TW201009974A - Integrated circuit placement system - Google Patents

Integrated circuit placement system Download PDF

Info

Publication number
TW201009974A
TW201009974A TW97131603A TW97131603A TW201009974A TW 201009974 A TW201009974 A TW 201009974A TW 97131603 A TW97131603 A TW 97131603A TW 97131603 A TW97131603 A TW 97131603A TW 201009974 A TW201009974 A TW 201009974A
Authority
TW
Taiwan
Prior art keywords
die
carrier
wafer
combination
block
Prior art date
Application number
TW97131603A
Other languages
Chinese (zh)
Inventor
David Oliver Burke
Jan Waszczuk
Desmond Bruce Boyton
Craig Donald Strudwicke
Peter John Morley Sobey
William Granger
Jason Mark Thelander
Eric Patrick O'donnell
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Priority to TW97131603A priority Critical patent/TW201009974A/en
Publication of TW201009974A publication Critical patent/TW201009974A/en

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

This invention relates to a dice placement assembly for placing dice on a carrier. The assembly includes a support platform with a clamp mechanism configured to clamp the carrier onto said platform, and at least one camera operatively directed at the platform to detect alignment fiducials on the carrier. The assembly also includes a placement device having a vacuum mechanism to retrieve the dice from a supply mechanism, said placement device having actuators to align the dice with the carrier and to place the dice thereon once aligned, and a heater to heat the dice prior to placement on the test bed. Further included is a controller operatively controlling the clamp mechanism, the camera and the placement device, to facilitate accurate placement of the dice on the carrier.

