectrum according to the increase in viewing angle when the white light is displayed in a low gray scale after the conventional method [CD is applied to compensate for the color shift in Figs. 3 and 4). 201013236 Color offset compensation plays an important role in ensuring a wide viewing angle because the LCD exhibits various colors and whites when reproducing actual images or moving pictures. The display industry typically uses thirteen (13) colors such as white, red, blue, green, skin tone, Sony Red, Sony Blue, Sony Green, Cyan, Purple, Yellow, Moderate Red, and Violet Blue as the evaluation criteria. The filters shown in Figure 6 cannot minimize the color shift of all colors individually.

此係因為當自顯示面板發射高灰階下之光時,光之明 度根據視角之增加在整個波長範圍中降低,特定言之, 在藍色波長範圍中降低更多,但在綠色波長範圍中降低 相對較少。然而,當發射低灰階之先時,光之明度在整 個波長範圍内升高,特定言之’在綠色波長範圍中升高 更多。 可藉由以如下文表1中之所示之各種灰階組合綠光、 紅光及藍光來獲得具有複合顏色之光。因此,有必要補 償根據梘角之增加的各稂複合顏色之顏色偏移。 表1 顏色 R G B 1 白色 255 255 255 2 紅色(原色) 255 0 0 3 綠色(原色) 0 255 0 4 藍色(原色) 0 0 255 17 201013236 5 膚色 197 151 130 ~~~ 6 紅色(索尼) 178 47 -—---- 58 7 綠色(索尼) 69 — ----- 150 70 ~~ 8 藍色(索尼) 46 ----- 62 151 ~~~~ 9 青色 86 — ---- 133 135 ^ 10 紫色 92 &gt;59 107 11 黃色 213 ~~------- 222 53 一 12 中度紅 197 ------- 86 —----------- 98 13 紫藍色 74 92 165 — 第9圖為圖示慣用LCD中的根據視角θ之改變的十三 個U3)複合顏色之顏色偏移△,)的圖表,且第ι〇 圖為圖示使用$ 6圖中所示之濾光器之lcd中的根據視 角㊀之改變的十三個(13)複合顏色之顏色㈣△_) 的圖表。 △ uV W表示0度視角之顏色坐標(U。,VG)與各別視角θ 之顏色坐標(ue,ve)之間的長纟’且可由以下等式表達: △ uV(e)=[(u〇,)2+(v〇_Ve)2]1/2 〇 在上述圖表中’水平軸表示水平視角。 如第9圖與第1Ό圖之圖表中所示,當使用第6圖中所 不之濾光器時,基於藍色之複合顏色以6〇。之水平(右/ 左)視角展示如由Η1與Η2表示的顏色偏移之減少^ uV »相比而言,基於紅色之複合顏色以6〇。之水平視角 18 201013236 展示如由T1與T2表示的顏色偏移之增加Λιι’ν%因此, 第ό圖中所示之濾光器無法補償全部13個複合顏色之顏 色偏移。_ 第一實施存t 第11圖為示意性圖示根據本發明之第一示範性實施 例的用於補償顏色偏移之濾光器的透視圖。 根據本發明之第一示範性實施例的濾光器提供於一顯This is because when the light in the high gray level is emitted from the display panel, the brightness of the light decreases in the entire wavelength range according to the increase of the viewing angle, in particular, it decreases more in the blue wavelength range, but decreases in the green wavelength range. Relatively small. However, when the low gray level is first emitted, the lightness of the light rises over the entire wavelength range, specifically in the green wavelength range. Light having a composite color can be obtained by combining green light, red light, and blue light with various gray scales as shown in Table 1 below. Therefore, it is necessary to compensate for the color shift of each of the composite colors according to the increase in the corner angle. Table 1 Color RGB 1 White 255 255 255 2 Red (primary) 255 0 0 3 Green (primary) 0 255 0 4 Blue (primary) 0 0 255 17 201013236 5 Skin 197 151 130 ~~~ 6 Red (Sony) 178 47 -—---- 58 7 Green (Sony) 69 — ----- 150 70 ~~ 8 Blue (Sony) 46 ----- 62 151 ~~~~ 9 Cyan 86 — ---- 133 135 ^ 10 Purple 92 &gt; 59 107 11 Yellow 213 ~~------- 222 53 A 12 Moderate Red 197 ------- 86 —----------- 98 13 Purple Blue 74 92 165 — Figure 9 is a graph showing the color shifts Δ, of the thirteen U3) composite colors in the conventional LCD according to the change in the viewing angle θ, and the ι〇 diagram is an illustration. A graph of the color of the thirteen (13) composite colors (four) Δ_) according to the angle of view in the lcd of the filter shown in Fig. 6 is used. Δ uV W represents the length 纟 between the color coordinates (U., VG) of the 0 degree angle of view and the color coordinates (ue, ve) of the respective angles of view θ and can be expressed by the following equation: Δ uV(e)=[( U〇,)2+(v〇_Ve)2]1/2 In the above graph, the horizontal axis represents the horizontal angle of view. As shown in the graphs of Fig. 9 and Fig. 1, when the filter of Fig. 6 is used, the composite color based on blue is 6 〇. The horizontal (right/left) viewing angle shows a reduction in color shift represented by Η1 and Η2. In contrast, the composite color based on red is 6〇. The horizontal viewing angle 18 201013236 shows an increase in the color shift as indicated by T1 and T2 Λιι'ν%. Therefore, the filter shown in the figure cannot compensate for the color shift of all 13 composite colors. The first embodiment is a perspective view schematically illustrating a filter for compensating for color shift according to the first exemplary embodiment of the present invention. A filter according to a first exemplary embodiment of the present invention is provided in a display

