TW201010108A - Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof - Google Patents

Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof Download PDF

Info

Publication number
TW201010108A
TW201010108A TW097132538A TW97132538A TW201010108A TW 201010108 A TW201010108 A TW 201010108A TW 097132538 A TW097132538 A TW 097132538A TW 97132538 A TW97132538 A TW 97132538A TW 201010108 A TW201010108 A TW 201010108A
Authority
TW
Taiwan
Prior art keywords
sensitized solar
solar cell
dye
spray
area dye
Prior art date
Application number
TW097132538A
Other languages
Chinese (zh)
Inventor
Wei-Guang Diau
Chien-Chon Chen
Chin-Shing Chen
Chih-Cheng Chou
Shih-Shun Chen
Yun-Pei Chen
Original Assignee
Dc Solar Corp
Han Tai Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dc Solar Corp, Han Tai Technology Co Ltd filed Critical Dc Solar Corp
Priority to TW097132538A priority Critical patent/TW201010108A/en
Publication of TW201010108A publication Critical patent/TW201010108A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)

Abstract

The invention provides a large area dye-sensitized solar cell, which comprises a substrate having titanium dioxide(TiO2) nanotubes thereon as an anode of the cell, a photosensitive dye adsorbing on the surfaces of the TiO2 nanotubes, a transparent conductive cathode disposed to be opposite to the anode and wherein a platinum(Pt) nano-catalytic layer is adhered to its surfaces, and an electrolytic solution sealed between the anode and the transparent conductive cathode, wherein the TiO2 nanotubes are formed by spraying titanium(Ti) on the surfaces of the substrate by thermal-spraying method to create a Ti sprayed layer, and then anodizing and thermally treating the Ti sprayed layer. The invention also provides fabrication methods for the large area dye-sensitized solar cell.

Description

201010108 九、發明說明: 【發明所屬之技術領域】 士發明_於—種大面義料敏化太陽能電池,尤 利用熱熔射噴塗(thermal spr丨)技術與陽極處 所制的 大面積染料敏化太陽能電池。 &騎所衣成的 【先前技術】 人_=1的發展’而使得全球駐急遽地被消耗,因此 4於能職無缺以及雜意識高__年代,全 相發展無污染且可回收的再生能源,務求在這場能 肌勝出,以確保能夠永續發展,而在全球經濟競爭中立 ί敗ίί③根據美國能源局的估算,自薦年祕,石油、天然 Γ f丨it非再生性能源將在41年、67年及192年内耗竭。因 能、風力、地熱、生物能等等之再生能源技術的開 ,’其h發電過程無污染域需維持費用的太 ΐΐ生下—代能源發展的㈣,太陽能電池市場在 近4年快速逢勃發展,每年成長至少·m要為曰 盥2國家推行新能源政策並實施補助獎勵辦法:以:積 極發展與推廣太陽能電池。 κ 入每年輕射至地球的能量約為5.4xiG24焦耳⑴,而 h lxiQ2°焦耳⑴,若吾人可充分地利 此’遂積極發展太陽能電池以求轉能源問題。 可、巾,濕式太陽能電、觸製程肢且其轉換效率 枯卞、*、(’:人預細式太陽能電池將成為未來太陽能電池 由於太陽能電池製程引進奈米技術’而得以快 腐會大大地提升其效能轉換效率,以使太陽能 二3 生用品之等級。於_年,太陽能發電量只佔全球 —里、.%,太陽能產業以每年35〜4〇%的速率持續成長,於 201010108 2005年,全球光伏(Photovoltaic)總裝機容量達2200MW,年發電 量約30億kWh ’預估於2010年’全球太陽光電市場的規模將超過 500億美元。 太陽能電池的種類大致可分為:(1)單/多晶石夕 e (Mono/Polycrystalline Solar Cell) ; (2)非晶石夕 / 薄膜 (Amorphous/ Thin Film Solar Cell);⑶無機半導體(Inorgank Solar Cell) ; (4)有機高分子(〇rganic Solar Cell);以及(5)染 料敏化(Dye-Sensitized Solar Cell)。其中,以單晶太陽能電池 效率最高,目前第一代太陽能電池(單/多晶)的市場佔有率約八 成,但其缺點為製作成本高,且其光電轉換效率(1掷)已接近現有 $程技術的極限。而第二代太陽能電池(薄膜式)係目前剛進入市 場上的產品,其光電轉換效率(10〜15%)雖不及第一代太陽能電 池,但其製作成本較矽晶電池低,使其在目前的市場佔有一席之 地。第三代太陽能電池(有機薄膜),係即將投入市場的產品,並 特點為:透絲佳、可撓曲、直射/騎光均可吸收、廢品呈ς 環保特性、以及適合大面積電池元件製程。因此,i研發 近第一、二代太陽能電池的光轉換效^ 羊(_此更接 m 從瑞陽f 1池_ ’ Dye—Sensiti— cell)自 ΐ 件叹工作原理以 種二氧化欽(Ti〇2)薄膜、顆粒、以二相繼提出與改良多 備方法,例如_蒸鑛法製作Tir) ϋ π ’nanQtubes)的製 顆粒、以及利用陽;^處理法製作;;〇2太米f向壓^法製作Ti〇2 法等,亦各自且有f轉塗佈法、以及陽極處理 _、+ 耘特性。以上各製程均能製造出右&丨#筮 易製 201010108 (non-plane type)的染料敏化太陽能電池。 【發明内容】201010108 IX. Description of the invention: [Technical field of invention] Invented _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Solar battery. & [the prior art] of the rider's clothing [the development of people _ = 1] makes the world stationed in a hurry, so 4 in the job and high awareness __ era, all-phase development is pollution-free and recyclable Renewable energy, in order to win in this muscle, to ensure sustainable development, and to be neutral in the global economic competition. ίί3 According to the US Energy Bureau estimates, self-recommended, oil, natural Γ f丨it non-renewable energy will Depleted in 41, 67 and 192 years. Due to the opening of renewable energy technologies such as energy, wind, geothermal, bio-energy, etc., 'there is no pollution in the power generation process, and it is necessary to maintain the cost of the generation of energy generation (4), the solar cell market has been fast in the past 4 years. Bo Development, growing at least every year, must implement new energy policies and implement subsidy incentives for: 2 countries: to actively develop and promote solar cells. The energy of κ into each young earth is about 5.4xiG24 joules (1), while h lxiQ2° joules (1), if we can fully benefit this, we actively develop solar cells to turn energy. Can, towel, wet solar power, touch the limb and its conversion efficiency is dry, *, (': people's pre-fine solar cells will become the future solar cells due to the introduction of nano-technology in solar cell process') In order to increase the efficiency of solar energy conversion, in order to make solar energy, the solar power generation only accounts for the global--,.%, and the solar industry continues to grow at a rate of 35~4% per year, at 201010108 2005. In the year, the total installed capacity of Photovoltaic reached 2,200 MW, and the annual power generation is about 3 billion kWh. [In 2010, the global solar photovoltaic market will exceed 50 billion US dollars. The types of solar cells can be roughly divided into: (1) ) Mono/Polycrystalline Solar Cell; (2) Amorphous/Thin Film Solar Cell; (3) Inorganic Solar Cell; (4) Organic Polymer ( 〇rganic Solar Cell); and (5) Dye-Sensitized Solar Cell. Among them, monocrystalline solar cells have the highest efficiency, and the current market share of first-generation solar cells (single/polycrystalline) is about 80%, but its shortcomings are high production costs, and its photoelectric conversion efficiency (1 throw) is close to the limit of the existing technology. The second generation of solar cells (thin film) is the product that has just entered the market, its photoelectric conversion Although the efficiency (10~15%) is not as good as that of the first generation solar cells, its production cost is lower than that of the twin crystal batteries, which makes it a place in the current market. The third generation solar cells (organic film) are products that will be put on the market soon. And characterized by: smooth, flexible, direct/riding light can be absorbed, waste products are environmentally friendly, and suitable for large-area battery component manufacturing process. Therefore, i develops light conversion of first and second generation solar cells Effect ^ Sheep (_ this is more than m from Ruiyang f 1 pool _ 'Dye-Sensiti- cell) self-smashing sigh working principle to seed oxidized Qin (Ti〇2) film, particles, two successively proposed and improved Preparation methods, such as _ steaming method to make Tir) ϋ π 'nanQtubes) granules, and using yang; ^ processing method; 〇 2 too rice f to the pressure method to produce Ti 〇 2 method, etc., also have f transfer coating method, and anode treatment _ + Yun features. Each of the above processes can produce a dye-sensitized solar cell of the right &丨#筮 2010 201010108 (non-plane type). [Summary of the Invention]