Description

201009974 九、發明說明 【發明所屬之技術領域】 本發明一般有關於列印頭積體電路構件之組合。詳言 之’本發明提供於載具上組合列印頭積體電路之組合器及 關連之方法。 【先前技術】 ❹ 含有微機電構件之頁寬型印表機通常具有列印頭積體 電路’其包括具有大量密集佈設的微機電噴嘴配置之矽基 底。每一個噴嘴配置負責射出一串墨滴。 爲了使此種印表機能夠準確列印並維持品質,測試列 印頭積體電路至爲重要。這在此種積體電路之設計與開發 期間尤其重要。 測試此種積體電路一般需要一些形式的平台或載具。 • 【發明內容】 根據本發明之第一態樣,提供一種用於組合列印頭晶 粒於載具上之組合器,該組合器包含: 支撐組合; 晶圓定位組合,配置在該支撐組合上,並組態成保持 並定位晶圓,該晶圓含有將從該晶圓選取之列印頭晶粒; 晶粒選取組合,配置在該支撐組合上,並組態成從該 晶圓選取預先選定之列印頭晶粒; 晶粒佈置組合,配置在該支撐組合上,並組態成接收 -5- 201009974 該預先選定之列印頭晶粒並將該晶粒佈在該載具上; 晶粒輸送機制,配置在該支撐組合上,並組態成從該 晶粒選取組合輸送該晶粒至該晶粒佈置組合;以及 控制系統,操作性嚙合該晶圓定位、晶粒選取、晶粒 佈置及晶粒輸送組合,以控制其之操作。 該支撐組合可包括光學桌及位在該光學桌上之區塊安 裝件,該晶圓定位組合位在該區塊安裝件上,且該支撐件 〇 組態成將該晶粒選取組合支撐於該晶圓定位組合上方。 該晶圓定位組合可包括安裝在該區塊上的底座件以及 安裝在該底座件上的第一與第二台,該第一台插置於該底 座件與該第二台之間且可相較於該底座件沿著第一直線軸 位移,該第二台可相較於該第一台沿著與該第一直線軸正 交的第二直線軸位移,並且該晶圓支撐組合位在該第二台 上,以圍繞與該第一與第二直線軸兩者正交的旋轉軸旋 轉,該晶圓支撐組合組態成支撐該晶圓。 • 該晶粒選取組合包括與該支撐組合緊固且可相較於該 支撐組合朝向或遠離該晶圓定位組合地位移的載具組合, 位在該載具組合上且組態成當該載具組合在降低位置時嚙 合該預先選定的晶粒並當該載具組合在升高位置時釋放該 預先選定的晶粒之晶粒選取與提起頭。 該晶粒輸送機制可包括位在該支撐組合上且具有橫跨 該晶圓組合的高架件之高架組合,組態成接收並支撐安裝 在該高架件上的該預先預定之晶粒並相較於該高架件在接 收由該晶粒選取組合所釋放的該晶粒之接收位置與其中該 -6- 201009974 晶粒被運送至該佈置組合的運送位置之間位移的穿梭組 合。 根據本發明之第二態樣,提供在積體電路組合機器中 從接收位置運輸積體電路之構件至遞送位置的運輸設備’ 該運輸設備包含: 支撐結構,界定該些位置之間的運輸路徑; 構件載具,界定組態成接收積體電路之該構件的接收 區 保持機制,配置在該構件載具上以於該接收區保持積 體電路的該構件於位置中,可操作該保持機制以在該遞送 位置釋放該構件;以及 位移機制,與該構件載具嚙合以沿著該運輸路徑位移 該構件載具。 該支撐結構可包括延伸於該接收與遞送位置之間的支 撐臂,使該運輸路徑爲線性,該位移機制包括配置在該支 • 撐臂上的線性馬達。 該構件載具可包括穿梭板,該接收區由配置在該穿梭 板上的真空板所界定,該保持機制包括保持積體電路之該 構件的膠體塊。 該構件載具可包括配置與該真空板流體式交流的真空 管,該真空管配置與真空泵流體式交流,可操作該真空泵 以透過界定在該真空板中的孔徑汲取空氣,以操作性保持 積體電路的該構件至該真空板。 該位移機制可包括設置在該支撐結構上的線性馬達, 201009974 該線性馬達組態成沿著該運輸路徑位移該構件載具。 根據本發明之第三態樣,提供一種從晶圓選取列印頭 積體電路之晶粒選取器,該選取器包含: 晶圓平台,具有位移致動器,以位移操作性接收該晶 圓之該平台; 選取器頭,具有真空機制,以從該晶圓提起該電路的 晶粒; φ 對準感測器,組態成偵測該晶圓上之該晶粒的位置; 以及 控制器,配置與該位移致動器控制信號通訊,該選取 器頭及該感測器輔助該晶圓與該選取器頭之對準,以及以 該頭從該晶圓選取該晶粒以運輸至運輸設備。 該位移致動器可包括附接至該平台的兩壓電馬達台, 以在該選取器頭下方的平面中移動該平台。該位移致動器 可包括旋轉軸馬達,組態成在該選取器頭下方旋轉該晶圓 ❹平台。 該晶圓平台可包括加熱器板,組態成加熱該晶圓以軟 化固持該晶粒至該晶圓的黏劑,具有保持該晶圓至該平台 的真空板。該對準感測器可包括具有透鏡轉接器與稜鏡的 相機,以聚焦於辨別該晶圓上的指標,以輔助該控制器對 準該選取器頭與該晶粒。 該控制器可根據預定的晶圓基底映照圖操作性執行一 組指令以對準該晶圓與該選取器頭。該選取器頭可包括加 熱器元件以在從該晶圓提起該晶粒之前加熱該晶粒,以軟 -8- 201009974 化固持該晶粒至該晶圓的黏劑。 根據本發明之第四態樣,提供佈置積體電路晶粒於載 具上的晶粒佈置組合,該組合包含: 支撐平台,具有夾鉗機制,組態成夾鉗該載具至該平 台上; 至少一相機,操作性被導向該平台以偵測該載具上的 對準基標; φ 佈置裝置,具有真空機制,以從供應機制擷取該晶 粒,該佈置裝置具有致動器以對準該晶粒與該載具且一旦 對準佈置該晶粒於其上,以及加熱器,在佈置於該載具上 之前加熱該晶粒;以及 控制器,操作性控制該夾鉗機制、該相機及該佈置裝 置,以輔助該晶粒於該載具上之正確的佈置。 較佳地,該積體電路晶粒爲噴墨列印頭晶粒。 該相機可包括相機模組,藉由轉接器管鍊接至該稜 9 鏡,以將該相機聚焦於測試床上。該支撐平台可包括由該 控制器所控制之氣控式操作的自水平平台。 該佈置裝置的該些致動器可包括三個步階器馬達,各 獨自分別負責該晶粒與該測試床的垂直、水平及角對準。 該佈置裝置的該些致動器可包括線性平移台,以垂直方向 移動該晶粒,以將該晶粒佈置在該測試床上。 該佈置裝置可包括熱氣吹送器,以在該佈置裝置佈置 該晶粒於該測試床上之前將熱氣導向該晶粒。該佈置裝置 可包括照明配置,以照亮該測試床以輔助該相機偵測該些 -9- 201009974 對準基標。 根據本發明之第五態樣,提供一種附接積體電路晶粒 至載具的方法,該方法包含: 掃描具有電路晶粒於其上之晶圓以定界個別的晶粒; 根據晶圓基底映照圖對準晶粒選取器頭與該晶圓上的 晶粒; 以該晶粒選取器頭從該晶圓移除該晶粒; 〇 運輸該晶粒至操作性定位該載具之佈置站; 對準該晶粒與該載具;以及 熱加合該晶粒至該載具。 較佳地,該積體電路晶粒爲噴墨列印頭晶粒。 較佳地,該掃描步驟包括以相機配置掃描該晶圓以辨 別該晶圓上的基標標記。 較佳地,該移除該晶粒的步驟包括加熱該晶圓並施加 真空至將被該晶粒選取器移除之個別晶粒。 • 較佳地,該運輸該晶粒的步驟包括存放該晶粒於組合 器的穿梭組合上,該穿梭組合可在接收晶粒的接收位置與 遞送晶粒至佈置組合的遞送位置之間位移。 較佳地,該對準該晶粒的步驟包括以相機配置掃描該 晶粒及該載具以辨別該晶粒與該載具兩者上的基標標記, 以及相對於該載具位移該晶粒直到該晶粒上的該些基標標 記相對於該載具之該些基標標記在預定位置中。 較佳地,該辨別該些基標標記的步驟包括以具有聚焦 透鏡之相機檢查該載具,以辨別該載具表面中之微小孔 -10- 201009974 徑,該些孔徑辨別爲該些基標標記。 較佳地,該個別步驟係由組合器之控制器所執行,該 組合器具有晶圓定位組合、晶粒選取組合、晶粒輸送機制 及晶粒佈置組合,以根據軟體產品中所包括的一組指令實 施此種步驟。 根據本發明之第六態樣,提供組合積體電路晶粒於載 具上之組合器的晶圓定位組合,該組合器具有含有操作性 φ 支撐具有晶粒於其上之晶圓的支撐組合之封閉體、從該晶 圓選取晶粒之晶粒選取組合、佈置該晶粒於該載具上的晶 粒佈置組合、從該些晶粒選取及佈置組合操作性輸送該晶 粒之晶粒輸送機制及控制該組合器的控制系統,該晶圓定 位組合包含: 佈置組合,具有含有第一台與第二台安裝於其上之底 板;以及 晶圓支撐板,旋轉式安裝在該第二台上,該支撐板組 • 合組態成接收該晶圓,且具有在該控制系統控制下的馬 達,以在該晶粒選取組合下方旋轉該支撐板組合。 較佳地,該積體電路晶粒爲噴墨列印頭晶粒。 較佳地,該第一台插置於該底板與該第二台之間,該 第一台沿著第一軸滑動式安裝在該底板上,該第二台沿著 與該第一軸正交之第二軸軸滑動式安裝在該第一台上。 較佳地,該組合具有互連該底板及該第一台之第一壓 電馬達,該第一馬達在該控制系統的控制下沿著該第一軸 位移該第一台。 -11 - 201009974 較佳地,該組合具有互連該第一台及該第二台之第二 壓電馬達,該第二馬達在該控制系統的控制下沿著該第二 軸位移該第二台。 較佳地,該晶圓支撐板組合包括旋轉式安裝至該第二 台的軸承桌,該晶圓支撐板組合具有夾在該第二台與該軸 承桌之間的軸承保持器以確保該晶圓支撐板組合在該第二 台上之平滑旋轉。 ‘ φ 較佳地,該晶圓支撐板組合包括旋轉銷,具有圍繞該 銷之壓縮彈簧,該壓縮彈簧提供該晶圓支撐板組合在該第 二台上之垂直運動的阻尼。 較佳地,該加熱器板安裝在該軸承桌上,具有間隔件 以提供該加熱器板與該軸承桌之間的熱隔離,真空板安裝 於該加熱器板上並固接至其。 較佳地,該真空板與該加熱器板兩者界定數個真空孔 徑,該些真空管連接至與該些真空管流體式交流之該加熱 Φ 器板的下側,該些管連接至真空歧管,該真空歧管連接至 該組合器的真空泵,該真空泵的操作保持該晶圓至該晶圓 板。 較佳地,該加熱器匣插置在該真空板與該加熱器板之 間,該加熱器匣連接至該組合器的熱氣供應器,使加熱器 板能夠加熱該晶圓。 較佳地,步階器馬達安裝在該第二台上,該步階器馬 達組合之電源螺桿從該步階器馬達延伸以正切方式嚙合該 晶圓支撐板組合。 -12- 201009974 較佳地,該電源螺桿之工作端固接至從軸承桌延伸之 連接器臂,使得電源螺桿的伸長與收縮令該晶圓支撐板組 合分別逆時鐘與順時鐘旋轉。 根據本發明之第七態樣,提供一種組合積體電路晶粒 於載具上之組合器的晶粒選取與提起頭,該組合器具有含 有操作性支撐具有晶粒於其上之晶圓的支撐組合之封閉 體、從該晶圓選取晶粒之晶粒選取組合、佈置該晶粒於該 〇 載具上的晶粒佈置組合、從該些晶粒選取及佈置組合操作 性輸送該晶粒之晶粒輸送機制及控制該組合器的控制系 統,該晶粒選取與提起頭包含: 第一平移台,安裝在該晶粒選取組合上,該第一平移 台可沿著相對於該支撐組合的垂直軸操作性位移; 第二平移台,安裝在該第一平移台上,該第二平移台 可沿著相對於該支撐組合的水平軸操作性位移;以及 晶粒選取器頭,安裝在該第二平移台上,該選取器頭 • 界定真空室及具有與該真空室流體式交流之真空孔徑的晶 粒接觸表面。 較佳地,該積體電路晶粒爲噴墨列印頭晶粒。 較佳地,該第一平移台包括在該控制系統控制下的步 階器馬達,該馬達具有線性編碼器,以提供該選取器頭之 位置反饋値給該控制系統。 較佳地,該線性編碼器配置在固接至該晶粒選取組合 的刻度帶附近,以輔助該線性編碼器產生該位置反饋値。 較佳地,該第二平移台包括固接至該第一台的一對微 -13- 201009974 米驅動器,以沿該水平軸位移該選取器頭,該些驅動器係 在該控制系統的控制下。 較佳地,該晶粒選取器頭包括設置在位在該晶粒接觸 表面上之該些真空孔徑的個別側上之一對密封條,以輔助 將被提起之晶粒與該晶粒接觸表面之間的真空之產生。 較佳地,該晶粒選取與提起頭具有固接至該真空體之 真空管,該管連接至真空泵,該真空泵在該控制系統的控 φ 制下組態成當該接觸表面觸碰晶粒時在該室中產生真空。 較佳地,該加熱器匣設置在該真空體中並連接至熱氣 供應器以加熱該晶粒接觸表面,熱電耦連接至該接觸表面 以感測其之溫度並通報該感測到的溫度給該控制系統。 根據本發明之第八態樣,提供一種組合積體電路晶粒 於載具上之組合器的晶粒佈置組合之佈置頭,該組合器具 有含有操作性支撐具有晶粒於其上之晶圓的支撐組合之封 閉體、從該晶圓選取晶粒之晶粒選取組合、佈置該晶粒於 9 該載具上的晶粒佈置組合、從該些晶粒選取及佈置組合操 作性輸送該晶粒之晶粒輸送機制及控制該組合器的控制系 統,該佈置頭包含= 第一平移台,安裝在該晶粒佈置組合上,該第一平移 台可沿著相對於該晶粒佈置組合的第一軸操作性位移; 第二平移台,安裝在該第一平移台上,該第二平移台 可與該第一台正交地位移; 第三平移台,安裝在該第二平台上,該第三台與該些 第一及第二台直角地位移;以及 -14- 201009974 晶粒佈置頭,安裝在該第三平移台上,調整該佈置器 頭之形狀與尺寸以操作性接收來自該晶粒輸送機制的晶粒 並佈置該晶粒於該載具上。 較佳地,該積體電路晶粒爲噴墨列印頭晶粒。 較佳地,該佈置頭具有角馬達,安裝經過該第三台而 與該晶粒佈置頭接觸,使得由該控制系統對該角馬達的致 動導致該晶粒佈置頭圍繞其中該第二台平移的軸角樞轉。 φ 較佳地,該佈置頭具有固接至該第三台的角運動彈 簧,該彈簧組態成逆著由該角馬達所提供的角運動而偏置 該佈置器。 較佳地,該佈置頭具有佈置頭安裝區塊組合,其包括 安裝板,該佈置頭經由該安裝板固接至該晶粒佈置組合的 框架之直立部。 較佳地,該佈置頭具有經由托架組合固接至該區塊組 合之第一台步階器馬達,該第一台步階器馬達具有操作性 Φ 嚙合該第一台之推桿,以沿著第一軸相關於該區塊組合推 動該第一台。 較佳地,該佈置頭具有經由托架組合固接至該第一台 之第二台步階器馬達,推動托架固接至該第二台並經由壓 縮彈簧嚙合該第二台步階器馬達的推桿,該線性編碼器安 裝在該第一台上,其中刻度帶固接至該第二台,將由該線 性編碼器讀取該刻度帶以提供沿著該第二軸之位置反饋給 該控制系統。 較佳地,該佈置頭具有一對第三台微米驅動器,安裝 -15- 201009974 在該第二台上並嚙合該第三台以提供該第三台之調整,該 些微米驅動器在該控制系統的控制下。 較佳地,該晶粒佈置器頭界定與真空管流體式交流的 孔徑,該真空管連接至該組合器的真空泵,調整該孔徑之 形狀與尺寸以接收來自該晶圓的晶粒,由該真空泵將該晶 粒操作性固持於該孔徑中。 根據本發明之第十態樣,提供一種組合列印頭積體電 φ 路於載具上之組合器的夾鉗組合,該組合器具有含有操作 性支撐具有晶粒於其上之晶圓的支撐組合之封閉體、從該 晶圓選取晶粒之晶粒選取組合、佈置該晶粒於該載具上的 晶粒佈置組合、從該些晶粒選取及佈置組合操作性輸送該 晶粒之晶粒輸送機制及控制該組合器的控制系統,該夾鉗 組合包含: 長型夾具體,該夾具體塑形並組態成被該晶粒佈置組 合所容納; Ο 一對長型保持板,安裝在該夾具體的上方; 插件,調整其之形狀與尺寸以在該些板下方被該夾具 體容納,該插件操作性容納該載具;以及 隔膜,位在該夾具體中,該隔膜可氣控式位移以操作 性驅策該插件抵靠該些保持板。 該插件可包括數個定位暗榫,互補式嚙合界定在該載 具中的關連孔徑,以確保正確地定位該載具。 該插件可滑動式容納於該夾具體中,該夾具體包括在 其一端之插件止件,具有近接開關安裝在該止件上並組態 -16- 201009974 成當該插件抵達該止件時產生信號給該控制系統。 該些板可安裝在該夾具體上以界定足夠寬度之接取間 隙,以允許透過該間隙定位該列印頭積體電路於該載具 上。 該夾具體可包括氣控配件並界定氣控室,以輔助經由 該組合器之氣控系統的隔膜之氣控致動。 該夾鉗組合可包括固接至該插件的把手,以輔助將載 φ 具操縱至該些夾鉗板之間的位置中。 根據本發明之第十實施例,提供一種供處理器執行的 軟體產品,該軟體產品具有指令,其組態成使該處理器執 行上述方法的步驟。 根據本發明之第十一實施例,提供一種電腦可讀取媒 體,操作性儲存由處理器所執行的軟體產品,該軟體產品 具有指令,其組態成使該處理器執行上述方法的步驟。 【實施方式】 將參照特定本發明的特定實施例來討論本發明之態 樣。以包括性而非限制性地方式作出對於「實施例」或 「一實施例」的參照。依此,對於出現在一實施例中的特 定特徵之參照不排除其他實施例具有那些特徵。 下列說明意圖輔助熟悉此技藝人士來了解本發明。因 此,並未詳述此技藝中常見之特徵,因具此技藝人士能輕 易了解這些特徵。 -17- 201009974 槪觀 廣義而言,本發明有關於在測試床或載具上之列印頭 積體電路的組合。組合典型包含從晶圓移除晶粒並將晶粒 以高準確度佈置於載具或測試床上。 列印頭積體電路包括一系列的列印頭積體電路 (1C),其具有將墨水微滴射在列印表面上之複數微電機 械噴嘴配置。1C界定導往個別噴嘴之數個微小墨水入口, Φ 這些入口配置成與墨水分佈組合流體式交流。墨水分佈組 合流體式負責饋送墨水至1C。第1圖顯示晶圓6之一範 例。如所示,晶圓6包括複數列印頭1C或晶粒8於其 上。晶圓6爲各種1C製造中長件的鈾刻與微影程序的產 物。 爲了測試列印頭1C,將各個1C安裝至載具,其界定 數條繚繞的墨水路徑以形成此種墨水分佈組合。墨水路徑 以微小墨水出口終止於載具的表面中。在1C之墨水入口 及墨水出口的微小尺寸的情況下,1C與載具之準確與精確 地對準非常重要。本發明提供用來準確固接1C至載具的 組合器及相關設備與技術。 載具10 第2圖顯示此一載具10的一實施例。可理解到在此 參照的載具、測試床、底座組合、載具次組合、液晶聚合 物(LCP )組合或平台次結構10用語皆參照至由參考符號 10所指示的相同元件。載具10 —般爲兩液晶聚合物 -18- 201009974 (LCP)微模具lla與lib的組合。微模具11界定複數離 散繚繞墨水路徑’以從墨水槽(未圖示)輸送墨水到列印 頭積體電路(未圖示)。 因此,載具或測試床1 〇用來在量產1 c前測試此種列 印頭積體電路(1C)之原型的操作。在這些列印頭1C的 操作的前提下,一般需在載具10中所界定的繚繞墨水路 徑及IC的流體入口之間建立密封。因此,本發明人發現 ❹ 藉由以疊層薄膜12疊層載具10,可當1C固接至載具10 時在載具1 〇與1C之間建立此一流體緊密的密封。這輔助 至列印頭1C的流體緊密之墨水供應。 通過載具10的墨水路徑典型在載具10的表面中以基 標孔徑或「基標」14終止,如第1圖中所示。因此需將 1C佈置在載具10上而不阻擋或阻礙這些基標14,否則墨 水將無法流經載具1 〇至列印頭1C。具有疊層1 4之載具 10的一範例係顯示在第2圖中。很清楚地顯示出基標12 • 沒有被阻擋以確保適當的墨水供應。 載具10亦在其個別之相對端界定兩個位置開口 13, 如所示。位置開口 13的目的在於將1C佈置於載具上10 之前準確地固定並對準載具10。亦包括載具基標15以在 固接1C於載具10上之前輔助載具1〇的對準。 組合器之槪觀 在第3圖中’顯示根據本發明之一實施例的列印頭組 合機器或組合器16的一實施例。實體上,列印頭組合機 •19- 201009974 器16包括支撐組合或結構24’界定具有支撐框架27與側 窗板29的主封閉體25,如所示。側板29典型爲透明的, 以允許組合器1 6之操作者可看到裡面的運作。顯示前板 32,並顯現出可透過其看到之內部構件,如所示。 組合器1 6的內部構件包括晶粒選取組合或晶粒選取 器1 8、根據本發明之一實施例的晶圓定位組合1 7、根據 本發明之一實施例的運輸設備或晶粒輸送機制20、根據本 φ 發明之一實施例的晶粒佈置組合22。 支撐結構包括在封閉體25中之由支撐框架27所支撐 的自水平光學桌26。晶粒選取組合18安裝在光學桌26上 並於下詳述。晶粒選取組合1 8組態成從載入封閉體25之 中的晶圓6選取晶粒。封閉體的板典型爲可滑動以輔助晶 圓6及載具10的此種載入。晶粒佈置組合22亦安裝在光 學桌26上並於下詳述。晶粒佈置組合22組態成將晶粒8 佈置於載具1 〇上。 β 晶粒輸送機制或穿梭運輸組合20插置於晶粒選取組 合18及晶粒佈置組合22之間。晶粒輸送機制20包括高 架樑1 1 4,容後詳述。晶粒輸送機制20組態成從晶粒選取 組合18接收晶粒並運輸晶粒到晶粒佈置組合22。晶粒輸 送機制20包括安裝在光學桌26上的運輸或穿梭高架28。 高架28從晶粒選取組合1 8延伸至晶粒佈置組合22。 觸碰板PC 34安裝在機殼24的框架上並且設置成可 由操作者接取。控制板36亦安裝在可由操作者接取的框 架上。光信標35亦安裝在封閉體24上以顯示組合器16 -20- 201009974 的操作狀態。觸碰板PC 34與控制板36 — 介面,藉此操作者可監視並控制組合器1 6 可理解到組合器大部分的功能可由控制器或 與控制,如後述,其包括可編程邏輯控制器 操作者介面允許操作者開始與停止組合器1 ί 階控制。 離子棒40位在封閉體24中,連同高 φ (ΗΕΡΑ)風扇/過濾器配置42以達成封閉 境。電性封閉體44安裝於支撐框架上並且 合機器1 6之操作用的各種電性構件,容後ί 亦包括封閉列印頭組合機器1 6之操作用的 之氣控封閉體46。 晶粒選取組合18 茲參照第4圖,晶粒選取組合18的目 • 選取清單從晶圓6選取晶粒,晶圓6操作性 撐板組合63,並提起晶粒與佈置其在穿核 中。 晶粒選取組合18包括安裝在光學桌26 岩塊的形式的區塊安裝件50。區塊50典型 示。晶圓定位組合48安裝在區塊50上。 晶圓支撐板組合6 3使晶圓可藉由真空 上。加熱器板71用來在PLC 38的控制下g 加熱晶圓6,以鬆開將晶粒或1C 8保持至晶 起構成操作者 的運作。然而 控制系統監視 :(PLC ) 38。 >,並有額外低 效率粒子空氣 體中適當的環 封閉列印頭組 次述。機殻24 各種氣控構件 的爲根據預定 固定至晶圓支 運輸組合20 上之具有花崗 爲矩形,如所 而保持在位置 莖由熱電耦79 圓的黏劑,使 -21 - 201009974 晶粒選取與提起頭7 8能夠從晶圓6選取一晶粒。亦在 塊50上安裝挑選頭高架80。 如所示,高架80包括安裝在區塊50的相反角落之 對相反的高架柱8 1。高架80橫跨晶圓定位組合1 8並以 當的托架支撐晶粒選取與提起頭78。頭78包括一對間 的晶圓相機與光學組合82。該組合82連接至PC 34, 組態成接收代表晶圓6的影像資料並控制晶圓支撐板組 〇 63的移動,以將接續的晶粒8與頭78對準。並包括晶 劃線讀取器1 0 0。 將於下詳述個別的組合。 晶圓定位組合48 在第5圖中詳細顯示之晶圓定位組合48包括安裝 區塊50上之底件或板52。位移組合54安裝在底板 上。位移組合54包括兩個台56與58,其中第一台56 • 置於底板52與第二台58之間。 第一台56相對於底件52沿著第一或U軸位移。第 壓電馬達60互連底板52與第一台56。因此,第一壓電 達60相關於底板52沿著V軸位移第一與第二台。第二 電馬達62互連底板52與第一台56。因此,第二壓電馬 62相關於第一台56沿著ϋ軸位移第二台58。 壓電馬達60與62連接至PLC 36 ’具有後述之適 的控制器以控制壓電馬達之操作。於後詳述PLC 3 6及 操作方式。 區 適 隔 其 合 圓 在 52 插 馬 壓 達 當 其 -22- 201009974 晶圓支撐板組合63 晶圓支撐板組合63旋轉式安裝在第二台58上。晶圓 支撐板組合63具有旋轉式安裝在第二台58上方的底板64 上之軸承桌69(第6圖)。晶圓支撐板組合63包括夾在 板64與軸承桌69之間的軸承保持器65,以確保晶圓支撐 板組合63的平順旋轉。晶圓支撐板組合63包括具有壓縮 彈簧61的旋轉銷67,晶圓支撐板組合63可在底板64上 圍繞其旋轉。壓縮彈簧61提供晶圓支撐板組合63之垂直 移動的阻尼。 加熱器板71安裝在軸承桌69上,具有熱隔離用的間 隔件75 (第7圖)。軸承桌69則安裝在底板64上。真空 板76安裝並固接至加熱器板71。真空板與加熱器板兩者 界定數個真空孔徑59。數個真空管57連接至與真空孔徑 59流體式交流之加熱器板7 1的下側,如所示。管子5 7連 0 接至真空歧管55,其連接至容置在氣控封閉體46中之真 空泵472,如後述。供應管77將真空泵472與歧管55連 接,如所示。控制真空栗472之操作使得當在真空板76 上定位晶圓時,晶圓可藉由真空泵472所產生的真空保持 在位置上。 加熱器匣74插置於真空板76與加熱器板71之間。 加熱器匣74連接至熱氣供應器’使得在使用中加熱器板 7 1可加熱晶圓6以鬆開將晶粒或IC 8持定至晶圓6的黏 劑。熱電耦79連接至加熱器板71並操作性連接至具有控 -23- 201009974 制器的PLC 3 8 (如後述),以使用具有控制器的PLC 3 8 經由加熱器匣74控制加熱器板7 1的溫度。 步階器馬達組合66安裝在第二台58上。步階器馬達 組合66之電源螺桿68從步階器馬達組合延伸並以正切方 式嚙合晶圓支撐板組合63。尤其,並可從第7圖見到,連 接器臂83固接至加熱器板71並自其徑向延伸。電源螺桿 68之工作端固接至連接器臂83,使得電源螺桿68之伸長 φ 與收縮導致在圖中所示的實施例中之晶圓支撐板組合63 分別逆時鐘與順時鐘地旋轉。電源螺桿68穿過從第二台 58延伸之螺桿板70。彈簧72固接在螺桿板70與連接器 臂83之間。因此,晶圓支撐板組合63可在電源螺桿68 的操作下在一方向中旋轉,並在彈簧作用下以相反方向旋 轉。步階器馬達組合66亦連接至具有適當控制器的PLC 38,以控制步階器馬達組合66之操作。電箱85輔助至後 述之PLC 38及控制器之構件的個別電連結。 • 晶粒選取與提起頭78 在第8至11圖中更詳細顯示晶粒選取與提起頭78。 晶粒選取與提起頭78包括固接至托架87的架座89,並相 對於托架8 7沿著Z軸(操作性垂直)位移。架座8 9與托 架8 7組態成使得架座8 9與托架8 7的位移爲線性,架座 89界定線性平移台92。線性編碼器94提供所需之位置Z 軸反饋値,其係由至PLC 38的刻度帶103所促成(第1〇 圖)。亦包括垂直步階器馬達96,固接至托架87並嚙合 -24- 201009974 架座89,以在PLC 38的控制下使用來自線性編碼$ 的位置反饋値沿著Z軸位移晶粒選取器頭。 選取器頭板97附接至架座89。選取器頭板97與 89組態成使得選取器頭板97相關於架座89沿著 (操作性垂直)位移。驅動托架99固接至架座89。 微米驅動器98固接至托架99並嚙合選取器頭板97 著X軸位移選取器頭板97。驅動器98連接至PLC : ❹ 在PLC 38的控制下位移選取器頭板97。因此,可在 38的控制下藉由步階器馬達96與微米驅動器98以兩 由度調整選取器頭板97。 晶粒選取器頭91 (在第11圖中更詳細顯示)經 架101固接至選取器頭板97,並具有界定真空室的真 84。真空體84具有晶粒接觸表面86,組態成接觸將 空板76上的晶圓6提起的晶粒。晶粒接觸表面86界 列真空孔徑91,其與真空體84的真空室流體式交流 • 對密封條93設置在真空孔徑列9 1的個別側上,以在 起之晶粒與晶粒接觸表面86間輔助真空的產生。 真空管88固接至真空體84並連接至真空泵,在 38的控制下,當接觸表面86接觸晶粒時在室內產 空。加熱器匣90設置在真空體84中並連接至熱氣供 以加熱表面86。熱電耦95連接至表面86以感測其之 並將感測的溫度通報給控制器(容後詳述)。控制器 態成以閥來控制至匣90的熱氣供應,以產生足夠的 以輔助晶粒從真空板76上的晶圓之分離。 H 94 架座 X軸 一對 以沿 18以 PLC 個自 由托 空體 從真 定一 〇 « 待提 PLC 生真 應器 溫度 則組 熱量 -25- 201009974 相機與光學組合82 第12圖顯示相機與光學組合82的一實施例。在此實 施例中,相機組合82安裝在固接至高架80 (第4圖)的 相機托架85上。從第12圖中可見到,各相機組合82包 括相機102。適合之相機爲由聯盟視覺(Allied Vision) 所製造的具有百萬畫素索尼(Sony) 2/3”型累進CCD陣列 ❹ 的 IEEE1 394 SXGA+ C-座相機(AVT F-131B)。 相機102安裝在具有2X透徑轉接器的轉接器管104 的末端。本體管106則安裝在轉接器管104上。本體管 106具有T件的形式,並含有具有冷卻散熱器110的LED 組合108以照明晶圓6。相機組合82亦包括棱鏡1 12,配 至在本體管106的一端。相機組合82組態成爲PLC 38產 生晶圓6之部分的影像。相機組合82連接至觸碰板PC 34,使影像可顯示在PC 34的螢幕上(容後詳述)。PC # 34編程成辨別晶圓基標標記,並因此根據晶圓地圖輔助選 取器頭78的定位。這允許軟體控制組合器1 6以使用晶圓 地圖辨別與選擇晶圓6上的個別晶粒。 晶圓劃線讀取器100 晶圓劃線讀取器100 (第4圖)亦安裝在高架80上。 晶圓劃線讀取器100組態成使用光學符號識別來讀取裝載 於晶圓支撐板組合63上的晶圓6上之晶圓辨別碼。晶圓 辨別碼與合適提起之晶粒8的位置及用來從晶圓提起晶粒 -26- 201009974 的控制軟體關連。 晶圓劃線讀取器100操作性連接至PC 34。201009974 IX. Description of the Invention [Technical Field of the Invention] The present invention generally relates to a combination of print head integrated circuit components. DETAILED DESCRIPTION OF THE INVENTION The present invention provides a combiner for assembling a printhead integrated circuit on a carrier and a method of association. [Prior Art] A page wide printer containing a microelectromechanical member typically has a print head integrated circuit 'which includes a base of a microelectromechanical nozzle configuration with a large number of densely arranged. Each nozzle configuration is responsible for emitting a stream of ink droplets. In order for this printer to accurately print and maintain quality, it is important to test the print head integrated circuit. This is especially important during the design and development of such integrated circuits. Testing such integrated circuits generally requires some form of platform or carrier. According to a first aspect of the present invention, a combiner for combining a print head die on a carrier is provided, the combiner comprising: a support combination; a wafer positioning assembly disposed in the support combination And configured to hold and position the wafer, the wafer containing the print head die selected from the wafer; a die selection combination disposed on the support assembly and configured to be selected from the wafer a pre-selected print head die; a die arrangement combination disposed on the support assembly and configured to receive -5 - 201009974 the pre-selected print head die and to place the die on the carrier a die transport mechanism disposed on the support assembly and configured to selectively transport the die from the die to the die arrangement combination; and a control system operatively engaging the wafer location, die selection, The grain arrangement and the grain transfer combination are used to control the operation thereof. The support assembly can include an optical table and a block mount positioned on the optical table, the wafer positioning assembly being located on the block mount, and the support member configured to support the die selection combination The wafer is positioned above the assembly. The wafer positioning assembly may include a base member mounted on the block and first and second stages mounted on the base member, the first table being interposed between the base member and the second stage and Comparing the base member along the first linear axis, the second stage is displaceable relative to the first stage along a second linear axis orthogonal to the first linear axis, and the wafer support assembly is located On the second stage, the wafer support assembly is configured to support the wafer by rotating about a rotational axis that is orthogonal to both the first and second linear axes. • the die selection combination includes a carrier combination that is fastened in combination with the support and that can be displaced in combination with the support assembly toward or away from the wafer, on the carrier combination and configured to A die pick and lift head that engages the preselected die when the position is lowered and releases the preselected die when the carrier is assembled in the raised position. The die transport mechanism can include an elevated combination of elevated members positioned across the support assembly and configured to receive and support the predetermined predetermined die mounted on the elevated member and compared A shuttle combination in which the elevated member receives a displacement between the receiving position of the die released by the die selection combination and a transport position in which the -6-201009974 die is transported to the arrangement. According to a second aspect of the present invention, there is provided a transport apparatus for transporting a component of an integrated circuit from a receiving location to a delivery location in an integrated circuit assembly machine. The transport apparatus includes: a support structure defining a transport path between the locations a component carrier defining a receiving zone retention mechanism configured to receive the component of the integrated circuit, the component carrier being disposed on the component carrier to maintain the component of the integrated circuit in the receiving zone in position, the retention mechanism operable To release the member at the delivery position; and a displacement mechanism engaged with the member carrier to displace the member carrier along the transport path. The support structure can include a support arm extending between the receiving and delivery positions, the transport path being linear, the displacement mechanism including a linear motor disposed on the support arm. The component carrier can include a shuttle plate defined by a vacuum plate disposed on the shuttle plate, the retention mechanism including a gel block that holds the member of the integrated circuit. The component carrier can include a vacuum tube configured to fluidly communicate with the vacuum plate, the vacuum tube configured to fluidly communicate with the vacuum pump, the vacuum pump can be operated to draw air through an aperture defined in the vacuum plate to operatively maintain the integrated circuit The member to the vacuum plate. The displacement mechanism can include a linear motor disposed on the support structure, 201009974. The linear motor is configured to displace the component carrier along the transport path. According to a third aspect of the present invention, a die picker for selecting a printhead integrated circuit from a wafer is provided, the picker comprising: a wafer platform having a displacement actuator for receiving the wafer with displacement operability a platform; a picker head having a vacuum mechanism to lift the die of the circuit from the wafer; a φ alignment sensor configured to detect a position of the die on the wafer; and a controller Configuring communication with the displacement actuator control signal, the picker head and the sensor assisting alignment of the wafer with the picker head, and picking the die from the wafer for transport to transport device. The displacement actuator can include two piezoelectric motor stages attached to the platform to move the platform in a plane below the picker head. The displacement actuator can include a rotary shaft motor configured to rotate the wafer crucible platform below the picker head. The wafer platform can include a heater plate configured to heat the wafer to soften the die to the wafer, with a vacuum plate holding the wafer to the platform. The alignment sensor can include a camera having a lens adapter and a beak to focus on identifying an index on the wafer to assist the controller in aligning the picker head with the die. The controller can operatively perform a set of instructions to align the wafer with the picker head based on a predetermined wafer base map. The picker head can include a heater element to heat the die prior to lifting the die from the wafer to hold the die to the paste in a soft -8-201009974. According to a fourth aspect of the present invention, there is provided a die arrangement for arranging an integrated circuit die on a carrier, the combination comprising: a support platform having a clamping mechanism configured to clamp the carrier to the platform At least one camera operatively directed to the platform to detect an alignment mark on the carrier; a φ arrangement having a vacuum mechanism to extract the die from a supply mechanism, the arrangement having an actuator Aligning the die with the carrier and arranging the die thereon in alignment, and heating the die prior to being disposed on the carrier; and a controller operatively controlling the clamping mechanism, The camera and the arrangement are arranged to assist in the proper placement of the die on the carrier. Preferably, the integrated circuit die is an ink jet print head die. The camera can include a camera module that is linked to the prism by an adapter tube to focus the camera on the test bed. The support platform can include a self-leveling platform that is pneumatically operated by the controller. The actuators of the arranging device may include three stepper motors each independently responsible for vertical, horizontal and angular alignment of the die with the test bed. The actuators of the arranging device can include a linear translation stage that moves the dies in a vertical direction to position the dies on the test bed. The arranging device can include a hot gas blower to direct hot gases to the die prior to arranging the die on the test bed. The arranging device can include an illumination configuration to illuminate the test bed to assist the camera in detecting the -9-201009974 alignment targets. According to a fifth aspect of the present invention, a method of attaching an integrated circuit die to a carrier is provided, the method comprising: scanning a wafer having a circuit die thereon to delimit individual dies; A substrate map is aligned with the die picker head and the die on the wafer; the die is removed from the wafer by the die picker head; and the die is transported to an operationally positioned arrangement of the carrier Standing; aligning the die with the carrier; and thermally adding the die to the carrier. Preferably, the integrated circuit die is an ink jet print head die. Preferably, the scanning step includes scanning the wafer in a camera configuration to identify a landmark mark on the wafer. Preferably, the step of removing the die comprises heating the wafer and applying a vacuum to individual dies that are to be removed by the die picker. • Preferably, the step of transporting the die comprises storing the die on a shuttle combination of the combiner, the shuttle combination being displaceable between a receiving position of the receiving die and a delivery position of the delivery die to the arrangement. Preferably, the step of aligning the die comprises scanning the die and the carrier in a camera configuration to identify a base mark on both the die and the carrier, and displacing the crystal relative to the carrier The particles are up to the base marks on the die in a predetermined position relative to the base marks of the carrier. Preferably, the step of distinguishing the base marks comprises inspecting the carrier with a camera having a focusing lens to discriminate the micro holes -10- 201009974 in the surface of the carrier, the apertures being identified as the base labels mark. Preferably, the individual steps are performed by a controller of the combiner having a wafer positioning combination, a die selection combination, a die transfer mechanism, and a die arrangement combination to include one included in the software product. The group instructions implement such steps. According to a sixth aspect of the present invention, there is provided a wafer positioning assembly of a combiner for combining an integrated circuit die on a carrier, the combiner having a support combination comprising an operational φ support having a wafer having a die thereon a closed body, a combination of crystal grains from which the crystal grains are selected, a combination of grain arrangements for arranging the crystal grains on the carrier, and operatively transporting the crystal grains of the crystal grains from the plurality of crystal grains a transport mechanism and a control system for controlling the combiner, the wafer positioning assembly comprising: a layout combination having a bottom plate on which the first and second stages are mounted; and a wafer support plate rotatably mounted on the second On the stage, the support plate set is configured to receive the wafer and has a motor under control of the control system to rotate the support plate assembly below the die selection combination. Preferably, the integrated circuit die is an ink jet print head die. Preferably, the first stage is interposed between the bottom plate and the second stage, and the first stage is slidably mounted on the bottom plate along a first axis, the second stage being along the first axis A second shaft is slidably mounted on the first stage. Preferably, the combination has a first piezoelectric motor interconnecting the bottom plate and the first stage, the first motor displacing the first stage along the first axis under the control of the control system. -11 - 201009974 Preferably, the combination has a second piezoelectric motor interconnecting the first stage and the second stage, the second motor displacing the second along the second axis under the control of the control system station. Preferably, the wafer support plate assembly includes a bearing table rotatably mounted to the second stage, the wafer support plate assembly having a bearing holder sandwiched between the second stage and the bearing table to ensure the crystal The circular support plate combines smooth rotation on the second stage. Preferably, the wafer support plate assembly includes a rotating pin having a compression spring surrounding the pin that provides damping of the vertical movement of the wafer support plate combination on the second stage. Preferably, the heater plate is mounted on the bearing table with a spacer to provide thermal isolation between the heater plate and the bearing table to which the vacuum plate is mounted and secured thereto. Preferably, the vacuum plate and the heater plate define a plurality of vacuum apertures connected to the underside of the heating Φ plate in fluid communication with the vacuum tubes, the tubes being connected to the vacuum manifold The vacuum manifold is coupled to a vacuum pump of the combiner that operates to hold the wafer to the wafer. Preferably, the heater is interposed between the vacuum plate and the heater plate, and the heater is connected to the hot gas supply of the combiner to enable the heater plate to heat the wafer. Preferably, the stepper motor is mounted on the second stage, and the power screw of the stepper motor combination extends from the stepper motor to tangentially engage the wafer support plate assembly. Preferably, the working end of the power screw is secured to the connector arm extending from the bearing table such that the extension and contraction of the power supply screw causes the wafer support plate assembly to rotate counterclockwise and clockwise, respectively. According to a seventh aspect of the present invention, there is provided a die selection and lift head for a combiner for combining an integrated circuit die on a carrier, the combiner having a wafer having an operative support having a die thereon Supporting the combined enclosure, selecting a combination of crystal grains from the wafer, arranging a combination of grain arrangements of the die on the crucible carrier, operatively transporting the die from the die selection and arrangement a die transport mechanism and a control system for controlling the combiner, the die selection and lifting head comprising: a first translation stage mounted on the die selection combination, the first translation stage being combinable relative to the support a vertical axis operative displacement; a second translation stage mounted on the first translation stage, the second translation stage being operatively displaceable along a horizontal axis relative to the support combination; and a die picker head mounted on On the second translation stage, the picker head defines a vacuum chamber and a die contact surface having a vacuum aperture for fluid communication with the vacuum chamber. Preferably, the integrated circuit die is an ink jet print head die. Preferably, the first translation stage includes a stepper motor under control of the control system, the motor having a linear encoder to provide position feedback to the control system. Preferably, the linear encoder is disposed adjacent to the scale band of the die selection combination to assist the linear encoder in generating the position feedback. Preferably, the second translation stage includes a pair of micro-13-201009974 meters of drivers fixed to the first stage to displace the picker head along the horizontal axis, the drives being under the control of the control system . Preferably, the die picker head includes a pair of sealing strips disposed on individual sides of the vacuum apertures on the die contact surface to assist in contact of the lifted die with the die The creation of a vacuum between them. Preferably, the die selection and lifting head has a vacuum tube fixed to the vacuum body, the tube is connected to a vacuum pump, and the vacuum pump is configured under the control system of the control system when the contact surface touches the die A vacuum is created in the chamber. Preferably, the heater is disposed in the vacuum body and connected to the hot gas supply to heat the die contact surface, and the thermocouple is coupled to the contact surface to sense the temperature thereof and notify the sensed temperature to The control system. According to an eighth aspect of the present invention, there is provided a arrangement head for combining a die arrangement of a combiner circuit die on a carrier, the combiner having a wafer having an operative support having a die thereon The combination of the support assembly, the combination of the crystal grains from the wafer, the combination of the crystal grains arranged on the carrier, and the operative operation of the crystal from the die selection and arrangement a grain transfer mechanism of the grain and a control system for controlling the combiner, the arrangement head comprising a first translation stage mounted on the die arrangement, the first translation stage being combinable along a layout relative to the die arrangement a first axis operative displacement; a second translation stage mounted on the first translation stage, the second translation stage being displaceable orthogonally to the first stage; a third translation stage mounted on the second platform The third stage is displaced at right angles to the first and second stages; and a-14-201009974 die placement head is mounted on the third translation stage to adjust the shape and size of the arrangement head for operative reception Crystal of the grain transport mechanism And the die is disposed on the carrier. Preferably, the integrated circuit die is an ink jet print head die. Preferably, the arrangement head has an angle motor mounted through the third stage in contact with the die placement head such that actuation of the angular motor by the control system causes the die placement head to surround the second stage The translational pivot angle is pivoted. Preferably, the arrangement head has an angular motion spring affixed to the third stage, the spring being configured to bias the arranging against angular motion provided by the angle motor. Preferably, the arrangement head has a head mounting block assembly that includes a mounting plate that is secured to the upright portion of the frame of the die arrangement combination via the mounting plate. Preferably, the arrangement head has a first stepper motor fixed to the block combination via a bracket assembly, the first stepper motor having operability Φ to engage the first stage push rod to The first axis drives the first station in relation to the block combination. Preferably, the arrangement head has a second stepper motor fixed to the first stage via a bracket assembly, the push bracket is fixed to the second stage and the second stage motor is engaged via a compression spring a pusher, the linear encoder being mounted on the first stage, wherein the scale band is secured to the second stage, the scale band being read by the linear encoder to provide feedback to the control along the position of the second axis system. Preferably, the arrangement head has a pair of third micro-drives mounted on the second stage and engaging the third stage to provide adjustment of the third stage, the micro-drives in the control system Under the control. Preferably, the die arranging head defines an aperture for fluid communication with the vacuum tube, the vacuum tube being coupled to the vacuum pump of the combiner, the shape and size of the aperture being adjusted to receive dies from the wafer, by which the vacuum pump will The die is operatively held in the aperture. According to a tenth aspect of the present invention, there is provided a clamp assembly for combining a printhead integrated body with a combiner on a carrier, the combiner having a wafer having an operative support having a die thereon Supporting the combined enclosure, selecting a combination of crystal grains from the wafer, arranging a combination of grain arrangements on the carrier, and operatively transporting the die from the die selection and arrangement a die transport mechanism and a control system for controlling the combiner, the clamp combination comprising: a long profile, the clamp being specifically shaped and configured to be received by the die arrangement; Ο a pair of elongated retaining plates, Mounted above the clip; the insert is adjusted in shape and size to be specifically received by the clip under the plates, the insert operatively receives the carrier; and a diaphragm positioned in the clip, the diaphragm The pneumatically controlled displacement operatively urges the insert against the retaining plates. The insert may include a plurality of positioning tabs that complement the associated apertures defined in the carrier to ensure proper positioning of the carrier. The insert is slidably received in the clip, the clip specifically includes a plug stop at one end thereof, a proximity switch is mounted on the stop and configured - 16-201009974 to be generated when the insert arrives at the stop Signal to the control system. The plates are mountable on the clip to define an access gap of sufficient width to allow the printhead integrated circuit to be positioned over the carrier through the gap. The clip may specifically include a pneumatic control fitting and define a pneumatic control chamber to assist in the pneumatic actuation of the diaphragm of the pneumatic control system via the combiner. The clamp assembly can include a handle secured to the insert to assist in maneuvering the load bearing member into position between the clamp plates. According to a tenth embodiment of the present invention, there is provided a software product for execution by a processor, the software product having instructions configured to cause the processor to perform the steps of the above method. According to an eleventh embodiment of the present invention, there is provided a computer readable medium operatively storing a software product executed by a processor, the software product having instructions configured to cause the processor to perform the steps of the above method. [Embodiment] The aspect of the present invention will be discussed with reference to specific embodiments of the present invention. References to "embodiments" or "an embodiment" are made by way of limitation and not limitation. Accordingly, references to specific features that appear in an embodiment do not exclude those features in other embodiments. The following description is intended to assist those skilled in the art to understand the invention. Therefore, features that are common in the art are not detailed, as those skilled in the art can readily understand these features. -17- 201009974 OVERVIEW In a broad sense, the invention relates to a combination of a print head circuit on a test bed or carrier. The combination typically involves removing the die from the wafer and placing the die on the carrier or test bed with high accuracy. The print head integrated circuit includes a series of print head integrated circuits (1C) having a plurality of micro-electromechanical nozzle configurations for injecting ink droplets onto the print surface. 1C defines a number of tiny ink inlets that are directed to individual nozzles, Φ which are configured to be in fluid communication with the ink distribution. The ink distribution combination fluid is responsible for feeding the ink to 1C. Figure 1 shows an example of a wafer 6. As shown, wafer 6 includes a plurality of print heads 1C or die 8 thereon. Wafer 6 is a product of various uranium engraving and lithography procedures for the manufacture of medium and long pieces in 1C. To test the print head 1C, each 1C is mounted to a carrier that defines a plurality of winding ink paths to form such an ink distribution combination. The ink path terminates in the surface of the carrier with a tiny ink outlet. In the case of the 1C ink inlet and the small size of the ink outlet, it is important that the 1C is accurately and accurately aligned with the carrier. The present invention provides a combiner and associated equipment and techniques for accurately securing a 1C to a carrier. Vehicle 10 FIG. 2 shows an embodiment of the carrier 10. It is to be understood that the reference to the carrier, test bed, base assembly, carrier sub-combination, liquid crystal polymer (LCP) combination or platform substructure 10 reference is made to the same elements indicated by reference numeral 10. The carrier 10 is typically a combination of two liquid crystal polymers -18- 201009974 (LCP) micromolds 11a and lib. The micro-mold 11 defines a plurality of discrete winding ink paths ' to transport ink from an ink reservoir (not shown) to a print head integrated circuit (not shown). Therefore, the carrier or test bed 1 is used to test the operation of the prototype of such a print head integrated circuit (1C) before mass production of 1 c. Under the premise of the operation of these print heads 1C, it is generally necessary to establish a seal between the winding ink path defined in the carrier 10 and the fluid inlet of the IC. Accordingly, the inventors have discovered that by laminating the carrier 10 with the laminated film 12, this fluid tight seal can be established between the carriers 1 and 1C when the 1C is secured to the carrier 10. This assists in the fluid tight supply of ink to the print head 1C. The ink path through the carrier 10 typically terminates in the surface of the carrier 10 with a standard aperture or "base" 14 as shown in Figure 1. It is therefore necessary to arrange 1C on the carrier 10 without blocking or obstructing these bases 14, otherwise the ink will not flow through the carrier 1 to the print head 1C. An example of a carrier 10 having a laminate 14 is shown in Figure 2. It is clear that the base 12 is not blocked to ensure proper ink supply. The carrier 10 also defines two position openings 13 at their respective opposite ends as shown. The purpose of the position opening 13 is to accurately fix and align the carrier 10 before placing the 1C on the carrier 10. The carrier base 15 is also included to aid in the alignment of the carrier 1 固 prior to attachment of the 1C to the carrier 10. A view of the combiner In Fig. 3, an embodiment of a printhead assembly machine or combiner 16 in accordance with an embodiment of the present invention is shown. Physically, the print head combiner • 19- 201009974 The 16 includes a support assembly or structure 24' defining a main enclosure 25 having a support frame 27 and side louvers 29, as shown. The side panels 29 are typically transparent to allow the operator of the combiner 16 to see the operation inside. The front panel 32 is shown and the internal components visible through it are shown as shown. The internal components of the combiner 16 include a die selection combination or die picker 18. A wafer positioning assembly 17 according to an embodiment of the present invention, a transport device or a die transport mechanism in accordance with an embodiment of the present invention 20. A die arrangement 22 according to an embodiment of the present invention. The support structure includes a self-leveling optical table 26 supported by a support frame 27 in the enclosure 25. The die selection assembly 18 is mounted on the optical table 26 and is detailed below. The die selection combination 18 is configured to select the die from the wafer 6 loaded into the enclosure 25. The panels of the enclosure are typically slidable to assist in the loading of the wafer 6 and the carrier 10. The die arrangement 22 is also mounted on the optical table 26 and is detailed below. The die arrangement combination 22 is configured to place the die 8 on the carrier 1 . The beta grain transport mechanism or shuttle transport combination 20 is interposed between the die selection assembly 18 and the grain arrangement combination 22. The grain transport mechanism 20 includes a via beam 1 14 which will be described in detail later. The die transport mechanism 20 is configured to receive the die from the die selection combination 18 and transport the die to the die arrangement combination 22. The die transfer mechanism 20 includes a transport or shuttle overhead 28 mounted on an optical table 26. The elevated frame 28 extends from the die selection combination 18 to the die arrangement combination 22. The touch panel PC 34 is mounted on the frame of the casing 24 and is set to be accessible by an operator. Control panel 36 is also mounted on a frame that can be accessed by an operator. An optical beacon 35 is also mounted on the enclosure 24 to indicate the operational status of the combiner 16-20-201009974. The touchpad PC 34 interfaces with the control panel 36, whereby the operator can monitor and control the combiner 16. It can be understood that most of the functions of the combiner can be controlled by the controller or with, as will be described later, including programmable logic controllers. The operator interface allows the operator to start and stop the combiner 1 ί control. The ion bar 40 is positioned in the enclosure 24, along with a high φ (ΗΕΡΑ) fan/filter configuration 42 to achieve a closed environment. The electrical enclosure 44 is mounted to the support frame and incorporates various electrical components for operation of the machine 16, and includes a pneumatic enclosure 46 for operation of the closure printhead assembly 16. Grain selection combination 18 Referring to Fig. 4, the selection of the die selection combination 18 selects the die from the wafer 6, the wafer 6 operates the strut combination 63, and lifts the die and arranges it in the core. . The die selection assembly 18 includes a block mount 50 mounted in the form of a rock block 26. Block 50 is typical. Wafer positioning assembly 48 is mounted on block 50. The wafer support plate assembly 63 allows the wafer to be vacuumed. The heater board 71 is used to heat the wafer 6 under the control of the PLC 38 to loosen the operation of holding the crystal grains or 1C 8 to the crystal to constitute the operator. However the control system monitors: (PLC) 38. >, and there are additional low-efficiency particle air bodies in the appropriate ring closed print head group. The casing 24 is provided with a granule as a rectangular shape according to a predetermined fixed fixing to the wafer support assembly 20, so as to maintain the position of the stem by a thermocouple 79 round adhesive, so that the - 21 - 201009974 grain The pick and lift heads 7 8 can select a die from the wafer 6. A pick overhead 80 is also installed on block 50. As shown, the elevated frame 80 includes opposing pairs of elevated columns 81 mounted at opposite corners of the block 50. The overhead 80 spans the wafer positioning assembly 18 and supports the die selection and lift head 78 with the carrier. Head 78 includes a pair of inter-wafer camera and optical assemblies 82. The combination 82 is coupled to the PC 34 and is configured to receive image data representative of the wafer 6 and control movement of the wafer support plate stack 63 to align the successive die 8 with the head 78. And includes a crystal line reader 1 0 0. The individual combinations will be detailed below. Wafer Positioning Assembly 48 The wafer positioning assembly 48, shown in detail in FIG. 5, includes a bottom member or plate 52 on the mounting block 50. The displacement assembly 54 is mounted on the base plate. The displacement assembly 54 includes two stages 56 and 58 with the first stage 56 disposed between the bottom plate 52 and the second stage 58. The first table 56 is displaced relative to the base member 52 along the first or U axis. The first piezoelectric motor 60 interconnects the bottom plate 52 with the first stage 56. Therefore, the first piezoelectricity 60 is displaced relative to the bottom plate 52 by the first and second stages along the V axis. The second electric motor 62 interconnects the bottom plate 52 with the first stage 56. Therefore, the second piezoelectric horse 62 is displaced relative to the first stage 56 along the x-axis by the second stage 58. The piezoelectric motors 60 and 62 are connected to the PLC 36' to have a suitable controller to be described later to control the operation of the piezoelectric motor. The PLC 3 6 and the operation mode will be described in detail later. The zone is slidably mounted on the second stage 58 when it is separated by a 52-pin pressure when its -22-201009974 wafer support plate assembly 63 wafer support plate assembly 63 is rotated. The wafer support plate assembly 63 has a bearing table 69 (Fig. 6) that is rotatably mounted on the bottom plate 64 above the second stage 58. The wafer support plate assembly 63 includes a bearing retainer 65 sandwiched between the plate 64 and the bearing table 69 to ensure smooth rotation of the wafer support plate assembly 63. The wafer support plate assembly 63 includes a rotating pin 67 having a compression spring 61 around which the wafer support plate assembly 63 can be rotated. The compression spring 61 provides damping of the vertical movement of the wafer support plate assembly 63. The heater board 71 is mounted on the bearing table 69 with a spacer 75 for thermal isolation (Fig. 7). The bearing table 69 is mounted on the bottom plate 64. The vacuum plate 76 is mounted and fixed to the heater board 71. Both the vacuum plate and the heater plate define a plurality of vacuum apertures 59. A plurality of vacuum tubes 57 are connected to the underside of the heater plate 7 1 that is in fluid communication with the vacuum aperture 59, as shown. The tube 5 7 is connected to a vacuum manifold 55 which is connected to a vacuum pump 472 housed in the air control enclosure 46 as will be described later. Supply tube 77 connects vacuum pump 472 to manifold 55 as shown. The operation of the vacuum pump 472 is controlled such that when the wafer is positioned on the vacuum panel 76, the wafer can be held in position by the vacuum created by the vacuum pump 472. The heater crucible 74 is interposed between the vacuum panel 76 and the heater board 71. The heater crucible 74 is coupled to the hot gas supply unit so that the heater plate 7 can heat the wafer 6 in use to release the adhesive holding the die or IC 8 to the wafer 6. The thermocouple 79 is connected to the heater board 71 and is operatively connected to a PLC 3 8 (described later) having a controller -23-201009974 to control the heater board 7 via the heater 匣 74 using a PLC 3 8 having a controller. 1 temperature. The stepper motor assembly 66 is mounted on the second stage 58. The power screw 68 of the stepper motor combination 66 extends from the stepper motor assembly and engages the wafer support plate assembly 63 in a tangential manner. In particular, and as seen in Figure 7, the connector arm 83 is secured to the heater plate 71 and extends radially therefrom. The working end of the power screw 68 is secured to the connector arm 83 such that the elongation φ and contraction of the power screw 68 causes the wafer support plate assembly 63 in the illustrated embodiment to rotate counterclockwise and clockwise, respectively. The power screw 68 passes through the screw plate 70 extending from the second stage 58. The spring 72 is fixed between the screw plate 70 and the connector arm 83. Therefore, the wafer support plate assembly 63 can be rotated in one direction under the operation of the power supply screw 68 and rotated in the opposite direction by the action of the spring. The stepper motor assembly 66 is also coupled to a PLC 38 having a suitable controller to control the operation of the stepper motor assembly 66. The electrical box 85 assists in the individual electrical connection of the PLC 38 and the components of the controller described below. • Die Select and Lift Head 78 The die pick and lift head 78 is shown in more detail in Figures 8-11. The die selection and lift head 78 includes a mount 89 that is secured to the bracket 87 and is displaced along the Z axis (operability perpendicular) relative to the bracket 87. The mount 8 9 and the bracket 87 are configured such that the displacement of the mount 8 9 and the bracket 87 is linear, and the mount 89 defines a linear translation stage 92. Linear encoder 94 provides the desired position Z-axis feedback 値 which is facilitated by the scale band 103 to PLC 38 (Fig. 1). Also included is a vertical stepper motor 96 that is affixed to the bracket 87 and engages the -24-201009974 mount 89 to use the position feedback from the linear code $ under the control of the PLC 38. The die picker is displaced along the Z-axis. head. The picker head plate 97 is attached to the mount 89. The picker head plates 97 and 89 are configured such that the picker head plate 97 is displaced along the (operability vertical) relative to the mount 89. The drive bracket 99 is fixed to the mount 89. The micro-drive 98 is secured to the bracket 99 and engages the picker head plate 97 with the X-axis displacement picker head plate 97. The drive 98 is connected to the PLC: 位移 The selector head plate 97 is displaced under the control of the PLC 38. Thus, the picker head plate 97 can be adjusted in two degrees by the stepper motor 96 and the microdriver 98 under the control of 38. A die picker head 91 (shown in more detail in Figure 11) is affixed to the picker head plate 97 via a frame 101 and has a true 84 defining a vacuum chamber. The vacuum body 84 has a die contact surface 86 configured to contact the die that lifts the wafer 6 on the blank plate 76. The die contact surface 86 defines a vacuum aperture 91 that is in fluid communication with the vacuum chamber of the vacuum body 84. The sealing strips 93 are disposed on individual sides of the vacuum aperture array 9 1 to contact the die and die contact surfaces. 86 auxiliary vacuum generation. The vacuum tube 88 is affixed to the vacuum body 84 and connected to the vacuum pump, and under the control of 38, the contact surface 86 is evacuated indoors when it contacts the die. A heater crucible 90 is disposed in the vacuum body 84 and connected to the hot gas to heat the surface 86. Thermocouple 95 is coupled to surface 86 to sense it and communicate the sensed temperature to the controller (described in more detail later). The controller states a valve to control the supply of hot gas to the crucible 90 to produce sufficient to assist in the separation of the die from the wafer on the vacuum panel 76. H 94 A pair of X-axis holders with a set of free free-standing bodies along the 18th axis «To be raised by the PLC, the true temperature of the reactor is set to heat-25- 201009974 Camera and optical combination 82 Figure 12 shows the camera and An embodiment of optical assembly 82. In this embodiment, the camera assembly 82 is mounted on a camera holder 85 that is attached to the overhead frame 80 (Fig. 4). As seen in Fig. 12, each camera assembly 82 includes a camera 102. A suitable camera is an IEEE1 394 SXGA+ C-seat camera (AVT F-131B) with a million-pixel Sony 2/3” progressive CCD array manufactured by Allied Vision. Camera 102 Installation At the end of the adapter tube 104 having a 2X permeable adapter, the body tube 106 is mounted on the adapter tube 104. The body tube 106 is in the form of a T-piece and includes an LED assembly 108 having a cooling heat sink 110 To illuminate the wafer 6. The camera assembly 82 also includes a prism 1 12 that is coupled to one end of the body tube 106. The camera assembly 82 is configured to produce an image of the portion of the wafer 6 by the PLC 38. The camera assembly 82 is coupled to the touch panel PC. 34. The image can be displayed on the screen of the PC 34 (detailed later). PC #34 is programmed to identify the wafer base mark and thus assist in the positioning of the picker head 78 according to the wafer map. This allows for software control combinations. The device 16 uses the wafer map to identify and select individual dies on the wafer 6. The wafer scribe reader 100 wafer scribe reader 100 (Fig. 4) is also mounted on the overhead 80. The scribing reader 100 is configured to read and load in the crystal using optical symbol recognition The wafer identification code on the wafer 6 on the support plate assembly 63. The wafer identification code is associated with the position of the suitably lifted die 8 and the control software used to lift the die 26-201009974 from the wafer. Line reader 100 is operatively coupled to PC 34.

3 4以產生晶圓辨別碼的可見影像。此外,編程PC 生圖形使用者介面(GUI )。因此,若劃線讀取器 取晶圓辨別碼有困難,操作者可使用GUI手動輸J 別碼。 第13圖中可見到晶圓劃線讀取器100之更| Φ 讀取器100包括以托架109安裝至高架80上的機丨 機殼107組態成支撐具有視訊透鏡113的相機11 111連接至PC 34,使PC 34可產生晶圓辨別碼& 機殼107亦包括光源115以在使用中照明晶圓6B 圓辨別碼。 穿梭運輸設備/晶粒輸送機制20 在第14及15圖中顯示根據本發明之一實施召 # 運輸設備/晶粒輸送機制20。穿梭運輸組合2〇組育 取與提起頭7 8接收晶粒並運輸它們至晶粒佈置組 於下分別描述。 穿梭運輸設備包括高架樑114。高架樑114及 裝在光學桌26上之一對高架柱116。穿梭或滑動f 裝在樑〗14上並沿著樑114移動。線性馬達i2〇g 114上以驅動穿梭件118沿著樑往返。一對相對由 關配置117設置在高架樑114上,並連接至PLC 止穿梭件1 1 8多餘的移動。線性馬達1 2 0亦經由兒 編程PC 34以產 100讀 、晶圓辨 7細節。 爱 1 07 ° 1。相機 丨影像。 L讀取晶 丨的穿梭 i成從選 合22, :包括安 :1 1 8 安 :裝在樑 f限制開 38以禁 丨當的控 -27- 201009974 制器而受到PLC 3 8的控制,如後述。 第15圖更詳細顯示穿梭或滑動件 括固接至晶粒板126的滑動板122。真 粒板126並自滑動板122正交延伸。真 性朝上開口的數個孔徑1 28。真空管 118上並連接至真空板124的操作性® 圖示),以當晶粒定位在真空板1 24 φ 空。 膠體塊132亦設置在晶粒板126上 提供存放區,選取器頭78係編程成在 供取樣用。一旦存放,可從晶粒板126 高架樑114設置在支撐組合26上 提起晶粒,可從其中真空板124可自運 粒的位置移動穿梭件118。設置高架樑 件1 1 8移動到其中可藉由如後述的晶辛ί Φ 空板124提起晶粒的位置。 晶粒佈置組合22 晶粒佈置組合22 (第16圖)組態 收晶粒並將其佈置與接合在液晶聚合物 組合10上所希望的位置中,該載具由 夾住。 晶粒佈置組合22包括安裝在阻合| 光學桌126上的框架138。在本發明之 1 1 8。穿梭件1 1 8包 空板124固接至晶 :空板124界定操作 1 3 0安裝在穿梭件 ί低部及真空泵(爲 上時產生適當的真 。膠體塊132用來 該處佈置其他晶粒 移除膠體塊132。 .,使得一旦從晶圓 i取器頭78接收晶 1 1 4使得可將穿梭 【佈置組合22從真 成從穿梭件1 1 8接 I ( LCP )載具或次 後述之夾鉗組合所 | 16的支撐平台或 一實施例中,框架 -28- 201009974 138爲花崗岩。框架138具有床部14〇及直立部134,如 所不。間隔件136設置在床部140上。十字滾動組合142 安裝在間隔件136上。滾動組合142組態成在其中載入載 具的裝載位置(第16圖中所示)與其中晶粒佈置在載 具10上的佈置位置(第17圖中所示)之間滾動。夾具板 144安裝在十字滾動組合142上,可沿著由第16圖中所示 的箭頭指示之X軸位移。載具夾具或夾鉗組合146(後 〇 述)安裝在夾具板142上以將LCP載具10夾定位以供晶 粒接合。 晶粒佈置組合22包括載具裝載門32,其配置在床部 140上並經由托架in安裝至組合器16的容置框架24 (第3圖)’以允許載具1〇被載入夾具146中。佈置頭 組合160安裝在安裝板162上,如所示。安裝板162固接 至直立部1 34。佈置頭組合16〇組態成從穿梭件丨丨8提起 晶粒並將其定位在載具10上。晶粒佈置組合22亦包括空 © 氣加熱氣組合164(後述),以輔助晶粒至持定在夾具 146中之載具10的接合。佈置頭組合160包括佈置頭ι68 以及佈置相機與相關光學件1 6 6。 佈置頭168 第18及19圖顯示佈置頭168的更接近之圖。佈置頭 1 6 8包括佈置頭安裝區塊組合1 2 3。佈置頭安裝區塊組合 123經由安裝板162固接至框架138的直立部134。 Z軸台125安裝在區塊組合123上,且被偈限於沿著 -29- 201009974 Z軸位移。針對該目的,Z軸步階器馬達182經由托架組 合133固接至區塊組合123。Z軸步階器馬達182具有操 作性嚙合Z軸台1 2 5之推桿1 3 5,以沿著Z軸相關於區塊 組合123推動Z軸台125。經由適當控制器在plc 38的 控制下操作Z軸步階器馬達182。 Y軸台127安裝在Z軸台125上,且被侷限於沿著γ 軸位移(亦即操作性垂直)。針對該目的,γ軸步階器馬 參 達180經由托架組合137固接至Z軸台125。推動托架 139固接至Y軸台127並經由壓縮彈簧143嚙合Z軸台 125之推桿141。線性編碼器145安裝在Z軸台125上, 如所示。刻度帶147固接至γ軸台127,並將由線性編碼 器145讀取,該編碼器連接至Plc 38以提供沿著Y軸的 位置反饋。 X軸台129則安裝在Y軸台127上,且被侷限於沿著 X軸位移。針對該目的,調整區塊149固接至Y軸台 127。一對X軸微米驅動器176固接至調整區塊149並嚙 合X軸台129以提供X軸台129相較於Y軸台127沿著 X軸的調整。X軸微米驅動器176經由適當的控制器連接 至PLC 38,以控制X軸台129之調整的程度。 連接器區塊151固接至X軸台129。彈性器具172 (其可爲T型彈性器具)則連接至連接器區塊151。器具 1 72界定容納晶粒佈置器頭丨7〇之凹部,使晶粒佈置器頭 170自器具172部分延伸。自器具172之晶粒佈置器頭 170的部分延伸爲頭170的一部分可容納在如下述之夾具 -30- 201009974 146之保持板150之間。 晶粒佈置器頭170爲陶瓷且界定與真空管186流體式 交流的孔徑153。真空管186連接至在PLC 38的控制下 的真空泵。調整晶粒佈置器頭170的形狀與尺寸以從在真 空板76上操作性固持的晶圓6接收晶粒。那時,PLC 3 8,經由適合的控制器,操作以移除施加至真空板76的 真空,並經由管186施加真空在佈置器頭170,使得晶粒 φ 可透過頭170固定住。 空氣加熱器管155連接至空氣加熱器組合164的加熱 器閥組合602的熱空氣供應噴嘴600 (第20圖)。空氣加 熱器管155連接至晶粒佈置器頭170以加熱晶粒佈置器頭 170,使得晶粒可接合至載具10的疊層薄膜12。 角馬達161亦經由X軸台129安裝並固接至連接器區 塊151。由PLC 38經由適當的控制器對角馬達161的致 動導致晶粒佈置器頭170圍繞Y軸的角樞轉。亦設置固接 φ 至X軸台129之角移動彈簧131,如所示,以逆著馬達 161的驅策而偏置佈置器170的角移動,以確保其之平滑 操作。 因此,可編程PLC 38使得當夾具146的插件152正 確地設置在夾具146中時,頭170可定位成抵靠疊層薄膜 1 2並受熱以將晶粒接合至疊層薄膜1 2。 空氣加熱器組合164 空氣加熱器組合164安裝在十字滾動組合142上,以 -31 - 201009974 將加熱的空氣導至夾具146中所固持的載具10上。這 輔助晶粒至載具10上之熱固疊層薄膜12的接合。在第 圖中更詳細顯示空氣加熱器組合164。空氣加熱器組 164包括加熱器安裝板6 04 (第20圖)。空氣處理加熱 6 06安裝在安裝板604上。空氣處理加熱器606在608 電箱614接收電性電源供應(第16圖)。空氣處理加 器6 06爲具有冷空氣供應器610在一端之長條狀,如 加熱器閥組合602安裝在空氣處理加熱器606上之 空氣供應器610的相反端上。熱電耦612設置在加熱器 組合602以提供信號給PLC 38,以幫助透過電箱614 加熱器閥組合602的控制(第16圖)。熱空氣供應噴 600及熱空氣轉向管616連接至加熱器閥組合602。 氣控致動器618安裝在加熱器安裝板6 04上,以經 連接棒620控制加熱器閥組合602的操作。氣控致動 • 618如下述經由適當的控制器操作性連接至PLC 38,以 制從加熱器閥組合602之熱空氣的出去。 佈置相機與光學件組合166 佈置相機與光學件組合166讓PC 34在佈置晶粒前 位頭170於載具10上方。 佈置相機與光學件組合1 66安裝在相機與光學件組 托架622上(第16圖)’其則固接至花崗岩框架ι38 直立部134上的安裝板162。相機與光學件組合166和 可 20 合 器 從 熱 所 冷 閥 對 嘴 由 器 控 定 合 的 第 -32- 201009974 12圖中所示且於上所述的晶圓相機與光學件82類似。因 此使用相同的參考符號來參照組合166的構件。 各相機102連接至觸碰板PC 34,使得夾具146及載 具10之部分的影像可顯示給操作者。編程觸碰板PC 34 以當PC 34辨別疊層薄膜中的墨水出口 14時立即與PLC 38通訊。墨水出口 14的辨別允許PC 34控制PLC 38,使 得載具基標15(第2圖)及墨水出口 14作爲佈置基標。 ❿ 因此,PC 34能夠判斷如上述之待接合至載具10的疊層薄 膜12之晶粒的正確佈置。 各晶粒8在其各端典型具有基標,可藉由相機1〇2成 像。由於一對相機102用來「看見」基標,PC 34能夠判 斷個別基標之互相相對的座標。這允許頭170的調整,以 確保個別晶粒互相對準地佈置在載具1 0上。 夾鉗組合 β 第21及22圖更詳細顯是夾鉗組合146。氣控式操作 基底夾具146。其包括其中可容納載具10的長形夾具體 148。詳言之,插件152可容納在夾具體148中。載具1〇 安裝在具有位置暗榫157的插件152上,以確保正確定位 插件152。 夾鉗組合146包括在夾具體148 —端的插件止件 156。近接開關159安裝在止件156上以當插件152抵達 止件156時產生由PLC 38可接收的信號。 夾鉗組合146包括安裝在夾具體148上的一對長形保 -33- 201009974 持板150,並界定具有足夠寬度之接取間隔624,以 列印頭積體電路8在載具10的疊層薄膜12上之定位 隔膜625定位在夾具體148中並藉由經空氣導1 所供應的空氣朝保持板150或遠離保留板150地位移 膜625與插件152組態成使得當夾具體148容納插f 時,可啓動隔膜625以驅策載具10抵靠保持板150, 間隔624提供佈置積體電路所需之空間。因此,在 〇 38的控制下,當插件152插入夾具體148內時,可經 控配件158提供空氣供應至隔膜155以驅策載具10 氣控板150,使得在積體電路8的佈置期間將載具10 在定位。把手或旋鈕154固接至插件152,以在夾鉬 10之前幫助操縱載具10定位在夾具板150之間。 程序 大致上,由組合器16所進行的程序可總結如下: β •掃描安裝在插件152上的載具10的序號並接 其裝載到夾具146中,如上述,使得由疊層薄膜12 定的附接表面爲實質上平坦。 •載具10連同插件152 —起移動到相機與光學 合166之處,連同PC 34,用來定位載具表面上之基 位置’以提供將佈置於載具表面上之第一晶粒8的參 •掃描晶圓6並裝載到真空與加熱器板組合76 組合器16利用輸入指令檔或與晶圓6關連的晶圓地 判斷將附接至載具10上之疊層薄膜12之實際的晶粒 允許 〇 626 。隔 152 其中 PLC 由氣 抵靠 保持 載具 著將 所界 件組 標的 考。 上。 圖來 ,及 -34- 201009974 其位置。 •一旦從晶圓6釋放晶粒8 ’將其運輸至晶粒佈置位 置,對準並附接至疊層薄膜。將參照相關構件描述如何達 成此。 •一旦對準晶粒8,降低其至與疊層薄膜12接觸並施 加設定的溫度。 • 一旦與疊層薄膜12接觸,加熱晶粒8 —段預定的 ❹ 時間長度,以附接晶粒8至疊層薄膜,其典型爲熱固薄 膜。 在藉由各種控制器之PC 34的監控下由PLC 38所控 制的各種構件來執行這些步驟。 爲了描述上述的構件如何進行這些步驟,需先參照第 23圖中所示的高階資料流圖。第23圖中所示的圖顯示根 據本發明之一實施例的用於控制組合列印頭積體電路於載 具上之列印頭組合機器或組合器16之操作的方法或程序 © 及系統。 在此實施例中,此一系統以參考符號630表示。系統 630包括製造執行系統(MES)伺服器632及工業電腦 634,執行針對組合器1 6的列印頭組合機器(PAM )應用 軟體。MES伺服器63 2及工業電腦63 4統稱爲遠端監視系 統。 在此實施例中,MES伺服器632提供如上述之晶圓地 圖及操作指令給組合器16的PLC 38。工業電腦634 (等 效於PC 34 )經由PLC 38的乙太網路模組接收資料。此 -35- 201009974 資料典型包括上述的個別致動器或驅動器之位置或軸座 標、工作回應、程序變數或類似者。此外,PLC 38亦發 送狀態機工作給工業電腦634執行,如所示。 由PLC 38所發送至電腦634的資料可包括從晶圓6 耗費掉的晶粒數量、晶粒的佈置順序、各晶圓掃描的辨別 碼、晶粒與載具基標的位置、開始與停止週期時間、操作 者身分、載具條碼、使用之部件的狀態等等。 ❿ 工業電腦634及MES伺服器632交換有關於組合器 16的操作之指令與資料,典型經由TCP-IP » MES伺服器 63 2則供應關於指示在載入的晶圓上哪個晶粒將安裝在哪 個載具上的晶圓地圖、程序參數等等的資訊給PLC 38。 如所示,PLC 3 8組態成,經由適當的軟體指令,界 定數個控制組合器1 6之操作所需的狀態機。此PLC 3 8界 定控制晶粒佈置組合22的操作之佈置狀態機636、控制穿 梭輸送組合20之運輸狀態機63 8以及控制晶粒選取組合 Φ 18的選取狀態機640。PLC 38亦界定運動控制狀態機陣 列644,負責控制與不同構件且統一以637表示的相關致 動器與驅動器。亦顯示負責組合器16之操作安全與監督 之監督狀態機642。3 4 to produce a visible image of the wafer identification code. In addition, the PC is programmed with a graphical user interface (GUI). Therefore, if the scribing reader has difficulty in fetching the wafer identification code, the operator can manually input the J code using the GUI. The wafer line reader 100 can be seen in Fig. 13 | Φ The reader 100 includes a casing 107 mounted to the overhead frame 80 with a bracket 109 configured to support a camera 11 111 having a video lens 113. Connected to the PC 34, the PC 34 can generate a wafer identification code & The housing 107 also includes a light source 115 to illuminate the wafer 6B circular identification code in use. Shuttle transport equipment/die transport mechanism 20 is shown in Figures 14 and 15 in accordance with one embodiment of the present invention. The shuttle transport assembly 2 sets the picking and lifting heads 7 to receive the dies and transport them to the grain arrangement set as described below. The shuttle transport device includes an overhead beam 114. The elevated beam 114 and one of the pair of elevated columns 116 mounted on the optical table 26. A shuttle or slide f is mounted on the beam 14 and moves along the beam 114. A linear motor i2〇g 114 is actuated to drive the shuttle 118 back and forth along the beam. A pair of relative closure configurations 117 are disposed on the overhead beam 114 and are coupled to the excess movement of the PLC stop shuttle 1 1 8 . The linear motor 120 also programmed the PC 34 to produce 100 readings and wafer details. Love 1 07 ° 1. Camera 丨 Image. L reads the shuttle i from the selection 22, including: An: 1 1 8 A: installed in the beam f limit open 38 to control the control of the -27- 201009974 and is controlled by the PLC 3 8 As will be described later. Figure 15 shows in more detail the shuttle or slider comprising a sliding plate 122 secured to the die plate 126. The true grain plates 126 extend orthogonally from the sliding plate 122. A number of apertures 1 28 whose true opening is upward. The vacuum tube 118 is connected to the operability of the vacuum plate 124 (shown in the figure) to position the die when the die is 1 24 φ empty. The colloid block 132 is also disposed on the die plate 126 to provide a storage area, and the picker head 78 is programmed for sampling. Once stored, the die can be lifted from the die plate 126 overhead beam 114 on the support assembly 26, and the shuttle 118 can be moved from a position where the vacuum plate 124 can be self-granulated. The position where the elevated beam member 1 1 8 is moved can be lifted by the crystal celite plate 124 as will be described later. The grain arrangement combination 22 grain arrangement combination 22 (Fig. 16) configures the die and places it in a desired position on the liquid crystal polymer assembly 10, the carrier being clamped. The die placement assembly 22 includes a frame 138 mounted on a resisting | optical table 126. In the present invention, 1 18 . The shuttle 1 1 8 empty plate 124 is fixed to the crystal: the empty plate 124 defines the operation 1 3 0 is installed on the lower part of the shuttle ί and the vacuum pump (the appropriate true when it is on. The colloid block 132 is used to arrange other crystals there) The granule removes the colloidal block 132, such that once the crystal 1 1 4 is received from the wafer ejector head 78, the shuttle [arrangement assembly 22 can be connected from the traverse to the shuttle 1 1 8 to the I ( LCP ) carrier or In the support platform or the embodiment of the clamp assembly 16 described later, the frame -28-201009974 138 is granite. The frame 138 has a bed portion 14 and an upright portion 134, as any. The spacer 136 is disposed at the bed portion 140. The cross rolling combination 142 is mounted on the spacer 136. The rolling combination 142 is configured to be in a loading position (shown in Fig. 16) in which the carrier is loaded and an arrangement position in which the crystal grains are arranged on the carrier 10 ( Rolling between the panels. The clamp plate 144 is mounted on the cross-roll combination 142 and is displaceable along the X-axis indicated by the arrow shown in Figure 16. Carrier clamp or clamp combination 146 (post As described above, the fixture plate 142 is mounted to position the LCP carrier 10 for die bonding. The grain arrangement assembly 22 includes a carrier loading door 32 that is disposed on the bed portion 140 and mounted to the receiving frame 24 (Fig. 3) of the combiner 16 via the bracket in to allow the carrier 1 to be loaded into the fixture 146. The arranging head assembly 160 is mounted on the mounting plate 162 as shown. The mounting plate 162 is secured to the upright portion 34. The arranging head assembly 16 is configured to lift the die from the shuttle member 8 and position it in The carrier arrangement 22 also includes a void gas heating gas combination 164 (described later) to assist the bonding of the die to the carrier 10 held in the clamp 146. The placement head assembly 160 includes a placement head ι68 and Arranging the camera and associated optics 166. Layout heads 168 Figures 18 and 19 show a closer view of the placement head 168. The placement head 168 includes a placement head mounting block combination 1 2 3. Arrangement head mounting block combinations 123 is affixed to the upright portion 134 of the frame 138 via the mounting plate 162. The Z-axis table 125 is mounted on the block assembly 123 and is limited to being displaced along the Z-axis along -29-201009974. For this purpose, the Z-axis stepper Motor 182 is secured to block assembly 123 via bracket assembly 133. Z-axis stepper motor 182 has Operate the Z-axis table 1 2 5 push rod 1 3 5 to push the Z-axis table 125 along the Z-axis with respect to the block combination 123. The Z-axis stepper motor is operated under the control of the plc 38 via a suitable controller 182. The Y-axis table 127 is mounted on the Z-axis table 125 and is limited to be displaced along the gamma axis (i.e., operatively vertical). For this purpose, the gamma-axis stepper horses 180 are secured via the bracket assembly 137. Connected to the Z-axis stage 125. The push bracket 139 is fixed to the Y-axis table 127 and engages the push rod 141 of the Z-axis table 125 via the compression spring 143. A linear encoder 145 is mounted on the Z-axis stage 125 as shown. The scale band 147 is affixed to the gamma stage 127 and will be read by a linear encoder 145 that is coupled to the Plc 38 to provide position feedback along the Y axis. The X-axis table 129 is mounted on the Y-axis table 127 and is limited to being displaced along the X-axis. For this purpose, the adjustment block 149 is fixed to the Y-axis table 127. A pair of X-axis micro-drivers 176 are secured to the adjustment block 149 and engage the X-axis table 129 to provide adjustment of the X-axis table 129 along the X-axis relative to the Y-axis table 127. The X-axis micro-drive 176 is coupled to the PLC 38 via a suitable controller to control the degree of adjustment of the X-axis stage 129. The connector block 151 is fixed to the X-axis stage 129. The elastic device 172 (which may be a T-type elastic device) is then connected to the connector block 151. The appliance 1 72 defines a recess that receives the die arranging head 丨 7 , such that the die arranging head 170 extends from the appliance 172 portion. Portions of the die arranging head 170 from the appliance 172 extend so that a portion of the head 170 can be received between the retaining plates 150 of the jig -30-201009974 146 as described below. The die placer head 170 is ceramic and defines an aperture 153 that is in fluid communication with the vacuum tube 186. The vacuum tube 186 is connected to a vacuum pump under the control of the PLC 38. The shape and size of the die placer head 170 is adjusted to receive the die from the wafer 6 that is operatively held on the vacuum plate 76. At that time, the PLC 3 8, via a suitable controller, operates to remove the vacuum applied to the vacuum panel 76 and applies a vacuum to the dispenser head 170 via the tube 186 such that the die φ is permeable to the head 170. The air heater tube 155 is connected to the hot air supply nozzle 600 of the heater valve assembly 602 of the air heater assembly 164 (Fig. 20). The air heater tube 155 is coupled to the die distributor head 170 to heat the die distributor head 170 such that the die can be bonded to the laminate film 12 of the carrier 10. The angle motor 161 is also mounted and secured to the connector block 151 via the X-axis table 129. Actuation of the diagonal motor 161 by the PLC 38 via a suitable controller causes the die arranging head 170 to pivot about the angle of the Y-axis. An angular movement spring 131 that secures φ to the X-axis table 129 is also provided, as shown, to offset the angular movement of the arranging device 170 against the drive of the motor 161 to ensure smooth operation thereof. Thus, the programmable PLC 38 allows the head 170 to be positioned against the laminate film 12 and heated to bond the die to the laminate film 12 when the insert 152 of the clamp 146 is properly positioned in the clamp 146. Air Heater Combination 164 The air heater assembly 164 is mounted on the cross rolling assembly 142 to direct heated air to the carrier 10 held in the clamp 146 at -31 - 201009974. This assists the bonding of the die to the thermoset laminate film 12 on the carrier 10. The air heater assembly 164 is shown in more detail in the figures. The air heater group 164 includes a heater mounting plate 6 04 (Fig. 20). The air treatment heating 6 06 is mounted on the mounting plate 604. The air treatment heater 606 receives an electrical power supply at 608 electrical box 614 (Fig. 16). The air treatment heater 706 is in the form of a strip having a cold air supply 610 at one end, such as a heater valve assembly 602 mounted on the opposite end of the air supply 606 on the air treatment heater 606. The thermocouple 612 is disposed in the heater assembly 602 to provide a signal to the PLC 38 to assist in the control of the heater valve assembly 602 through the electrical box 614 (Fig. 16). Hot air supply spray 600 and hot air steering tube 616 are coupled to heater valve assembly 602. A pneumatic actuator 618 is mounted on the heater mounting plate 60 to control the operation of the heater valve assembly 602 via the connecting rod 620. Air Control Actuation 618 is operatively coupled to PLC 38 via a suitable controller as described below to effect hot air exit from heater valve assembly 602. Arranging the Camera and Optics Combination 166 Arranging the Camera and Optics Combination 166 allows the PC 34 to position the die front head 170 above the carrier 10. The camera and optics assembly 1 66 is mounted on the camera and optics set bracket 622 (Fig. 16), which is then attached to the mounting plate 162 on the upright portion 134 of the granite frame ι38. The combination of the camera and the optics 166 and the splicer is similar to that shown in the above-described wafer camera and optics 82 from the thermally cooled valve to the nozzle. Therefore, the same reference numerals are used to refer to the components of the combination 166. Each camera 102 is coupled to the touchpad PC 34 such that the image of the clamp 146 and portions of the vehicle 10 can be displayed to the operator. The touch panel PC 34 is programmed to communicate with the PLC 38 as soon as the PC 34 discriminates the ink outlet 14 in the laminate film. The discrimination of the ink outlet 14 allows the PC 34 to control the PLC 38 so that the carrier base 15 (Fig. 2) and the ink outlet 14 serve as the arrangement basis. Therefore, the PC 34 can judge the correct arrangement of the crystal grains of the laminated film 12 to be bonded to the carrier 10 as described above. Each of the dies 8 typically has a base at each end thereof and can be imaged by the camera 1 〇 2 . Since a pair of cameras 102 are used to "see" the base, the PC 34 can determine the coordinates of the individual bases relative to one another. This allows adjustment of the head 170 to ensure that individual dies are placed on the carrier 10 in alignment with each other. Clamp Combinations β Figures 21 and 22 show the clamp combination 146 in more detail. Air-controlled operation of the base clamp 146. It includes an elongate clip 148 in which the carrier 10 can be received. In particular, the insert 152 can be housed in the clip 148. The carrier 1〇 is mounted on the insert 152 having the position concealed 157 to ensure proper positioning of the insert 152. Clamp assembly 146 includes an insert stop 156 at the end of clip 148. The proximity switch 159 is mounted on the stop 156 to generate a signal receivable by the PLC 38 when the insert 152 reaches the stop 156. The clamp assembly 146 includes a pair of elongate-33-201009974 holding plates 150 mounted on the clip body 148 and defining an access spacing 624 having a sufficient width to stack the head integrated circuit 8 in the carrier 10. The positioning diaphragm 625 on the layer film 12 is positioned in the clip body 148 and is configured such that the film 625 and the insert 152 are displaced toward the retaining plate 150 or away from the retaining plate 150 by air supplied through the air guide 1 such that when the clip is specifically 148 accommodated When f is inserted, the diaphragm 625 can be actuated to urge the carrier 10 against the retaining plate 150, which provides the space required to position the integrated circuit. Thus, under the control of the weir 38, when the insert 152 is inserted into the clip body 148, the controllable fitting 158 provides air supply to the diaphragm 155 to urge the carrier 10 to the air control plate 150 such that during deployment of the integrated circuit 8 The carrier 10 is in position. A handle or knob 154 is secured to the insert 152 to assist in maneuvering the carrier 10 between the clamp plates 150 prior to clamping the molybdenum 10. In general, the program performed by the combiner 16 can be summarized as follows: β • Scan the serial number of the carrier 10 mounted on the insert 152 and load it into the jig 146 as described above so that the laminated film 12 is set. The attachment surface is substantially flat. • The carrier 10, along with the insert 152, moves to the camera and optical 166, along with the PC 34, for positioning the base position on the surface of the carrier to provide the first die 8 to be disposed on the surface of the carrier. The wafer is scanned and loaded into a vacuum and heater plate assembly 76. The combiner 16 determines the actual thickness of the laminated film 12 to be attached to the carrier 10 using the input command file or wafer associated with the wafer 6. The die allows 〇626. Between the 152, the PLC is controlled by the gas against the carrier. on. Tulai, and -34- 201009974 its location. • Once the die 8 is released from the wafer 6 and transported to the die placement position, aligned and attached to the laminate film. How to achieve this will be described with reference to the relevant components. • Once the die 8 is aligned, it is lowered into contact with the laminate film 12 and the set temperature is applied. • Once in contact with the laminate film 12, the die 8 is heated for a predetermined length of time to attach the die 8 to the laminate film, which is typically a thermoset film. These steps are performed by various components controlled by the PLC 38 under the supervision of the PC 34 of various controllers. In order to describe how the above components perform these steps, it is necessary to first refer to the high-order data flow diagram shown in Fig. 23. The diagram shown in Figure 23 shows a method or system for controlling the operation of a printhead combination machine or combiner 16 for a combined printhead integrated circuit on a carrier, in accordance with an embodiment of the present invention, and a system . In this embodiment, such a system is indicated by reference numeral 630. System 630 includes a Manufacturing Execution System (MES) server 632 and an industrial computer 634, executing a printhead combination machine (PAM) application software for combiner 16. The MES server 63 2 and the industrial computer 63 4 are collectively referred to as a remote monitoring system. In this embodiment, the MES server 632 provides the wafer map and operational commands to the PLC 38 of the combiner 16 as described above. The industrial computer 634 (equivalent to the PC 34) receives data via the Ethernet module of the PLC 38. This -35- 201009974 data typically includes the position or shaft coordinates, operational response, program variables, or the like of the individual actuators or actuators described above. In addition, PLC 38 also sends state machine operations to industrial computer 634 as shown. The data sent by the PLC 38 to the computer 634 may include the number of dies that are consumed from the wafer 6, the order in which the dies are arranged, the identification code for each wafer scan, the position of the die and the carrier base, and the start and stop cycles. Time, operator identity, vehicle bar code, status of the parts used, etc. ❿ Industrial computer 634 and MES server 632 exchange instructions and information regarding the operation of combiner 16, typically via TCP-IP » MES server 63 2 provides information on which die on the loaded wafer will be mounted on Information on the wafer map, program parameters, etc. on which carrier is given to PLC 38. As shown, the PLC 3 8 is configured to define a number of state machines required to control the operation of the combiner 16 via appropriate software instructions. This PLC 3 8 defines an arrangement state machine 636 that controls the operation of the die arrangement 22, a transport state machine 63 8 that controls the shuttle delivery assembly 20, and a selection state machine 640 that controls the die selection combination Φ 18. The PLC 38 also defines a motion control state machine array 644 that is responsible for controlling the associated actuators and actuators that are represented by different components and are collectively designated 637. A supervisory state machine 642 responsible for the operational safety and supervision of the combiner 16 is also shown.

第24圖顯示根據本發明之一實施例的如上述在PC 34、PLC 38、操作者及/或遠端監視系統(RMS,以 408 表示)控制下,由各種構件所執行之控制組合器1 6的方 法或程序之總體槪觀之流程圖。如上述,RMS 408包括 MES 632及工業電腦634。可理解到步驟的一些係由PC -36- 201009974 34、PLC 38及RMS 408自動執行,而其他需要來自操作 者的輸入。 可理解到對代表特定方法步驟之參考符號的參照係指 由附圖中此種參考符號所指示之個別的區塊。因此,包括 在本發明中的方法不受限或受制於依照此方式參照之特定 方法步驟。熟悉該項技藝人士將了解到在本發明下可有其 他方法,其可能排除這些步驟的一些或包括額外步驟。 φ 顯示具有晶粒選取組合1 8、晶粒輸送機制20及晶粒 佈置組合22的組合器16之一般步驟。遠端監視系統408 配置成與PLC 38信號通訊,如上述,且允許遠端監視並 控制組合器1 6的操作狀態。RMS 408亦能夠追蹤載具與 晶圓,以及哪個晶粒將佈置在哪個載具上。RMS對於載具 1 〇之組合的品質與保證控制具有整合性的地位。 如所示,程序包括晶圓裝載階段398、載具裝載階段 412、晶粒附接階段424以及已處理的載具移除階段436。 • 晶圓裝載階段3 98具有從儲存晶圓之乾淨的卡盒移除 晶圓(區塊400 )、將晶圓裝載到組合器16中(區塊 402 )以及PLC 38讀取晶圓條碼(區塊404)之步驟。在 所示的實施例中,由PLC 38從遠端監視系統408擷取晶 圓映照圖(區塊406 ),如上述。此晶圓映照圖典型提供 晶圓6上之1C的位置及選取順序。接著將晶圓6佈置在 晶圓加熱與真空板76上。 載具裝載階段412具有從托盤移除載具10之步驟 (區塊414),此後由PLC 38掃描載具10的條碼並發送 -37- 201009974 至遠端監視系統408。在所示的實施例中,載具10由液晶 聚合物(LCP )基底所構成,如在一些區塊中所示。遠端 監視系統408在命令PLC組合晶粒於其上之前,檢査載具 是否具有先前已執行於其上的通過之品質控制測試。若載 具通過此種測試(區塊408 )且有足夠的品質,操作者移 除覆蓋疊層14的保護襯墊(區塊4 20 )並將載具裝載到組 合器16中(區塊422 )。 〇 晶粒附接程序424尾隨在組合器初始化之後(區塊 426 ),並掃描晶圓以根據來自遠端監視系統408的晶圓 基底映照圖來確定晶粒的位置(區塊428 )。接著從晶圓 選取晶粒(區塊43 0 )並運輸至佈置組合22,在該處晶粒 將被接合至載具(區塊432 )。重複選取與佈置步驟直到 載具包括由晶圓地圖指定之所需數量的晶粒(區塊 434 ) 〇 已處理的載具移除階段436包括掃描具有界定列印頭 • 的1C之完成的載具(區塊438)並在區塊44 0發送品質報 告給遠端監視系統。接著將載具10移動到卸下位置(區 塊4 42 ),在該處操作者可從組合器16移除載具1〇並目 測載具1 〇 (區塊444 )。接著將具有列印頭之完成的載具 10佈置在托盤中(區塊446)。 第2 5圖顯示晶粒選取組合1 8在從晶圓6選取晶粒之 操作期間所執行的特定步驟。該方法典型一開始由操作者 裝載晶圓6到組合器16中,如區塊200所示。晶圓6定 位在晶圓定位組合器4 8上,如上述。 -38- 201009974 組合器1 6初始化(區塊202 )並使用劃線讀取器 100,在PLC 38的控制下掃描晶圓條碼(區塊204 )。 PLC 38組態成條碼之不成功的掃描(在決定區塊206決 定)會令PLC 38解鎖組合器16的晶圓裝載門(區塊 208 ),使得操作者可移除及/或重新定位晶圓於組合器16 上(區塊21 0 ) 。PC 34組態成控制晶圓相機與光學件82 以檢查標記在晶圓上的開始點或基準(區塊2 1 2 ),其作 〇 爲由PLC 38所使用之晶圓基底映照圖之參考點,以定位 個別晶粒於晶圓6上。 • 一旦在214已聚焦相機與光學件82,PLC 38檢査定 位台92與驅動器98的位置之晶粒選取器81及加熱器90 (區塊216)。若晶粒選取器81檢査失敗,組合器16重 新初始化並可能發出警告給操作者》若晶粒選取器81通 過檢查,將其提起(區塊218)並且移動至由映照圖鎖指 示的參考點(區塊220) 〇PLC 38使用相機與光學件82 β 找出晶圓6上的參考點(區塊222 ) »若PLC不能定位參 考點,解鎖晶圓裝載門,允許接取晶圓6。 光學件82檢查晶圓(區塊224 )且由PLC從映照圖 請求將選取之晶粒的座標(區塊226 )。這兩種步驟的任 何一者的失敗會使晶圓接取門的解鎖,如所示。若提供座 標,將晶粒選取器81移動至正確的位置(區塊228 ),否 則再次請求座標。一旦晶粒選取器8就位,降低選取表面 86 (區塊230 )且與晶粒接觸並且以加熱器90加熱晶圓 (區塊232 ),以鬆脫固持晶粒至晶圓6的黏劑。接著由 -39- 201009974 透過選取表面86所建立的真空抓持晶粒(區塊234) ’如 上述,且升高晶粒選取器(區塊238 )以從晶圚6移除晶 企J. 粒。 晶粒選取組合1 8接著等待晶粒輸送機制20 (區塊 240 )就定位,之後降低晶粒到穿梭件1 1 8上(區塊242 ) 並且藉由移除真空來釋放晶粒(區塊244 ) °若必須從晶 圓選取之額外的晶粒,再次升高晶粒選取器(區塊246) 〇 且重複程序,如所示。若映照圖不需要選取額外的晶粒’ 晶粒選取器返回到等待位置’以裝載新的晶圓到組合器16 內(區塊2 50 )。 第26圖顯示由晶粒輸送機制20執行之方法的一實施 例。與上述晶粒選取組合類似,程序一開始爲機制20的 初始化(區塊260 )。穿梭件1 18等到晶粒選取器81 (區 塊262 )直到選取器移動到穿梭件118上方的位置(區塊 2 64 )。一旦晶粒選取器81就位,則穿梭件118上的真空 • 板接收晶粒並藉由建立真空而抓持晶粒(區塊266 )。穿 梭件118等待選取器頭升高(區塊268 ),之後其沿著高 架樑114運輸至晶粒佈置組合22 (區塊270 )。 佈置頭組合160包括晶粒佈置器170。穿梭件118等 待佈置器170就位(區塊272及274 ),之後真空板釋放 被抓住的晶粒(區塊276)並保持在原位(區塊278)使 選取器170可將其挑起。當選取器170移除了晶粒,穿梭 件移回到晶粒選取組合1 8以重複程序(區塊280 )。 第27圖槪略顯示由晶粒佈置組合22所執行之工作的 -40- 201009974 方法步驟之一實施例。程序以組合22初始化開始(區塊 300 ),之後透過載具裝載門119將載具1〇裝載到夾具 146中並夾鉗在夾具146中(區塊304)。接著由十字滾 動台142在區塊306將載具1〇移到參考位置。佈置相機 與光學件166掃描載具1〇之基標指標15以對準其上的晶 粒。若未找到基標(決定區塊308),則台142移動載具 1 〇到卸下位置(區塊3 1 2 )。 Φ 若未找到基標’則台142將載具1〇移到佈置位置 (區塊314),在該處佈置組合16〇可佈置晶粒於載具1〇 上。佈置頭1 6 8等待穿梭件1 1 8遞送從晶圓選取而來的晶 粒’如上述(區塊314)。一旦穿梭件就位,降低佈置頭 168 (區塊316)。若晶粒正確定位(決定區塊318),則 降低晶粒佈置器170(區塊320)以抓持晶粒(區塊 3 2 2 )。否則,佈置組合1 6 0移回到佈置位置。 一旦已經抓持住晶粒’晶粒佈置器170升高(區塊 Φ 324)並且運輸穿梭件118檢查乾淨的挑起(區塊326)並 且移離回到晶粒選取組合1 8 (區塊3 2 8 )。將晶粒佈置器 移動到載具10上方的位置(區塊330)並且經由相機與光 學件160對準抓持的晶粒與載具(區塊332)。在336降 低晶粒佈置器170。晶粒佈置器頭17〇接著經過夾具146 的間隔159佈置晶粒於載具10上。空氣加熱器組合164 加熱晶粒與載具以將晶粒固定住至熱固疊層1 4 (區塊 3 3 8 ),之後讓晶粒冷卻(區塊340 )。 在升高佈置頭168 (區塊344)並移至下一晶粒佈置 201009974 前’佈置相機與光學件166接著允許PC 34檢查載具上之 晶粒的佈置(區塊342 )。 —旦頭168移開(區塊346) ,PLC 38可檢查晶粒的 最終位置(區塊3 4 8 )並移動載具10至卸下位置(區塊 350 ) ’其中在裝載另—載具前(區塊3 54 ),操作者可鬆 開載具(區塊352)並將之從組合器16的機殼24移除。 參 操作者介面 第28圖示意性顯示第3圖之組合器16的左邊部分, 更詳細顯示操作者介面。介面包括觸碰板PC 34及控制按 鈕台36。亦顯示警告信標464 (第3圖中的符號35)及緊 急停止按鈕460與462。按鈕460爲操作者緊急停止按 鈕’而按鈕462爲維修緊急停止按鈕。載具裝載門119設 置在組合器16的封閉體24的前方板461,如所示。可穿 透裝載門1 19看見晶粒佈置組合22的花崗岩框架138,以 • 及夾具板144與夾具146。 電性構件 第29圖顯示打開狀態之組合器1 6後方的電性封閉體 (第3圖)。組合器的控制系統包括PLC 38,其爲三菱 (Mitsubishi®) FX3U-64M PLC 單元 645,具有爲模組形 式之FX2N-2LC溫度控制區塊646、FX3U-ENET乙太網路 介面模組647及FX0N-3A類比I/O特殊功能區塊或模組 648及FX2N-32CAN控制器區域網路(CAN)序列匯流排 -42- 201009974 區塊649之擴充區塊。 PLC 38以第32圖中所示的乙太網路交換器650連接 至PC 34。PLC 38從PC 34接收編程指令,使得PLC 3 8 可控制晶粒選取組合1 8、運輸機制20及晶粒佈置組合22 的操作。 包括照明控制器470 (第29圖)以控制相機與光學件 82與166的 LED轉接器1〇8。控制器470爲防軟 〇 ( Gradasoft) PP610照明控制器。並包括用以提供固定組 合器16之相關構件終的晶圓與晶粒所需之各種真空的真 空泵472。真空泵472爲普熙(Busch)乾運轉旋轉葉片型 栗。 可理解到各個構件經由容置於管線47 1中的電性及/ 或氣控連結(區塊420)連接在一起。軌473提供容置於 封閉體44中之不同的構件的安裝位置。因此,示意性指 示構件之間的實體連結,因熟悉該項技藝人士將了解到所 • 需之連結。 統一由符號474指示之馬達軸控制器連接至PLC 38 以幫助控制組合器1 6之構件的不同馬達與驅動器。於下 提供此馬達控制之詳細說明。 電源供應器476組態成提供160伏特DC供應以操作 真空泵472。電源供應器496組態成提供5、9、15及24 伏特的電源供應器至組合之繼電器與馬達接觸器。 繼電器478與熔線480提供至由電源供應器476供電 的電性構件之連結與保護,而繼電器492與熔線494提供 -43- 201009974 至由電源供應器496供電的電性構件之連結與保護。 繼電器482提供組合器16之加熱器元件的連結。可 理解到不同的繼電器允許PLC 38啓動與停用個別的構 件。並顯示48伏特電源供應器484及乙太網路交換器486 (顯示成第32圖中650)。電路斷路器488提供構件的過 電流保護。馬達接觸器490連接至控制器474以允許PLC 38以控制組合器的各種馬達。安全靜音控制器498及門開 參 關控制器5 00藉由若門,如載具裝載門1 1 9,在組合器1 6 啓動時打開’則停用組合器來提供安全性。氣控封閉體 5〇1形成組合器16之氣控封閉體46的部分(第3圖)。 馬達控制器 第31圖提供由PLC 38執行的馬達控制工作之示意槪 略圖。如上述,PLC從具有MES伺服器632及工業電腦 634之遠端監視系統(或PC 34)接收晶圓映照圖及相關 操作參數。透過由參考符號474統一指示的個別馬達軸控 制器由PLC 38控制上述的不同馬達與驅動器。 如上述’佈置頭168包括致動器161、176、180及 182。本發明人已發現具有愛模(]Eimo)驅動器474.1的 艾克貝斯(Akribis )線性馬達1 80適合此應用。類似地, 使用具有科比(Copley)驅動器474.2之薩柏(Zaber) 2 階步階器馬達176 ’連同具有C〇pley驅動器474.4之Figure 24 shows a control combiner 1 executed by various components under control of a PC 34, PLC 38, operator and/or remote monitoring system (RMS, indicated at 408), in accordance with one embodiment of the present invention, as described above. A general flow chart of the method or procedure of 6. As mentioned above, RMS 408 includes MES 632 and industrial computer 634. It will be appreciated that some of the steps are performed automatically by PC-36-201009974 34, PLC 38 and RMS 408, while others require input from the operator. References to the reference symbols representing a particular method step are meant to refer to the individual blocks indicated by such reference numerals in the drawings. Therefore, the methods included in the present invention are not limited or subject to the specific method steps referred to in this manner. Those skilled in the art will appreciate that there may be other methods underlying the present invention that may exclude some or include additional steps. φ shows the general steps of the combiner 16 having a die selection combination 18, a die transport mechanism 20, and a die arrangement combination 22. The remote monitoring system 408 is configured to signal communication with the PLC 38, as described above, and allows the remote to monitor and control the operational status of the combiner 16. The RMS 408 is also capable of tracking the carrier and wafer and which carrier the die will be placed on. RMS is an integrated position for quality and assurance control of the combination of vehicles. As shown, the program includes a wafer loading phase 398, a carrier loading phase 412, a die attach phase 424, and a processed carrier removal phase 436. • Wafer loading stage 3 98 has wafer removal from a clean cartridge that stores the wafer (block 400), loading the wafer into combiner 16 (block 402), and PLC 38 reading the wafer barcode ( Step 404). In the illustrated embodiment, a crystal map (block 406) is retrieved from remote monitoring system 408 by PLC 38, as described above. This wafer map typically provides the location and selection order of 1C on wafer 6. The wafer 6 is then placed on the wafer heating and vacuum panel 76. The carrier loading phase 412 has the step of removing the carrier 10 from the tray (block 414), after which the bar code of the carrier 10 is scanned by the PLC 38 and sent from -37 to 201009974 to the remote monitoring system 408. In the illustrated embodiment, the carrier 10 is constructed of a liquid crystal polymer (LCP) substrate, as shown in some of the blocks. The remote monitoring system 408 checks whether the carrier has a quality control test that has been previously passed thereon before commanding the PLC to combine the die thereon. If the carrier passes such a test (block 408) and is of sufficient quality, the operator removes the protective liner of the overlay stack 14 (block 4 20 ) and loads the carrier into the combiner 16 (block 422) ). The die attach procedure 424 is followed by the combiner initialization (block 426) and the wafer is scanned to determine the location of the die based on the wafer base map from the remote monitoring system 408 (block 428). The die is then removed from the wafer (block 43 0 ) and transported to the layout assembly 22 where the die will be bonded to the carrier (block 432). The selection and placement steps are repeated until the carrier includes the required number of dies specified by the wafer map (block 434). The processed carrier removal stage 436 includes scanning the completion of the 1C with the defined printheads. (Block 438) is sent and a quality report is sent to the remote monitoring system at block 44 0. The carrier 10 is then moved to the unloading position (block 4 42) where the operator can remove the carrier 1 from the combiner 16 and visually inspect the carrier 1 区 (block 444). The finished carrier 10 having the print head is then placed in the tray (block 446). Figure 25 shows the specific steps performed by the die selection combination 18 during the operation of selecting the die from the wafer 6. The method typically begins with the operator loading the wafer 6 into the combiner 16, as shown by block 200. Wafer 6 is positioned on wafer positioning combiner 48 as described above. -38- 201009974 The combiner 16 initializes (block 202) and scans the wafer bar code (block 204) under the control of the PLC 38 using the scribing reader 100. Unsuccessful scanning of the PLC 38 configured as a bar code (determined at decision block 206) causes the PLC 38 to unlock the wafer loading gate of the combiner 16 (block 208) so that the operator can remove and/or reposition the crystal. Round on the combiner 16 (block 21 0 ). The PC 34 is configured to control the wafer camera and optics 82 to check the starting point or reference (block 2 1 2) marked on the wafer as a reference for the wafer substrate map used by the PLC 38. Point to position individual dies on wafer 6. • Once the camera and optics 82 have been focused at 214, the PLC 38 checks the position of the stage 92 and the driver 98 for the die picker 81 and heater 90 (block 216). If the die picker 81 fails the check, the combiner 16 is reinitialized and may issue a warning to the operator. If the die picker 81 passes the check, it is lifted (block 218) and moved to the reference point indicated by the map lock. (Block 220) 〇PLC 38 uses the camera and optics 82 β to find the reference point on the wafer 6 (block 222) » If the PLC cannot locate the reference point, the wafer loading gate is unlocked, allowing the wafer 6 to be picked up. The optics 82 inspect the wafer (block 224) and the coordinates of the selected die (block 226) are requested by the PLC from the map. Failure of either of these two steps will unlock the wafer access door as shown. If a coordinate is provided, the die picker 81 is moved to the correct position (block 228), otherwise the coordinates are requested again. Once the die picker 8 is in place, the selected surface 86 (block 230) is lowered and contacted with the die and the wafer is heated by the heater 90 (block 232) to loosen the adhesion of the die to the wafer 6. . Then, by -39-201009974, the vacuum gripping die (block 234) is created by selecting the surface 86 as described above, and the die picker (block 238) is raised to remove the crystal chip from the wafer 6. grain. The die selection combination 18 then waits for the die transport mechanism 20 (block 240) to be positioned, then lowers the die onto the shuttle 1 18 (block 242) and releases the die by removing the vacuum (block) 244) ° If additional dies must be removed from the wafer, raise the die picker again (block 246) and repeat the procedure as shown. If the map does not require the selection of additional dies 'grain picker return to the wait position' to load a new wafer into the combiner 16 (block 2 50 ). Figure 26 shows an embodiment of a method performed by the die transport mechanism 20. Similar to the die selection combination described above, the program begins with initialization of mechanism 20 (block 260). The shuttle 1 18 waits until the picker 81 (block 262) until the picker moves to a position above the shuttle 118 (block 2 64). Once the die picker 81 is in place, the vacuum plate on the shuttle 118 receives the die and grips the die by creating a vacuum (block 266). The shuttle 118 waits for the picker head to rise (block 268), after which it is transported along the overhead beam 114 to the die arrangement 22 (block 270). The placement head assembly 160 includes a die arranger 170. The shuttle 118 waits for the arranging device 170 to be in place (blocks 272 and 274), after which the vacuum plate releases the grasped die (block 276) and remains in place (block 278) so that the picker 170 can pick it up. Start. When the picker 170 removes the die, the shuttle moves back to the die selection combination 18 to repeat the process (block 280). Figure 27 shows an example of one of the -40-201009974 method steps for the work performed by the die placement assembly 22. The program begins with a combination 22 initialization (block 300), after which the carrier 1〇 is loaded into the fixture 146 through the carrier loading gate 119 and clamped in the fixture 146 (block 304). The carrier 1 is then moved by the cross-roller 142 to the reference position at block 306. Arranging the camera and optics 166 scans the base index 15 of the carrier 1 to align the grains thereon. If the base mark is not found (decision block 308), station 142 moves carrier 1 to the unloading position (block 3 1 2). Φ If the base mark is not found, the stage 142 moves the carrier 1 to the arrangement position (block 314) where the combination 16 is placed to place the die on the carrier 1〇. The placement head 168 waits for the shuttle 1 1 8 to deliver the grain selected from the wafer as described above (block 314). Once the shuttle is in place, the placement head 168 is lowered (block 316). If the die is properly positioned (decision block 318), the die arranger 170 (block 320) is lowered to grip the die (block 3 2 2 ). Otherwise, the arrangement combination 160 moves back to the arrangement position. Once the die 'grain arranger 170 has been gripped (block Φ 324) and the shuttle shuttle 118 is checked for a clean pluck (block 326) and moved back to the die selection combination 18 (block) 3 2 8). The die arranger is moved to a position above the carrier 10 (block 330) and the gripped die and carrier (block 332) are aligned with the optical member 160 via a camera. The die arranger 170 is lowered at 336. The die arranging head 17 is then placed on the carrier 10 via the spacing 159 of the clamp 146. The air heater assembly 164 heats the die and carrier to hold the die to the thermoset stack 14 (block 3 3 8 ), after which the die is cooled (block 340). Arranging the camera and optics 166 before raising the placement head 168 (block 344) and moving to the next die placement 201009974 then allows the PC 34 to inspect the placement of the die on the carrier (block 342). Once the head 168 is removed (block 346), the PLC 38 can check the final position of the die (block 3 4 8) and move the carrier 10 to the unloading position (block 350) 'where the other carrier is loaded Front (block 3 54 ), the operator can release the carrier (block 352) and remove it from the housing 24 of the combiner 16. Reference Operator Interface Figure 28 is a schematic representation of the left portion of the combiner 16 of Figure 3, showing the operator interface in more detail. The interface includes a touch panel PC 34 and a control button table 36. Warning beacon 464 (symbol 35 in Fig. 3) and emergency stop buttons 460 and 462 are also displayed. Button 460 is the operator emergency stop button ' and button 462 is the maintenance emergency stop button. The carrier loading door 119 is disposed on the front plate 461 of the enclosure 24 of the combiner 16, as shown. The granite frame 138 of the die arrangement 22 can be seen through the load gate 1 19, and the fixture plate 144 and clamp 146. Electrical Member Fig. 29 shows the electrical enclosure behind the combiner 16 in the open state (Fig. 3). The control system of the combiner includes a PLC 38, which is a Mitsubishi® FX3U-64M PLC unit 645, having a FX2N-2LC temperature control block 646 in the form of a module, an FX3U-ENET Ethernet interface module 647 and FX0N-3A analog I/O special function block or module 648 and FX2N-32CAN controller area network (CAN) serial bus -42- 201009974 block 649 expansion block. The PLC 38 is connected to the PC 34 by the Ethernet switch 650 shown in Fig. 32. The PLC 38 receives programming instructions from the PC 34 such that the PLC 38 can control the operation of the die selection combination 18, the transport mechanism 20, and the die placement combination 22. A lighting controller 470 (Fig. 29) is included to control the LED adapters 1 to 8 of the camera and optics 82 and 166. Controller 470 is a defensive (Gradasoft) PP610 lighting controller. And includes a vacuum pump 472 for providing various vacuums required for the wafer and die of the associated component of the associated assembly 16. The vacuum pump 472 is a Busch dry running rotary vane type. It will be appreciated that the various components are coupled together via electrical and/or pneumatic connections (blocks 420) housed in line 47 1 . Rail 473 provides a mounting location for the different components housed in enclosure 44. Thus, the physical connections between the components are schematically indicated, as those skilled in the art will be aware of the required links. A motor shaft controller, indicated by symbol 474, is coupled to PLC 38 to assist in controlling the different motors and drives of the components of combiner 16. A detailed description of this motor control is provided below. Power supply 476 is configured to provide a 160 volt DC supply to operate vacuum pump 472. Power supply 496 is configured to provide 5, 9, 15 and 24 volt power supplies to the combined relay and motor contactors. The relay 478 and the fuse 480 are provided to the connection and protection of the electrical components powered by the power supply 476, and the relay 492 and the fuse 494 provide the connection and protection of the electrical components powered by the power supply 496 from -43 to 201009974. . Relay 482 provides a connection of the heater elements of combiner 16. It can be appreciated that different relays allow the PLC 38 to activate and deactivate individual components. A 48 volt power supply 484 and an Ethernet switch 486 (shown as 650 in Fig. 32) are shown. Circuit breaker 488 provides overcurrent protection of the components. Motor contactor 490 is coupled to controller 474 to allow PLC 38 to control the various motors of the combiner. The safety mute controller 498 and the door open switch controller 5 00 are disabled by the door, such as the carrier loading door 1 1 9 when the combiner 16 is activated, to disable the combiner to provide security. The pneumatically controlled enclosure 5〇1 forms part of the pneumatically controlled closure 46 of the combiner 16 (Fig. 3). Motor Controller Figure 31 provides a schematic representation of the motor control work performed by the PLC 38. As described above, the PLC receives wafer maps and associated operational parameters from a remote monitoring system (or PC 34) having an MES server 632 and an industrial computer 634. The various motors and drives described above are controlled by the PLC 38 via individual motor shaft controllers that are collectively indicated by reference numeral 474. The arrangement head 168 as described above includes actuators 161, 176, 180 and 182. The inventors have found that an Akribis linear motor 180 with a die (] Eimo) drive 474.1 is suitable for this application. Similarly, a Zaber 2 step stepper motor 176' having a Copley drive 474.2 is used along with a C〇pley driver 474.4.

Zaber 2階步階器馬達182。角馬達Ml亦爲具有Copley 驅動器474.3之Zaber 2階步階器馬達。 -44 - 201009974 晶粒輸送機制或穿梭運輸機制2 0包括線性馬達1 2 0, 其爲具有Elmo駆動器474.5之Akribis AC伺服馬達。 類似地,晶粒選取組合18包括致動器66、96、62及 60’如上述。晶圓定位組合48具有由具有奈米運動 (Nanomotion )驅動器4 74 · 8之奈米運動壓電履帶式馬達 60與62所致動之兩個台。晶圓旋轉馬達66爲具有 Copley驅動器474.6之Zaber 2階步階器馬達,並且選取 〇 器頭垂直馬達96爲具有Copley驅動器474.7之Zaber 2 階步階器馬達。應理解到所有驅動器474提供驅動器之位 置反饋資訊給PLC 38。 氣控封閉體46 第30圖顯示在打開狀態之組合器16的氣控封閉體 501 (第3圖中之封閉體46的部分),顯示由此組合器實 施例所使用的氣控構件。在主關閉閥502過濾來自空氣供 • 應器之雜質之後’立即使用SMC AF40系列空氣過濾器 5 04。過濾器504具有漂浮型自動排放系統。組合器16亦 包括SMC AFM系列霧氣分離器530以過濾來自供應器的 粒子,並且接著SMC AFD系列微霧氣分離器532以過濾 可能通過分離器53 0之更小的粒子。包括SMC ΑΜΕ系列 霧氣分離器514以從組合器16的氣控系統吸收細微油粒 子。 從SMC SF系列包括直排氣體過濾器51 8以移除來自 氣控供應器的任何剩餘的粒子。過濾器518包括PTFE薄 -45- 201009974 膜。包括操作各種氣控構件的高純度閥520,以及薄膜空 氣乾燥器534以移除濕氣。使用壓力調節器506、510、 512及526來調節各種氣控系統中的壓力。使用隔離閥 502與528來互相隔離個別的氣控電路。使用電磁閥524 以PLC 38來控制氣控系統,具有通報流體資訊給pLC 3 8 之流體感測器5 1 6。 φ 安全性 控制器或PLC 3 8包括保護組合器1 6、載具及晶圓6 不受到破壞還有操作者不受傷的數個安全特徵。因此, P L C 3 8組態成藉由上述的各種構件監視組合器1 6的操作 狀態。若偵測到潛在危險情況,PLC 3 8組態成停用組合 器16。危險情況可包括非預期的電性波動、壓力波動、非 預期的操作參數,PLC 38感測在組合器16之移動物件附 近有外來物體等等。 φ 第32至37圖顯示在上述電性構件的一些之間的互連 之電路圖。可理解到以僅指示連結的某些之槪觀的方式描 述電路圖。電路圖意圖輔助熟悉此技藝人士解釋構件之間 的互連,而非提供窮舉電路說明。在電路圖中,類似的參 考符號指示類似的連結,除非另有所指。 第35圖中顯示主安全繼電器668(以第29圖中的參 考符號492指示)。繼電器668爲歐姆龍(〇mron ) G9SA-321-T安全繼電器單元’並連接至緊急停止按鈕460 與462,如所示。繼電器668亦在666具有至PLC 38的 -46 - 201009974 連結,如所示。 第36圖顯示組合器之安全系統的其他構件連結。門 靜音控制器498連接至門開關控制器5 00,如所示,以及 至門安全開關670。門開關控制器500配置成與磁門開關 6 72、6 74及6 76通訊,如所示。若任何組合器的門板於操 作期間爲打開,則安全系統自動停用組合器以防止傷害及 /或破壞。 參 電腦控制 第32圖顯示控制系統,描繪PC 34控制組合器1 6的 光學構件的一項功能。如所見,選取相機1 1 1及佈置相機 1 16以火線連結652直接連接至PC 34 »如前述,PC 34組 態成控制相機1 11及1 1 6的操作。 晶圓劃線讀取器1 0 0亦以適當的U S B連結連接至P C 34’如所示。PC 34具有RS232通訊埠654,藉此可與一 對LED照明控制器470通訊(第33圖)。 第3 3圖更詳細顯示照明控制器470。照明控制器 470.1組態成控制選取器頭78用的LED 660以輔助相機 1 1 1之偵測。控制器470.1亦組態成控制佈置頭1 70用的 LED 662以輔助相機166的偵測。照明控制器470.2組態 成控制佈置頭170之側面照明用的LED 664。 第32圖亦顯示PC 34與乙太網路交換器486之間的 連結。交換器486在664連接至PLC 38及在666至乙太 網路。 -47- 201009974 第34圖顯示組合器之控制系統,包括PLC 38,其爲 Mitsubishi FX3U-64M PLC單元645,具有爲模組形式之 FX2N-2LC溫度控制區塊646、FX3U-ENET乙太網路介面 模組647及FX0N-3 A類比I/O特殊功能區塊或模組648及 FX2N-32CAN控制器區域網路(CAN )序列匯流排區塊 649之擴充區塊。 第37圖顯示PLC 38之溫度控制模組646與用來調節 φ 並控制晶圓6、空氣加熱器組合1 64及提起頭78的加熱器 匣90之個別加熱器匣及熱電耦之間的互連。 如所示,一溫度模組646負責經由繼電器682及熱電 耦686控制晶粒選取器頭78用之加熱器匣684。類似地, 經由繼電器680及熱電耦688加熱晶圓支撐件63的溫度 匣690,提供溫度反饋。第二溫度模組646負責經由繼電 器692及熱電耦694控制晶粒佈置頭用之加熱器匣698。 熟悉此項技藝人士將理解到上述的實施例可包括仍落 • 入本發明之範疇內的各種變化。 【圖式簡單說明】 可從提供熟悉此技藝人士執行本發明的足夠資訊之上 述詳細說明瞭解本發明之較佳特徵、實施例及變化。詳細 說明不應以任何方式限制本發明之發明內容的範疇。詳細 說明將參照下列數圖: 第1圖顯示界定複數積體電路(1C)或晶粒之晶圓的 一範例; -48- 201009974 第2圖顯示其上將佈置或組合列印頭積體電路(IC) 的載具或測試床之透視圖; 第3圖顯示組合ic於載具上之組合器的一實施例之 透視圖; 第4圖顯示根據本發明之一實施例從晶圓選取1C的 晶粒選取組合或晶粒選取器之透視圖; 第5圖顯示根據本發明之一實施例的第4圖之選取器 φ 之晶圓定位組合; 第6圖顯示第5圖中所示的晶圓定位組合之側剖面 圖, 第7圖顯示第5圖中所示的晶圓定位組合之下側圖; 第8圖顯示根據本發明之一實施例的第4圖之晶粒選 取與提起頭的透視圖; 第9圖顯示第8圖中所示的晶粒選取與提起頭的進一 步透視圖; φ 第10圖顯示第8圖中所示的晶粒選取與提起頭的進 一步透視圖; 第11圖顯示在第10圖中顯示成「A」的選取與提起 頭之晶粒選取器的一部分之放大圖; 第12圖顯示第4圖之晶粒選取組合之相機配置的一 實施例; 第13圖顯示第4圖之晶粒選取組合之晶圓劃線讀取 器的透視圖; 第14圖顯示根據本發明之一實施例的具有第3圖之 -49- 201009974 組合器的晶粒輸送組合形式之運輸設備的透視圖; 第15圖顯示第I4圖之晶粒輸送組合的構件載具或穿 梭件的較近圖; 第16圖顯示根據本發明之一實施例的第3圖之晶粒 組合器之晶粒佈置組合,該佈置組合處於載具裝載位置 中; 第17圖顯示在晶粒佈置位置中之第16圖的晶粒佈置 組合 第18圖顯示根據本發明之一實施例的第16圖之晶粒 佈置組合的晶粒佈置頭的透視圖; 第1 9圖顯示第1 6圖之晶粒佈置組合的晶粒佈置頭的 進一步透視圖; 第20圖顯示根據本發明之一實施例的第16圖之晶粒 佈置組合的空氣加熱器組合; 第21圖顯示用來定位組合器中之第2圖的測試床或 φ 載具之夾鉗機制的透視圖; 第22圖顯示第2 1圖之夾鉗機制的側剖面圖; 第23圖顯示用來控制第3圖之組合器的高階資料流 的示意圖; 第24圖顯示使用第3圖之組合器來組合列印頭電路 於第2圖之載具上的高階方法步驟的圖; 第25圖顯示代表從晶圓選取晶粒之方法步驟的區塊 圖, 第26圖顯示代表在晶粒選取組合與晶粒佈置組合之 -50- 201009974 間運輸晶粒之方法步驟的區塊圖; 第27圖顯示代表佈置晶粒於第2圖的載具上之方法 步驟的區塊圖; 第28圖顯示第3圖之組合器的操作器介面之一實施 例; 第29圖顯示在打開位置中顯示內部電性構件之組合 器的電性封閉體; φ 第30圖顯示在打開位置中顯示氣控構件之組合器的 氣控封閉體; 第31圖顯示描繪第3圖之組合器的馬達控制用之電 性構件的互動之示意圖: 第32圖顯示組合器之觸碰板PC及光學構件的電路 圖; 第33圖顯示組合器之LED控致器的電路圖; 第34圖顯示組合器之主控制器的佈置之電路圖; 〇 第35圖顯示組合器之主安全繼電器的電路圖; 第36圖顯示組合器之安全系統之一實施例的電路 圖;以及 第3 7A及3 7B圖顯示組合器之溫度控制電路的電路 圖。 【主要元件符號說明】 6 :晶圓 8 :列印頭1C或晶粒 -51 - 201009974 1 〇:載具 1 1、1 1 a、1 1 b :微模具 12 :疊層薄膜 1 3 :位置開口 14 :基標 15 :載具基標 1 6 :列印頭組合機器或組合器 1 7 :晶圓定位組合 1 8 :晶粒選取組合或晶粒選取器 20 :運輸設備或晶粒輸送機制 22 :晶粒放置組合 2 4 :支撐組合或結構 26 :自水平光學桌 27 :支撐框架 2 9 :側窗板 φ 2 8 ··高架 3 2 :載具裝載門 3 5 :光信標 3 6 :控制板 38 :可編程邏輯控制器(PLC ) 40 :離子棒 42 :風扇/過濾器配置 44 :電性封閉體 46 :氣控封閉體 -52- 201009974Zaber 2nd stepper motor 182. The angle motor M1 is also a Zaber 2 step stepper motor with a Copley drive 474.3. -44 - 201009974 The grain transport mechanism or shuttle transport mechanism 20 includes a linear motor 120, which is an Akribis AC servo motor with an Elmo actuator 474.5. Similarly, die selection assembly 18 includes actuators 66, 96, 62 and 60' as described above. Wafer positioning assembly 48 has two stages that are actuated by nano-motion piezoelectric track-type motors 60 and 62 having a nanomotion driver 4 74 . The wafer rotary motor 66 is a Zaber 2 step pacer motor having a Copley drive 474.6, and the selector head vertical motor 96 is a Zaber 2 step motor with a Copley drive 474.7. It should be understood that all of the drivers 474 provide position feedback information for the drive to the PLC 38. Air Control Enclosure 46 Fig. 30 shows the air control enclosure 501 (portion of the enclosure 46 in Fig. 3) of the combiner 16 in the open state, showing the air control members used in the embodiment of the combiner. Immediately after the main shut-off valve 502 filters impurities from the air supply, use the SMC AF40 Series Air Filter 5 04. The filter 504 has a floating automatic discharge system. The combiner 16 also includes an SMC AFM series mist separator 530 to filter particles from the supply, and then an SMC AFD series micro-mist separator 532 to filter smaller particles that may pass through the separator 530. A SMC® series mist separator 514 is included to absorb fine oil particles from the gas control system of the combiner 16. The direct vent filter 51 8 is included from the SMC SF series to remove any remaining particles from the air control supply. Filter 518 includes a PTFE thin -45-201009974 membrane. A high purity valve 520 that operates various gas control components, and a membrane air dryer 534 are included to remove moisture. Pressure regulators 506, 510, 512, and 526 are used to regulate the pressure in various gas control systems. Isolation valves 502 and 528 are used to isolate individual gas control circuits from each other. The air control system is controlled by a PLC 38 using a solenoid valve 524 having a fluid sensor 516 that communicates fluid information to the pLC 3 8 . φ Safety The controller or PLC 3 8 includes several safety features that protect the combiner 16. The carrier and wafer 6 are not damaged and the operator is not injured. Therefore, P L C 3 8 is configured to monitor the operational state of the combiner 16 by the various components described above. If a potentially dangerous situation is detected, the PLC 3 8 is configured to disable the combiner 16. Hazardous conditions may include unintended electrical fluctuations, pressure fluctuations, unintended operational parameters, and PLC 38 senses foreign objects in the vicinity of moving objects of combiner 16 and the like. φ Figures 32 to 37 show circuit diagrams of interconnections between some of the above-described electrical components. It will be appreciated that the circuit diagram is depicted in a manner that only indicates some of the connections. The circuit diagram is intended to assist those skilled in the art in explaining the interconnections between the components, rather than providing an exhaustive circuit description. In the circuit diagram, like reference characters indicate similar connections unless otherwise indicated. A primary safety relay 668 is shown in Fig. 35 (indicated by reference numeral 492 in Fig. 29). Relay 668 is an OMron G9SA-321-T safety relay unit&apos; and is coupled to emergency stop buttons 460 and 462 as shown. Relay 668 also has a -46 - 201009974 link to PLC 38 at 666 as shown. Figure 36 shows the other components of the safety system of the combiner. The door mute controller 498 is coupled to the door switch controller 5 00, as shown, and to the door safety switch 670. The door switch controller 500 is configured to communicate with the magnetic door switches 6 72, 6 74 and 6 76 as shown. If the door panel of any combiner is open during operation, the safety system automatically deactivates the combiner to prevent injury and/or damage. Reference Computer Control Figure 32 shows the control system depicting a function of the optical components of the PC 34 control combiner 16. As can be seen, the camera 1 1 1 is selected and the camera 1 16 is placed in direct connection to the PC 34 with a live wire connection 652. As previously described, the PC 34 is configured to control the operation of the cameras 1 11 and 1 16 . Wafer line reader 100 is also coupled to P C 34' as shown by a suitable U S B connection. The PC 34 has an RS232 communication port 654 whereby it can communicate with a pair of LED lighting controllers 470 (Fig. 33). Figure 3 3 shows the lighting controller 470 in more detail. The lighting controller 470.1 is configured to control the LED 660 for the picker head 78 to assist in the detection of the camera 112. Controller 470.1 is also configured to control LED 662 for placement head 1 70 to assist in the detection of camera 166. The lighting controller 470.2 is configured to control the LEDs 664 for side lighting of the placement head 170. Figure 32 also shows the connection between the PC 34 and the Ethernet switch 486. Switch 486 is connected to PLC 38 at 664 and to 666 to Ethernet. -47- 201009974 Figure 34 shows the control system of the combiner, including PLC 38, which is the Mitsubishi FX3U-64M PLC unit 645, with FX2N-2LC temperature control block 646 and FX3U-ENET Ethernet in modular form. Interface module 647 and FX0N-3 A analog I/O special function block or module 648 and FX2N-32CAN controller area network (CAN) sequence bus block block 649 expansion block. Figure 37 shows the mutual control between the temperature control module 646 of the PLC 38 and the individual heaters and thermocouples of the heaters 90 for adjusting the φ and controlling the wafer 6, the air heater combination 164 and the lifting head 78. even. As shown, a temperature module 646 is responsible for controlling the heater 匣 684 for the die picker head 78 via the relay 682 and the thermocouple 686. Similarly, temperature 匣 690 of wafer support 63 is heated via relay 680 and thermocouple 688 to provide temperature feedback. The second temperature module 646 is responsible for controlling the heater 匣 698 for the die placement head via the relay 692 and the thermocouple 694. Those skilled in the art will appreciate that the above-described embodiments may include various modifications that are still within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred features, embodiments, and variations of the present invention will become apparent from the Detailed Description of the Detailed Description of the <RTIgt; The detailed description should not limit the scope of the inventive content of the invention in any way. For a detailed description, reference will be made to the following figures: Figure 1 shows an example of a wafer defining a complex integrated circuit (1C) or a die; -48- 201009974 Figure 2 shows a printed head integrated circuit on which the head assembly circuit will be arranged or combined (IC) a perspective view of a carrier or test bed; Figure 3 shows a perspective view of an embodiment of a combiner that combines ic on a carrier; Figure 4 shows a 1C selected from a wafer in accordance with an embodiment of the present invention. a grain selection combination or a perspective view of a die picker; FIG. 5 shows a wafer positioning combination of the picker φ of FIG. 4 according to an embodiment of the present invention; FIG. 6 shows a fifth embodiment shown in FIG. A side cross-sectional view of the wafer positioning assembly, FIG. 7 shows a bottom view of the wafer positioning combination shown in FIG. 5; and FIG. 8 shows a wafer selection and lifting of the fourth drawing according to an embodiment of the present invention. a perspective view of the head; Figure 9 shows a further perspective view of the die selection and lifting head shown in Figure 8; φ Figure 10 shows a further perspective view of the die selection and lifting head shown in Figure 8; Figure 11 shows the selection of the "A" in Figure 10 and the grain selection of the lifting head. An enlarged view of a portion of the device; FIG. 12 shows an embodiment of a camera configuration of the die selection combination of FIG. 4; and FIG. 13 shows a perspective view of the wafer line reader of the die selection combination of FIG. Figure 14 shows a perspective view of a transport apparatus in the form of a die transport combination having a combiner of Figure -49 - 201009974 according to an embodiment of the present invention; Figure 15 is a view showing the die transport combination of Figure 14 a closer view of the component carrier or the shuttle; FIG. 16 shows a die arrangement of the die combiner of FIG. 3 in accordance with an embodiment of the present invention, the arrangement being in the carrier loading position; Fig. 18 is a perspective view showing a die arrangement head of a die arrangement according to Fig. 16 of an embodiment of the present invention; Fig. 19 shows Further perspective view of the die placement head of the die arrangement combination of Fig. 16; Fig. 20 shows the air heater combination of the die arrangement of Fig. 16 according to an embodiment of the present invention; To locate the second image in the combiner A perspective view of the clamp mechanism of the test bed or φ carrier; Figure 22 shows a side cross-sectional view of the clamp mechanism of Figure 21; and Figure 23 shows a schematic diagram of the high-order data flow for controlling the combiner of Figure 3. Figure 24 shows a diagram of the high-order method steps for combining the printhead circuit on the carrier of Figure 2 using the combiner of Figure 3; Figure 25 shows the block representing the method steps for selecting the die from the wafer; Figure 26 is a block diagram showing the method steps for transporting the grain between -50-201009974 in the combination of die selection and die arrangement; Figure 27 shows the carrier on the carrier in Figure 2 Block diagram of the method steps; Figure 28 shows an embodiment of the operator interface of the combiner of Figure 3; Figure 29 shows the electrical enclosure of the combiner showing the internal electrical components in the open position; Figure 30 shows the pneumatically controlled closure of the combiner showing the pneumatic control member in the open position; Figure 31 shows a schematic diagram depicting the interaction of the electrical components for motor control of the combiner of Figure 3: Figure 32 shows the combination Circuit of touch panel PC and optical component Figure 33 shows the circuit diagram of the LED controller of the combiner; Figure 34 shows the circuit diagram of the arrangement of the main controller of the combiner; 〇 Figure 35 shows the circuit diagram of the main safety relay of the combiner; Figure 36 shows the combination A circuit diagram of one embodiment of the safety system of the device; and a circuit diagram of the temperature control circuit of the combiner shown in Figures 7A and 7B. [Main component symbol description] 6 : Wafer 8: Print head 1C or die -51 - 201009974 1 〇: Carrier 1 1 , 1 1 a, 1 1 b : Micro mold 12 : Laminated film 1 3 : Position Opening 14: Base 15: Carrier Base 1 6: Printhead Combination Machine or Combiner 1 7: Wafer Positioning Combination 18: Die Selection or Die Picker 20: Transport Equipment or Grain Transfer Mechanism 22: die placement combination 2 4: support combination or structure 26: from horizontal optical table 27: support frame 2 9: side window plate φ 2 8 · · overhead 3 2 : carrier loading door 3 5 : optical beacon 3 6 : Control Board 38: Programmable Logic Controller (PLC) 40: Ion Bar 42: Fan/Filter Configuration 44: Electrical Enclosure 46: Air Control Enclosure - 52 - 201009974

34 : PC 4 8 :晶圓定位組合 5 0 :區塊安裝件 52 :底板 5 4 :位移組合 5 5 :真空歧管 56 :第一台 φ 57 :真空管 58 :第二台 5 9 :真空孔徑 60 :第一壓電馬達 61 :壓縮彈簧 62 :第二壓電馬達 63 :晶圓支撐板組合 65 :軸承保持器 φ 66 :步階馬達組合 67 :旋轉銷 68 :電源螺桿 69 :軸承桌 70 :螺桿板 71 :加熱器板 7 2 :彈簧 74 :加熱器匣 7 5 :間隔件 -53- 201009974 76 :真空板 77 :供應管 7 8 :晶粒選取與提起頭 7 9 :熱電耦 80 :高架 8 1 :高架柱 82 :晶圓相機與光學組合 φ 83 :連接器臂 8 5 :電箱 8 7 :托架 89 :架座 91 :晶粒選取器頭 9 1 :真空孔徑列 92 :線性平移台 94 :線性編碼器 φ 96 :垂直步階馬達 97 :選取頭板 98 :微米驅動器 99 :驅動托架 1〇〇 :晶圓劃線讀取器 101 :托架 103 :刻度帶 84 :真空體 86 :晶粒接觸表面 -54- 20100997434 : PC 4 8 : Wafer positioning assembly 50 : Block mounting member 52 : Base plate 5 4 : Displacement combination 5 5 : Vacuum manifold 56 : First stage φ 57 : Vacuum tube 58 : Second stage 5 9 : Vacuum aperture 60: first piezoelectric motor 61: compression spring 62: second piezoelectric motor 63: wafer support plate assembly 65: bearing holder φ 66: step motor combination 67: rotary pin 68: power supply screw 69: bearing table 70 : Screw plate 71 : Heater plate 7 2 : Spring 74 : Heater 匣 7 5 : Spacer - 53 - 201009974 76 : Vacuum plate 77 : Supply pipe 7 8 : Grain selection and lifting head 7 9 : Thermocouple 80 : Elevated 8 1 : Elevated column 82 : Wafer camera and optical combination φ 83 : Connector arm 8 5 : Electrical box 8 7 : Bracket 89 : Rack 91 : Die picker head 9 1 : Vacuum aperture column 92 : Linear Translation stage 94: Linear encoder φ 96: Vertical step motor 97: Pick head plate 98: Micro driver 99: Drive carrier 1: Wafer line reader 101: Bracket 103: Scale tape 84: Vacuum Body 86: die contact surface -54- 201009974

9 3 ·· 88 : 90 : 95 : 114: 102 : 1 04 : 106 : 107 : 108 : 109 : 110: 111: 113: 115: 116: 118: 117: 119: 120 : 121 : 122 : 123 : 124 : 密封條 真空管 加熱器匣 熱電耦 高架樑 相機 轉接器管 本體管 機殻 LED組合 托架 冷卻散熱器 相機 視訊透鏡 光源 高架柱 穿梭或承載件 限制開關配置 載具裝載門 線性馬達 托架 滑動板 放置頭安裝區塊組合 真空板 -55- 201009974 125 : Z軸台 1 2 6 :晶粒板 1 2 7 : Y軸台 1 2 8 :孔徑 129 : X軸台 1 30 :真空管 131 :角移動彈簧 φ 132 :膠體塊 1 3 3 :托架組合 1 34 :直立部 1 3 5 :推桿 1 3 6 :間隔件 1 3 7 :托架組合 138 :框架 139 :推動托架 ⑩ 1 4 0 :床部 1 4 1 :推桿 142 :十字滾動組合 143 :壓縮彈簧 1 44 :夾具板 1 4 5 ·線性編碼器 146:載具夾具或夾鉗組合 147 :刻度帶 149 :調整區塊 -56- 201009974 148 :夾具體 1 5 0 :保持板 151 :連接器區塊 152 :插件 1 5 3 :孔徑 154 :把手或旋鈕 1 5 5 :空氣加熱器管 _ 1 5 5 :隔膜 1 5 6 :插件止件 1 5 7 :位置暗榫 1 5 8 :氣控配件 159 :近接開關 1 6 0 :放置頭組合 1 6 1 :角馬達 162 :安裝板 . 164 :空氣加熱氣組合 166 _·放置相機與相關光學件 1 68 :放置頭 170 :晶粒放置器頭 172 :彈性器具 176 : X軸微米驅動器 180 : Y軸步階馬達 182 : Z軸步階馬達 1 86 :真空管 -57- 201009974 408 :遠端監視系統 460、462 :緊急停止按鈕 461 :前方板 464 :警告信標 472 :真空泵 470、470.1、470.2:照明控制器 4 7 1 :管線 φ 472 :真空泵 473 :軌 476、484、496 :電源供應器 478、 482、 492:繼電器 4 8 0、494 :熔線 486 :乙太網路交換器 48 8 :電路斷路器 490 :馬達接觸器 φ 498 :安全靜音控制器 5 00 :門開關控制器 501 :氣控封閉體 502 :主關閉閥 502 、 528 :隔離閥 504 :空氣過濾器 506、510、512、526 :壓力調節器 5 1 6 :流體感測器 5 1 8 :直排氣體過濾器 -58- 201009974 520 :高純度閥 5 2 4 :電磁閥 5 3 0、514 :霧氣分離器 5 3 2 :微霧氣分離器 534:薄膜空氣乾燥器 600:熱空氣供應噴嘴 602 :加熱器閥組合 φ 604 :加熱器安裝板 606 :空氣處理加熱器 6 1 〇 :冷空氣供應器 6 1 2 :熱電耦 6 1 4 :電箱 616:熱空氣轉向管 6 1 8 :氣控致動器 620 :連接棒 φ 622 :相機與光學件組合托架 624 :接取間隔 625 :隔膜 626 :空氣導管 6 3 0 :系統 632 :製造執行系統(MES )伺服器 634 :工業電腦 63 6 :放置狀態機 63 8 :運輸狀態機 59- 201009974 640 :選取狀態機 642 :監督狀態機 644 :運動控制狀態機陣列 645 : PLC 單元 646 :溫度控制區塊 647 :乙太網路介面模組 648 :類比I/O特殊功能區塊或模組 649 :控制器區域網路(CAN )序列匯流排區塊 650 :乙太網路交換器 652 :火線連結 654: RS232通訊埠 660、662、664 : LED 668 :主安全繼電器 670 :門安全開關 672 、 674 、 676 :磁門開關 682 、 680 、 692 :繼電器 684、6 98 :加熱器匣 686、 688、 694 :熱電耦 6 9 0 :溫度匣 -60-9 3 ·· 88 : 90 : 95 : 114 : 102 : 1 04 : 106 : 107 : 108 : 109 : 110 : 111 : 113 : 115 : 116 : 118 : 117 : 119 : 120 : 121 : 122 : 123 : 124 : Sealing strip vacuum tube heater 匣 thermocouple overhead beam camera adapter tube body tube housing LED combination bracket cooling radiator camera video lens source overhead column shuttle or carrier limit switch configuration carrier loading door linear motor bracket sliding plate Place head mounting block combination vacuum plate -55- 201009974 125 : Z-axis table 1 2 6 : die plate 1 2 7 : Y-axis table 1 2 8 : aperture 129 : X-axis table 1 30 : vacuum tube 131 : angular movement spring Φ 132 : colloidal block 1 3 3 : bracket combination 1 34 : upright portion 1 3 5 : push rod 1 3 6 : spacer 1 3 7 : bracket assembly 138 : frame 139 : push bracket 10 1 4 0 : bed Part 1 4 1 : Push rod 142 : Cross rolling combination 143 : Compression spring 1 44 : Fixture plate 1 4 5 · Linear encoder 146: Carrier clamp or clamp combination 147 : Scale belt 149 : Adjustment block -56- 201009974 148: Clip specific 1 5 0 : Holding plate 151 : Connector block 152 : Insert 1 5 3 : Aperture 154 : Handle or Button 1 5 5 : Air heater tube _ 1 5 5 : Diaphragm 1 5 6 : Insert stopper 1 5 7 : Position 榫 1 5 8 : Air control fitting 159 : Proximity switch 1 6 0 : Place head combination 1 6 1 : Angle motor 162: Mounting plate. 164: Air heating gas combination 166 _·Placing the camera and associated optics 1 68: Placement head 170: Die placer head 172: Elastic device 176: X-axis micro-driver 180: Y-axis step Step motor 182: Z-axis step motor 1 86 : Vacuum tube - 57 - 201009974 408 : Remote monitoring system 460, 462 : Emergency stop button 461 : Front plate 464 : Warning beacon 472 : Vacuum pump 470, 470.1, 470.2: Lighting control 4 7 1 : Line φ 472 : Vacuum pump 473 : Rails 476 , 484 , 496 : Power supply 478 , 482 , 492 : Relay 4 8 0 , 494 : Fuses 486 : Ethernet switch 48 8 : Circuit open 490: motor contactor φ 498: safety mute controller 5 00: door switch controller 501: air control enclosure 502: main shutoff valve 502, 528: isolation valve 504: air filter 506, 510, 512, 526: Pressure Regulator 5 1 6 : Fluid Sensor 5 1 8 : Direct Exhaust Body Filter -58- 201009974 520 : High Purity Valve 5 2 4 : Solenoid valve 5 3 0, 514 : mist separator 5 3 2 : micro mist separator 534 : membrane air dryer 600 : hot air supply nozzle 602 : heater valve combination φ 604 : heater mounting plate 606 : Air treatment heater 6 1 〇: Cold air supply 6 1 2 : Thermocouple 6 1 4 : Electric box 616: Hot air steering tube 6 1 8 : Air control actuator 620 : Connection rod φ 622 : Camera and optics Assembly bracket 624: access interval 625: diaphragm 626: air duct 6 3 0: system 632: manufacturing execution system (MES) server 634: industrial computer 63 6: placement state machine 63 8: transport state machine 59- 201009974 640: State Machine 642: Supervisory State Machine 644: Motion Control State Machine Array 645: PLC Unit 646: Temperature Control Block 647: Ethernet Interface Module 648: Analog I/O Special Function Block or Module 649 : Controller Area Network (CAN) Sequence Bus Block 650: Ethernet Switch 652: Firewire Link 654: RS232 Communication 埠 660, 662, 664: LED 668: Main Safety Relay 670: Door Safety Switch 672, 674, 676: magnetic door switches 682, 680, 692: relays 684, 6 98: Heater 686 686, 688, 694: Thermocouple 6 9 0 : Temperature 匣 -60-

Claims (1)

201009974 十、申請專利範圍 1. 一種佈置積體電路晶粒於載具上的晶粒佈置組 合’該組合包含: 支撐平台,具有夾鉗機制,組態成夾鉗該載具至該平 台上; 至少一相機,操作性被導向該平台以偵測該載具上的 對準基標: φ 佈置裝置,具有真空機制,以從供應機制擷取該晶 粒,該佈置裝置具有致動器以對準該晶粒與該載具且一旦 對準佈置該晶粒於其上,以及加熱器,以在佈置於該載具 上之前加熱該晶粒;以及 控制器,操作性控制該夾鉗機制、該相機及該佈置裝 置,以輔助該晶粒於該載具上之正確的佈置。 2·如申請專利範圍第1項之佈置組合,其中該積體 電路晶粒爲噴墨列印頭晶粒。 φ 3-如申請專利範圍第1項之佈置組合,其中該相機 包括相機模組,藉由轉接器管鍊接至稜鏡,以將該相機聚 焦於該載具上。 4.如申請專利範圍第1項之佈置組合,其中該佈置 裝置的該些致動器包括三個步階器馬達,各獨自分別負責 該晶粒與該載具的垂直、水平及角對準。 5·如申請專利範圍第1項之佈置組合,其中該佈置 裝置的該些致動器包括線性平移台,以垂直方向移動該晶 粒,以將該晶粒佈置在該載具上。 -61 - 201009974 6. 如申請專利範圍第1項之佈置組合,其中該佈置 裝置包括熱氣吹送器,組態成在該佈置裝置佈置該晶粒於 該載具上之前,將熱氣導向該晶粒。 7. 如申請專利範圍第1項之佈置組合,其中該佈置 裝置包括照明配置,以照亮該載具以輔助該相機偵測該些 對準基標。 8. 如申請專利範圍第1項之佈置組合,其中該支撐 平台包括由該控制器所控制之氣控式操作的自水平平台。201009974 X. Patent application scope 1. A combination of grain arrangement for arranging integrated circuit chips on a carrier' The combination comprises: a support platform having a clamping mechanism configured to clamp the carrier to the platform; At least one camera operatively directed to the platform to detect an alignment mark on the carrier: φ arranging device having a vacuum mechanism to extract the die from a supply mechanism, the arranging device having an actuator Pre-aligning the die with the carrier and aligning the die thereon, and a heater to heat the die prior to being disposed on the carrier; and a controller operatively controlling the clamping mechanism, The camera and the arrangement are arranged to assist in the proper placement of the die on the carrier. 2. The combination of the first aspect of the patent application, wherein the integrated circuit die is an ink jet print head die. φ 3- As set forth in the scope of claim 1, wherein the camera includes a camera module that is linked to the cassette by an adapter tube to focus the camera on the carrier. 4. The arrangement of claim 1, wherein the actuators of the arranging device comprise three stepper motors each independently responsible for vertical, horizontal and angular alignment of the die with the carrier . 5. The combination of parts of claim 1, wherein the actuators of the arranging device comprise a linear translation stage that moves the grains in a vertical direction to arrange the dies on the carrier. -61 - 201009974 6. The arrangement of claim 1, wherein the arrangement comprises a hot gas blower configured to direct hot gas to the die prior to arranging the die on the carrier . 7. The arrangement of claim 1, wherein the arrangement comprises an illumination configuration to illuminate the vehicle to assist the camera in detecting the alignment marks. 8. The combination of arrangements of claim 1 wherein the support platform comprises a self-leveling platform operated by the controller. -62--62-
TW97131603A 2008-08-19 2008-08-19 Integrated circuit placement system TW201009974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97131603A TW201009974A (en) 2008-08-19 2008-08-19 Integrated circuit placement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97131603A TW201009974A (en) 2008-08-19 2008-08-19 Integrated circuit placement system

Publications (1)

Publication Number Publication Date
TW201009974A true TW201009974A (en) 2010-03-01

Family

ID=44828025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131603A TW201009974A (en) 2008-08-19 2008-08-19 Integrated circuit placement system

Country Status (1)

Country Link
TW (1) TW201009974A (en)

Similar Documents

Publication Publication Date Title
US7979979B2 (en) Clamp assembly for an assembler of integrated circuitry on a carrier
US8296937B2 (en) Wafer positioning system
US8701276B2 (en) Placement head for a die placing assembly
US7805832B2 (en) Transfer apparatus for transferring a component of integrated circuitry
US7877876B2 (en) Method of attaching integrated circuits to a carrier
US20100047053A1 (en) Die picker for picking printhead die from a wafer
US20100047962A1 (en) Multi-chip printhead assembler
US8092625B2 (en) Integrated circuit placement system
US20100043214A1 (en) Integrated circuit dice pick and lift head
US11440117B2 (en) Multiple module chip manufacturing arrangement
EP3857592B1 (en) Multiple module chip manufacturing arrangement
TW201008855A (en) Wafer positioning system
TW201009974A (en) Integrated circuit placement system
KR101178010B1 (en) Multi-chip printhead assembler
US20080224723A1 (en) Method for testing a semiconductor wafer and apparatus thereof
WO2010019980A1 (en) Measuring apparatus for performing positional analysis on an integrated circuit carrier
TW201008791A (en) Multi-chip printhead assembler
TW201008852A (en) Die picker for picking printhead die from a wafer
TW201008853A (en) Placement head for a die placing assembly
JP6571022B2 (en) Substrate processing equipment
US7924440B2 (en) Imaging apparatus for imaging integrated circuits on an integrated circuit carrier
US20100043980A1 (en) Alignment mechanism for aligning an integrated circuit
US20100043960A1 (en) Method for laminating a carrier for printhead integrated circuitry
JP2002111197A (en) Method and apparatus for replacing component
US20100043979A1 (en) Bonding apparatus for printheads