不裝置之顯示面板之前。此實施例之濾光器通常適用於 LCD ’但本發明不限於此。 如第11圖中所示,該濾光器包括一背景層1〇及一綠 色波長吸收圖案20。 在第11圖中’該綠色波長吸收圖案20提供於面對該 顯示面板之责景層10之一表面上。該綠色波長吸收圖案 2〇包含複數個綠色波長吸收條紋,其以預定間隔彼此分 開以彼此平行。該、綠色波長吸收圖案亦可提供於面對使 用者之背景層之另-表面上或提供於背景層之兩個 表面上。 1 〇上具備一預定 該綠色波長吸收圖案2〇在該背景層 厚度。_ . 該綠色波長吸收圖案可具備各種形狀,只要其具有 吸收以預定視角發射之綠色波長之光的厚度。舉例 言,該綠色波長吸收圖案可包括但不限於具拋拔 面之條紋、具有換形橫截面之波紋、具有_橫截面 矩陣、具有楔形橫截面之蜂巢結構、具有四邊形橫截 19 201013236 之條紋、具有四邊形橫截面之波紋、具有四邊形橫截面 之矩陣或具有四邊形橫截面之蜂巢結構。第u圖圖示包 含具有楔形橫截面之條紋的綠色波長吸收圖案20。横形 橫截面包括三角形橫截面與梯形橫截面。 該綠色波長吸收圖案可相對於使用者在各種方向上定 向’諸如在水平及垂直方向上定向《•該綠色波長吸收圖 案可在水平方向上定向時有效地補償根據垂直視角的顏 色偏移,且在垂直方向上定向時有效地補償根據水平視 角的顏色偏移。該綠色波長吸收圖案20可具備相對於背 景層之較長邊的預定偏角以便防止莫耳(Moire )現象。 該綠色波長吸收囷案吸收一綠色波長之光。該綠色波 長吸收圖案提供於背景層10之一表面上以藉由根據視 角之增加在整個波長範圍内增加光之吸收(特定言之, 在510 rim至560 nm之綠色波長範圍内大幅增加光吸收) 來最小化根據視角之增加的具有複合顏色之::光的顏色偏. 移6 當自顯示面板發射之光具有低灰階時,明度根據視角 之增加在整個波長範圍中增加,且綠色波長範圍中之明 度增加更多。因為藉由以各種灰階組合綠光、紅光及藍 光來獲得具有複合顏色之光,所以難以僅使用如第6圖 中所示之用於補償顏色偏移之膜來補償所有類型之複合 顏色之顏色偏移。因此’有可能藉由根據視角之增加逐 漸增加在所有波長範圍中之光的吸收(特定言之,根據 視角之增加’大幅增加綠色波長之光之吸收)來最小化 20 201013236 根據視角之增加的複合顏色之顏色偏移β 為了吸收綠色波長,該綠色波長吸收圖案2〇可含有一 可吸收在5 10 nm至560 nm之範圍中的綠色波長之光的 綠色波長吸收材料。該綠色波長吸收材料可(例如)為 一可吸收在510 nm至560 nm之範圍中的綠色波長之光 的無機或有機材料。較佳地,可使用粉紅色著色劑。 可藉由用含有綠色波長吸收材料之紫外線(UV)固化 樹脂填充背景層之一表面中形成之溝槽並用uv射線照 射溝槽中之綠色波長吸收材料來產生該綠色波長吸收圖 案20。 該背景層形成一層’且通常由透明聚合物樹脂製成。 背景層10可藉由(例如)使用UV固化樹脂之卷軸方法、 使用熱塑樹脂之熱壓方法或使用熱固樹脂之射出成型方 法製成為板之形式。 者景層10之厚度τ可較佳設定於50 μιη至1 mm之範 圍中。只要可確保背景層之機械性質及耐熱性,背景層 10之厚度T設定為50 μιη或更多以便獲得較可撓之特性 及較薄輪廓。此外,只要可確保背景層之可撓性、薄輪 廓及透光率,背景層10之厚度Τ設定為1 mm或更小以 使得背景層之機械性質具有卓越品質。 月景層10可由基本上允許光傳遞通過之任何高度透 明材料製成。舉例而言,背景層10可由選自由以下各者 組成之群的—者製成:聚酯、丙烯酸系化合物、纖維素、 聚煙、聚氣乙烯(PVC )、聚碳酸醋(PC )、酚及胺基甲 21 201013236 酸酯,其係輕的、便宜的且可容易製造的。 濾光器亦可具有一背襯層(未圖示),其提供於背景層 之一表面上以支撐背景層。 .j該背襯層充當一支樓件.,背景層10可在製造過程中形 成於該支撐件上。該背襯層可較佳由透uv之透明樹脂 膜製成。該背襯層可由(例如)聚對苯二甲酸乙二醋 (PET)、聚碳酸醋(PC)、聚氣乙烯(pvc)或類似者 製成。 第12囷為圖示使用第11圖中所示之濾光器之顯示裝 置中的根據視角之改變的十三個複合顏色之顏色偏移的 圖表。 如第12圖中所示,十三個複合顏色之顏色偏移係在使 用根據本發明之第一示範性實施例之濾光器的顯示裝置 中根據視角之增加來量測。 具體而言,根據本發明之第一示範性實施例之濾光器 藉由根據視角之增加吸收相對大量之綠色波長的光來最 小化基於紅色之複合顏色(例如,索尼紅、中度紅等) 及基於藍色之複合顏色(例如,索尼藍、紫色、紫藍色 等)之顏色偏移。因此,此可最終最小化所有複合顏色 之顏色偏移。 特定言之,與第10圖中具有高達0.085之值的顏色偏 移Διι'ν’相比,13個複合顏色之顏色偏移Διι,ν,可藉由使 用第11圖中所示之濾光器減少至0.06或更小。因為 0.085之顏色偏移auV可通過裸眼看到,所以影像品質 22 201013236 根據視角之增加而降級。相比而言,0.06或更小之顏色 偏移Διι’ν’可很難通過裸眼看到。因此,此使得有可能根 據視角之增加改良影像品質。 第13圖為圖示當被應用第u圖中所示之濾光器的顯 示裝置以全灰階顯示白光時的根據視角之增加的正規化 光譜之變化的圖表。 如第13圖中所示’根據視角之增加的光譜之遞減量在 整個波長範圍内大體上相同 '因此,大體上移除根據視 角之增加的顏色偏移。 第14圖與第15圖為用於解釋該綠色波長吸收圖案2〇 的參考圖。 具有含有綠色波長吸收材料之綠色波長吸收圖案2〇 的濾光器安裝在LCD TV中,且在前方且以6〇。之視角用 全白影像量測顏色坐標^ 當具有楔形橫截面之該綠色波長吸收圖案用綠色波長 吸收材料填充時,綠色波長吸收材料之顏色根據視角之 增加看起來更濃’且顏色坐標在CIE 1976 ucs顏色坐標 系統uV中移向粉紅色。此外,當圖案除甩綠色波長吸 材料外亦用炭黑或青色波長吸收材料及桔色波長吸收 材料(將稍後加以描述)填充時,顏色坐標在顏色坐標 系統nV中移向紫粉紅色。 f顏色坐標系統中,值(亦即,(v,6〇 _ v,〇)/(u,6〇 ,〇))可較佳在tan(-15。)至tan(45。)之範圍冲。(u,。及 為在别方量測之顏色坐標且u’6〇及v,w為以。之視 23 201013236 角量測的顏色坐標值。)Before the display panel is not installed. The filter of this embodiment is generally applicable to LCD ' but the invention is not limited thereto. As shown in Fig. 11, the filter includes a background layer 1 and a green wavelength absorption pattern 20. In Fig. 11, the green wavelength absorbing pattern 20 is provided on the surface of one of the responsible layers 10 facing the display panel. The green wavelength absorption pattern 2 〇 includes a plurality of green wavelength absorption stripes which are spaced apart from each other at a predetermined interval to be parallel to each other. The green wavelength absorbing pattern can also be provided on the other surface facing the user's background layer or on both surfaces of the background layer. 1 〇 has a predetermined thickness of the green wavelength absorbing pattern 2 该 at the background layer. The green wavelength absorbing pattern may have various shapes as long as it has a thickness that absorbs light of a green wavelength emitted at a predetermined angle of view. For example, the green wavelength absorption pattern may include, but is not limited to, a stripe having a throwing surface, a corrugation having a cross-section, a honeycomb having a cross-sectional matrix, a honeycomb structure having a wedge-shaped cross section, and a stripe having a quadrilateral cross-section 19 201013236. a corrugated structure having a quadrangular cross section, a matrix having a quadrangular cross section, or a honeycomb structure having a quadrangular cross section. Figure u illustrates a green wavelength absorbing pattern 20 comprising stripes having a wedge-shaped cross section. The cross section includes a triangular cross section and a trapezoidal cross section. The green wavelength absorbing pattern can be oriented in various directions with respect to the user, such as orientation in the horizontal and vertical directions. • The green wavelength absorbing pattern can effectively compensate for color shift according to the vertical viewing angle when oriented in the horizontal direction, and The color shift according to the horizontal viewing angle is effectively compensated when oriented in the vertical direction. The green wavelength absorbing pattern 20 may have a predetermined off angle with respect to the longer side of the background layer to prevent the Moire phenomenon. The green wavelength absorption scheme absorbs light of a green wavelength. The green wavelength absorption pattern is provided on one surface of the background layer 10 to increase light absorption over the entire wavelength range by increasing the viewing angle (specifically, greatly increasing light absorption in the green wavelength range from 510 rim to 560 nm) ) to minimize the composite color according to the increase of the viewing angle:: the color deviation of the light. Shift 6 When the light emitted from the display panel has a low gray level, the brightness increases over the entire wavelength range according to the increase of the viewing angle, and the green wavelength The brightness in the range is increased more. Since light having a composite color is obtained by combining green light, red light, and blue light in various gray scales, it is difficult to compensate for all types of composite colors using only the film for compensating color shift as shown in FIG. The color is offset. Therefore, it is possible to minimize the absorption of light in all wavelength ranges by increasing the viewing angle (in particular, increasing the absorption of light of a green wavelength according to the increase in viewing angle) to minimize 20 201013236 according to the increase in viewing angle Color shift of composite color β In order to absorb the green wavelength, the green wavelength absorption pattern 2〇 may contain a green wavelength absorbing material that absorbs light of a green wavelength in the range of 5 10 nm to 560 nm. The green wavelength absorbing material can, for example, be an inorganic or organic material that absorbs light of a green wavelength in the range of 510 nm to 560 nm. Preferably, a pink colorant can be used. The green wavelength absorbing pattern 20 can be produced by filling a trench formed in the surface of one of the background layers with an ultraviolet (UV) curable resin containing a green wavelength absorbing material and irradiating the green wavelength absorbing material in the trench with uv rays. The background layer forms a layer&apos; and is typically made of a transparent polymer resin. The background layer 10 can be formed into a sheet form by, for example, a reel method using a UV curable resin, a hot pressing method using a thermoplastic resin, or an injection molding method using a thermosetting resin. The thickness τ of the glazing layer 10 can preferably be set in the range of 50 μm to 1 mm. The thickness T of the background layer 10 is set to 50 μm or more in order to obtain a more flexible property and a thin profile as long as the mechanical properties and heat resistance of the background layer are ensured. Further, as long as the flexibility, thin profile and light transmittance of the background layer can be ensured, the thickness Τ of the background layer 10 is set to 1 mm or less to give the background layer a superior quality of mechanical properties. The moonlight layer 10 can be made of any highly transparent material that substantially allows light to pass therethrough. For example, the background layer 10 can be made of a group selected from the group consisting of polyester, acrylic, cellulose, polysmoke, polyethylene (PVC), polycarbonate (PC), phenol And the amine methyl 21 201013236 acid ester, which is light, inexpensive and easy to manufacture. The filter may also have a backing layer (not shown) that is provided on one of the surface layers to support the background layer. The backing layer acts as a piece of land. The background layer 10 can be formed on the support during manufacture. The backing layer may preferably be made of a transparent resin film which is transparent to uv. The backing layer can be made of, for example, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene (pvc) or the like. Fig. 12 is a graph showing the color shift of thirteen composite colors according to the change in the viewing angle in the display device using the filter shown in Fig. 11. As shown in Fig. 12, the color shift of the thirteen composite colors is measured in accordance with the increase in the viewing angle in the display device using the filter according to the first exemplary embodiment of the present invention. In particular, the filter according to the first exemplary embodiment of the present invention minimizes a composite color based on red by absorbing a relatively large amount of green wavelength light according to an increase in viewing angle (for example, Sony Red, Medium Red, etc.) ) and the color shift based on the blue composite color (for example, Sony blue, purple, purple blue, etc.). Therefore, this can ultimately minimize the color shift of all composite colors. In particular, the color shift of Διι, ν of 13 composite colors can be filtered by using the color shift Διι'ν' in Fig. 10, which has a value of up to 0.085. The device is reduced to 0.06 or less. Since the color shift auV of 0.085 can be seen by the naked eye, the image quality 22 201013236 is degraded according to the increase in the angle of view. In contrast, a color shift of Διι'ν' of 0.06 or less can be difficult to see through the naked eye. Therefore, this makes it possible to improve image quality in accordance with an increase in viewing angle. Fig. 13 is a graph showing changes in the normalized spectrum according to an increase in the angle of view when the display device of the filter shown in Fig. u is applied to display white light in full gray scale. As shown in Fig. 13, the decreasing amount of the spectrum according to the increase in the viewing angle is substantially the same over the entire wavelength range. Therefore, the color shift according to the increase in the viewing angle is substantially removed. Fig. 14 and Fig. 15 are reference diagrams for explaining the green wavelength absorption pattern 2A. A filter having a green wavelength absorbing pattern 2 含有 containing a green wavelength absorbing material is mounted in the LCD TV and is 6 Å ahead. The viewing angle uses the all white image to measure the color coordinates. ^ When the green wavelength absorbing pattern having a wedge-shaped cross section is filled with the green wavelength absorbing material, the color of the green wavelength absorbing material looks more intense according to the increase in the viewing angle' and the color coordinates are in CIE. 1976 ucs color coordinate system uV moved to pink. Further, when the pattern is filled with a carbon black or cyan wavelength absorbing material and an orange wavelength absorbing material (which will be described later) in addition to the green wavelength absorbing material, the color coordinates shift to purple pink in the color coordinate system nV. In the f color coordinate system, the value (i.e., (v, 6 〇 _ v, 〇) / (u, 6 〇, 〇)) may preferably be in the range of tan (-15.) to tan (45.). . (u, . and is the color coordinate measured in the other side and u'6〇 and v,w is the value of the color coordinate value measured by the angular measurement of 23 201013236.)