本發明之-實施樣態為提供-種大面積染料敏化太陽 池’包含:基材’於其上具有二氧化鈦(Ti〇2)奈米f,以作為 的陽極;光敏染料,吸附於Ti〇2奈米管的表面;透明導電昤極, 相對於陽極而設置,並且在透明導電陰極的表面附軸⑻奈米 觸媒層;以及電解液,封裝在陽極與透明導電陰極之間,其中Ti〇 奈米管係經由熱熔射喷塗法將鈦(Ti)噴塗於基材的表面^,以產2 生Ti喷塗層,然後對Ti喷塗層進行陽極處理以及熱處理而加以 形成。 ”' 本發明之另-實施樣態為提供-種A面積染料·太陽 池的製造方法’包含:以齡射塗法WTi魅在基材的表面上, 而產生Ti噴塗層;然後對Ti噴塗層進行陽極處理以及熱處理, =形,Τι〇2奈米管,並作為電池的陽極;使光敏染料吸附於Ti〇2 不米管的表面;在透明基材上形成透明導電膜,並附著鉑奈米 媒層,以作為電池的陰極;以及將電解液封裝在陽極盥陰極之間。 依照本發明之染料敏化太陽能電池,因結合熱熔射噴塗盥 ^理技,’所以可達到大幅降低量產成本、大幅提升輸出二功 f目^及製造平面式(plane type)、非平面式(n〇n_pia㈣卿)、 或具有不規則表面之染料敏化太陽能電池等等的優點,而有別於 遍僅能使用在平面上製作Ti〇2薄膜的方法,例如旋轉塗佈 1壯2鍛法、或網印法等等。因此,本發明可配合大型結構物(例 如装飾物、建築物等等)的外觀,而製造出平面式、非平面式、或 具有不規則表面的染料敏化太陽能電池。 1本發明之其他目的與優點可藉由隨後之詳細說明及隨附之申 5月專利範圍而更顯明白。 【實施方式】 201010108 熱炫射喷塗(thermal spraying)係一種在低溫下製作厚膜的 技術’其在噴塗過程中同步對基材表面進行冷卻,而使基材表面 的溫度維持在15〇。(:以下。熱熔射喷塗技術自丨9〇2年開發至今, 已陸續發展出其他相關的技術’例如火焰熔射噴塗(Flame spraymg)法、高速火焰熔射噴塗(HV0F,High Velocity gen Fuel)法、爆炸’溶射喷塗(j)-Gun,j)et〇nati〇n gun)法、直 流電弧熔射喷塗(Arc spraying)法、電漿熔射噴塗(piasma spraying)法:直流電弧_電漿熔射喷塗(])irect ArcThe embodiment of the present invention provides a large-area dye-sensitized solar cell comprising: a substrate having titanium dioxide (Ti〇2) nanometer f as an anode; a photosensitizing dye adsorbed on Ti〇 a surface of a 2 nm tube; a transparent conductive drain, disposed relative to the anode, and a shaft (8) nanocatalyst layer on the surface of the transparent conductive cathode; and an electrolyte encapsulated between the anode and the transparent conductive cathode, wherein Ti The nano tube is sprayed on the surface of the substrate by a thermal spray coating method to produce a Ti spray layer, and then the Ti spray layer is anodized and heat treated to form. "The other embodiment of the present invention provides a method for producing a type A dye/sun pool" comprising: applying an age-based coating method to a surface of a substrate to produce a Ti sprayed layer; and then spraying the Ti The layer is anodized and heat treated, = shaped, Τι〇2 nanotube, and used as the anode of the battery; the photosensitive dye is adsorbed on the surface of the Ti〇2 non-tube; a transparent conductive film is formed on the transparent substrate, and platinum is attached a nano-media layer to serve as a cathode for the battery; and an electrolyte solution to be encapsulated between the anode and the cathode. The dye-sensitized solar cell according to the present invention can be greatly reduced by combining thermal spraying and spraying technology. Mass production cost, greatly improved output two-dimensional power and the advantages of manufacturing a plane type, a non-planar type (n〇n_pia (four)), or a dye-sensitized solar cell with an irregular surface, etc. Only a method of fabricating a Ti 2 film on a plane can be used, such as spin coating, stretching, or screen printing, etc. Therefore, the present invention can be used with large structures (such as decorations, buildings, etc.). Etc) the appearance, and A dye-sensitized solar cell having a planar, non-planar, or irregular surface is formed. The other objects and advantages of the present invention will become more apparent from the following detailed description and the appended claims. [Embodiment] 201010108 Thermal spraying is a technique for producing a thick film at a low temperature, which simultaneously cools the surface of the substrate during the spraying process while maintaining the surface temperature of the substrate at 15 Torr. (: The following. The thermal spray coating technology has been developed since 丨9〇2, and other related technologies have been developed, such as Flame Spraymg, High Velocity Spray (HV0F, High Velocity gen). Fuel) method, explosion 'solder spray (j)-Gun, j) et〇nati〇n gun) method, DC arc spray method, plasma spray spray (piasma spraying) method: direct current Arc_plasma spray coating (])irect Arc

