201013194 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種量測系統及量測裝置,特別 一種變壓器相別量測系統及量測裝置。 a 【先前技術】 都會區之配電系統由於以地下化方式進行,且隨著用 電量及負載密度的增加而使配電系統架構曰趨複雜,無法 以傳統目視方式確認配電系統網路架構及變壓器相別而 Φ 影響配電系統規畫、運轉及維護之效能。 而 因此,目前對於配電系統的分析、運轉及維護,是透 過比對變電所與現場配電變壓器之相別的方式來進行,— 般所使用之相別測試系統,是利用全球衛星定位系統201013194 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a measuring system and a measuring device, and particularly to a transformer phase measuring system and measuring device. a [Prior Art] The power distribution system in the metropolitan area is underground, and the power distribution system structure becomes more complicated with the increase of power consumption and load density. It is impossible to confirm the power distribution system network architecture and transformer by traditional visual methods. Differentiate and Φ affect the performance of the power distribution system planning, operation and maintenance. Therefore, the current analysis, operation and maintenance of the power distribution system is carried out by comparing the substation with the field distribution transformer. The common phase test system used is the global satellite positioning system.
Positioning System,GPS),作為變電所與現場配電 變壓器兩地之間取樣信號的同步,使變電所與現場配電變 壓器能夠取得同步時間準位,並設定於同一時間點分別對 變電所與現場配電變壓器進行電壓值之擷取,接著,再透 ® 稍取樣的電壓及電流信號,量測出相角,並以人工方式 進行相別之確認,比對變電所與現場配電變壓器量測之電 壓相位’即可確認現場配電變壓器之相別。 然而,由於大部份的配電變壓器皆設於地下,導致相 別測試系統所利用的GPS信號無法維持在接收的狀態,因 而不能順利進行變電所與現場配電變壓器兩地取樣信號之 同步’相對影響相別確認比對的作業,而且,目前取樣量 測方式是透過取樣高壓電壓及電流信號,對現場操作人員 5 201013194 而言具有相當高之危險性,再者,利用人工量測進行相別 確認的方式,也容易因人為問題而造成相別之誤判。 【發明内容】 因此,本發明之目的,即在提供一種提升變壓器相別 量測準確度的變壓器相別量測系統。 本發明之另一目的,即在提供一種增加量測過程之安 全性的變壓器相別量測裝置。 於是’本發明之變壓器相別量測系統,用以量測間隔 兩地變壓器之相別’該變壓器相別量測系統包含一取樣單 疋、一處理單元、一接收單元、一觸發單元、一通訊單元 ’及一顯示單元。 該取樣單元包括一第一取樣器,及一第二取樣器該 第一、二取樣器是分別可取樣所述變壓器之電力信號。 該處理單元包括一電連接該第一取樣器的第—處理器 ,及一電連接該第二取樣器的第二處理器,該第一、二處 理器可分別將該第一、二取樣器所取樣的電力信號進行存 檔。 該接收單元包括一電連接該第一處理器且可接收一第 一接收信號的第一接收器’及一電連接該第二處理器且可 接收一第二接收信號的第二接收器,並將該第_、二接收 信號分別傳送至該第一、二處理器。 該觸發單元包括一電連接該第一處理器的第一觸發器 ,及一電連接該第二處理器的第二觸發器,當該第一、__ 處理器分別接收到該第一、二接收信號時,即驅動該第一 201013194 、二觸發器分別產生一第一觸發信號,及一第二觸發信號 ,並令該第一、二觸發信號分別回傳至該第一、二處理器 - 0 該通訊單元包括一電連接該第一處理器的第—通訊器 ,及一電連接該第二處理器的第二通訊器,該第一、二處 理器是利用該第一、二通訊器互相進行資料傳輸。 該顯示單元包括一電連接該第一處理器並將其資料予 以顯示的第一顯示器,及一電連接該第二處理器並將其資 Ο 料予以顯示的第二顯示器。 本發明之變壓器相別量測裝置,用以量測一變廢器之 相別’該變壓器相別量測裝置包含一可取樣該變壓器之電 力信號的取樣器、一電連接該取樣器的處理器、一電連接 該處理器的接收器、一電連接該處理器的觸發器、一電連 接該處理器的通訊器,及一電連接該處理器並將該處理器 的資料予以顯示的顯示器。 該處理器可將該取樣器所取樣的電力信號進行存播; ® 該接收器可接收一接收信號,並將該接收信號傳送至該處 理器;當該處理器接收到該接收信號時,即驅動該觸發器 產生—觸發信號,並令該觸發信號回傳至該處理器;該處 理器利用該通訊器進行資料傳送。 本發明之功效在於’藉由該第一、二接收信號與該第 一、二觸發信號同時對所取樣之電力信號進行信號同步, 使該第一、二接收信號時中斷時,亦可由利用該第一 觸發信號進行電力信號的同步取樣,使該量 一 至/叫系統的量測 201013194 過程不中斷,進而提高相別量測之準確度。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖1,為本發明之變壓器相別量測裝置,該變壓器 相別量測裝置包含一可取樣電力信號的取樣器21、一電連 接該取樣器21的處理器22、一電連接該處理器22的接收 器23、一電連接該處理器22的觸發器24、一電連接該處 理器22的通訊器25,及一電連接該處理器22並將該處理 器22的資料予以顯示的顯示器26。該取樣器21是可由_ 變壓器(圖未示)取樣一電力信號,而該變壓器可以是如台電 配電系統網路中任一台的變壓器。 在此應注意的是,該觸發器24為溫度補償石英震盪器 ,該取樣器21所取樣的電力信號為該變壓器之電壓信號, 該接收器23是利用全球定位系統(Gps)接收該接收信號, 該通訊器25是利用全球行動通訊系統(GSM)及通用分組無 線服務(GPRS)進行資料互相傳輸。 參閱圖2、3,本發明變壓器相別量測系統之較佳實施 例,是用以量測如圖2所示之配電系統,該配電系統包括 一變電所的主變壓器11,及三個配電變壓器12。其中,該 主變壓器11經由配電饋線10分壓於三個配電變壓器12上 〇 在量測分隔兩地之變壓器11、12時,需要同時利用兩 201013194 台變壓器相別量測裝置方可進行測試,因此,本發明之變 壓器相別量測系統3包含一取樣單元3丨、一處理單元32、 一接收單元33、一觸發單元34、一通訊單元35,及一顯示 單元36。 該取樣單元31包括一第一取樣器311,及一第二取樣 器312’該第一、二取樣器311、312是分別可取樣所述變 壓器11、12之電力信號’在本實施例中,該取樣單元31之 第一、二取樣器311、312所取樣的電力信號為電壓信號。 該處理單元32包括一電連接該取樣單元31之第一取 樣器311的第一處理器321 ’及一電連接該取樣單元31之 第二取樣器312的第二處理器322,該第一、二處理器321 、322可分別將該第一、二取樣器311、312所取樣的電力 信號進行存檔》 該接收單元33包括一電連接該處理單元32之第一處 理器321且可接收一第一接收信號的第一接收器33丨,及一 電連接該處理單元32之第二處理器322且可接收一第二接 收仏號的第二接收器332,並將該第一、二接收信號分別傳 送至該第一、二處理器321、322,在本實施例中,該接收 單元33之第一、二接收器331、332是利用全球定位系統 (GPS)接收該第一、二接收信號,並藉此作為信號的同步確 認。 