體而。’条·光吸收圖案23僅用.綠色波長吸收材料填 充’則顏色坐標之改變的斜率可較佳在顏色坐標系統u,v, 中在15。至45。之範圍中。若光吸收圖案23用炭黑與綠 色波長吸收材料填充,則顏色坐標之改變的斜率可較佳 在-15°至15。之範圍中。若光吸收圖案23用青色波長吸 收材料及桔色波長吸收材料與綠色波長吸收材料填充, 則顏色坐標之改變的斜率可較佳在_15。至15。之範圍中。 第16圖與第17圓為圖示具有綠色波長吸收圖案之濾 光器中的折射率對顏色偏移之效應的一對圖表,其中第 16圖展不在责景層之折射率與綠色波長吸收圖案之折射 率相同之情況下的根據視角之顏色偏移,且第17圖展示 在奇景層之折射率比綠色波長吸收圖案之折射率大Ο.% 之情況下的根據視角之顏色偏移。 在者景層上形成有包括綠色波長吸收材料之綠色波長 吸收圖案的膜中,在所有其他條件設定為相同的情況下 量測折射率對顏色偏移之效應。 如第16圖與第17圖中所示,顏色偏移在背景j 0.042且在背景層之折射率與綠色波長吸收圓案之折」 率之間的差為0.06時為約〇〇45。在顏色偏移 在實質差異。 相比而.言, 差異的情況下 如下文表2中所示,在存在折射率之間的 的前透射率大於在不存在折射率之間的差 24 201013236 異的情況下的前透射率。 表2Body. The slope of the change of the color coordinates of the strip light absorbing pattern 23 filled with only the green wavelength absorbing material may preferably be at 15 in the color coordinate system u, v. To 45. In the scope. If the light absorbing pattern 23 is filled with carbon black and a green wavelength absorbing material, the slope of the change in color coordinates may preferably be -15 to 15. In the scope. If the light absorbing pattern 23 is filled with the cyan wavelength absorbing material and the orange wavelength absorbing material and the green wavelength absorbing material, the slope of the change in the color coordinates may preferably be -15. To 15. In the scope. Figure 16 and Figure 17 are a pair of graphs showing the effect of refractive index on color shift in a filter with a green wavelength absorption pattern, where the 16th graph exhibits no refractive index and green wavelength absorption in the responsible layer. The color shift according to the viewing angle in the case where the refractive index of the pattern is the same, and FIG. 17 shows the color shift according to the viewing angle in the case where the refractive index of the strange layer is larger than the refractive index of the green wavelength absorption pattern by Ο.%. . In the film in which the green wavelength absorption pattern including the green wavelength absorbing material is formed on the glaze layer, the effect of the refractive index on the color shift is measured under the condition that all other conditions are set to be the same. As shown in Figs. 16 and 17, the color shift is about 〇〇45 when the difference between the background j 0.042 and the refractive index of the background layer and the green wavelength absorption bin is 0.06. The color shifts in substantial differences. In contrast, in the case of the difference, as shown in Table 2 below, the front transmittance in the presence of the refractive index is greater than the difference in the absence of the difference between the refractive indices. Table 2

❹ 文表2中,根據自顯示裝置發射之光的量,4%之 透射率差可具有不同意義。舉例而言,若自LCD發射之 光的亮度為5Gnh (亦即’攜帶型電話的位準),則差為 約2 nit,其很難由肉眼區別出。相比而言若亮度為則 nit或更多(亦即,LCD τν之位準),則差為約2〇 , 其可由肉眼區別出。考慮到LCD TV之亮度正不斷增加, 透射率增加4%對自身具有重要技術意義β 第16圖與第17圖及表2展示自背景層之折射率大於 綠色波長吸收圖案之折射率的濾光器獲得的測試結果。 相比而言,綠色波長之折射率可大於背景層之折射率。 該綠色波長吸收圖案與該背景層之間的折射率差可較 佳在0.001至0,1之範圍中。 弟一·實施例 第18圖為圖示具有根據本發明之第二實施例之濾光 器的顯示裝置中根據視角之改變的十三個(13 )顏色之 顏色偏移的圖表。 根據第二實施例之濾光器具有一綠色波長吸收圖案, 25 201013236 其含有一能夠吸收整個冰且ρβ 埜個波長範圍之可見光的白光吸收材 料以及一綠色波長吸收材料。 該白光吸收材料可為具有阻擋顏色的無機材料、有機 材料及/或金屬。更佳地,該白光吸收材料可為炭黑。 該綠色波長吸收圖案20可由含有一綠色波長吸收材 料及一白光吸收材料之uvg化樹脂製成。In Table 2, the difference in transmittance of 4% may have different meanings depending on the amount of light emitted from the display device. For example, if the brightness of the light emitted from the LCD is 5 Gnh (i.e., the level of the portable telephone), the difference is about 2 nit, which is difficult to distinguish by the naked eye. In contrast, if the brightness is nit or more (i.e., the level of LCD τν), the difference is about 2 〇, which can be distinguished by the naked eye. Considering that the brightness of LCD TV is increasing, the increase of transmittance by 4% has important technical significance for itself. [Fig. 16 and Fig. 17 and Table 2 show the filtering of the refractive index of the background layer from the refractive index of the green wavelength absorption pattern. Test results obtained by the device. In contrast, the green wavelength can have a refractive index greater than the refractive index of the background layer. The difference in refractive index between the green wavelength absorbing pattern and the background layer may preferably be in the range of 0.001 to 0,1. <First Embodiment> Fig. 18 is a graph showing the color shift of thirteen (13) colors in accordance with a change in viewing angle in a display device having a filter according to a second embodiment of the present invention. The filter according to the second embodiment has a green wavelength absorbing pattern, 25 201013236 which contains a white light absorbing material capable of absorbing visible light of the entire ice and ρβ field wavelength range and a green wavelength absorbing material. The white light absorbing material may be an inorganic material, an organic material, and/or a metal having a barrier color. More preferably, the white light absorbing material may be carbon black. The green wavelength absorption pattern 20 can be made of a uvg resin containing a green wavelength absorbing material and a white light absorbing material.