Plasma spraying)法、射頻感應電漿熔射噴塗(Radi〇 Induction Plasma spraying)法、冷噴(c〇ld spraying)法等等, 其中以高速火焰熔射噴塗法,吾人可獲得最低⑽率(伽1〇咖Plasma spraying method, Radi Induction Plasma spraying method, c〇ld spraying method, etc., in which high-speed flame spray coating method is used, we can obtain the lowest (10) rate (Gam) 1 coffee

舰Ti。此外,冷攸钟高堆鮮、以及低氧化 !里的雜,以及m贿射噴塗法具有快速細、堆積效 ^、以及低鉢的雜,並且適合A 喷塗技術早期被應用於重卫業,如航空 ,g 路、以及橋樑方面的表面改質,而近年展由官 ==質施軸於真一 ❹ 隨;;;產;ΐ需求,了早 等的表面改質需求以外,近年來更擊、耐局溫等 部的鍵膜魏層,或碰電軸^^ 備,真空腔體内 隨著目前最熱Η的太陽能魏產業^層_r)成長。 ίϊί塗與陽極處理技術勢必將成▲大面積太 此外’由於第一、二代太胳处♦、, 程’加上其高耗能、高成柄麵的無塵室半導體製 因此,發展高效率、低成本的新二. 必…法取代傳統能源。 源科技研究主流。近年來全球奈米科技 9 201010108 米材料的成功開發應用著實改善了人們的生活品質,也開創了無 p艮,機,本發明利用熱熔射喷塗與陽極處理技術,製造出具有奈 米管結構的Ti〇2薄膜,並將其應用在太陽能電池的陽極材料上。 蠢 、針對上述技術之整合,本發明提供一種染料敏化太陽能電 池二圖1顯示依照本發明之一實施例之染料敏化太陽能電池1〇〇 的示意圖。染料敏化太陽能電池1〇〇包含:陰極區域12〇,由透明 玻璃121、透明導電膜122、以及鉑奈米觸媒層123所構成;電解 液130 ;以及陽極區域14〇,由喷塗層14卜阻障層142、以及不 銹鋼基材143所構成。其中,透明玻璃121用以支撐透明導電膜 122、透’電膜122用以作紅作陰極,以及齡米觸媒層123 用以加速催化電解液130的還原反應。如圖丨所示’陰極區域12() 與陽極區域14G伽X相對於彼此的方式加以設置。在本發明的其 他實施例中,透明玻璃121可為軟質的聚二甲酸乙二醇酯(pEN了 polyethylene naphthalate);而透明導電膜122可為銦錫氧化物 (ΙΤ0 ’ indium tin oxide)、銻錫氧化物(AT〇,antim〇ny 七比 je)、氣錫氧化物⑽,fluorine tin 〇xide)、銘辞氧化物 (AZO ’ alununum zinc oxide)、或銦鋅氧化物(IZ〇,碰砸以叱 〇Xlde)。透日脾魏122 _由濺紙聊说 在透明玻璃121上。 ^ /在本^施例中,如圖1所示,事先在不銹鋼基材143的表面 上:^緻密的T!G2阻障層142,錢經由熱炫射喷塗法#Ti喷塗 n2阻障層142上,以產生Ti噴塗層141,並且對塗^ 41進行陽極處理以及棚_55代的熱處理,而形成目 (anatase)Ti〇2奈米管(無圖示)以作為你 (無圖示>及附在m奈米管的表面為在=之= 如圖2A至2D所示,吾人可不搴奂土丁紋,:力貝施例中 成Ti〇2阻障層142 ’而係直接將Ti噴塗於不:土形 或TiCW妨入Tl喷塗層141與不銹鋼基材143之間的隙缝内 10 201010108 而形成Ti〇2,藉以填補隙縫,而避免陰極與陽極發生短路現象。 或者’在Ti喷塗層141進行陽極處理之後’再將其浸潰於TiJ?4 或TiCh溶液中,以填補隙缝。此外,吾人亦可使用、μ—、 W〇3、ΖΛ、ΖηΟ、或Sn〇2,對Ti喷塗層141與不銹鋼基材143之 間的隙縫進行填補。 此外,在本實施例中,雖然係使用不銹鋼基材,但吾人亦 可使用其他金屬或非金屬的基材,例如碳鋼、鋁、鋁合金、銅、 銅合金、、鈦、或鈦合金等等的金屬基材,以及例如陶瓷、玻璃、 、或例如聚四氟乙烯(Tefl〇n ’鐵鎌)之耐高溫高分子材料 ##的非金屬基材。此外,基材的表面能夠事先以喷砂、化學蝕 刻、或反應氣體,進行表面粗糙化處理,以增加基材盥喷塗層之 巧的密著性。在其他實施例中,Ti喷塗層141能夠銦 (In)、鎢(W)、鍅(zr)、鋅(Zn)、或錫(Sn)嘴塗層加以取代,缺後 Ϊ Jf極處1而獲得二氧切(⑽2)、三氧化二銦(1祕)、三氧化 祕^二氧化錯(Zr〇2)、氧化鋅(Zn0)、或二氧化錫(減)的氧 :匕f气米官。在其他實施例中,吾人可使用Si〇2、In2〇3、W〇3、Zr〇2、 ZnU、或Sn〇2阻障層取代Ti〇2阻障層M2。 人成陰極區域120以及陽極區域140的製作程序之後,將 二電解液130封裝在陰極區域120與陽極區域14〇之間。 雪極區域120側入射時,光線110可照射至Ti〇2奈 層)表面上的綠純(電子鼓層),電子經· 輸殘留Ή層與不_基材143,再傳輸至外部電路, === 域!?的透明導電膜122上,並進上 層,麸二中虽基材為非金屬時,電子僅傳輸至殘留Ti 上,ΐ進人回傳至陰極區域12G的透明導電膜122 可為:火焰炫1。在本發明之實施例中,熱溶射嗔塗法 革弧总射嘴塗法、電襞騎噴塗法、直流電弧-電漿溶射噴塗 11 201010108 法、射頻感應電漿熔射喷塗法、或冷噴法。 此外’本發明可應用在平二° (腦-~ type)或具平面式 物、建築物等等。圖3顯示依照本發明3;=士 ’例如裳飾 構(曲面)的應用示意圖。在圖3中, 盔'平面式結 管之曲率較大的基材,而陰極二奈米 為不視則的矣而紐 %極2的表面可為平面式結構,或者可 面形狀’而為早塊平面式形狀、區塊平 的表 平面式微、單塊残卿狀、或區塊残式 =例依照陽極的表面結構,而設計陰極的對應形狀二。 喷塗板二: _ 率為 ίϋΐϊ Tl〇2薄膜。為了防止電解液從喷塗層的隙縫滲入位於 方的ί銹鋼板,而使陽極與陰極產生短路現象,在陽極 S膜埴:;.1二用 TlF4溶液(0. 01~0.1Μ,l-5hr)所形成的 Ti〇2 认甘f南1噴主層與不銹鋼板之間的縫隙,然後進行陽極處理, 於其中進行陽極處理的電解液為G. 15_1vg1%.跳F +乙二醇 加電壓,6GV旧極處理時間為數小時。在完成陽極處理之後,吾 ^可獲得具有數十⑽厚度並附著於Ti倾層表面的Ti〇2奈米管 賴’ Tl〇2奈米管薄膜的顯微結構為非晶相(amorphous)規則排列 的Τι〇2奈米+管:然後經過4〇〇_55〇艺熱處理之後,可獲得銳鈦相 的Tl〇2奈米管薄膜。此外,Ti喷塗層與Ti〇2奈米管的厚度能夠藉 由熱熔射層數與陽極處理時間加以控制。 &圖4 t顯示具有300以111厚度之Ti喷塗層在蝕刻前之層狀顯 微組織的橫切面光學顯微影像;而圖4β顯示圖从之以喷塗層在 蝕刻後之層狀顯微組織的橫切面光學顯微影像。如圖4β所示,經 12 201010108 =後可^麟的孔_與更明_層狀驗 行熱溶射喷塗時,溶融Ti係以高速撞擊不__=由=進 ==與可在不錄鋼板的表面: =皿擴散膜。再者’在層狀堆積過程t ’由於氣體不會 j φ 層内,故可獲得具有較低孔隙率的膜層,並且可增加Ti 不銹鋼板之間的_性。圖5A顯示經陽極處理後之、卞曰,、 孔控之PQ2奈米管結構的掃啦子顯微影像;關5B顯示圖= 之奈米官結構側面的掃瞄電子顯微放大影像。Ti〇2奈米管 ,可供光敏染料吸附’並作輕料敏化太陽能電池的電子^ 二、。,為了更進-步增加TiG2奈米管的表面積,吾人能夠再將τ ^ 奈米管浸潰於窗4或TiF4溶液中,以在Ti〇2奈米管的内^面 六形成Τι〇2$米顆粒,而增加染料敏化太陽能電池的光電轉^效 率。、圖6顯不不銹鋼板的表面經熱熔射喷塗與陽極處理製程並 $成染料敏化太陽能電池後的電流密度_電壓曲線圖。如圖6所 不’未經額外TiCl4處理的Ti〇2奈米管可獲得光電轉換效率( ❹ 1. 42%、開路電壓(v〇c): 〇. 55V、短路電流密度(Jsc): 4. 6ι·_2、 以及填充率(FF) : 〇. 56 ;而經過額外TiC;u處理的Ti〇2奈米管可許 得光電轉換效率(77 ) : 2. 23%、開路電壓(Voc) : 0. 47V、短路電^ 密度(Jsc) : 8. 46mA/cm2、以及填充率(ff) : 〇. 56。 雖然本發明已參考其示範實施例進行特定顯示以及說明,但 ^發明並不限於這些實施例。具有此技術領域之通常知識者可瞭 解在不離開如本發明之請求項所界定之精神與範圍的情形下,可 進行各種不同形式與細節的變化。 【圖式簡單說明】 圖1顯示依照本發明之一實施例之染料敏化太陽能電池的示 意圖; 圖2A至2D顯示利用熱溶射喷塗與陽極處理法製作染料敏化 太陽能電池之陽極的流程; 13 201010108 太此電池之陽極的流程; 圖,·圖3顯示依照本發明之_實_之料面式結構的應用示意 組織^度之Tl喷塗層_前之層狀顯微 面光侧細㈣咖組織的橫切Ship Ti. In addition, the cold 攸 高 high pile, and low oxidation! Miscellaneous, and m bribing spray method has a fast fine, stacking effect, and low-lying impurities, and is suitable for the early application of A spray technology in the heavy industry For example, the surface modification of aviation, g roads, and bridges, and the recent exhibition by the official == quality of the axis of the real thing;;; production; ΐ demand, the surface of the surface upgrade needs, in recent years The bond film Wei layer of the hitting, resistance temperature, etc., or the electric axis ^^, the vacuum chamber grows with the most hot solar energy industry layer _r). ϊ 涂 涂 与 阳极 阳极 阳极 阳极 阳极 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ Efficiency, low cost, new two. The law must replace traditional energy. Source technology research