該觸發單元34包括一電連接該處理單元32之第一處 理器321的第一觸發器341 ’及一電連接該處理單元32之 第二處理器322的第二觸發器342。 201013194 當該第—、_由 一慝理器321、322分別接收到該第一、二 接收信號時,gp fer -¾. Ρ驅動該第一、二觸發器341、342分 第觸發k號,及—第二觸發信號,並令該第-、二觸 發信號I 342分別回傳至該第一、二處理器321、322, 在本較佳實施例中,該觸發單元34之第-、二觸發器341 、342為溫度補償石英震盪器(tcx〇)。 該通訊單70 35包括-電連接該處理單元32之第__盧 理器奶的第-通訊器351,及一電連接該處理單元^之 第二處理器322的第二通訊器352’該第一、二處理器321 、322是利用該第-、二通訊器351、352互相進行資料傳 輸’在本較佳實施例中,該通訊單S 35之第-、二通訊器 351、352疋利用全球行動通訊系統(gsm)及通用分植 服務(GPRS)進行資料互相傳輸。 、…深 該顯不單元36包括一電連接該處理單元32之第— 理器321並可將其資料予以顯示的第—顯示器361,及 連接該處理單元32之第二處理器322並可將其資料予 示的第二顯示器362。 踢 依據上述較佳實施例之架構設計,本發明變壓器相 量測系統進行該主變壓器U與配電變壓器12相別量測時,1 是以該主變壓器11之低㈣丨作為參考端,接著,再量剛欲 辨識出相別的配電變壓器12之低壓側,藉此以同時量剛 隔兩地變壓器11、12低壓側之電壓相角。 /曰 該配電系統的配電饋線1〇令,任一點之電壓相角其變 化量並不會因負載的變化而造成改變,而且,對於壓。 10 201013194 肖相之-次側及二次側而言’其中的電壓相角偏移量較微 量,所以,本發明變壓器相別量測系統利用變壓器二次侧 之低壓電壓進行電壓相角之量測,但是,由於所量測之電 壓會因負載所產生之諧波造成畸變,因此,量測電壓相角 時’是以電壓零交越點作為推斷相角之基礎。 利用電壓零交越點進行相角之量測,該第_、二取樣 器311、312取樣時,電力信號的同步相當重要,當取樣的 電力信號能夠同步時,方可減少量測上的誤差。 • 在本較佳實施例中,由於電壓相角會隨時間和頻率產 生變化,且兩地取樣時間點不同也會造成量測上之誤差, 因此透過全球定位系統(GPS)所產生之時間同步信號,同步 兩地取樣信號再去觸發,以達到同步取樣電壓相角之目的 。該接收單元33之第一、二接收器331、332利用全球定 位系統(GPS)接收該第一、二接收信號,達到衛星時間的 信號同步,並且,利用該觸發單元34之第一、二觸發器 341、342的第一、二觸發信號341、342,使得第一、二取 Φ 樣器311、3丨2所取樣的電力信號能夠同步。 藉此’當該接收單元33之第一、二接收器33J、332 處於收訊不佳,無法持續接收到衛星同步之第一、二接收 信號的情況之下,仍可利用該觸發單元34之第一、二觸發 器341、342繼續該第一、二取樣器311、312之電力信號的 同步,以維持進行變壓器相角之量測,提高電力信號取樣 之準確度。 最後,再將該第一、二取樣器311、312的電力信號透 11 201013194 過該通訊單元35之第一、二通訊器351、352互相進行資 料交換’透過該處理單元32之第一、二處理器321、322. ' 相別運算比對’辨識出配電變壓器12之相別,並顯示於該 顯示單元36之第一、二顯示器361、362上。 歸納上述’本發明之變壓器相別量測系統,利用該第 一接收1s號與該第一、二觸發信號對所取樣之電力信 號進行信號同步,使該第一、二處理器321、322在接收不 到該第一、二接收信號作為同步基準時,亦可由該第一、 二觸發信號進行電力信號的同步取樣,使該量測系統的量⑩ 測過程不中斷,進而提高相別量測之準確度,再者,以本 發明之變壓器相別量測裝置可以直接對所述變壓器U、12 之低麼側作實施電壓取樣’由於不再需要透過取樣高壓電 壓的方式來進行,因此可降低習知現場操作人員實施取樣 咼壓電麼時所造成的風險’故確實能達到本發明之目的。 惟以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍❿ 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一方塊圖,說明本發明變壓器相別量測裝置; 圖2是一方塊圖,說明本發明變壓器相別量測系統之 較佳實施例;及 圖3是一示意圖,說明該較佳實施例實施於_配電系 統進行電力信號取樣之態樣。 12 201013194 【主要元件符號說明】 10 · * …·…配電饋線 321 *第一處理器 11 * Μ - · Μ *主變壓器 322 ......第二處理器 12… ……配電變壓器 33·· “ “ “接收早兀 2變壓器相別量測裝置 331 …·…第一接收器 21… ……取樣|§ 332 μ.....第二接收器 22 · * ……處理器 34·· …· Μ "觸發单兀 23… ……接收 341 …·…第一觸發器 24··. -觸發器 342 ……f第二觸發器 25··· .......通訊器 35·· .......通訊早兀 26* -----顯不器 351 .......第一通訊器 3變壓器相別量測系統 352 ……第二通訊器 31*·* ……取樣单元 36 ………顯示單元 311 * .......第一取樣器 361 .......第一顯示器 312 ••…·第二取樣器 362 .......第二顯示器 32·*· .......處理單元 ❹ 13Positioning System (GPS), as the synchronization of the sampling signals between the substation and the on-site distribution transformer, enables the substation and the field distribution transformer to obtain the synchronization time level, and set the substation to the substation at the same time point. The on-site distribution transformer draws the voltage value, and then passes through the slightly sampled voltage and current signals to measure the phase angle, and manually confirms the phase difference, and compares the substation and the field distribution transformer. The voltage phase 'to confirm the phase difference of the field distribution transformer. However, since most of the distribution transformers are located underground, the GPS signals used by the phase-matching test systems cannot be maintained in the receiving state, so the synchronization of the sampling signals between the substation and the field distribution transformer cannot be smoothly performed. It affects the operation of confirming the comparison, and the current sampling measurement method is very dangerous to the field operator 5 201013194 by sampling the high voltage and current signals. Furthermore, using manual measurement to make a difference. The way of confirmation is also easy to cause misjudgment due to human problems. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a transformer phase measuring system that improves the accuracy of transformer phase measurement. Another object of the present invention is to provide a transformer phase measuring device that increases the safety of the measurement process. Thus, the transformer phase measuring system of the present invention is used for measuring the phase difference between two transformers. The transformer phase measuring system comprises a sampling unit, a processing unit, a receiving unit, a trigger unit, and a Communication unit 'and a display unit. The sampling unit includes a first sampler and a second sampler. The first and second samplers are respectively power signals for sampling the transformer. The processing unit includes a first processor electrically connected to the first sampler, and a second processor electrically connected to the second sampler, the first and second processors respectively respectively respectively the first and second samplers The sampled power signal is archived. The receiving unit includes a first receiver that is electrically connected to the first processor and can receive a first received signal, and a second receiver that is electrically connected to the second processor and can receive a second received signal, and The first and second received signals are respectively transmitted to the first and second processors. The trigger unit includes a first trigger electrically connected to the first processor, and a second trigger electrically connected to the second processor, when the first, the __ processor respectively receives the first and second receiving When the signal is driven, the first 201013194 and the second trigger respectively generate a first trigger signal and a second trigger signal, and the first and second trigger signals are respectively transmitted back to the first and second processors - 0 The communication unit includes a first communicator electrically connected to the first processor, and a second communicator electrically connected to the second processor, wherein the first and second processors utilize the first and second communicators to each other Data transfer. The display unit includes a first display electrically connected to the first processor and displaying the data, and a second display electrically connected to the second processor and displaying the information. The transformer phase measuring device of the present invention is for measuring the phase difference of a transformer. The transformer phase measuring device comprises a sampler capable of sampling the power signal of the transformer, and a process of electrically connecting the sampler. , a receiver electrically connected to the processor, a trigger electrically connected to the processor, a communicator electrically connected to the processor, and a display electrically connecting the processor and displaying the data of the processor . The processor can store the power signal sampled by the sampler; the receiver can receive a received signal and transmit the received signal to the processor; when the processor receives the received signal, Driving the trigger generates a trigger signal and returns the trigger signal to the processor; the processor uses the communicator for data transfer. The effect of the present invention is that the signal is synchronized by the first and second receiving signals simultaneously with the first and second trigger signals, so that when the first and second received signals are interrupted, the The first trigger signal performs synchronous sampling of the power signal, so that the measurement of the quantity one to / call system 201013194 is not interrupted, thereby improving the accuracy of the phase measurement. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. 1 is a transformer phase measuring device according to the present invention. The transformer phase measuring device includes a sampler 21 for sampling a power signal, a processor 22 electrically connected to the sampler 21, and an electrical connection. The receiver 23 of the device 22, a flip-flop 24 electrically connected to the processor 22, a communicator 25 electrically connected to the processor 22, and an electrical connection between the processor 22 and the data of the processor 22 are displayed. Display 26. The sampler 21 is a power signal that can be sampled by a transformer (not shown), and the transformer can be a transformer such as any of the Taipower power distribution system networks. It should be noted that the flip-flop 24 is a temperature-compensated quartz oscillator, the power signal sampled by the sampler 21 is a voltage signal of the transformer, and the receiver 23 receives the received signal by using a global positioning system (Gps). The communicator 25 utilizes Global System for Mobile Communications (GSM) and General Packet Radio Service (GPRS) for data transmission. Referring to Figures 2 and 3, a preferred embodiment of the transformer phase measuring system of the present invention is for measuring a power distribution system as shown in Figure 2, the power distribution system including a main transformer 11 of a substation, and three Distribution transformer 12. Wherein, the main transformer 11 is divided on the three distribution transformers 12 via the distribution feeder 10, and when measuring the transformers 11 and 12 separating the two places, it is necessary to simultaneously use two 201013194 transformer phase measuring devices for testing. Therefore, the transformer phase measuring system 3 of the present invention comprises a sampling unit 3, a processing unit 32, a receiving unit 33, a trigger unit 34, a communication unit 35, and a display unit 36. The sampling unit 31 includes a first sampler 311, and a second sampler 312'. The first and second samplers 311, 312 are respectively capable of sampling the power signals of the transformers 11, 12, in this embodiment, The power signals sampled by the first and second samplers 311, 312 of the sampling unit 31 are voltage signals. The processing unit 32 includes a first processor 321 ' electrically connected to the first sampler 311 of the sampling unit 31 and a second processor 322 electrically connected to the second sampler 312 of the sampling unit 31. The two processors 321 and 322 can respectively archive the power signals sampled by the first and second samplers 311 and 312. The receiving unit 33 includes a first processor 321 electrically connected to the processing unit 32 and can receive a first a first receiver 33A receiving a signal, and a second receiver 332 electrically connected to the second processor 322 of the processing unit 32 and receiving a second receiving nickname, and receiving the first and second receiving signals The first and second processors 321 and 322 are respectively received by the first and second receivers 331 and 332 of the receiving unit 33 by using the global positioning system (GPS) to receive the first and second receiving signals. And use this as a synchronization confirmation of the signal. The trigger unit 34 includes a first flip-flop 341' electrically coupled to the first processor 321 of the processing unit 32 and a second flip-flop 342 electrically coupled to the second processor 322 of the processing unit 32. 