舉例而言,該綠色波長吸收圖案2〇可包括uv固化樹 脂中所含有的約1 wt%之綠色波長吸收材料及㈣5wt% 之白光吸收材料。 由綠色波長吸收圖案20之間距、厚度、較大寬度較 小寬度及傾斜表面之斜率確定透射率及視角。 若該綠色波長吸收圖案20之厚度、寬度及吸光率減 小,則根據視角補償顏色偏移之效應增加。然而,光之 透射率根據視角顯著減小,因為該綠色波長吸收圖案2〇 亦吸收傳遞通過濾光器之光。 若該綠色波長吸收圖案20之厚度增加,則背景層1〇 之厚度亦增加,其使得難以彎曲背景層1〇。因為背景層 1〇可能會在彎曲達特定程度時碎裂,所以不易於藉由輥 壓成型法來製造背景層10。此外,所製成之背景層10 不易於以捲筒之形式纏繞,藉此導致儲存問題。 此外,增加該綠色波長吸收圖案之寬度導致開口比(其 確定傳遞通過濾光器之光的量)減小,藉此減小光之透 射率。此外,增加白光吸收材料之含量以增強阻擋白光 之效應亦導致圖案中所含有之混合物之黏度增加,其使 26 201013236 得難以㈣合物s射至溝槽中。目此,應將最佳值給予 該綠色波長吸收圖案20之厚度、寬度及吸光率。 該綠色波長吸收圖案之寬度可較佳在丨μιη至5〇 之 範®中。 在該綠色波長吸收圖案,楔形橫截面之底邊之寬度(亦 即’較大寬度)可為間距之40%或更小,且傾斜表面之 斜率可為10°。 第三會施例 ❹ 第19圖為示意性圖示根據本發明之第三示範性實施 例之濾光器的橫截面圖。 雖然自顯示面板正前向方向上發射之光傳遞通過濾光 器但顯不器之影像之顏色可由綠色波長吸收圖案之綠 色波長吸收材料改變。因此,提供綠色互補色吸收部分, 其含有紅色波長吸收材料及藍色波長吸收材料作為顏色 校正著色劑。此組態用以將在正前向方向上發射之光的 φ 顏色校正為相似於原始顏色。 第丨9圖展示該綠色互補色吸收部分為綠色互補色吸 . 收層40的示範性實施例。 • 綠色互補色吸收層40堆疊於背景層1〇之—表面上。 綠色互補色吸收層含有綠色互補色吸收材料,該綠色互 補色吸收材料含有一吸收與綠色互補之特定波長之光。 綠色互複色吸收材料可為吸收6〇〇 11111至65〇 nm之紅色 波長範圍同聘允許綠色波長範圍傳遞通過的紅色波長吸 收材料及/或吸收44()11111至48〇nm之藍色波長範圍同 27 201013236 收材料(例 時允許綠色波長範圍傳遞通過的藍色波長吸 如’黃色著色劑)。 綠色互補色吸收層可實施為膜或黏著劑層之形式若 綠色互補色吸收層為獨立膜,則其為可專用於吸:綠色 互補色的獨立膜或具有其他功能之功能膜。舉例而士, X下文描述之—第—厚媒層一薄膜層及—第二i膜For example, the green wavelength absorption pattern 2〇 may include about 1 wt% of the green wavelength absorbing material contained in the uv-curable resin and (4) 5% by weight of the white light absorbing material. The transmittance and viewing angle are determined by the distance between the green wavelength absorption patterns 20, the thickness, the smaller width of the larger width, and the slope of the inclined surface. If the thickness, width, and absorbance of the green wavelength absorbing pattern 20 are reduced, the effect of compensating for the color shift according to the viewing angle is increased. However, the transmittance of light is significantly reduced depending on the viewing angle because the green wavelength absorbing pattern 2 吸收 also absorbs light transmitted through the filter. If the thickness of the green wavelength absorbing pattern 20 is increased, the thickness of the background layer 1 亦 is also increased, which makes it difficult to bend the background layer 1 〇. Since the background layer 1 碎 may be broken when bent to a certain extent, it is not easy to manufacture the background layer 10 by roll forming. Moreover, the resulting background layer 10 is not easily entangled in the form of a roll, thereby causing storage problems. Moreover, increasing the width of the green wavelength absorbing pattern results in a reduction in the aperture ratio (which determines the amount of light transmitted through the filter), thereby reducing the transmittance of light. In addition, increasing the amount of white light absorbing material to enhance the effect of blocking white light also results in an increase in the viscosity of the mixture contained in the pattern, which makes it difficult for 26 201013236 to hit the trench. Therefore, the optimum value should be given to the thickness, width and absorbance of the green wavelength absorption pattern 20. The width of the green wavelength absorbing pattern may preferably be in the range of 丨μιη to 5〇. In the green wavelength absorbing pattern, the width of the bottom side of the wedge-shaped cross section (i.e., the 'larger width') may be 40% or less of the pitch, and the slope of the inclined surface may be 10°. Third Embodiment ❹ Fig. 19 is a cross-sectional view schematically showing a filter according to a third exemplary embodiment of the present invention. Although the light emitted from the front side of the display panel passes through the filter, the color of the image of the display can be changed by the green wavelength absorbing material of the green wavelength absorbing pattern. Therefore, a green complementary color absorbing portion containing a red wavelength absorbing material and a blue wavelength absorbing material as a color correction coloring agent is provided. This configuration is used to correct the φ color of the light emitted in the forward direction to be similar to the original color. Figure 9 shows an exemplary embodiment in which the green complementary color absorbing portion is a green complementary color absorbing layer 40. • A green complementary color absorbing layer 40 is stacked on the surface of the background layer. The green complementary color absorbing layer contains a green complementary color absorbing material containing light of a specific wavelength that absorbs complement to green. The green mutual color absorbing material can absorb red wavelength absorbing material of 6〇〇11111 to 65〇nm in the red wavelength range and allow the green wavelength range to pass through and/or absorb blue wavelength of 44111 to 11111 to 48〇nm. The range is the same as 27 201013236. The material (for example, allows the blue wavelength range to pass through the blue wavelength to absorb 'yellow colorants'). The green complementary color absorbing layer can be embodied in the form of a film or an adhesive layer. If the green complementary color absorbing layer is a separate film, it is a separate film which can be used exclusively for absorbing: green complementary colors or a functional film having other functions. For example, X-described below - the first thick layer - a thin film layer and - the second i film