mainstream. In recent years, the successful development and application of global nanotechnology 9 201010108 meters has improved people's quality of life, and also created a non-p, machine, the invention uses thermal spray coating and anode treatment technology to produce a tube with a nano tube The structure of the Ti〇2 film is applied to the anode material of the solar cell. Stupid, in connection with the integration of the above techniques, the present invention provides a dye-sensitized solar cell. Figure 1 shows a schematic view of a dye-sensitized solar cell 1A according to an embodiment of the present invention. The dye-sensitized solar cell 1A includes: a cathode region 12A, which is composed of a transparent glass 121, a transparent conductive film 122, and a platinum nano-catalyst layer 123; an electrolyte 130; and an anode region 14A, which is sprayed The barrier layer 142 and the stainless steel substrate 143 are formed. The transparent glass 121 is used to support the transparent conductive film 122, the transparent electric film 122 is used as a cathode for red, and the aged catalyst layer 123 is used to accelerate the reduction reaction of the catalytic electrolyte 130. The cathode region 12 () and the anode region 14G are disposed in a manner relative to each other as shown in FIG. In other embodiments of the present invention, the transparent glass 121 may be a soft polyethylene naphthalate (pEN), and the transparent conductive film 122 may be indium tin oxide (锑0' indium tin oxide). Tin oxide (AT〇, antim〇ny seven to je), gas tin oxide (10), fluoride tin 〇xide), AZO 'alununum zinc oxide, or indium zinc oxide (IZ〇, touch Take 叱〇Xlde). Through the sun spleen Wei 122 _ by the splash paper talk on the transparent glass 121. ^ / In this embodiment, as shown in FIG. 1, on the surface of the stainless steel substrate 143 in advance: ^ dense T! G2 barrier layer 142, money through thermal splatter spraying method #Ti spray n2 resistance On the barrier layer 142, a Ti sprayed layer 141 is produced, and the coating 41 is anodized and heat treated by the shed for 55 generations to form an anatase Ti〇2 nanotube (not shown) as you (none) The illustration > and the surface attached to the m-nano tube are at == as shown in Figs. 2A to 2D, we can not do the soil, but the Tib2 barrier layer 142' Ti is directly sprayed on the surface of the gap between the Tl sprayed layer 141 and the stainless steel substrate 143 to form a Ti〇2, thereby avoiding a short circuit between the cathode and the anode. Or 'after the anodic treatment of the Ti sprayed layer 141', it is then impregnated into the TiJ?4 or TiCh solution to fill the gap. In addition, we can also use, μ-, W〇3, ΖΛ, ΖηΟ, or Sn〇2 fills the gap between the Ti sprayed layer 141 and the stainless steel base material 143. Further, in the present embodiment, although a stainless steel substrate is used, Other metal or non-metal substrates, such as metal substrates such as carbon steel, aluminum, aluminum alloys, copper, copper alloys, titanium, or titanium alloys, and, for example, ceramics, glass, or, for example, poly four, may also be used. a non-metallic substrate of fluoroethylene (Tefl〇n 'iron slag) high temperature resistant polymer material ##. Further, the surface of the substrate can be surface roughened by sandblasting, chemical etching, or a reactive gas in advance. Increasing the adhesion of the substrate 盥 spray layer. In other embodiments, the Ti spray layer 141 can be indium (In), tungsten (W), strontium (zr), zinc (Zn), or tin (Sn The nozzle coating is replaced, and after the lack of Ϊ Jf pole 1 to obtain dioxo ((10) 2), indium trioxide (1 secret), trioxide secret ^ 2 oxidization (Zr 〇 2), zinc oxide (Zn0) Or tin dioxide (minus) of oxygen: 匕f gas meter. In other embodiments, we can use Si〇2, In2〇3, W〇3, Zr〇2, ZnU, or Sn〇2 barrier The layer replaces the Ti〇2 barrier layer M2. After the fabrication process of the cathode region 120 and the anode region 140, the two electrolytes 130 are encapsulated in the cathode region 120 and the anode region 14 When the snow pole region 120 is incident, the light 110 can be irradiated to the green pure (electronic drum layer) on the surface of the Ti〇2 layer, and the electrons are transported to the residual layer and the substrate 143, and then transmitted to the external circuit. , === domain! ? On the transparent conductive film 122, and in the upper layer, although the substrate is non-metal in the bran 2, the electrons are only transmitted to the residual Ti, and the transparent conductive film 122 which is transferred back to the cathode region 12G by