201013194 When the first and second receiving signals are received by the processor 321 and the 322 respectively, the gp fer -3⁄4. Ρ drives the first and second triggers 341 and 342 to trigger the k number. And the second trigger signal, and the first and second trigger signals I 342 are respectively transmitted back to the first and second processors 321, 322. In the preferred embodiment, the first and second of the trigger unit 34 The flip flops 341, 342 are temperature compensated quartz oscillators (tcx 〇). The communication list 70 35 includes a first communicator 351 electrically connected to the first processor of the processing unit 32, and a second communicator 352' electrically coupled to the second processor 322 of the processing unit. The first and second processors 321, 322 use the first and second communicators 351 and 352 to perform data transmission with each other. In the preferred embodiment, the first and second communicators 351 and 352 of the communication list S 35 Data transmission is carried out using the Global System for Mobile Communications (gsm) and the Universal Branching Service (GPRS). The display unit 36 includes a first display 361 electrically connected to the processor 321 of the processing unit 32 and capable of displaying its data, and a second processor 322 connected to the processing unit 32 and The information is presented to the second display 362. According to the structural design of the above preferred embodiment, when the transformer phase measuring system of the present invention performs the measurement of the main transformer U and the distribution transformer 12, 1 is the low (four) 该 of the main transformer 11 as a reference end, and then The amount is just to identify the low-voltage side of the distribution transformer 12, thereby simultaneously measuring the voltage phase angle of the low-voltage side of the transformers 11, 12 just after the two places. /曰 The distribution feeder of the power distribution system is ordered to change the voltage phase angle at any point without changing the load, and for pressure. 10 201013194 Xiao Xiangzhi - the secondary side and the secondary side, where the voltage phase angle offset is relatively small, so the transformer phase measuring system of the present invention uses the low voltage of the secondary side of the transformer to perform the voltage phase angle. However, since the measured voltage will be distorted by the harmonics generated by the load, the voltage phase angle is measured as the basis of the inferred phase angle. The phase angle is measured by the voltage zero crossing point. When the first and second samplers 311 and 312 are sampled, the synchronization of the power signal is very important, and the error in the measurement can be reduced when the sampled power signals can be synchronized. . • In the preferred embodiment, since the voltage phase angle changes with time and frequency, and the sampling time points of the two places also cause measurement errors, the time synchronization generated by the Global Positioning System (GPS) is generated. The signal is synchronized to the two sampling signals and then triggered to achieve the purpose of synchronous sampling voltage phase angle. The first and second receivers 331, 332 of the receiving unit 33 receive the first and second receiving signals by using a global positioning system (GPS) to achieve signal synchronization of the satellite time, and use the first and second triggers of the triggering unit 34. The first and second trigger signals 341, 342 of the 341, 342 enable the power signals sampled by the first and second samples 311, 3 丨 2 to be synchronized. Therefore, when the first and second receivers 33J and 332 of the receiving unit 33 are in poor reception and cannot receive the first and second received signals of the satellite synchronization, the trigger unit 34 can still be utilized. The first and second flip-flops 341, 342 continue the synchronization of the power signals of the first and second samplers 311, 312 to maintain the measurement of the phase angle of the transformer and improve the accuracy of sampling the power signal. Finally, the power signals of the first and second samplers 311 and 312 are transmitted through the first and second communicators 351 and 352 of the communication unit 35 to exchange data with each other through the processing unit 32. The processors 321 and 322. The 'comparison operation comparison' identifies the components of the distribution transformer 12 and is displayed on the first and second displays 361 and 362 of the display unit 36. In the above-mentioned transformer phase measuring system of the present invention, the first receiving and receiving signals are synchronized with the first and second trigger signals to synchronize the sampled power signals, so that the first and second processors 321, 322 are When the first and second receiving signals are not received as the synchronization reference, the first and second trigger signals may be used for synchronous sampling of the power signal, so that the quantity measurement process of the measuring system is not interrupted, thereby improving the phase measurement. The accuracy of the transformer, the transformer phase measuring device of the present invention can directly perform voltage sampling on the lower side of the transformers U, 12, because it is no longer necessary to pass the sampling high voltage, so It is possible to achieve the object of the present invention by reducing the risk caused by the conventional field operator performing sampling and piezoelectricity. However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention, All are still within the scope of the patent of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a transformer phase measuring device of the present invention; FIG. 2 is a block diagram showing a preferred embodiment of the transformer phase measuring system of the present invention; and FIG. The schematic diagram illustrates the preferred embodiment of the power distribution system for power signal sampling. 12 201013194 [Description of main component symbols] 10 · * ...·... Distribution feeder 321 * First processor 11 * Μ - · Μ * Main transformer 322 ... Second processor 12 ... Distribution transformer 33 · · ““Receive early detection 2 transformer phase measuring device 331 ...·...first receiver 21.........sampling|§ 332 μ.....second receiver 22 · * ......processor 34·· ...· Μ "trigger unit ...23... ......receive 341 ...·...first flip flop 24··.-trigger 342 ......f second flip flop 25··· . . . communicator 35 ·· .......communication early 26* -----display 351....... first communicator 3 transformer phase measurement system 352 ... second communicator 31* **...sampling unit 36 ....display unit 311 * .......first sampler 361 . . . first display 312 ••...·second sampler 362 .... ...second display 32·*· .......processing unit❹ 13