中的至少一者可藉由在其令含有綠色互補色吸收層材 科而用作綠色互補色吸收層。 雖然第19圖圖不綠色互補色吸收層與背景層表面 接觸的示範性實施例,但在背景層與綠色互補色吸收層 之間可失有另一層。 顏色校正著色劑之黏 ’則有可能簡化濾光 若綠色互補色吸收層提供為含有 著劑層或背景層而非獨立膜之形式 器之結構及其製造方法。 第20圖為圖示在提供一濾光器時的根據視角之增加 的顏色坐標之變化的圖表,該濾光器僅包括綠色波長吸 收圖案而不包括綠色互補色吸收部分,且第21圖為圖示 在提供-據光器時的根據視角之增加的顏色全標之變化 的圖表,該濾光器包括綠色波長吸收圖案與綠色互補色 吸收部分兩者。 如第20圖與第21圖中所示,可瞭解,第21圖中所示 之實例可進一步補償複合顏色之顏色偏移。 下文表3展示關於離開顯示器之白光的顏色坐標之測 試結果(在前方以〇〇之視角量測)。 28 201013236 表3 僅包括綠色波長吸收圖 案 包括綠色波長吸收圖 案與綠色互補色吸收 部分兩者 白光之顏色坐標 (CIE 1936) (0.28505,0.292492) (0.3123,0.3271) ® 如上文表3中所示,當僅提供綠色波長吸收圖案時, 白光具有顏色而非展示原始非彩色顏色。相比而言當 亦提供該綠色互冑色吸收部/分時,自《可維持原始非彩 色顏色* 篇四實施例 第22圖為示意性圖示根據本發明之第四示範性實施 例之濾光器的透視圖。 參 如第22圖中所示,綠色互補色吸收部分可在綠色波長 吸收圖案20之一侧上提供為綠色互補色吸收片41之形 式。在第22圖中,該綠色互補色吸收部分提供於綠色波 長吸收圖案之背表面(亦即,楔形橫截面之底邊)上。 可藉由刮漿法形成綠色波長吸收圖案及綠色互補色吸 收片。舉例而吕,在形成綠色波長吸收圖案後可藉由 將含有綠色互補色吸收材料之uv固化樹脂塗敷至凹陷 溝槽内之綠色波長吸收圖案之基底上且接著使uv固化 樹脂固化來形成綠色互補色吸收片41。 29 201013236 此實施例之濾、光器有利地具有比根據該第三示範性實 施例之上述濾 '光器卓越之透光率。 第五會施例 綠色波長吸收圖案可進一步含有一吸收桔色波長光之 材料及一吸收青色波長光之材料,該桔色波長光及該青 色波長光根據視角對顏色偏移具有不良效應。該桔色波 長吸收材料及/或該青色波長吸收材料可含有於獨立樹At least one of them can be used as a green complementary color absorbing layer by constituting a green complementary color absorbing layer material. Although an exemplary embodiment in which the green complementary color absorbing layer is not in contact with the surface of the background layer is shown in Fig. 19, another layer may be lost between the background layer and the green complementary color absorbing layer. The viscosity of the color correction colorant simplifies the filtering if the green complementary color absorbing layer is provided as a structure containing a coating layer or a background layer instead of a separate film and a method of manufacturing the same. 20 is a graph illustrating a change in color coordinates according to an increase in viewing angle when a filter is provided, the filter including only a green wavelength absorbing pattern and not including a green complementary color absorbing portion, and FIG. 21 is A graph illustrating a change in color full scale according to an increase in viewing angle when a light-receiving device is provided, the filter including both a green wavelength absorbing pattern and a green complementary color absorbing portion. As shown in Figures 20 and 21, it can be appreciated that the example shown in Figure 21 can further compensate for the color shift of the composite color. Table 3 below shows the test results for the color coordinates of the white light leaving the display (measured in front of the viewing angle of 〇〇). 28 201013236 Table 3 includes only the green wavelength absorption pattern including the green wavelength absorption pattern and the green complementary color absorption portion. The color coordinates of white light (CIE 1936) (0.28505, 0.292492) (0.3123, 0.3271) ® as shown in Table 3 above. When only the green wavelength absorption pattern is provided, the white light has a color rather than an original achromatic color. In contrast, when the green inter-color absorbing portion/minute is also provided, from the "maintainable original achromatic color", the fourth embodiment is shown in FIG. 22 as a schematic illustration of a fourth exemplary embodiment according to the present invention. A perspective view of the filter. As shown in Fig. 22, the green complementary color absorbing portion may be provided in the form of a green complementary color absorbing sheet 41 on one side of the green wavelength absorbing pattern 20. In Fig. 22, the green complementary color absorbing portion is provided on the back surface of the green wavelength absorbing pattern (i.e., the bottom side of the wedge-shaped cross section). A green wavelength absorbing pattern and a green complementary color absorbing sheet can be formed by a doctor blade method. For example, after forming a green wavelength absorption pattern, green can be formed by applying a uv curing resin containing a green complementary color absorbing material onto a substrate of a green wavelength absorbing pattern in a recessed trench and then curing the uv curing resin. The complementary color absorption sheet 41. 29 201013236 The filter and optical device of this embodiment advantageously has superior light transmittance than the above-described filter of the third exemplary embodiment. The fifth wavelength application pattern may further comprise a material for absorbing orange wavelength light and a material for absorbing cyan wavelength light, the orange wavelength light and the cyan wavelength light having an adverse effect on the color shift according to the viewing angle. The orange wavelength absorbing material and/or the cyan wavelength absorbing material may be contained in an independent tree

脂膜、含有於黏著劑層或含有於背景層中。 第六實施例 第23圖為示意性圖示根據本發明之第六示範性實施 例之濾光器的透視圖。 如第23圖中所示,該濾光器包括一第一厚膜層12、 第薄膜層14及一第二厚膜層16,該等層以上述次 序彼此堆疊。作為另一示範性實施例,該濾光器可進一 步包括-第二薄膜層及一第三厚膜層,其繼該第一厚膜 層“第薄膜層及該第二厚膜層之後以上述次序堆疊。 該等厚膜層中之至少一者可為一背景層、一支撐用於 、'〃色偏移之濾光器之基底基板、該顯示面板之一前 土 防眩光膜、一極化膜、一延遲膜、一擴散膜、 一黏著劑層、 .^ 工氣層’或其一均等物,但本發明不限 於此。 第24圖為圖示使用第23圖中所示之濾光器之顯示裝 置中的根據現角之改變的十三個複合顏色之顏色偏移的 30 201013236 藉由在玻璃之基底基板上形成具有210 nm之厚度的 Nb2〇5薄膜且使用壓敏黏著劑(pSA)將藉由用lwt%綠 色波長吸收材料(例如,粉紅色著色劑)填充背景層之 凹陷溝槽形成的具有綠色波長吸收圖案之膜附著在 Nb2〇5薄膜上來製造濾光器。此處,玻璃之基底基板充 當厚膜,Nb2〇5薄膜充當薄膜且pSA層充當厚膜。 量測根據水平視角之增加的顏色偏移AuV。如第24 ©圖中所示’可瞭解,與第9圓與第10圖中所示之圖表相 比,13個複合顏色之顏色偏移均勻減少。 第七實施例 第25圖為示意性圖示根據本發明之第七示範性實施 例之濾光器的橫截面圖。 如第25圖中所示,包括一背景層及一形成於該背景層 上之綠色波長吸收圖案之膜可用作厚膜層。 如上所述,根據本發明之示範性實施例之濾光器可作 9 為用於補償顏色偏移之濾光器來加以提供且可作為具有 複合功能之複合濾光器來提供,該複合濾光器係藉由將 ,該濾光器及另一類型之功能濾光器(例如,防霧膜、防 . 反射膜、防眩光膜、基底基板等)彼此堆疊來製造。 此外,根據本發明之示範性實施例之濾光器可與顯示 面板分開或藉由黏著劑附著至顯示面板。 雖然已參考本發明之特定示範性實施例來展示並描述 本發明,但熟習此項技術者將理解,可對其進行形式與 細節之各種改變而不背離如由隨附申請專利範圍及其均 31 201013236 等物界定之本發明之精神與範疇。 【圖式簡單說明】 第1圖為示意性圖示LCD之基本結構及操作原理的概 念圖; 第2圖為圖不根據視角之液晶之定向及透光率的概念 圖; 第3圖為圖示減少取決於視角之對比度之變化及顏色 &amp; 偏移的慣用做法的概念圖; 第4圖為圖示減少取決於視角之對比度之變化及顏色 偏移的另一慣用嘗試的概念圖; 第5圖為圖示當慣用LCD被應用第3圊與第4圖中所 示之補償顏色偏移之做法兩者後以全灰階顯示白光時光 譜根據視角增加的變化的一對圖表; 第6圖為圖示本申請人之先前申請之申請案中所提議 的用於補償顏色偏移之濾光器的橫截面圖; 參第7圖為圖示第6圖中所示之濾光器補償顏色偏移之 原理的簡圖; 第8圖為圖示當慣用LCD被應用第3圖與第4圖中所 示之補償顏色偏移之做法兩者後以低灰階顳示白光時光 譜根據視角增加之變化的一對圖表; 第9圖為圖示慣用LCD中的根據視角θ之改變的十三 個(13)複合顏色之顏色偏移.△wcq)的圖表. 第10圖為圖示使用第6圖中所示之濾光器之LCD中 32 201013236 的根據視角Θ之改變的十三個(13)複合顏色之顏色偏 移△u'v’(e)的圖表; 第11圖為示意性圖示根據本發明之第一示範性實施 例的用於補償顏色偏移之濾光器的透視圖; 第12圖為圖示使用第11圖中所示之濾光器之顯示裝 置中的根據視角之改變的十三個複合顏色之顏色偏移的 圖表; 第13圖為圖示當被應用第u圖中所示之濾光器的顯 不裝置以全灰階顯示白光時的根據視角之增加的正規化 光譜之變化的圖表; 第14圖與第15圖為用於解釋該綠色波長吸收圖案的 參考圖; 第16圖與第17圖為圖示具有提供於背景層上之綠色 波長吸收圖案之濾光器令的折射率對顏色偏移之效應的 對圖表,其中第16圖展示在背景層之折射率與綠色波 長吸收圖案之折射率相同之情況下的根據視角之顏色偏 移且第17圖展示在背景層之折射率比綠色波長吸收圖 案之折射率大〇.〇6之情況下的根據視角之顏色偏移; 第1 8圖為圖示具有根據本發明之第二實施例之濾光 器的顯示裝置中的根據視角之改變的十三個(13 )顏色 之顏色偏移的圖表; 第19圖為示意性圖示根據本發明之第三示範性實施 例之濾光器的橫截面圖; 第2〇圖為圖示在提供一濾光器時的根據視角之增加 33 201013236 的顏色坐標之變化的圖表,該濾光器僅包括綠色波長吸 收圖案而不包括綠色互補色吸收部分; 第21圖為圖示在提供一濾光器時的根據視角增加的 顏色坐標之變化的圖表,該濾光器包括綠色波長吸收圖 案與綠色互補色吸收部分兩者; 第22圖為示意性圖示根據本發明之第四示範性實施 例之渡光器的透視圖; ❹The lipid film is contained in the adhesive layer or contained in the background layer. Sixth Embodiment Fig. 23 is a perspective view schematically showing a filter according to a sixth exemplary embodiment of the present invention. As shown in Fig. 23, the filter includes a first thick film layer 12, a first film layer 14, and a second thick film layer 16, which are stacked on each other in the above-described order. As another exemplary embodiment, the filter may further include a second thin film layer and a third thick film layer, followed by the first thick film layer “the first thin film layer and the second thick film layer At least one of the thick film layers may be a background layer, a base substrate for supporting a 'color shifting filter', a front anti-glare film of the display panel, and a pole a film, a retardation film, a diffusion film, an adhesive layer, a gas layer, or an equivalent thereof, but the invention is not limited thereto. Fig. 24 is a view showing the use of the filter shown in Fig. 23. The color shift of thirteen composite colors according to the change of the present angle in the display device of the optical device 30 201013236 by forming a Nb 2 〇 5 film having a thickness of 210 nm on a base substrate of glass and using a pressure sensitive adhesive (pSA) A filter having a green wavelength absorption pattern formed by filling a depressed trench of a background layer with a lwt% green wavelength absorbing material (for example, a pink colorant) is attached to the Nb2〇5 film to fabricate a filter. Where the base substrate of the glass acts as a thick film, Nb2〇5 thin Acts as a thin film and the pSA layer acts as a thick film. Measure the color shift AuV according to the increase of the horizontal viewing angle. As shown in Fig. 24, the figure shown in Fig. 9 is compared with the chart shown in the ninth and tenth figures. The color shift of the 13 composite colors is uniformly reduced. Fig. 25 is a cross-sectional view schematically illustrating a filter according to a seventh exemplary embodiment of the present invention, as shown in Fig. 25, A film including a background layer and a green wavelength absorption pattern formed on the background layer can be used as the thick film layer. As described above, the filter according to an exemplary embodiment of the present invention can be used for compensating colors. An offset filter is provided and can be provided as a composite filter having a composite function by means of the filter and another type of functional filter (eg, The fog film, the anti-reflection film, the anti-glare film, the base substrate, and the like are stacked on each other to manufacture. Further, the optical filter according to an exemplary embodiment of the present invention may be attached to the display panel separately from the display panel or by an adhesive. Although reference has been made to a specific demonstration of the invention The present invention is shown and described, but it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the invention as defined by the appended claims The spirit and scope of the drawings. [Simplified illustration of the drawings] Fig. 1 is a conceptual diagram schematically illustrating the basic structure and operation principle of the LCD; Fig. 2 is a conceptual diagram of the orientation and transmittance of the liquid crystal according to the viewing angle; Figure 3 is a conceptual diagram illustrating a conventional practice of reducing the contrast and color &amp; shift depending on the viewing angle; Figure 4 is a diagram illustrating another conventional attempt to reduce the contrast and color shift depending on the viewing angle. Conceptual diagram; Figure 5 is a diagram showing the change in the spectrum according to the increase in the angle of view when the white light is displayed in full gray scale when both the conventional LCD is applied with the compensated color shift shown in Figs. 3 and 4. Figure 6 is a cross-sectional view of a filter for compensating for color shift proposed in the applicant's prior application; Figure 7 is a view of the figure shown in Figure 6 Filter compensation A schematic diagram of the principle of the offset; FIG. 8 is a diagram showing the spectrum according to the viewing angle when the conventional LCD is applied with the compensated color shift shown in FIGS. 3 and 4, and the white light is displayed in a low gray scale. A pair of graphs with increased changes; Fig. 9 is a graph showing thirteen (13) color shifts of the composite colors (Δwcq) according to changes in the viewing angle θ in the conventional LCD. Fig. 10 is a diagram showing use Figure 13 is a graph of the color shift Δu'v'(e) of the composite color of 32 (13) according to the viewing angle of 32 201013236 in the LCD of the filter shown in Fig. 6; A perspective view of a filter for compensating for color shift according to a first exemplary embodiment of the present invention; FIG. 12 is a view showing a display device using the filter shown in FIG. a chart of color shifts of thirteen composite colors according to a change in viewing angle; Fig. 13 is a view showing a viewing angle when white light is displayed in full gray scale when the display device of the filter shown in Fig. u is applied a graph of the increase in the normalized spectrum; Figures 14 and 15 are used to explain the green wavelength absorption map Reference FIG. 16 and FIG. 17 are graphs illustrating the effect of refractive index versus color shift of a filter arrangement having a green wavelength absorption pattern provided on a background layer, wherein FIG. 16 is shown in FIG. The color shift according to the viewing angle in the case where the refractive index of the background layer is the same as the refractive index of the green wavelength absorbing pattern and FIG. 17 shows the case where the refractive index of the background layer is larger than the refractive index of the green wavelength absorbing pattern. Lower color shift according to viewing angle; FIG. 18 is a color shift of thirteen (13) colors according to a change in viewing angle in the display device having the optical filter according to the second embodiment of the present invention Figure 19 is a cross-sectional view schematically showing a filter according to a third exemplary embodiment of the present invention; Figure 2 is a view showing an increase in viewing angle when a filter is provided 33 A graph of the change in color coordinates of 201013236, the filter including only the green wavelength absorption pattern without including the green complementary color absorbing portion; FIG. 21 is a diagram illustrating changes in color coordinates according to the viewing angle when a filter is provided The filter includes both a green wavelength absorbing pattern and a green complementary color absorbing portion; Fig. 22 is a perspective view schematically showing a pulverizer according to a fourth exemplary embodiment of the present invention;

第23圖為示意性圖示根據本發明之第六示範性實施 例之濾光器的透視圖;及 第24圖為圖示使用第23圖中所示之濾光器之顯示裝 置中的根據視角之改變的十三個複合顏色之顏色偏移的 圖表;及 第25圖為示意性圖示根據本發明之第七示範性實施 例之濾光器的橫截面圖。 【主要元件符號說明】 1〇背景層 12第一厚膜層 14 第一薄膜層 10 第二厚膜層 20 綠色波長吸收圖案 40 綠色互補色吸收層Figure 23 is a perspective view schematically showing a filter according to a sixth exemplary embodiment of the present invention; and Figure 24 is a view showing a display device in a display device using the filter shown in Figure 23 A graph of color shifts of thirteen composite colors whose angle of view is changed; and Fig. 25 is a cross-sectional view schematically illustrating a filter according to a seventh exemplary embodiment of the present invention. [Main component symbol description] 1〇 background layer 12 first thick film layer 14 first film layer 10 second thick film layer 20 green wavelength absorption pattern 40 green complementary color absorption layer

41 綠色互補色吸收片 100 LCD 34 201013236 極化膜 極化膜 透明基板 透明電極 液晶分子 電源單元 線 水平定向 像素 線 定向 線 水平定向 線 水平定向 垂直定向 第一像素部分 定向 定向 第二像素部分 線 垂直定向 水平定向 線 201013236 412 垂直定向 414 水平定向 420 光學膜 432 定向. 434 定向 440 像素 450 線 452 水平定向 ® 454 垂直定向 742 薄膜層 744 第一厚膜層 746 第二厚膜層 880 光 881 折射光 882 透射光 φ 883 反射光 884光線 885透射光 887光線 888光 889來自顯示面板之光 R1 光887之反射率 R2 光888之反射率 T1 透射光882之透射率 36 201013236 T2 透射光885之透射率 η 薄膜層742之折射率 nt 第一厚膜層744與第二厚膜層746之折射率 θ 進入薄膜層之折射光881相對於界面之法線之角 度(折射角) θι 光880相對於界面之法線之角度(入射角) θ〇 自顯示面板入射於濾光器上之光889的角度 1 薄膜層之厚度41 Green Complementary Color Absorber 100 LCD 34 201013236 Polarized Film Polarized Film Transparent Substrate Transparent Electrode Liquid Crystal Molecular Power Cell Line Horizontal Oriented Pixel Line Orientation Line Horizontal Orientation Line Horizontal Orientation Vertical Orientation First Pixel Part Orientation Second Pixel Part Line Vertical Orientation Horizontal Orientation Line 201013236 412 Vertical Orientation 414 Horizontal Orientation 420 Optical Film 432 Orientation. 434 Orientation 440 Pixel 450 Line 452 Horizontal Orientation® 454 Vertical Orientation 742 Membrane Layer 744 First Thick Film Layer 746 Second Thick Film Layer 880 Light 881 Refraction Light 882 transmitted light φ 883 reflected light 884 light 885 transmitted light 887 light 888 light 889 light from the display panel R1 light 887 reflectance R2 light 888 reflectance T1 transmitted light 882 transmittance 36 201013236 T2 transmitted light 885 transmittance The refractive index nt of the η film layer 742 is the refractive index θ of the first thick film layer 744 and the second thick film layer 746. The angle of the refracted light 881 entering the film layer with respect to the normal of the interface (refraction angle) θι 880 relative to the interface The angle of the normal (incident angle) θ〇 is incident on the filter from the display panel Light angle 889 of the thin film layer thickness of 1