the intrusion can be: In an embodiment of the present invention, a thermal spray 嗔 法 法 总 总 总 总 、 、 、 、 、 、 、 、 、 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 Spray method. Further, the present invention can be applied to a flat-type (brain-~ type) or a flat type, a building, or the like. Fig. 3 is a view showing the application of 3; = 士', for example, a skirt (curved surface) according to the present invention. In Fig. 3, the helmet has a flat curvature of the base tube, and the cathode is not observable, and the surface of the button 2 can be a planar structure or a surface shape. The early block planar shape, the flat flat surface of the block, the monolithic residual shape, or the block residual type = the design of the corresponding shape of the cathode according to the surface structure of the anode. Spray plate 2: _ rate is ίϋΐϊ Tl〇2 film. In order to prevent the electrolyte from infiltrating into the square steel plate from the gap of the sprayed layer, the anode and the cathode are short-circuited. In the anode S film, the solution is used in the T1F4 solution (0. 01~0.1Μ, l- 5hr) The formed Ti〇2 is the gap between the main layer and the stainless steel plate, and then anodized. The electrolyte in which the anode treatment is carried out is G. 15_1vg1%. Jump F + ethylene glycol plus Voltage, 6GV old pole processing time is several hours. After the completion of the anodizing treatment, the microstructure of the Ti〇2 nanotubes 'Tl〇2 nanotube film having a thickness of several tens (10) and attached to the Ti-dip layer is obtained as an amorphous rule. Arranged Τι〇2 Nano+tube: After 4热处理_55 〇 art heat treatment, an anatase phase Tl〇2 nanotube film can be obtained. In addition, the thickness of the Ti sprayed layer and the Ti 2 nanotube can be controlled by the number of hot melt layers and the anode treatment time. < Figure 4t shows a cross-sectional optical microscopy image of a layered microstructure having a 300-thick Ti coating layer prior to etching; and Figure 4β shows the layered layer of the sprayed layer after etching Transverse section optical microscopy of the microstructure. As shown in Fig. 4β, after 12 201010108 = after the hole _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Record the surface of the steel plate: = Dish diffusion film. Further, in the layered deposition process t', since the gas does not exist in the layer of j φ , a film layer having a lower porosity can be obtained, and the _ property between the Ti stainless steel sheets can be increased. Fig. 5A shows a microscopic image of a PQ2 nanotube structure of an anodized, ruthenium, and pore-controlled PQ2 nanotube structure; Guan 5B shows a scanning electron microscopic image of the side of the nanostructure. Ti〇2 nanotubes, which can be used for the adsorption of photosensitive dyes, and used as electrons for light-sensitized solar cells. In order to further increase the surface area of the TiG2 nanotubes, we can then immerse the τ ^ nanotubes in the window 4 or TiF4 solution to form Τι〇2 in the inner surface of the Ti〇2 nanotubes. $ meters of particles, while increasing the photoelectric conversion efficiency of dye-sensitized solar cells. Figure 6 shows the current density_voltage curve of the surface of the stainless steel plate after hot-spray spraying and anodizing process and dye-sensitized solar cells. As shown in Figure 6, the photoelectric conversion efficiency can be obtained for the Ti〇2 nanotubes without additional TiCl4 treatment (❹ 1. 42%, open circuit voltage (v〇c): 〇. 55V, short-circuit current density (Jsc): 4 6ι·_2, and filling rate (FF): 〇. 56; and the Ti〇2 nanotube treated with additional TiC;u can achieve photoelectric conversion efficiency (77): 2. 23%, open circuit voltage (Voc) : 0. 47V, short circuit power density (Jsc): 8.46 mA/cm2, and filling ratio (ff): 〇. 56. Although the present invention has been specifically shown and described with reference to the exemplary embodiments thereof, the invention is not The invention is limited to the embodiments, and it is obvious to those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention as claimed. 1 shows a schematic view of a dye-sensitized solar cell according to an embodiment of the present invention; FIGS. 2A to 2D show a flow of an anode for a dye-sensitized solar cell by thermal spray coating and anodization; 13 201010108 Flow of anode; Fig. 3 shows according to the invention _ A schematic cross tissue material application surface structure of the real _ ^ iv fine coffee tissue layered microstructure of the front surface of the light _ Tl sprayed layer side degrees

構败™2奈米管結 像j 5B顯示圖5A之奈米管結構側面的掃聪電子顯微放大影 圖6顯示不銹鋼板的表面經熱熔射喷塗與陽極處制 裝成染料敏化太陽能電池後的電流密度-電壓曲線^里製程並封 【元件符號說明】 21陽極 &陰極 100染料敏化太陽能電池 110光線 120陰極區域 121透明玻璃 122透明導電膜 123鉑奈米觸媒層 130電解液 14〇陽極區域 141噴塗層 142阻障層 143不銹鋼基材 14The structure of the TM2 nanotube tube junction j 5B shows the surface of the nano tube structure of Figure 5A. The surface of the stainless steel plate is shown by the thermal spray coating and the anode is dye-sensitized. Current density after the solar cell - voltage curve ^ process and seal [component symbol description] 21 anode & cathode 100 dye sensitized solar cell 110 light 120 cathode region 121 transparent glass 122 transparent conductive film 123 platinum nano catalyst layer 130 Electrolyte 14 〇 anode region 141 sprayed layer 142 barrier layer 143 stainless steel substrate 14

Claims (1)

201010108 十、申請專利範圍: 1. 一種大面積染料敏化太陽能電池,包含: -陽ί基材,於其上具有"氧化細G2)奈米管,以作為該電池的 一光敏染料,吸附於該Ti02奈米管的表面; 卜拉月導電陰極’相對於該陽極而設置,並且在該透明造 陰極的表_著-糾Pt)奈糊媒層;A 透明導電 電解液,封裝在該陽極與該透明導電陰極之間, 參 餐 材的ίΐΐTiQ2奈米管係經由絲射噴塗法將鈦㈤私μ 利範圍第1項之大面積染料敏化太陽能電池,其中綠 3基範圍第1項之大面積染料敏化太陽能電池,其中綠 利範圍第2項之大面_料敏化太陽能n Μ 屬為不銹鋼、碳鋼、銘、銘合金、銅、銅合金、鈦、 獅麻 執圍ΐ1項之大面積染料敏化太陽能電池,复中Y 4射喷結為:找騎讀(Flaffle spraylng)*、高速 201010108 熔射喷塗(HVOF,High Velocity Oxygen-Fuel)法、爆炸溶射喷塗 (D-Gun,Detonation gun)法、直流電弧熔射喷塗(Arc sprayin^ 法、電漿熔射喷塗(Plasma spraying)法、直流電弧-電漿溶射噴 塗(Direct Current Arc Plasma spraying)法、射頻感應電漿熔 射噴塗(Radio Frequency Induction Plasma spraying)法、或冷 嘴(CoId spraying)法。 ^ 8.如申請專利範圍第i項之大面積染料敏化太陽能電池,其中該 • 基材的表面形狀為平面式形狀、非平面式形狀、或不規則形狀。 ' 9.如申請專利範圍第8項之大面積染料敏化太陽能電池,其中該 透明導電陰極的形狀能夠配合該基材的表面形狀,而為單塊平面 式形^、區塊平面式形狀、單塊非平面式形狀、區塊非平面式形 狀、單塊不規則形狀、或區塊不規則形狀。 7 10·如申請專利範圍第1項之大面積染料敏化太陽能電池,其中該 Τι喷塗層能夠以矽(si)、銦(ιη)、鎢(w)、鍅(Zr)、鋅(Zn)、或錫 (Sn)噴塗層加以取代,然後經由陽極處理而獲得二氧化石夕(si〇2)、 广氧化二銦(In2〇〇、三氧化鎢(WO3) '二氧化锆(Zr〇2)、氧化鋅 、 (ZnO)、或二氧化錫(Sn〇2)的氧化物奈米管。 .H.如申請專利範圍第1項之大面積染料敏化太陽能電池,更包含: 一 Τι〇2填補材料,以TiF44TiCh溶液形成在該Ti噴塗層與 該基材之間的隙縫内,藉以填補該缝隙。 、/、 if τ如λ申請專利翻第11項之大面積染料敏化太陽能電池,其中 =tl02填補材料能夠以 Si〇2、Ιηζ〇3、W〇3、Zr〇2、ΖηΟ、或 Sn〇2加以 取夜。 16 201010108 13. 如申凊專利範圍第1項之大面積染料敏化太陽能電池,更包含: 一阻障層,位於該Ti噴塗層與該基材之間。 14. 如申請專利範圍第13項之大面積染料敏化太陽能電池,i 該阻障層為 Ti〇2、Si〇2、Im〇3、WO3、Zr〇2、ZnO、或 Sn〇2 阻障^。 15. 如申請專利範圍第丨項之大面積染料敏化太陽能電池,其中該 透明導電陰極係由一透明基材以及一透明導電膜所構成。 φ I6.、如申請專利範圍第15項之大面積染料敏化太陽能電池,其中 ^該透明基材為硬質的玻璃或軟質的聚二曱酸乙二醇酯(PEN , polyethylene naphthalate),而該透明導電膜為銦錫氧化物 UT0 ’ ir^ium tin oxide)、銻錫氧化物(AT〇,anti_y 也 oxide)氟錫氧化物(FTO,fluorine tin oxide)、銘鋅氧化物 (AZO,aluminum Zinc 0Xide)、或銦鋅氧化物(IZ〇,indium 幻此 oxide) ° ❿ 17.如申專利範圍第1項之大面積染料敏化太陽能電池,其中該 T一ι〇2奈米管的内外表面具有Ti〇2奈米顆粒,而該以〇2奈米顆粒係 經由T1F4或TiCh溶液而形成。 18· 一種大面積染料敏化太陽能電池的製造方法,包含: 以熱溶射噴塗法將Ti噴塗在一基材的表面上,而產生一 Ti 噴塗層; ^後對該Ti喷塗層進行陽極處理以及熱處理,以形成Ti〇2 不米官’並作為該電池的一陽極; 使一光敏染料吸附於該Ti〇2奈米管的表面; 在:透明基材上形成一透明導電膜,並附著一鉑奈米觸媒 層,以作為該電池的一陰極;及 17 201010108 將電解液封裝在該陽極與該陰極之間。 方^申利乾圍第18項之大面積染料敏化太陽能電池的製造 噴法 噴塗法法ί :火焰熔射喷塗法、高速火焰熔射 ',、吉技ΐ^射噴塗法、直流電弧熔射喷塗法、電漿熔射噴塗 電聚溶射噴塗法、射頻感應電漿熔射噴塗法、或冷 2〇 魏方·法申利範圍第18項之大面積染料敏化太陽能電池的製造 ®靜、]/、中該基材的表面能夠事先以喷砂、化學侧、或反應氣 -體,進行表面粗糙化處理。 方法申請專利範圍第18項之大面積染料敏化太陽能電池的製造 的®祕其中在進行該陽極處理之前’於該Ti喷塗層與該基材之間 、’、縫内,以TiF4或TiCh溶液形成Ti〇2,藉以填補該縫隙。 =·、=申睛專利範圍第18項之大面積染料敏化太陽能電池的製造 / ’其中在進行該陽極處理之後,於該Ti喷塗層與該基材之間 、C縫内,以TiF4或TiCL·溶液形成Ti〇2,藉以填補該縫隙。 ^•、如申睛專利範圍第18項之大面積染料敏化太陽能電池的製造 去’其中在進行該熱熔噴塗法之前,事先在該基材的表面形成 一阻障層。 如申請專利範圍第23項之大面積染料敏化太陽能電池的製造 方法’其中該阻障層為Ti〇2、Si〇2、j 〇 W〇3、Zr〇2、ZnO、或Sn〇2 阻障層。 5·如申凊專利範圍第18項之大面積染料敏化太陽能電池的製造 18 201010108 項之大面積染料敏化太陽能電池的製造 噴塗層與該Ti〇2奈米管的厚度能夠藉由熱熔射層 25,如申凊專利範圍第μ 方法’其中該Ti噴%厝偽 數與陽極處理時間加以控制。 26.如申請專利範圍第18201010108 X. Patent application scope: 1. A large-area dye-sensitized solar cell comprising: - an yang substrate with a "oxidized fine G2) nanotube on it as a photosensitive dye for the battery On the surface of the TiO 2 nanotube; the Brahs conductive cathode 'is disposed relative to the anode, and the surface of the transparent cathode is a paste layer; A transparent conductive electrolyte is encapsulated in the Between the anode and the transparent conductive cathode, the ΐΐTiQ2 nanotube of the ginseng material is a large-area dye-sensitized solar cell of the first item of the titanium (five) by the silk spray method, wherein the green 3 base range is the first item A large area of dye-sensitized solar cells, in which the green surface range of the second item _ sensitized solar energy n Μ belongs to stainless steel, carbon steel, Ming, Ming alloy, copper, copper alloy, titanium, lion and hemp ΐ 1 The large-area dye-sensitized solar cell of the project, the complex Y 4 spray squirt is: Flaffle spraylng*, high-speed 201010108 HVOF (High Velocity Oxygen-Fuel) method, explosion spray coating ( D-Gun,Detonation gun) , DC arc spray coating (Arc sprayin method, plasma spraying method, direct current Arc Plasma spraying method, RF induction plasma spray coating (Radio) Frequency Induction Plasma spraying method, or CoId spraying method. ^ 8. Large-area dye-sensitized solar cell according to the scope of claim i, wherein the surface shape of the substrate is a planar shape, non-planar 9. The large-area dye-sensitized solar cell of claim 8, wherein the shape of the transparent conductive cathode can match the surface shape of the substrate, and is a monolithic planar shape. ^, block planar shape, monolithic non-planar shape, block non-planar shape, monolithic irregular shape, or block irregular shape. 7 10 · Large area dye sensitive as in claim 1 Solar cell, wherein the 喷涂1 spray layer can be replaced by a bismuth (si), indium (ιη), tungsten (w), bismuth (Zr), zinc (Zn), or tin (Sn) spray layer, and then through the anode Processing and getting two Fossil eve (si〇2), bis-indium oxide (In2〇〇, tungsten trioxide (WO3) 'Zirconium dioxide (Zr〇2), zinc oxide, (ZnO), or tin dioxide (Sn〇2) Oxide nanotube. H. The large area dye-sensitized solar cell of claim 1 further comprises: a Τι 2 filling material formed by a TiF44TiCh solution between the Ti sprayed layer and the substrate In the gap, to fill the gap. , /, if τ, such as λ, apply for a patented large-area dye-sensitized solar cell, in which the =tl02 filling material can be Si〇2, Ιηζ〇3, W〇3, Zr〇2, ΖηΟ, or Sn〇 2 to take the night. 16 201010108 13. The large-area dye-sensitized solar cell of claim 1, further comprising: a barrier layer between the Ti spray layer and the substrate. 14. If the large area dye-sensitized solar cell of claim 13 is applied, the barrier layer is Ti〇2, Si〇2, Im〇3, WO3, Zr〇2, ZnO, or Sn〇2 barrier. ^. 15. The large-area dye-sensitized solar cell of claim 3, wherein the transparent conductive cathode is composed of a transparent substrate and a transparent conductive film. Φ I6. The large area dye-sensitized solar cell of claim 15 wherein the transparent substrate is a hard glass or a soft polyethylene naphthalate (PEN). The transparent conductive film is indium tin oxide UT0 'ir^ium tin oxide), antimony tin oxide (AT〇, anti_y is also oxide), fluoride tin oxide (FTO), zinc oxide (AZO, aluminum Zinc) 0Xide), or indium zinc oxide (IZ〇, indium 幻幻) ° ❿ 17. Large-area dye-sensitized solar cell according to claim 1 of the patent scope, wherein the inner and outer surfaces of the T-ι〇2 nanotube There are Ti 2 nanoparticles, and the 2 nm particles are formed via a T1F4 or TiCh solution. 18. A method of fabricating a large area dye-sensitized solar cell, comprising: spraying Ti onto a surface of a substrate by a thermal spray coating method to produce a Ti sprayed layer; and then anodizing the Ti sprayed layer And heat treatment to form Ti〇2 and serve as an anode of the battery; adsorbing a photosensitive dye on the surface of the Ti〇2 nanotube; forming a transparent conductive film on the transparent substrate and attaching a platinum nanocatalyst layer as a cathode of the battery; and 17 201010108 encapsulating an electrolyte between the anode and the cathode. Fang ^ Shen Li Qianwei Section 18 of the large area dye-sensitized solar cell manufacturing spray spray method ί: flame spray spray method, high-speed flame spray ',, Ji Ji ΐ ^ spray coating method, DC arc spray Spraying method, plasma spray coating, electro-polymer spray coating method, RF induction plasma spray coating method, or cold 2〇Weifang·Fashenli range item 18 large area dye-sensitized solar cell manufacturing The surface of the substrate can be subjected to surface roughening treatment by sandblasting, chemical side, or reaction gas-body in advance. Method of applying for the manufacture of a large area dye-sensitized solar cell of claim 18, wherein before the anode treatment, 'between the Ti sprayed layer and the substrate, ', within the slit, TiF4 or TiCh The solution forms Ti〇2 to fill the gap. =·, = manufacture of large-area dye-sensitized solar cells of item 18 of the patent scope / 'wherein after the anodizing treatment, between the Ti sprayed layer and the substrate, in the C slit, TiF4 Or the TiCL solution forms Ti〇2 to fill the gap. ^•, Manufacture of a large-area dye-sensitized solar cell of claim 18, wherein a barrier layer is formed on the surface of the substrate before the hot-melt spraying method. A method for manufacturing a large-area dye-sensitized solar cell according to claim 23, wherein the barrier layer is Ti〇2, Si〇2, j 〇W〇3, Zr〇2, ZnO, or Sn〇2 Barrier layer. 5. Manufacturing of large-area dye-sensitized solar cells according to item 18 of the patent scope of the application 18 Manufacturing of large-area dye-sensitized solar cells of 201010108, the thickness of the sprayed layer and the thickness of the Ti〇2 nanotube can be melted by heat The shot layer 25 is controlled, for example, by the μ method of the patent scope of the invention, wherein the Ti spray % 厝 pseudo number and the anode treatment time are controlled. 26. If the scope of patent application is 18 青^f範圍胃18項之大面積染料敏化太陽能電池的製造 在該光敏染料吸附於該Ti〇2奈米管的表面之前,將該Ti 米管浸潰於TiF4或TiCl4溶液中,以在該⑽奈米管的内外表^ 上形成Ti〇2奈米顆粒。 十一、圖式: 19Manufacture of a large-area dye-sensitized solar cell with a range of 18 in the stomach, before the photosensitive dye is adsorbed on the surface of the Ti〇2 nanotube, the Ti-tube is immersed in a TiF4 or TiCl4 solution to Ti〇2 nanoparticle is formed on the inner and outer surfaces of the (10) nanotube. XI. Schema: 19
TW097132538A 2008-08-26 2008-08-26 Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof TW201010108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097132538A TW201010108A (en) 2008-08-26 2008-08-26 Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097132538A TW201010108A (en) 2008-08-26 2008-08-26 Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof

Publications (1)

Publication Number Publication Date
TW201010108A true TW201010108A (en) 2010-03-01

Family

ID=44828061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097132538A TW201010108A (en) 2008-08-26 2008-08-26 Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof

Country Status (1)

Country Link
TW (1) TW201010108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214518A (en) * 2010-04-07 2011-10-12 德元太阳能科技股份有限公司 Structure of array type tandem solar battery module and manufacturing method thereof
CN102403130A (en) * 2010-09-07 2012-04-04 叶南辉 Method for manufacturing array nano tube type solar cell thin film
TWI463676B (en) * 2010-11-05 2014-12-01 Univ Nat Yunlin Sci & Tech Preparation method of dye - sensitized solar cell with mixed nanometer structure and its working electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214518A (en) * 2010-04-07 2011-10-12 德元太阳能科技股份有限公司 Structure of array type tandem solar battery module and manufacturing method thereof
CN102214518B (en) * 2010-04-07 2012-10-10 德元太阳能科技股份有限公司 Structure of array type tandem solar battery module and manufacturing method thereof
CN102403130A (en) * 2010-09-07 2012-04-04 叶南辉 Method for manufacturing array nano tube type solar cell thin film
CN102403130B (en) * 2010-09-07 2014-04-02 叶南辉 Method for manufacturing array nano tube type solar cell thin film
TWI463676B (en) * 2010-11-05 2014-12-01 Univ Nat Yunlin Sci & Tech Preparation method of dye - sensitized solar cell with mixed nanometer structure and its working electrode

Similar Documents

Publication Publication Date Title
Wang et al. Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
Cheng et al. Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns
Lee et al. Enhancement of photovoltaic performance in dye-sensitized solar cells with the spin-coated TiO2 blocking layer
CN106159095A (en) The preparation method of a kind of perovskite solaode and perovskite solaode
Hossain et al. Investigation of TiO2 nanotubes/nanoparticles stacking sequences to improve power conversion efficiency of dye-sensitized solar cells
Li et al. Hydropowered photoelectrochemical water splitting solar cell for hydrogen production
CN102222574A (en) Ag modified TiO2 membrane electrode for solar cell and preparation method thereof
TW201010108A (en) Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof
CN107808928A (en) A kind of organic inorganic hybridization solar cell based on graphene
Chou et al. Bilayer structure of TiO 2/TiO 2-graphene for optimizing working electrode applied in dye sensitized solar cells
CN107819074A (en) A kind of translucent solar cell based on graphene
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
CN101950678A (en) Ag modified ZnO membrane electrode of dye sensitized solar cell and preparation method thereof
Pari et al. Recent advances in SnO2 based photo anode materials for third generation photovoltaics
Chen et al. ZnO hemisphere pits nanowire/CdS photoelectrode for high-efficiency photoelectrochemical water splitting
CN206225411U (en) A kind of perovskite solar battery group based on zinc oxide conductive layer
TWI383511B (en) Electrochemical fabricating method thereof flexible dye-sensitized solar cell
CN102117702A (en) Method for preparing photoanode in dye-sensitized solar cell in strong magnetic field
Wang et al. Surface modification of the TiO2/g-CN core-shell nanostructure with bimetallic NiMoO4 nanosheets for the improved photoelectrochemical water oxidation
TWI379421B (en) The dye-sensitized solar cell with tio2-c60 composite film and their fabrication
Kim et al. Improved performance of metal foil-based dye-sensitized solar cells with low porosity and short length of TiO2 nanotube underlayer
TWI362756B (en) Dye-sensitized solar cell having a double-layer nanotube structure and manufacturing method thereof
Shen et al. A novel porous Ti/TiN/Ti thin film as a working electrode for back-contact, monolithic and non-TCO dye-sensitized solar cells
JP5424165B2 (en) Electrode for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell