TW201009793A - Compensation circuit and display containing the same - Google Patents

Compensation circuit and display containing the same Download PDF

Info

Publication number
TW201009793A
TW201009793A TW97133247A TW97133247A TW201009793A TW 201009793 A TW201009793 A TW 201009793A TW 97133247 A TW97133247 A TW 97133247A TW 97133247 A TW97133247 A TW 97133247A TW 201009793 A TW201009793 A TW 201009793A
Authority
TW
Taiwan
Prior art keywords
transistor
detector
state
current
initial
Prior art date
Application number
TW97133247A
Other languages
Chinese (zh)
Other versions
TWI401653B (en
Inventor
Zhi-Long Lin
Guan-Wen Zhou
Jun-Da Tu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97133247A priority Critical patent/TWI401653B/en
Publication of TW201009793A publication Critical patent/TW201009793A/en
Application granted granted Critical
Publication of TWI401653B publication Critical patent/TWI401653B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

A display comprises: an array module having M scan lines, N data lines and MxN pixel circuits arranged in an array, wherein each pixel circuit is disposed at an intersection of a scan line and a data line; a scan driver for enabling the scan lines; a voltage controller for outputting a plurality of reference voltages; a data driver for correcting an image signal according to the reference voltages and sending the corrected image signal into the data lines when the scan lines are enabled to prompt each pixel circuit to produce a drive current; and a compensation circuit for detecting the variation of the drive currents so as to output a use comparison message and a location indication by which the voltage controller can adjust the reference voltages to make each pixel circuit emit the brightness corresponding to the drive currents. In addition, a compensation circuit is also disclosed.

Description

201009793 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光裝置的補償技術,特別是指 一種主動矩陣有機發光二極體(Active Matrix Organic Light-Emitting Diode , AMOLED)補償 電路及 包含此 補償電 路的顯 示器。 【先前技術】201009793 IX. Description of the Invention: [Technical Field] The present invention relates to a compensation technology for a light-emitting device, and more particularly to an Active Matrix Organic Light-Emitting Diode (AMOLED) compensation circuit and A display containing this compensation circuit. [Prior Art]

參閱圖1和圖2,主動矩陣有機發光二極體(AMOLED) 顯示器是藉由顯示面板95的複數個呈陣列式排列且可顯現 不同色彩的像素電路9來達到顯示全彩影像的功能。每一 像素電路9包含一有機發光二極體(OLED) 91及一驅動電路 92’且驅動電路92包括一第一電晶體921、一第二電晶體 922及一電容923,亦即呈現2T1C的架構。 當一掃描驅動器96發出一掃描信號VSCAN時,屬於其 中一列的第一電晶體921會受其控制,而促使電容923根 據來自一資料驅動器97的資料電壓VDATA改變跨壓。且第 二電晶體922會受電容923跨壓及一電源電壓VDD的控制 而進入飽和區,從而輸出一如下所示的驅動電流IDRIVE到 OLED 91 ’以使OLED 91發出強度與驅動電流Idrive大小 相關的光。 I DRIVE = ~^k922{yc>923 -Vm,9 其中, k922是第二電晶體922的元件互導參數( device trans-con.ductance parameter),Vc,923 是電容 923 的跨 壓,而VTH,922是第二電晶體922的臨界電壓(threshold 201009793 voltage) 〇 然而,對不同像素電路9來說,第二電晶體922的臨 界電壓VTH,922會因為製程差異與操作時間而不同。因此, 即使電容923是依據相同的資料電壓Vdata來改變跨壓,第 一電阳體.922產生的驅動電流idrive也不會相等,當然各個 OLED 9i發出的光強度也難以均勻。 儘管目前已發展出許多技術來降低臨界電壓Vth,922變 異對驅動電流IDRIVE的影響,但是這些技術大多藉由在驅動, 電路92中增加許多電晶體及/或電容來解決問題反而有損· 顯示器的開口率(aperture ratio)。 隨著顯示面板95尺寸(亦即該等像素電路9所構成的陣 列大小)增大,傳送該電源電壓VDD的信號線也隨之拉長, 導致實際遞送到每一像素電路9的電源電壓VDD逐漸衰減 ,更令OLED 91的發光均勻度下降。 並且,OLED 91在經過長時間的操作後會出現跨壓上 升的問題,進而影響流經0LED 91的電流大小。同時也會 出現發光效率下降的問題,造成無法單就電流大小來掌握鑤 發光強度。 【發明内容】 因此,本發明之目的,即在提供一種提高開口率並維 持亮度一致性的補償電路及包含此補償電路的顯示器。 _Referring to FIG. 1 and FIG. 2, an active matrix organic light emitting diode (AMOLED) display is capable of displaying a full color image by a plurality of pixel circuits 9 arranged in an array and displaying different colors. Each of the pixel circuits 9 includes an organic light emitting diode (OLED) 91 and a driving circuit 92'. The driving circuit 92 includes a first transistor 921, a second transistor 922, and a capacitor 923, that is, 2T1C. Architecture. When a scan driver 96 sends a scan signal VSCAN, the first transistor 921 belonging to one of the columns is controlled by it, causing the capacitor 923 to change the voltage across the data voltage VDATA from a data driver 97. And the second transistor 922 is controlled by the capacitor 923 across the voltage and a power supply voltage VDD to enter the saturation region, thereby outputting a driving current IDRIVE to the OLED 91' as shown below to make the intensity of the OLED 91 related to the driving current Idrive. Light. I DRIVE = ~^k922{yc> 923 -Vm,9 where k922 is the device trans-con.ductance parameter of the second transistor 922, Vc, 923 is the voltage across the capacitor 923, and VTH , 922 is the threshold voltage of the second transistor 922 (threshold 201009793 voltage). However, for different pixel circuits 9, the threshold voltage VTH, 922 of the second transistor 922 may be different due to process variation and operation time. Therefore, even if the capacitor 923 changes the voltage across the same data voltage Vdata, the driving current idrive generated by the first solar body 922 is not equal, and of course, the light intensity of each OLED 9i is difficult to be uniform. Although many techniques have been developed to reduce the effect of the threshold voltage Vth, 922 variation on the drive current IDRIVE, most of these techniques are problematic by adding a large number of transistors and/or capacitors in the drive, circuit 92. The aperture ratio. As the size of the display panel 95 (i.e., the array size of the pixel circuits 9) increases, the signal line that transmits the power supply voltage VDD also lengthens, resulting in the power supply voltage VDD actually delivered to each of the pixel circuits 9. The gradual attenuation further reduces the uniformity of illumination of the OLED 91. Moreover, the OLED 91 may have a problem of rising across the voltage after a long period of operation, thereby affecting the amount of current flowing through the OLED 91. At the same time, there is a problem that the luminous efficiency is lowered, and it is impossible to grasp the illuminating intensity by the current magnitude alone. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a compensation circuit that increases aperture ratio and maintains brightness uniformity and a display including the same. _

於是,本發明顯示器,包含:一陣列模組,包括m條 掃描線、N條資料線及MxN個呈陣列排列且分成複數組的 像素電路,該等掃描線與該等資料線相互交錯而構成IN 201009793Therefore, the display of the present invention comprises: an array module comprising m scanning lines, N data lines, and MxN pixel circuits arranged in an array and divided into complex arrays, wherein the scanning lines and the data lines are interlaced to form IN 201009793

個交會處’且每一像素電路相對應其中一交會處設置;— 掃描驅動器,用以致能該等掃描線;一電壓控制器,輸出 複數參考電壓;一資料驅動器,根據該等參考電壓修正— 影像信號’且在至少一掃描線被致能時將修正後的影像信 號送入該等資料線’而促使每一像素電路產生一驅動電流 ,及一補償電路’偵測該等像素電路所輸出之驅動電流的 變異情形,以輸出一使用比較訊息及一代表發生變異之像 素電路位置的位置指示’以供該電壓控制器調整該等參考 電壓,而使該資料驅動器修正該影像信號,來讓每一像素 電路發出相關驅動電流的亮度。 而本發明補償電路,適用於接收來自至少一組像素電 路的驅動電流,且該組像素電路是根據至少一資料電壓來 產生該驅動電流,該補償電路包括:至少一具有一使用偵 測器的判斷裝置,該使用偵測器具有一電流比較器及一在 導通狀態與非導通狀態間切換的第一電晶體;在該第一電 晶體處於導通狀態,且該電流比較器比較得知該驅動電流 小於一參考電流時,該電流比較器會輸出一使用比較訊息 ,以調整該資料電壓。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖2 本發明顯示器之較佳實施例包含-Γ陣列模組 補償電路5、一記 一時序控制器2、一掃描驅動器 201009793 憶裝置6、一電壓控制器7及一資料驅動器4。資料驅動器 4包括一數位至類比轉換器(DAC)41及―資料產生單元π 。陣列模組}包括Μ條掃描線VscA、丨、 VSCAN_2.,.VsCAN—M 、 N 條資料線 、 VDATA_2〜VDATA—N及ΜχΝ個呈陣列排列的像素電路“, 且每一像素電路!!包含-驅動電路11〇及一⑽D i2〇(如 圖4)。其中,該等掃描線Vscan—KM與該等資料線 VDATA—1〜N相互交錯而構成ΜχΝ個交會處,且每一像素電 路11相對應其中一交會處設置。 掃描驅動器3受時序控制器2控制而逐一致能該等掃 描線VSCANj〜M,以分別驅動每一列像素電路u。資料驅 動器4中’ DAC 41會根據複數個參考電麼來修正一影像信 破而形成-類比資料;並且’資料產生單元42會受時序控 ^器2控制而在每-掃描線Vs⑽—被致能時將類比資工 料送入該等資料線Vdat , 11 λα &、Μ π @ * 1下达給該等像素電路 、…。再者’每一驅動電路no會因為受對應交 參 吝 抑描線VSCAN」〜M控制,而根據對應資料電壓來 產生-流經相關⑽D12G的驅動電流。且補償電“㈣ 測所有驅動電流的變異愔> 生變異之像素電路變異信號及-代表發 位置的位置指示,供記憶裝置6 。電壓控制器7則讀出纪情奘 祕 . ®心裝置6内的變異信號和位置指 不’並據以調整該等被^41當作修正根據的參考電壓。 因此,本發明顯示器能龜士 動電㈣變異㈣制所有驅 進而修正影像信號以提供該等適切的 201009793 資料電壓,來調整流經該等OLED 120的驅動電流。 而補償電路5包括Μ判斷裝置51。參閱圖4,每一判 斷裝置51會電連接屬於同一組(本較佳實施例是指同一列) 像素電路11之0LED 120,並具有一常態操作器56〇、一初 始偵測器570及一使用偵測器580。常態操作器56〇具有一 第一電晶體561。而每一偵測器570、580具有一第一電晶 體571、581、一第二電晶體572、582及一電流比較器573 、583。且每一電晶體561、571、572、581、582能在導通 狀態與非導通狀態間切換。 每一判斷裝置51會受一控制信號控制而操作於三種工 作模式:正常使用模式、初始偵測模式、使用偵測模式。 且控制信號具有一第一啟動指示CTRL—丨、一第二啟動指示 CTRL一2及一第三啟動指示CTRL_3。 真常使用掇或 當第一啟動指示CTRL—!處於高電位而其他啟動指示 CTRL—2〜3處於低電位,每一判斷裝置51會進入主常使用 模式’而使得第-電晶體561呈現導通狀態,並導引流經 該列像素電路11的所有驅動電流到地,。因此,在正常使用 模式下’料驅動電流不會㈣授而補償傳送給每—像素 電路11的資料電壓^也就是說,驅動該等像素電路 方 式和習知技術類似。 初始楨海丨描:< 在本發明顯示器被使用前,t第二啟動指示CTRL 於高電位而其他啟動指示CTRL」、CTRL_3處於低電位, 201009793 每一判斷裝置51會進入初始偵測模式,而使得第一電晶體 571呈現導通狀態。並且,該等資料線逐一接收 到一初始測試電壓,且每次僅其中一資料線Vdata_i〜N會 收到初始測試電壓。此時,若是一掃描啟動Vscan_ex被致 能’那麼對應第二電晶體572也會呈現導通狀態,並導引 因初始測試電壓所產生的驅動電流(即:收到初始測試電壓 之被掃描像素電路11的驅動電流)到電流比較器573。 參閲圖5,當该驅動電流小於一第一參考電流,電流比 較器573輸出的一初始比較訊息(包括於變異信號中)是呈高參 電位’這意謂著收到初始測試電壓之那一個像素電路丨丨因 為發生變異而導致較低的驅動電流。接著,記憶裝置6收 到初始比較訊息和位置指示後,電壓控制器7會據以調升 初始測試電壓。直到驅動電流不小於第一參考電流電流 比較器573才輸出低電位的的初始比較訊息來結束初始偵 測模式。因此,在初始偵測模式中,電壓控制器7能藉由 初始偵測器570逐一得知每一像素電路u的變異情形,進 而對應調整作為該等資料電壓的初始測試電壓。 參 使用偵測掇< 在本發明顯示器被使用的過程中,當第三啟動指示 CTRL—3處於高電位而其他啟動指示CTRL_1〜2處於低電位-’每一判斷裝i 51會進入使用伯測模式,而使得第一電晶 體581呈現導通狀態。並且,該等資料線ν_—η都會 接^到-使用測試電壓。此時,若是掃描啟動ν·_Εχ被 致此,對應第二電晶體582也會呈現導通狀態,並導引因 10 201009793 使用測試電壓所產生的驅動電流(即:該列被掃描像素電路 11的驅動電流)到電流比較器583。 當該驅動電流小於一第二參考電流,電流比較器583 輸出的一使用比較訊息(包括於變異信號中)是呈高電位這 意謂著被掃描的那一列像素電路u因為發生變異而導致較 低的驅動電流。接著,記憶裝置6收到使用比較訊息和位 置指示後,電壓控制器7會據以調升使用測試電壓。直到 驅動電流不小於第二參考電流,電流比較器583才輸出低 電位的的使用比較訊息來結束使用偵測模式β由上述可知 ’使用偵測模式是逐列來檢視變異情形,並調整該等當作 資料電壓的使用測試電壓,可縮短偵測所有像素電路u的 時間(相較於初始偵測模式)而不致影響顯示器的播放品質。 較佳地,顯示器更包含一電流產生單元8(如圖3),會 提供該第一參考電流和該第二參考電流。再者,具有該三 個啟動指示CTRL一1〜3的控制信號與該等測試電壓可以是 由外部提供,也可以是顯示器本身(例如:電壓控制器7)自 動發出。而掃描啟動Vscan_EX是指驅動其中一對應列像素 電路11的掃描線VSCAN—1〜Μ所載信號,或是指由掃描驅動 器3另外發出的信號。且電壓控制器7會決定掃描啟動 vscan_ex且控制初始偵測器570或是使用偵測器:58〇。 參閲圖6 ’在本較佳實施例中’電流比較器573、583 的實施態樣是:其具有一第一 P型電晶體M1、一第二p型 電晶體M2、一第一 N型電晶體M3、一第二N型電晶體 M4、一第一 CMOS反相器M5、一第二CMOS反相器M6 201009793 及一第三CMOS反相器M7。每一電晶體Ml〜4具有一第一 · 端、一第二端及一控制端,每一 CMOS反相器M5〜7具有 一輸入端及一輸出端。 第一 P型電晶體Ml的第一端 '第一 n型電晶體]vi3的 第一端、第二P型電晶體M2的第二端、第二n型電晶體 M4的第二端電連接在一起(且電連接處稱為a點第一 p 型電晶體Ml的控制端、第一 n型電晶體M3的控制端、第 二P型電晶體M2的第一端、第二;^型電晶體訄4的第一端 、第一 CMOS反相器M5的輸入端電連接在一起(且電連接@ 處稱為B點)。且第一〜第三CMOS反相器M5〜M7是依序串 聯。此外,電流產生單元8(提供第一參考電流給初始偵測 器570,提供第二參考電流給使用偵測器58〇)也會電連接至 A點’而驅動電流是由a點輸入以和其中一參考電流做比 較,並從第二CMOS反相器M7的輸出端輸出初始/使用比 較訊息。值得注意的是,也可以使用其他電路來實現電流 比較器573、583,只要能達成電流比較的功效即可。 回歸參閱圖4,每一像素電路丨丨中,驅動電路11〇具〇 有-第-電晶體in、一第二電晶體112及一電容113,亦 即呈現2T1C的架構。每一電晶體lu、112具有一第一端 、一第二端,及一決定第一端和第二端是否導通的控制端 ,且電容113具有一第一端及一第二端,而〇LED 12〇具有 一陽極及一陰極。 第一電晶體111的控制端接收其中一掃描線所載信號, 且第一電晶體111的第一端接收其中一資料電壓。第一電晶 12 201009793 體111的第二端、第二電晶體112的控制端及電容113的第 一端電連接。電容113的第二端、第二電晶體112的第二端 及OLED 120的陽極電連接。第二電晶體112的第一端接收 一電源電壓VDD,而〇LED 120的陰極則電連接補償電路5a rendezvous' and each pixel circuit corresponds to one of the intersections; - a scan driver to enable the scan lines; a voltage controller to output a complex reference voltage; and a data driver to correct based on the reference voltages - The image signal 'and sends the corrected image signal to the data line when at least one scan line is enabled to cause each pixel circuit to generate a drive current, and a compensation circuit 'detects the output of the pixel circuit a variation of the driving current to output a comparison message and a position indication indicating a position of the pixel circuit in which the variation occurs for the voltage controller to adjust the reference voltage, so that the data driver corrects the image signal to allow Each pixel circuit emits a brightness of the associated drive current. The compensation circuit of the present invention is adapted to receive a driving current from at least one set of pixel circuits, and the set of pixel circuits generates the driving current according to at least one data voltage, the compensation circuit comprising: at least one having a use detector a determining device having a current comparator and a first transistor switched between a conductive state and a non-conductive state; wherein the first transistor is in an on state, and the current comparator compares the driving current When less than a reference current, the current comparator outputs a comparison message to adjust the data voltage. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to Figure 2, a preferred embodiment of the display of the present invention comprises a - array module compensation circuit 5, a timing controller 2, a scan driver 201009793, a device 6, a voltage controller 7, and a data driver 4. The data driver 4 includes a digital to analog converter (DAC) 41 and a data generating unit π. The array module} includes the scan lines VscA, 丨, VSCAN_2., .VsCAN-M, N data lines, VDATA_2~VDATA-N, and one pixel circuit arranged in an array, and each pixel circuit!! a driving circuit 11A and a (10) D i2 〇 (as shown in FIG. 4), wherein the scanning lines Vscan_KM and the data lines VDATA-1~N are interleaved to form one intersection, and each pixel circuit 11 Corresponding to one of the intersection settings, the scan driver 3 is controlled by the timing controller 2 to uniformly match the scan lines VSCANj M M to drive each column of pixel circuits u. The data driver 4 'the DAC 41 will be based on a plurality of references If the image is broken, an analogy data is formed; and the data generating unit 42 is controlled by the timing controller 2 to send the analog materials to the data lines when the scanning line Vs (10) is enabled. Vdat, 11 λα &, Μ π @ * 1 is given to the pixel circuits, .... In addition, 'each drive circuit no will be controlled by the corresponding data line VSCAN" ~ M, according to the corresponding data voltage Generate-flow through related (10)D12G Drive current. And the compensation power "(4) Measure the variation of all the drive currents 愔> the pixel circuit variation signal of the variation and the position indication of the position of the transmission, for the memory device 6. The voltage controller 7 reads the disciplinary secret. The variation signal and position in 6 means that the reference voltage is not adjusted and is used as the correction basis. Therefore, the display of the present invention can perform the (4) variation (4) of all the drives and then correct the image signal to provide the The appropriate 201009793 data voltage is used to adjust the driving current flowing through the OLEDs 120. The compensation circuit 5 includes the Μ determining device 51. Referring to Figure 4, each determining device 51 is electrically connected to the same group (this preferred embodiment) It refers to the same column) of the OLED 120 of the pixel circuit 11, and has a normal operator 56A, an initial detector 570 and a use detector 580. The normal operator 56A has a first transistor 561. A detector 570, 580 has a first transistor 571, 581, a second transistor 572, 582 and a current comparator 573, 583. Each of the transistors 561, 571, 572, 581, 582 can Conduction state and non-conduction Switching between states: Each judging device 51 is controlled by a control signal to operate in three working modes: normal use mode, initial detection mode, use detection mode, and the control signal has a first start indication CTRL-丨, one The second start instruction CTRL-2 and a third start instruction CTRL_3. It is often used 掇 or when the first start indication CTRL_! is at a high level and the other start indications CTRL_2~3 are at a low potential, each judging device 51 will Entering the main normal use mode' causes the first transistor 561 to be in an on state, and directs all driving currents flowing through the column of pixel circuits 11 to the ground. Therefore, in the normal use mode, the material driving current is not (four) The compensation is transmitted to the data voltage of each pixel circuit. That is, the manner of driving the pixel circuits is similar to that of the prior art. Initially: < The second activation indication before the display of the present invention is used CTRL is at high potential and other startup indications CTRL" and CTRL_3 are at low potential. Each of the judging devices 51 enters the initial detection mode, and the first transistor 571 is rendered. Conducting state. Moreover, the data lines receive an initial test voltage one by one, and only one of the data lines Vdata_i~N receives the initial test voltage at a time. At this time, if a scan is started, Vscan_ex is enabled, then the second transistor 572 is also turned on, and the driving current generated by the initial test voltage is guided (ie, the scanned pixel circuit receives the initial test voltage). The drive current of 11 is supplied to the current comparator 573. Referring to FIG. 5, when the driving current is less than a first reference current, an initial comparison message (included in the variation signal) output by the current comparator 573 is a high potential potential, which means that the initial test voltage is received. A pixel circuit 较低 causes a lower drive current due to variations. Next, after the memory device 6 receives the initial comparison message and the position indication, the voltage controller 7 adjusts the initial test voltage accordingly. The initial detection mode is terminated until the drive current is not less than the first reference current current comparator 573 to output a low initial comparison message. Therefore, in the initial detection mode, the voltage controller 7 can learn the variation of each pixel circuit u one by one by the initial detector 570, and accordingly adjust the initial test voltage as the data voltage. Refer to the use of detection 掇 < During the use of the display of the present invention, when the third start indication CTRL-3 is at a high potential and the other start indications CTRL_1~2 are at a low potential - each judgment i 51 will enter the use The mode is measured such that the first transistor 581 assumes a conducting state. Moreover, the data lines ν_-η will be connected to - using the test voltage. At this time, if the scan start ν·_Εχ is caused, the corresponding second transistor 582 also assumes an on state, and guides the drive current generated by using the test voltage according to 10 201009793 (ie, the column is scanned by the pixel circuit 11) Drive current) to current comparator 583. When the driving current is less than a second reference current, a usage comparison message (included in the variation signal) output by the current comparator 583 is at a high potential, which means that the column of pixel circuits u being scanned is mutated. Low drive current. Then, after the memory device 6 receives the use comparison message and the position indication, the voltage controller 7 adjusts the use test voltage accordingly. Until the driving current is not less than the second reference current, the current comparator 583 outputs a low-level usage comparison message to end the use of the detection mode β. From the above, it is known that the usage detection mode is a column-by-column inspection of the variation and adjusts the conditions. Using the test voltage as a data voltage shortens the time to detect all pixel circuits u (compared to the initial detection mode) without affecting the playback quality of the display. Preferably, the display further includes a current generating unit 8 (Fig. 3) that provides the first reference current and the second reference current. Furthermore, the control signals having the three start indications CTRL-1 to 3 and the test voltages may be provided externally or automatically by the display itself (e.g., voltage controller 7). The scan enable Vscan_EX refers to a signal carried by the scan lines VSCAN-1 to 驱动 driving one of the corresponding column pixel circuits 11, or a signal additionally emitted by the scan driver 3. And the voltage controller 7 will decide to scan the start vscan_ex and control the initial detector 570 or use the detector: 58 〇. Referring to FIG. 6 'in the preferred embodiment, the embodiment of the current comparators 573, 583 has a first P-type transistor M1, a second p-type transistor M2, and a first N-type. The transistor M3, a second N-type transistor M4, a first CMOS inverter M5, a second CMOS inverter M6 201009793 and a third CMOS inverter M7. Each of the transistors M1 to 4 has a first terminal, a second terminal and a control terminal, and each of the CMOS inverters M5 to 7 has an input terminal and an output terminal. The first end of the first P-type transistor M1, the first end of the first n-type transistor vi3, the second end of the second P-type transistor M2, and the second end of the second n-type transistor M4 are electrically connected Together (and the electrical connection is referred to as the control terminal of the first p-type transistor M1 at point a, the control terminal of the first n-type transistor M3, the first end of the second P-type transistor M2, and the second; The first end of the transistor 訄 4 and the input end of the first CMOS inverter M5 are electrically connected together (and electrically connected at @ is referred to as point B), and the first to third CMOS inverters M5 to M7 are In addition, the current generating unit 8 (providing the first reference current to the initial detector 570, providing the second reference current to the use detector 58) is also electrically connected to point A' while the driving current is from point a. The input is compared with one of the reference currents, and the initial/use comparison message is output from the output of the second CMOS inverter M7. It is noted that other circuits may be used to implement the current comparators 573, 583 as long as The effect of current comparison can be achieved. Referring back to Figure 4, in each pixel circuit, the drive circuit 11 has a - first-electric The body in, a second transistor 112 and a capacitor 113, that is, a 2T1C architecture. Each of the transistors lu, 112 has a first end, a second end, and a determination of whether the first end and the second end The control terminal is turned on, and the capacitor 113 has a first end and a second end, and the 〇LED 12 〇 has an anode and a cathode. The control end of the first transistor 111 receives the signal carried by one of the scan lines, and the The first end of a transistor 111 receives one of the data voltages. The first end of the first transistor 12 201009793 body 111, the control end of the second transistor 112, and the first end of the capacitor 113 are electrically connected. The second end of the second transistor 112 and the anode of the OLED 120 are electrically connected. The first end of the second transistor 112 receives a power supply voltage VDD, and the cathode of the LED 120 is electrically connected to the compensation circuit 5.

當掃描信號是高電位,第一電晶體1U的第一端及第二 端導通,此時,資料電壓被傳送到電容113的第一端,且電 容113根據資料電壓改變其跨壓。另一方面,當掃描信號是 低電位’第一電晶體111的第一端及第二端不導通。此時, 電容113保持其跨壓,且第二電晶體112因為電容113跨壓 和電源電壓VDD而操作於飽和區並產生如下所示的驅動電 流’以促使OLED 120發出強度與驅動電流大小相關的光。 2 灸112 IFdATA ~ ^OLED ~ ^TH,112^ ^Ku^data ^ Toledo + ^oled ) — (^mo,m + )f 2 ^112 + ) - (y〇lED0 "* Δ V〇rKn } _ ^»0,112 + △厂2W,112 T12 [^0^0 ~^OLED0 ~ 其中,對於第二電晶體112而言,k112是其元件互導參 數’ VGS,i12是閘(Gate)極與源(Source)極的跨壓,而VTIi ll2 是其臨界電壓。而OLED 120的陽極電壓是由初始陽極 電壓經過變異而形成。而第二電晶體112的臨界 電壓是由初始臨界電壓4。,112經過^V112變異而形成。 當電壓控制器7將初始資料電壓調整為 13 201009793 ^DATA ^DATAQ +^〇故,β_ = AV〇LED + AVm,m 時,驅動電液會值與 y 、「_0、「_丨2相關。由於不同像素電路U的 〜侧、k0,"2均 相同,所以驅動電流只受。⑽影響。 也就是說,在初始偵測模式和使用偵測模式(由補償電 路5的說明段落可知各像素電路u收到的初始資料電壓 都會相同)中,若是電壓控制器7的調整量達到 ,那麼該等驅動電流將會維持等量電流, 進而改善該等OLED 120的發光效率。 ❹ ,=圖7,對於習知採用2T1C架構的像素電路^而言 ,不瀹(第二電晶冑112的寬長比)為何值 會隨操作時間而大幅衰減約2Ge/ r# ⑸哀减、,"0/〇。而本發明利用電壓回溯 償方式,可使驅動電流獲得改善,甚至幾乎 作時間的影響。 裸 參 閱圖8然而’ OLED 12〇材料仍會隨操作時間增長 即使通過等量的驅動電流,發光亮度依然會下降 =發明因為採用電壓回湖補償方式,能使得Ο· DO 、&度遠比習知像素電路11改善許多。 元件^水所述由於習知技術多是藉由增加驅動電路110的 口 體之匕界電壓的變異程度’造成開 羊相對降低。而本發 件數⑽持2T1C _的:在不增加驅動電路110之元 ^構)的則柃下改以補償電路5來實現,除 I較為如升開口率,更 致性及改善亮有效增㈣等GLED12G的亮度一 a 4«現象’故確實能達成本發明之目的。 所述者’僅為本發明之較佳實施例而已,當不 14 201009793 能以此限定本發明實施之範圍,即大凡依本發㈣請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一習知顯示器的電路圖; 圖2是一示意圖,說明隨著顯示器尺寸增大,實際遞 送到每一像素電路的電源電壓逐漸衰減; 圖3是一方塊圖,說明本發明顯示器之一較佳實施例 圖4是一方塊圖,說明判斷裝置電連接屬於同一列的 像素電路; 圖5是一示意圖,說明測試電壓隨比較訊息改變; 圖6是一電路圖’說明本較佳實施例的電流比較器; 圖7是一示意圖,說明本較佳實施例的驅動電流幾乎 不隨操作時間而衰減;及 圖8是一示意圖’說明本較佳實施例能改善〇lED的 亮度。 15 201009793When the scan signal is high, the first end and the second end of the first transistor 1U are turned on. At this time, the data voltage is transferred to the first end of the capacitor 113, and the capacitor 113 changes its voltage across the data voltage. On the other hand, when the scanning signal is low, the first end and the second end of the first transistor 111 are not turned on. At this time, the capacitor 113 maintains its voltage across, and the second transistor 112 operates in the saturation region due to the voltage across the capacitor and the power supply voltage VDD and generates a driving current as shown below to cause the intensity of the OLED 120 to be related to the magnitude of the driving current. Light. 2 Moxibustion 112 IFdATA ~ ^OLED ~ ^TH,112^ ^Ku^data ^ Toledo + ^oled ) — (^mo,m + )f 2 ^112 + ) - (y〇lED0 "* Δ V〇rKn } _ ^»0,112 + △Factory 2W, 112 T12 [^0^0 ~^OLED0 ~ where, for the second transistor 112, k112 is its component mutual conductance parameter 'VGS, i12 is the gate (Gate) pole and source (Source) is the voltage across the pole, and VTIi ll2 is its threshold voltage. The anode voltage of OLED 120 is formed by the variation of the initial anode voltage, and the threshold voltage of the second transistor 112 is the initial threshold voltage of 4. 112 It is formed by the variation of ^V112. When the voltage controller 7 adjusts the initial data voltage to 13 201009793 ^DATA ^DATAQ +^, β_ = AV〇LED + AVm,m, the driving electro-hydraulic value and y, "_0 "_丨2 related. Since the ~ side, k0, "2 of different pixel circuits U are the same, the drive current is only affected by (10). That is, in the initial detection mode and the use detection mode (by compensation) In the description of circuit 5, it can be seen that the initial data voltage received by each pixel circuit u is the same), if the adjustment amount of the voltage controller 7 is reached, then The moving current will maintain an equal amount of current, thereby improving the luminous efficiency of the OLEDs 120. ❹ , = Figure 7, for the conventional pixel circuit using the 2T1C architecture, the width of the second transistor 119 Why the value will be greatly attenuated by the operation time by about 2Ge/r# (5) sag, "0/〇. However, the present invention utilizes the voltage retrospective method to improve the driving current, even for almost time. Refer to Figure 8 for the bare one. However, the OLED 12 〇 material will still grow with the operation time. Even with the same amount of driving current, the illuminance will still decrease. The invention can make the Ο· DO and & The conventional pixel circuit 11 is improved a lot. The above-mentioned components are mostly caused by increasing the variation degree of the boundary voltage of the mouth of the driving circuit 110, and the number of the hair piece (10) is 2T1C. _: In the case of not increasing the structure of the driving circuit 110, the compensation circuit 5 is implemented, except that I is more like the rising aperture ratio, and the brightness is improved and the brightness of the GLED 12G is increased (a). «Phenomenon', it really does The purpose of the invention is only the preferred embodiment of the invention, and the scope of the invention can be limited by the fact that it is not limited to the scope of the invention. Equivalent variations and modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a conventional display; FIG. 2 is a schematic diagram showing that as the size of the display increases, the power supply voltage actually delivered to each pixel circuit is gradually attenuated; FIG. 3 is a block diagram. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a block diagram showing a judging device electrically connecting pixel circuits belonging to the same column; FIG. 5 is a schematic diagram showing a test voltage changing with a comparison message; FIG. 6 is a circuit diagram 'Description The current comparator of the preferred embodiment; FIG. 7 is a schematic diagram showing that the driving current of the preferred embodiment is hardly attenuated with the operation time; and FIG. 8 is a schematic view illustrating that the preferred embodiment can improve the 〇lED Brightness. 15 201009793

【主要元件符號說明】 1 陣列模組 571 第一電晶體 11 像素電路 572 第二電晶體 110 驅動電路 573 電流比較器 111 第一電晶體 580 使用偵測器 112 第二電晶體 581 第一電晶體 113 電容 582 第二電晶體 120 有機發光二極體 583 電流比較器 2 時序控制器 6 記憶裝置 3 掃描驅動器 7 電壓控制器 4 貧料驅動 8 電流產生單元 41 數位至類比轉換器 Ml 第一 P型電晶體 42 資料產生單元 M2 第二P型電晶體 5 補償電路 M3 第一 N型電晶體 51 判斷裝置 M4 第二N型電晶體 560 常態操作器 M5 第一 CMOS反相器 561 第一電晶體 M6 第二CMOS反相器 570 初始偵測器 M7 第三CMOS反相器 16[Main component symbol description] 1 array module 571 first transistor 11 pixel circuit 572 second transistor 110 drive circuit 573 current comparator 111 first transistor 580 using detector 112 second transistor 581 first transistor 113 Capacitor 582 Second transistor 120 Organic light-emitting diode 583 Current comparator 2 Timing controller 6 Memory device 3 Scan driver 7 Voltage controller 4 Lean drive 8 Current generation unit 41 Digital to analog converter M1 First P-type Transistor 42 data generating unit M2 second P-type transistor 5 compensation circuit M3 first N-type transistor 51 judging device M4 second n-type transistor 560 normal operator M5 first CMOS inverter 561 first transistor M6 Second CMOS inverter 570 initial detector M7 third CMOS inverter 16

Claims (1)

201009793 十、申請專利範圍: 丨‘ 一種顯示器,包含: 陣列模組’包括Μ條掃描線、n條資料線及 ΜχΝ個呈陣列排列且分成複數組的像素電路,該等掃描 線與該等資料線相互交錯而構成ΜχΝ個交會處,且每一 像素電路相對應其中一交會處設置; 一掃描驅動器’用以致能該等掃描線; 一電壓控制器,輸出複數參考電壓; 資料驅動器,根據該等參考電壓修正一影像信號 ,且在至少一掃描線被致能時將修正後的影像信號送入 該等資料線,而促使每一像素電路產生一驅動電流;及 一補償電路,偵測該等像素電路所輸出之驅動電流 的變異情形,以輸出一使用比較訊息及一代表發生變異 之像素電路位置的位置指示’以供該電壓控制器調整該 等參考電壓,而使該資料驅動器修正該影像信號,來讓 每一像素電路發出相關驅動電流的亮度。 豢2.依據申請專利範圍帛i項所述之顯示又器,其中,該補償 電路包括至少-判斷裝置,該判斷裝置電連接屬於同一 組的像素電路,並具有-使㈣測器;該使用偵測器具 有-電流比較器及-在導通狀態與非導通狀態間切換的 第一電晶體; 該使用偵測器中,在該第一電θ 电日日體處於導通狀態, 且該電流比較器比較得知來自該細榇主_ 茨組·像素電路的驅動電流 小於一參考電流時’該電流比齡g 4认 較15會輸出該使用比較訊 17 201009793 息,以供該電壓控制器調整該等參考電壓。 3.依據申請專利範圍第2項所述之顯示器,其中,該資料 驅動器視每—f料線所載信號為-資料電壓,該判斷裝 置會因為該使用❹Π!的第—電晶體處於導通狀態而進 入-使用㈣模式,且屬於同—組的像素電路所接收的 資料電壓都相同。 (依射請專利範圍第2項所述之顯示器,其中,該資料 - 驅動器視每—賴、線所載信號為-資料電壓,制斷裝 置會因為該使用偵測器的第—電晶體處於㈣㈣㈣ _ 入一使用偵測模式,且屬於同一組的像素電路中,僅有 一像素電路接收該資料電壓。 5•依據申請專利範圍第3項所述之顯示器,其中,該判斷 裝置更具有一初始偵測器,其具有一電流比較器及—在 導通狀態與非導通狀態間切換的第—電晶體; 該判斷裝置會因為該初始偵測器的第一電晶體處於 導通狀態而進人—初始㈣模式,且屬於同—組的像素 電路中’僅有-像素電路接收該資料電壓;當該初始伯參 測器的電流比較器比較得知來自收到該資料電壓之像素 電路的驅動電流小於另—參考電流,會輸出—初始比較 6.依據申請專利範圍第2項所述之顯示器,其中,該判斷 裝置更具有—常態操作器,而該常態操作器具有一在導 通狀態與非導通狀態間切換的第—電晶體; 該判斷裝置會因為該常態操作器的第一電晶體處於 18 201009793 導通狀態而進入一正常使用模式,以導引來自該組像素 電路的驅動電流到地。 7.依據申請專利範圍第5項所述之顯示器,其中,該使用 债測器更具有一第二電晶體,且該初始债測器更具有一 第二電晶體, 當該使用偵測器的第二電晶體處於導通狀態時,會 將來自該組像素電路的驅動電流導引到該使用偵測器的 電流比較器;當該初始偵測器的第二電晶體處於導通狀 態時,會將收到該資料電壓之像素電路的驅動電流導引 到該初始偵測器的電流比較器。 8_ —種補償電路,適用於接收來自至少一組像素電路的驅 動電流’且該組像素電路是根據至少一資料電壓來產生 該驅動電流,該補償電路包括·· 至少一具有一使用偵測器的判斷裝置,該使用偵測 器具有一電流比較器及一在導通狀態與非導通狀態間切 換的第一電晶體; 在該第一電晶體處於導通狀態,且該電流比較器比 較得知該驅動電流小於一參考電流時,該電流比較器會 輸出一使用比較訊息,以調整該資料電壓。 9. 依據申請專利範圍第8項所述之補償電路,其中,該判 斷裝置會因為該使用偵測器的第一電晶體處於導通狀態 而進入一使用偵測模式,且該組像素電路所接收的資料 電壓都相同。 10. 依據申請專利範圍第8項所述之補償電路,其中,該判 19 201009793 斷裝置會因為該使用摘測器的第—電晶體處於導通狀態 而進入—使_測模式,且該組像素電路中,僅有一像 素電路接收該資料電壓。 U.依據中請專利範圍第9項所述之補償電路’其中,該判 斷裝置更具有一初始读測器,其具有一電流比較器及一 在導通狀態與非導通狀態間切換的第一電晶體; 參 該判斷裝置會因為該初始偵測器的第一電晶體處於 導通狀態而進人-初始_模式,且該轉素電路中, 僅有一像素電路接收該資料電壓;當該初始偵測器的電 流比較器比較得知收到該資料電麼之像素電路的驅動電 流j於另參考電流,會輸出—初始比較訊息。 12·依據申請專利範圍第8項所述之補償電路,其中該判 斷裝置更具有―常態操作器,而該常態操作器具有一在 導通狀態與非導通狀態間切換的第一電晶體; 該判斷裝置會因為該常態操作器的第一電晶體處於 導通狀態而進入—正受/由田J·社JU 正常使用模式,以導引該驅動電流到 地。 13.依據巾請專利範圍第11項所述之補償電路,其中,該使 用偵測器更具有一第二電晶體,且該初始偵測器更具有 一第二電晶體; 、 當該使用伯測器的第二電晶體處於導通狀態時,會 將該驅動電流導引到該使用偵測器的電流比較器丨當該 初始偵測器的第-雷曰雜老 * 口只 眘龄打 導通狀態時’會將收到該 資科電磨之像素電路的驅動電流導引到該初始_器的 20 201009793 電流比較器。 ❿ 21201009793 X. Patent application scope: 丨' A display comprising: an array module comprising: a scan line, n data lines, and a pixel circuit arranged in an array and divided into multiple arrays, the scan lines and the data The lines are interlaced to form one intersection, and each pixel circuit is disposed corresponding to one of the intersections; a scan driver 'to enable the scan lines; a voltage controller to output a plurality of reference voltages; a data driver, according to the Correcting an image signal by a reference voltage, and sending the corrected image signal to the data lines when at least one scan line is enabled, causing each pixel circuit to generate a driving current; and a compensation circuit detecting the a variation of the driving current output by the pixel circuit to output a comparison message and a position indication indicating a position of the pixel circuit in which the variation occurs for the voltage controller to adjust the reference voltage, so that the data driver corrects the The image signal is used to cause each pixel circuit to emit the brightness of the associated drive current.豢2. The display device according to the scope of the patent application, wherein the compensation circuit comprises at least a judging device electrically connected to the pixel circuits belonging to the same group and having a (four) detector; the use The detector has a current comparator and a first transistor switched between an on state and a non-conduction state; wherein the first detector is in a conducting state on the first electrical θ day, and the current is compared Comparing that the driving current from the fine 榇 组 · 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 像素 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' g g g g These reference voltages. 3. The display according to claim 2, wherein the data driver regards the signal contained in each of the f-lines as a data voltage, and the judging device is in a conducting state because the first transistor is used. In the enter-use (four) mode, the data voltages received by the pixel circuits belonging to the same group are the same. (In accordance with the scope of the patent, the display of the scope of the second paragraph, wherein the data - the drive depends on the signal, the signal contained in the line is - the data voltage, the breaking device will be because the first transistor of the detector is in use (4) (4) (4) _ Into the use of the detection mode, and in the pixel circuit of the same group, only one pixel circuit receives the data voltage. 5• According to the display of claim 3, wherein the determination device has an initial a detector having a current comparator and a first transistor that switches between an on state and a non-conduction state; the determining device enters a person because the first transistor of the initial detector is in an on state - initial (4) mode, and the pixel-only circuit of the same-group pixel circuit receives the data voltage; when the current comparator of the initial primary detector compares that the driving current from the pixel circuit receiving the data voltage is less than In addition, the reference current, the output, the initial comparison, the display according to claim 2, wherein the determining device further has a normal operator. The normal operator has a first transistor that switches between a conducting state and a non-conducting state; the determining device enters a normal use mode because the first transistor of the normal operator is in the state of 18 201009793, to guide the The display circuit of the group of pixel circuits is the ground according to claim 5, wherein the display of the debt detector further has a second transistor, and the initial debt detector has a second a transistor, when the second transistor of the detector is in an on state, directing a driving current from the set of pixel circuits to a current comparator using the detector; when the initial detector is When the two transistors are in an on state, the driving current of the pixel circuit receiving the data voltage is directed to the current comparator of the initial detector. 8_ a compensation circuit adapted to receive signals from at least one group of pixel circuits Driving current 'and the set of pixel circuits generates the driving current according to at least one data voltage, the compensation circuit includes at least one having a use detect a determining device having a current comparator and a first transistor switched between an on state and a non-conduction state; wherein the first transistor is in an on state, and the current comparator compares the When the driving current is less than a reference current, the current comparator outputs a comparison message to adjust the data voltage. 9. The compensation circuit according to claim 8 of the patent application scope, wherein the determining device may use the detecting device The first transistor of the detector is in an on state and enters a use detection mode, and the data voltages received by the group of pixel circuits are the same. 10. The compensation circuit according to claim 8 of the patent application scope, wherein the judgment 19 201009793 The device will enter the _ test mode because the first transistor of the ejector is in the on state, and only one pixel circuit of the group of pixel circuits receives the data voltage. U. The compensation circuit according to claim 9 of the patent scope, wherein the determining device further has an initial reader having a current comparator and a first switch that switches between a conductive state and a non-conductive state. a crystal; the determining device enters the initial-initial mode because the first transistor of the initial detector is in an on state, and only one pixel circuit receives the data voltage in the regenerative circuit; when the initial detection The current comparator of the device compares the drive current j of the pixel circuit that receives the data to another reference current, and outputs an initial comparison message. 12. The compensation circuit according to claim 8, wherein the determining device further has a "normal state operator", and the normal operator has a first transistor that switches between a conducting state and a non-conducting state; Because the first transistor of the normal operator is in the on state, it enters the mode of normal operation of the JJJJJJ to guide the drive current to the ground. 13. The compensation circuit of claim 11, wherein the use detector further has a second transistor, and the initial detector further has a second transistor; When the second transistor of the detector is in an on state, the drive current is directed to the current comparator using the detector, and the first detector of the initial detector is only carefully turned on. In the state, 'the drive current of the pixel circuit that receives the data from the electric grinder is directed to the 20 201009793 current comparator of the initial _. ❿ 21
TW97133247A 2008-08-29 2008-08-29 A compensation circuit and a display including the compensation circuit TWI401653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133247A TWI401653B (en) 2008-08-29 2008-08-29 A compensation circuit and a display including the compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133247A TWI401653B (en) 2008-08-29 2008-08-29 A compensation circuit and a display including the compensation circuit

Publications (2)

Publication Number Publication Date
TW201009793A true TW201009793A (en) 2010-03-01
TWI401653B TWI401653B (en) 2013-07-11

Family

ID=44827994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133247A TWI401653B (en) 2008-08-29 2008-08-29 A compensation circuit and a display including the compensation circuit

Country Status (1)

Country Link
TW (1) TWI401653B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505248B (en) * 2010-11-30 2015-10-21 Univ Nat Cheng Kung Oled display and controlling method thereof
US10504422B2 (en) 2018-01-30 2019-12-10 Au Optronics Corporation Compensation circuit and display panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG120889A1 (en) * 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
KR20070006331A (en) * 2005-07-08 2007-01-11 삼성전자주식회사 Display device and control method thereof
KR101224458B1 (en) * 2006-06-30 2013-01-22 엘지디스플레이 주식회사 Organic light emitting diode display and driving method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505248B (en) * 2010-11-30 2015-10-21 Univ Nat Cheng Kung Oled display and controlling method thereof
US10504422B2 (en) 2018-01-30 2019-12-10 Au Optronics Corporation Compensation circuit and display panel

Also Published As

Publication number Publication date
TWI401653B (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5254998B2 (en) Display device and driving method
TW573144B (en) Self light emitting type display device
JP6142178B2 (en) Display device and driving method
TWI549108B (en) Organic light emitting display and driving method thereof
JP5010030B2 (en) Display device and control method thereof
JP5342111B2 (en) Organic EL display device
KR101204123B1 (en) Image display apparatus
KR101479297B1 (en) Scan driver and organic light emitting display using the same
JP6232595B2 (en) Display device and control method thereof
US20090295772A1 (en) Pixel and organic light emitting display using the same
CN107452329B (en) Organic light emitting diode display and driving method thereof
US20100328365A1 (en) Semiconductor device
CN108682399B (en) Display device, pixel driving circuit and driving method thereof
JP5753183B2 (en) Display device
JP6232594B2 (en) Organic EL display device
TW201351379A (en) Display device, power control device, and driving method thereof
KR101719187B1 (en) Emission driver and organic light emitting display using the same
JP2006509233A (en) Active matrix pixel cell with multiple drive transistors and method for driving such pixels
KR20140140968A (en) Pixel, driving method of the pixel, and display device comprsing the pixel
RU2011150902A (en) DISPLAY DEVICE AND METHOD FOR MANAGING DISPLAY DEVICE
CN107424567B (en) OLED pixel driving circuit and OLED display device
US9330595B2 (en) Organic light emitting display device and driving method thereof
CN110634442A (en) OLED display device and driving method thereof
KR102415732B1 (en) Subpixel Circuit, Organic Light Emitting Display Device and Method of Driving the same
US7508364B2 (en) Image display device