Claims (1)

201013236 七、申請專利範圍: 1. 一種用於補償顏色偏移之濾光器,其提供於一顯 示裝置之一顯示面板之前,該濾光器包含: 一背景層;及 一綠色波長吸收圖案,其在該背景層上具備一厚度, 其中該綠色波長吸收圖案吸收一綠色波長之光。 2. 如申請專利範圍第!項之濾光器,其中該綠色波 ' 長吸收圖案包含:具有一楔形橫截面之條紋、具有一楔形 ® 橫截面之波紋、一具有一楔形橫截面之矩陣、一具有一楔 形橫截面之蜂巢結構、具有一四邊形橫截面之條紋具有 一四邊形橫截面之波紋、—具有一四邊形橫截面之矩陣、 或一具有一四邊形橫截面之蜂巢結構。 3·如申請專利範圍第1項之濾光器,其中該綠色波 長吸收圖案包含一綠色波長吸收材料,其吸收在至 560 nm之範圍中的一綠色波長之光。 • 4.如申請專利範圍第3項之濾光器,其中該綠色波 長吸收材料包含一粉紅色著色劑,其吸收在5l〇 nm至56〇 nm之範圍中的一綠色波長之光。 … 5.如申請專利範圍第1項之濾光器,其中顏色坐標 中之顏色偏移Δν'/Δυ,相對於前方成一 6〇。之視角介於 tan(-15。)至 tan(45。)之範圍中。 6’如申請專利範圍第1項之濾光器,其另包含一背 概層’其被提供於該背景層之一表面上以支撐讓背景層。 7.如申請專利範圍第j項之濾先器,其中該顯示裝 38 201013236 置為一液晶顯示器。 其中該綠色波 8. 如申請專利範圍第1項之濾光器 長吸收圖案另包含一白光吸收材料。 其中談白光吸 9. 如申請專利範圍第8項之濾光器 收材料包含一黑色材料, 其中該白光吸 10. 如申請專利範圍第9項之濾光器 收材料包含炭黑。 其中該背景層 u ·如申凊專利範圍第1項之濾光器A , W « π j 之折射率與該綠色波長吸收圖案之折射率之間的—差係自 0.001 至 0.1 〇 12·如申請專利範圍第!項之渡光器,其另包含一綠 色互補色吸收部分,其吸收與綠色互補之一波長之光。 13. 如申請專利範圍帛12項之濾光器,其中該綠色互 補色吸收部分台合— a 3綠色互補色吸收層,其為一樹脂層, 其中-綠色互補色吸收材料混合至該樹脂層中。 14. 如中請專利範圍第13項之濾、光器,其中該綠色互 補色吸收層包含一黏著劑層,該綠色互補色吸收材料混合 至該黏著劑層中。 15. 如申請專利範圍帛13J員之滤光器,其中該背景層 已3、彔色互補色吸收材料,其吸收與綠色互補之一波長 之光以使該背景層充當該綠色互補色吸收層。 、16.如巾請專利範圍第12項之濾、光器,其中該綠色互 補色吸收部分句合—έ羊# ^ 、,长色互補色吸收片’其形成於該綠色 波長吸收圖案之一側上。 39 201013236 1 7 ·如申凊專利範圍第16項之據光器,其中該綠色互 補色吸收片形成於該綠色波長吸收圖案之一背表面上。 18. 如申請專利範圍第16項之濾光器,其中該綠色波 長吸收圖案具有一楔形橫截面,且該綠色互補色吸收片形 成於該綠色波長吸收圖案之該楔形橫截面之一底邊上。 19. 如申請專利範圍第12項之濾光器,其中該綠色互 補色吸收部分包含選自由以下各者組成之群中之至少一 • 者:一藍色波長吸收材料,其吸收在440 „!„至480 nmi 範圍中的一藍色波長之光;及一紅色波長吸收材料,其吸 收在600 nm至650 nm之範圍中的一紅色波長之光。 20. 如申請專利範圍第12項之濾光器,其另包含一第 厚膜層、一第一薄膜層及一第二厚膜層,其以上述次序 彼此堆疊, 其中該第一薄膜層具有一不超過780 nm之厚度,且該 第一厚膜層與該第二厚膜層具有一大於該第一薄膜層之該 • 厚度的厚度,及 其中該第一厚膜層、該第一薄膜層及該第二厚膜層中 之至少一者係該綠色互補色吸收部分。 21. 如申凊專利範圍第丨項之濾光器,其另包含一第 一厚膜層、一第-薄膜層及-第二厚膜層,其以上述次序 彼此堆叠, 其中該第一薄膜層一不超過78〇 nm之厚度,且該第一 厚膜層與該第二厚臈層具有一大於該第一薄膜層之該厚度 的厚度。 201013236 22·如申請專利範圍第21項之濾光器,其另 二薄膜層及一第三厚膜層,其繼該第一厚膜層、 膜層及該第二厚膜層之後以上述次序堆疊。 23.如申請專利範圍第21項之濾光器,其中 膜層與該第二厚膜層中之至少一者包含:一背景 撐該用於補償顏色偏移之濾光器的基底基板、該 之一前基板、一防眩光膜、一極化膜、一延遲膜 膜、一黏著劑層、或一空氣層。 ® 24. —種顯示裝置,包含如申請專利範圍第 之用於補償顏色偏移之濾光器。 包含一第 該第一薄 該第一厚 層、一支 顯示面板 、一擴散 1項所述 41201013236 VII. Patent application scope: 1. A filter for compensating for color shift, which is provided before a display panel of a display device, the filter comprises: a background layer; and a green wavelength absorption pattern, It has a thickness on the background layer, wherein the green wavelength absorption pattern absorbs light of a green wavelength. 2. If you apply for a patent scope! The filter of the item, wherein the green wave 'long absorption pattern comprises: a stripe having a wedge-shaped cross section, a corrugation having a wedge-shaped cross section, a matrix having a wedge-shaped cross section, and a honeycomb having a wedge-shaped cross section The structure, the stripe having a quadrilateral cross section has a quadrangular cross section corrugation, a matrix having a quadrilateral cross section, or a honeycomb structure having a quadrilateral cross section. 3. The filter of claim 1, wherein the green wavelength absorbing pattern comprises a green wavelength absorbing material that absorbs light of a green wavelength in the range of up to 560 nm. 4. The filter of claim 3, wherein the green wavelength absorbing material comprises a pink colorant that absorbs a green wavelength of light in the range of 5 l 〇 nm to 56 〇 nm. 5. The filter of claim 1, wherein the color shift Δν'/Δυ in the color coordinates is 6 相对 with respect to the front. The viewing angle is in the range of tan (-15.) to tan (45.). 6', wherein the filter of claim 1 further comprises a backing layer' which is provided on one of the surface layers to support the background layer. 7. The filter of claim j, wherein the display device 38 201013236 is configured as a liquid crystal display. Wherein the green wave 8. The filter long absorption pattern of claim 1 of the patent scope further comprises a white light absorbing material. In the case of the light absorber of the invention, the filter material of the eighth aspect of the patent application includes a black material, wherein the white light absorber 10. The filter material of the ninth application of the patent scope includes carbon black. Wherein the background layer u is the difference between the refractive index of the filter A of the first application of the patent scope, W « π j and the refractive index of the green wavelength absorption pattern, from 0.001 to 0.1 〇 12 · Apply for patent coverage! The terminator of the terminator further comprises a green complementary color absorbing portion that absorbs light of one wavelength complementary to green. 13. The filter of claim 12, wherein the green complementary color absorbing portion is a-a green complementary color absorbing layer, which is a resin layer, wherein a green complementary color absorbing material is mixed to the resin layer in. 14. The filter and optical device of claim 13, wherein the green complementary color absorbing layer comprises an adhesive layer, and the green complementary color absorbing material is mixed into the adhesive layer. 15. The filter of claim 13 </ RTI> wherein the background layer has 3, a chrome complementary color absorbing material that absorbs light of one wavelength complementary to green to cause the background layer to act as the green complementary color absorbing layer . 16. The filter and optical device of claim 12, wherein the green complementary color absorbing portion of the sentence-έ羊# ^, the long-color complementary color absorption sheet is formed in the green wavelength absorption pattern. On the side. 39. The light illuminator of claim 16, wherein the green complementary color absorbing sheet is formed on one of the back surfaces of the green wavelength absorbing pattern. 18. The filter of claim 16, wherein the green wavelength absorption pattern has a wedge-shaped cross section, and the green complementary color absorption sheet is formed on a bottom side of the wedge-shaped cross section of the green wavelength absorption pattern. . 19. The filter of claim 12, wherein the green complementary color absorbing portion comprises at least one selected from the group consisting of: a blue wavelength absorbing material absorbed at 440 „! „Light of a blue wavelength in the range of 480 nmi; and a red wavelength absorbing material that absorbs a red wavelength of light in the range of 600 nm to 650 nm. 20. The filter of claim 12, further comprising a thick film layer, a first film layer and a second thick film layer stacked on each other in the above-described order, wherein the first film layer has a thickness not exceeding 780 nm, and the first thick film layer and the second thick film layer have a thickness greater than the thickness of the first film layer, and the first thick film layer and the first film At least one of the layer and the second thick film layer is the green complementary color absorbing portion. 21. The filter of claim 3, further comprising a first thick film layer, a first film layer and a second thick film layer stacked on each other in the above-described order, wherein the first film The layer has a thickness of no more than 78 〇 nm, and the first thick film layer and the second thick ruthenium layer have a thickness greater than the thickness of the first film layer. 201013236 22. The filter of claim 21, wherein the second film layer and the third thick film layer are followed by the first thick film layer, the film layer and the second thick film layer in the above order Stacking. 23. The filter of claim 21, wherein at least one of the film layer and the second thick film layer comprises: a substrate supporting the substrate for compensating for color shifting, A front substrate, an anti-glare film, a polarizing film, a retardation film, an adhesive layer, or an air layer. ® 24. A display device comprising a filter for compensating for color shifts as claimed in the scope of the patent application. Including a first thin first layer, a display panel, and a diffusion panel
TW098131794A 2008-09-22 2009-09-21 Optical filter for compensating for color shift and display device having the same TWI401477B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20080092656 2008-09-22
KR20080092655 2008-09-22
KR20080092657 2008-09-22
KR20080098120 2008-10-07
KR20090009883 2009-02-06
KR1020090087906A KR101195849B1 (en) 2008-09-22 2009-09-17 Optical filter for compensating color shift and display device having the same

Publications (2)

Publication Number Publication Date
TW201013236A true TW201013236A (en) 2010-04-01
TWI401477B TWI401477B (en) 2013-07-11

Family

ID=42182687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098131794A TWI401477B (en) 2008-09-22 2009-09-21 Optical filter for compensating for color shift and display device having the same

Country Status (3)

Country Link
JP (1) JP5319467B2 (en)
KR (1) KR101195849B1 (en)
TW (1) TWI401477B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830281B2 (en) 2011-07-27 2014-09-09 Chunghwa Picture Tubes, Ltd. Circuit for compensating color shift of a color sequential display method and method thereof
CN111257986A (en) * 2015-07-07 2020-06-09 丰田自动车工程及制造北美公司 Omnidirectional high chroma red structural colorants with a combination of semiconductor absorber layer and dielectric absorber layer
US11726239B2 (en) 2014-04-01 2023-08-15 Toyota Motor Engineering & Manufacturing North America, Inc. Non-color shifting multilayer structures
US11796724B2 (en) 2007-08-12 2023-10-24 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200772B1 (en) * 2009-10-16 2012-11-13 삼성코닝정밀소재 주식회사 Optical filter for display device and display device having the same
KR101200770B1 (en) * 2011-01-11 2012-11-13 삼성코닝정밀소재 주식회사 Optical film for reducing color shift and lcd device having the same
JP2014059474A (en) * 2012-09-18 2014-04-03 Dic Corp Protective film and manufacturing method for the same
KR102520718B1 (en) * 2017-10-19 2023-04-11 삼성전자주식회사 Display apparatus
JP2020067652A (en) * 2018-10-24 2020-04-30 デクセリアルズ株式会社 Optical filter and light emitting device
WO2020085387A1 (en) * 2018-10-24 2020-04-30 デクセリアルズ株式会社 Optical filter and light emitting device
KR20240125364A (en) * 2023-02-10 2024-08-19 주식회사 태동테크 An optical module comprising a thin film layer including interference pigment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884695A (en) * 1973-11-02 1975-05-20 Gte Sylvania Inc Process for fabricating a color cathode ray tube screen structure having superimposed optical filter means therein
US5521726A (en) * 1994-08-26 1996-05-28 Alliedsignal Inc. Polarizer with an array of tapered waveguides
JP4142568B2 (en) * 2003-12-19 2008-09-03 インターナショナル・ビジネス・マシーンズ・コーポレーション OPTICAL ELEMENT AND COLOR DISPLAY DEVICE USING THE OPTICAL ELEMENT
JP2006178092A (en) 2004-12-21 2006-07-06 Dainippon Printing Co Ltd Light diffusion member and translucent type screen
JP4121997B2 (en) * 2004-12-28 2008-07-23 大日本印刷株式会社 Viewing angle control sheet and image display apparatus using the same
KR100709985B1 (en) * 2005-01-04 2007-04-23 삼성코닝 주식회사 Filter for display apparatus and display apparatus having the same
WO2007093928A1 (en) * 2006-02-13 2007-08-23 Philips Intellectual Property & Standards Gmbh Color filter for display application
JP2007316156A (en) * 2006-05-23 2007-12-06 Sony Corp Liquid crystal panel, liquid crystal display apparatus and optical element
JP2008134579A (en) * 2006-10-24 2008-06-12 Nippon Zeon Co Ltd Optical filter, polarizing plate, illumination device and liquid crystal display device
KR20080064485A (en) * 2007-01-05 2008-07-09 삼성코닝정밀유리 주식회사 Optical sheet and display opctical filter
US8208097B2 (en) * 2007-08-08 2012-06-26 Samsung Corning Precision Materials Co., Ltd. Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
JP5034909B2 (en) * 2007-12-03 2012-09-26 大日本印刷株式会社 Optical sheet and display device
JP2009192983A (en) * 2008-02-18 2009-08-27 Nippon Zeon Co Ltd Selective reflection element and liquid crystal display device
JP4471014B2 (en) * 2008-04-04 2010-06-02 ソニー株式会社 Liquid crystal display device, backlight light source and optical film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796724B2 (en) 2007-08-12 2023-10-24 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US8830281B2 (en) 2011-07-27 2014-09-09 Chunghwa Picture Tubes, Ltd. Circuit for compensating color shift of a color sequential display method and method thereof
TWI459359B (en) * 2011-07-27 2014-11-01 Chunghwa Picture Tubes Ltd Circuit for compensating color shift of a color sequential display method and method thereof
US11726239B2 (en) 2014-04-01 2023-08-15 Toyota Motor Engineering & Manufacturing North America, Inc. Non-color shifting multilayer structures
CN111257986A (en) * 2015-07-07 2020-06-09 丰田自动车工程及制造北美公司 Omnidirectional high chroma red structural colorants with a combination of semiconductor absorber layer and dielectric absorber layer
CN111257986B (en) * 2015-07-07 2022-05-31 丰田自动车工程及制造北美公司 Omnidirectional high chroma red structural colorants with a combination of semiconductor absorber layer and dielectric absorber layer

Also Published As

Publication number Publication date
KR101195849B1 (en) 2012-11-05
JP2010072653A (en) 2010-04-02
TWI401477B (en) 2013-07-11
KR20100033935A (en) 2010-03-31
JP5319467B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
TW201013236A (en) Optical filter for compensating for color shift and display device having the same
KR101772348B1 (en) Liquid crystal display device
KR101782827B1 (en) Liquid-crystal display device
JP6114728B2 (en) Projected image display member and projected image display system
JP5520601B2 (en) Optical element, display device, and optical device
JP4857124B2 (en) Liquid crystal display
US7593079B2 (en) Optical device, light-condensing backlight system, and liquid crystal display
TW200827840A (en) Liquid crystal panel comprising liquid crystal cell having multigap structure, and liquid crystal display
US8427768B2 (en) Optical filter for compensating for color shift provided in front of a display panel of a display device and display device having the same
JP2009042762A (en) Color compensation film for display apparatus, and optical filter for display apparatus
TW201606393A (en) Liquid crystal display
CN113614592B (en) Circular polarizing plate for anti-reflection and image display device using the same
WO2015147287A1 (en) Liquid crystal panel, liquid crystal display device, polarizing plate, and polarizing plate protective film
US20070064168A1 (en) Optical element, light condensation backlight system, and liquid crystal display
US10663827B2 (en) Transparent screen comprising a plurality of dot arrays having different selective reflective wavelengths, the plurality of dot arrays obtained by immobilizing a cholesteric liquid crystalline phase
KR102559220B1 (en) image display device
JP6059830B1 (en) Image display device
US7446848B2 (en) Optical element, condensing backlight system and liquid crystal display
JP2008242350A (en) Optical element, polarizer, retardation plate, illuminator, and liquid crystal display
JPWO2018199092A1 (en) Transparent screen and video projection system
JP2020038370A (en) Polarizing plate and liquid crystal display device having the same
JP2016046239A (en) Backlight unit and liquid crystal display device
KR101221469B1 (en) Color compensation optical film for display device and optical filter for display device having the same
JP2005031557A (en) Norbornene base optical compensation film and method for manufacturing the same
JP2017122910A (en) Image display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees