TW201009319A - Ammonia sensing material - Google Patents
Ammonia sensing material Download PDFInfo
- Publication number
- TW201009319A TW201009319A TW97132054A TW97132054A TW201009319A TW 201009319 A TW201009319 A TW 201009319A TW 97132054 A TW97132054 A TW 97132054A TW 97132054 A TW97132054 A TW 97132054A TW 201009319 A TW201009319 A TW 201009319A
- Authority
- TW
- Taiwan
- Prior art keywords
- ammonia
- sensing material
- ammonia gas
- sensing
- gas sensing
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
201009319 九、發明說明: 【發明所屬之技術領域】 本發明係有關於—種氨氣感測材料,且特別是有關於 一種以中孔性材料作為載體之氨氣感測材料。 【先前技術】 氨氣是一種普遍存在於地球上的氣體,具有惡臭性、 刺激性及腐蝕性的特性,而我國空氣污染防治法規中,將 氧氟列為毒性污染物列管,其法規標準限制周界濃度不得 超過1 ppm (行政院環境保護署,2003)。氨氣對於人體、 漆蟓皆有重大之影響,當空氣中氨氣濃度接近7〇〇 ppm 時,會引起眼睛刺激及酸痛等症狀發生,若大M5〇〇〇ppm 旖,將會在短時間内致命,因此對氨氣濃度的管制顯得十 分重要。 加上高科技產業發展迅速,產品生產過程中的空氣品 質要求也逐漸加嚴。氨氣濃度不但會影響半導體製程,甚 • 矣會造成機台的損害以及對操作人員的傷害。唯有靈敏度 高的氣體感測系統,才能及時提供製程環境中的微污染氣 雜濃度變化’使得機台内部的空氣符合作業需求,進而提 并虞品的良率。 美國專利US 2003/0003589提出一種氨氣感測器,其 以聚四氟乙婦(polytetrafluoroethylene,PTFE)作為載體,再 择酌偵測氨氣之指示染劑,藉由染劑顏色變色與光譜變化 彳貞剎氨氣。 5 201009319201009319 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to an ammonia sensing material, and more particularly to an ammonia sensing material using a mesoporous material as a carrier. [Prior Art] Ammonia gas is a gas that is ubiquitous on the earth and has the characteristics of malodorous, irritating and corrosive. In China's air pollution control regulations, oxyfluoride is listed as a toxic pollutant, its regulatory standards Limit the perimeter concentration to no more than 1 ppm (Executive Council Environmental Protection Agency, 2003). Ammonia gas has a major impact on the human body and paint enamel. When the concentration of ammonia in the air is close to 7〇〇ppm, it will cause eye irritation and soreness. If the M5〇〇〇ppm is large, it will be in a short time. It is fatal inside, so the regulation of ammonia concentration is very important. Coupled with the rapid development of the high-tech industry, the air quality requirements in the production process are gradually tightened. Ammonia concentration not only affects the semiconductor process, but also causes damage to the machine and damage to the operator. Only the highly sensitive gas sensing system can provide the micro-polluted gas concentration change in the process environment in time, so that the air inside the machine meets the operation requirements, and then the yield of the product is improved. U.S. Patent No. 2003/0003589 proposes an ammonia gas sensor which uses polytetrafluoroethylene (PTFE) as a carrier and optionally detects an indicator of ammonia gas, by color change and spectral change of the dye. A brake ammonia. 5 201009319
Malins研究團隊製備含有染劑之溶膠凝膠薄膜,利用 此種染劑在可見光範圍具有較高的吸光係數與光穩定度, 以偵測氨氣。(Malins,C., Butler,T. M.,MacCraith,B. D., Thin Solid Films, 368 (2000) 105-110)^7The Malins research team prepared a sol-gel film containing a dye that used the dye to have a high absorbance and light stability in the visible range to detect ammonia. (Malins, C., Butler, T. M., MacCraith, B. D., Thin Solid Films, 368 (2000) 105-110) ^7
Yimit研究團隊利用Ti02薄膜附著於玻璃片上,再利 用溴瑞香草指示劑(bromothymol blue)附著於Ti02薄膜上 進行氨氣之偵測。(Yimit,A.,Itoh,K.,Murabayashi, M., Sensors and Actuators B, 88 (2003) 239-245.) ^ 因此,業界亟需一種靈敏之氨氣感測材料,特別能偵 測環境中低濃度氨氣濃度,以便及時保護人體與環境。 【發明内容】 本發明提供一種氨氣感測材料,包括: 梦酸鹽中孔洞材料,其比表面積大於· A .以 劑,包括氨氣感測變色染劑,其中該氨氣感測變 = 入該載體内,當該氨氣感晴料曝露於氨氣,,、 氣感測變色染劑產生一顏色變化。 兄時該氨 本發明另提供一種氨氣感測材料,包括.一、 括-金屬修飾之矽酸鹽中孔洞材料 ’一載體’包 m2/g;以及-染劑,包括氨氣感測變色面積大於7〇〇 感測變色染劑嵌人該載體内,當該氨氣感&其中該減 氣環境時,該氨氣感測變色毕劑產 拓=材料曝露於氨 為讓本發明之上述和其他目的、特徵、^化。 顯易懂’下文特舉出較佳實施例,並 和優點能更明 細說明如下: σ々附圖式,作詳 6 201009319 【實施方式】 本發明提供一種氨氣感測材料,包括載體與染劑,此 載體包括矽酸鹽中孔洞材料,而染劑包括氨氣感測變色染 劑’其中氨氣感測變色染劑嵌入載體内。本發明之中孔洞 材料由無機矽氧化物與有機界面活性劑經過自組裝(self assembly)的過程而形成規則排列的結構’相較於習知高分 子纖維载體,其具有較高之比表面積,比表面積大於700 m2/g ’較佳範圍為8〇〇 m2/g〜11〇〇 m2/g,因此能提高偵測 靈敏度與反應速率’能更有效彳貞測氨氣。此外,中孔洞材 料之孔徑大小均勻一致,其孔徑分布範圍約為2.5 ηιη〜3.5 nm ° 本發明使用之氨氣感測變色染劑包括溴酚藍 (bromophenol blue)、漠甲驗綠(bromocreosol green)、溴瑞 香草酚藍(thymol blue)、曱基結晶紫(methyl crystal purple)、氣盼紅(chlorophenol red)或溴甲酌·紫(bromocresol _ pmple)。當氨氣感測材料曝露於氨氣環境中,此氨氣感測 變色染劑會產生一顏色變化,其顯色機制敘述如下。 當染劑嵌入載體材料時,載體材料表面的經基(_〇H) 把質子給染劑分子’此時染劑分子呈現質子化(pr〇t〇nafi〇n) 狀態之顏色,若有氨氣分子被吸附在材料表面上時,氨氣 分子會從染劑分子上得到質子形成胺鹽(NH4+),而染劑變 成去質子化狀態(deportonation)之顏色,其顯色機制以化學 方程式表示如下: 染劑+(質子化狀態之顏色)+NH3(gr^染劑(去質子化狀 7 201009319 態之顏色)+NH4+(aq)。 於一實施例中’當染劑為溪甲酚綠時(br〇m〇cre〇s〇1 g·),其顏色變化由質子化狀態之橘色㈣去質子化㈣ 之藍色。於另-實施例中,當染劑為溴曱酚紫時 (bromocreosol purple) ’其顏色變化由質子化狀態之黃色變 駐質子化狀態之紫色’因此’可藉由染劑顏色變化偵測 氨氣的存在。 此外,吸附後之氨氣感測材料可藉由再生途㈣杆爯 ❹生,包括以鈍性氣體吹拂氨氣感測材料,讓氨氣分;脫附, A者是利用加熱法使之再生’再生後之染劑分子會回復原 去質子化狀態之顏色’即可再次偵測氨氣。 本發明之氨氣感測材料之製備方法,包括 (a) 首先配製起始溶液,將所需之偏二 =疆 metasilicate)溶於去離子水中,之後將溶液攪拌均句。 (b) 然後配製強酸(例如硫酸、鹽酸)溶液緩緩滴入上述 溶液中,控制溶液PH值到約9〜11,此時溶液會形成凝膠 ’狀。 ’ (c) 接著配製界面活性劑,例如十六燒基三曱基溴化銨 (cetyltrimethylammonium bromite,CTAB) ’ 秤量所需之界面 活性劑加入去離子水中攪拌,攪拌完後緩緩滴入前置步驟 溶液中,在滴入界面活性劑時,溶液會有絮凝的現象產生。 界面活性劑之作用在於提供製備中孔洞材料之模板 (template)。 (d) 經過3小時攪拌後,將溶液置入壓力鍋中並放入烘 8 201009319 箱中,以loot:〜200。(:水熱法進行約25〜40小時合成。 (e)從烘箱取出待冷卻後進行抽氣過濾,並以去離子水 重複沖洗數次,接著取出渡餅置於⑽㈡阶供箱棋乾 =6小時,最後再放置到4贼〜5筑高溫爐鍛燒$ ^ 時,即可得矽酸鹽中孔洞材料。 接者以濕式含浸法將染劑嵌人載體表面,例如將氨 ^中:色染劑與將魏射孔洞材料同時溶於―極性溶 ❿此、—丙_或異丙醇)’在室溫下擾拌2〜5小時後,再 二=:=。1〇。。一箱中進行乾燥, 态I,亦提供另—種氨氣感測材料’包括载體與染 大於70。包2括金屬修飾之梦酸鹽中孔洞材料’其比表面積 包括氨!:/§,較佳範圍為_m2/g〜U°Gm2/g,而染劑 内,測變色染劑’其中氨氣感測變色染劑嵌入载體 :樣藉由上述之顯色機制偵測氨氣的存在。 #表面^本發明之中孔洞材料表面反應性強,可將其進行 鋁、鉬扯將金屬以共價鍵鍵結至矽酸鹽中,此金屬包括 =二=:二此—金屬 好。#(1⑽add)位置’使得對氨氣的吸附效果更 式類的金屬修飾之外鹽中孔洞材料,其製備方 錢鹽中孔洞材料之製備方式,差別在於起始溶液 9 201009319 除了添加鴿矽酸鈉之外, 屬莫耳比例添加金屬化需依照梦酸鹽尹的梦原子與金 類、硝酸遵類),後續制D (例如含鉬、銅或鈷之硫酸鹽 備方式,除鍛燒時間:『式同於矽酸鹽中孔洞材料之製 之魏鹽中孔洞材料同檨=小時。製備而得之金屬修錦 體表面,最後 可藉由濕式含浸法將染劑嵌入载 上述\仵另一種氨氣感測材料。 濃度,未材料經由連續流式反應器债測氨氣之 為U mg/g 氨氣感測材料對氧氣之吸附容量約 氨氣之吸心喜:姓。而經過金屬修飾之氨氣感測材料對 在至少較高,可達4.〇績〜6.5喻,此外還可 氣,另外’甚至在3G秒鐘關測到PPm等級的氨 本發曰I在20分鐘内偵測到PPb等級的氨氣。 孔洞材C騎料,以具有高比面積之石夕酸鹽中 顏色變化,ί 再搭配氨氣感測染劑,可藉由染劑之 偵測低濃度氨氣,此材料具有下述優點: 敏度與速由章於中孔洞材料具有高比表面積’能提高偵測靈 、速率’更能有效偵測低濃度氨氣。 省製H於偵測效率提高,使染劑之添加量降低,能節 作成本叹符合環保需求。 酸性Utr金屬之中孔洞材料’因為增加材料之 位置’更危提高對氨氣之感測能力。 但能^此λ氣感測材料可藉由再生途捏而重複使用,不 Ρ省成本,也符合環保需求。 201009319 【實施例】 資施例1製佛含矽酸!I中孔洞材料之氨氣戚測材料 軒量 21.2 g 偏碎酸鋼(s〇dium metasjiicate)加入 的去離子水中攪拌3〇分鐘,然後配製4 N硫酸(sulfurie aCld 98 %)溶液緩緩滴入,控制溶液pH值到10.5,此時溶 液會形成凝膠狀。接著配置界面活性劑十六烷基三甲基^The Yimit research team attached the Ti02 film to the glass piece and attached it to the Ti02 film for arsenic detection using bromothymol blue. (Yimit, A., Itoh, K., Murabayashi, M., Sensors and Actuators B, 88 (2003) 239-245.) ^ Therefore, there is a need in the industry for a sensitive ammonia sensing material that specifically detects the environment. Medium and low concentration ammonia concentration to protect the human body and the environment in time. SUMMARY OF THE INVENTION The present invention provides an ammonia sensing material, comprising: a hole material in a dream acid salt having a specific surface area greater than · A. an agent, including an ammonia gas sensing coloring dye, wherein the ammonia gas sensing change = Into the carrier, when the ammonia sensitizing material is exposed to the ammonia gas, the gas sensing dying dye produces a color change. When the ammonia is used, the present invention further provides an ammonia sensing material, including: a metal-modified silicate salt material 'a carrier' package m2 / g; and - a dye, including ammonia gas sensing color change The area is greater than 7 〇〇 sensed color-changing dye embedded in the carrier, when the ammonia sensation & wherein the gas-reducing environment, the ammonia gas sensing color-changing agent production extension = material exposure to ammonia for the purpose of the present invention The above and other objects, features, and advantages. The following is a detailed description of the preferred embodiments, and the advantages and advantages can be more clearly described as follows: σ 々 々 , 作 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 The carrier comprises a pore material in the citrate, and the dye comprises an ammonia gas sensing coloring dye, wherein the ammonia sensing coloring dye is embedded in the carrier. In the present invention, the pore material is formed by the process of self-assembly of the inorganic cerium oxide and the organic surfactant to form a regularly arranged structure. Compared with the conventional polymer fiber carrier, it has a high specific surface area. The specific surface area is more than 700 m2/g, and the preferred range is 8〇〇m2/g~11〇〇m2/g, so that the detection sensitivity and the reaction rate can be improved to more effectively detect ammonia gas. In addition, the pore size of the mesoporous material is uniform, and the pore size distribution range is about 2.5 ηιη~3.5 nm °. The ammonia gas sensing dyeing agent used in the invention includes bromophenol blue and bromocreosol green. ), thymol blue, methyl crystal purple, chlorophenol red or bromocresol _ pmple. When the ammonia sensing material is exposed to the ammonia atmosphere, the ammonia gas sensing dye produces a color change, and the color development mechanism is described below. When the dye is embedded in the carrier material, the base of the carrier material (_〇H) gives the proton donator molecule 'in this case the dye molecule is protonated (pr〇t〇nafi〇n) state, if there is ammonia When the gas molecules are adsorbed on the surface of the material, the ammonia molecules will obtain protons from the dye molecules to form the amine salt (NH4+), and the dye becomes the deportonation color, and the color development mechanism is represented by a chemical equation. As follows: dye + (color of protonation state) + NH3 (gr ^ dye (deprotonation 7 201009319 state color) + NH4 + (aq). In one embodiment 'when the dye is cresol green When (br〇m〇cre〇s〇1 g·), the color change is deprotonated (4) blue by the orange (4) protonation state. In another embodiment, when the dye is bromophenol purple (bromocreosol purple) 'The color change is changed from the yellow state of the protonated state to the purple state of the protonated state. Therefore, the presence of ammonia can be detected by the color change of the dye. In addition, the ammonia sensing material after adsorption can be borrowed. Axillary by the regenerative (four) rod, including blowing ammonia gas sensing material with a blunt gas, letting ammonia Desorption, A is the use of heating method to regenerate 'the color of the dye molecules after regeneration will return to the original protonation state' can be detected again. The ammonia gas sensing material preparation method of the present invention Including (a) first preparing the starting solution, dissolving the desired metasilicate in deionized water, and then stirring the solution. (b) Then, a solution of a strong acid (e.g., sulfuric acid, hydrochloric acid) is slowly added dropwise to the above solution, and the pH of the solution is controlled to about 9 to 11, at which time the solution forms a gel. ' (c) Next, prepare a surfactant, such as cetyltrimethylammonium bromite (CTAB). The surfactant required for weighing is added to the deionized water and stirred slowly. In the step solution, when the surfactant is dropped, the solution may flocculate. The role of the surfactant is to provide a template for the material in the preparation. (d) After stirring for 3 hours, place the solution in a pressure cooker and place it in a bake 8 201009319 box to loot: ~200. (: hydrothermal method for about 25 to 40 hours of synthesis. (e) take out from the oven to be cooled, perform suction filtration, and repeat the rinse several times with deionized water, then take out the cake to be placed in (10) (two) order for the box to play = 6 hours, and finally placed in 4 thieves ~ 5 built high temperature furnace forging $ ^, you can get the hole material in the citrate. The wet dyeing method is used to embed the dye on the surface of the carrier, for example, ammonia : The dyeing agent and the Wei-perforation material are simultaneously dissolved in the "polar solvent", -C- or isopropanol)' after being scrambled at room temperature for 2 to 5 hours, and then ===. 1〇. . Drying in one box, state I, also provides an additional ammonia sensing material 'including carrier and dyeing greater than 70. Package 2 includes the metal-modified dream acid salt material's specific surface area including ammonia! : / §, the preferred range is _m2 / g ~ U ° Gm2 / g, and within the dye, measuring the color dyes 'Ammonia gas sensing color dye embedded in the carrier: sample by the above color development mechanism Measure the presence of ammonia. #表面^ In the present invention, the surface of the pore material is highly reactive, and it can be aluminum, molybdenum, and the metal is covalently bonded to the bismuth salt. The metal includes = two =: two - metal is good. #(1(10)add) position 'make the ammonia adsorption effect more like the metal modification of the hole material in the salt, the preparation method of the hole material in the square salt salt, the difference lies in the starting solution 9 201009319 except the addition of dodecanoic acid In addition to sodium, the addition of metallization to the mole ratio is based on Dream's dream atom and gold, nitric acid, and subsequent D (for example, molybdenum, copper or cobalt-containing sulphate preparation, except for calcination time) : "The same as the hole material in the bismuth citrate material, the hole material in the Wei salt is the same as 小时 = hour. The surface of the metal brocade is prepared, and finally the dye can be embedded by the wet impregnation method. Another ammonia sensing material. Concentration, no material through the continuous flow reactor debt measurement of ammonia gas is U mg / g ammonia gas sensing material for oxygen adsorption capacity about ammonia gas suction heart: last name. The metal-modified ammonia gas sensing material pair is at least higher, up to 4. 〇 〜 6.5 6.5, in addition to gas, and in addition, even in 3G seconds, the PPm grade of the ammonia-based hairpin I is measured in 20 minutes. Ammonia gas of PPb level is detected inside. Hole material C rides to have high The color change in the area of the sulphate, ί and the ammonia sensitizer can detect the low concentration of ammonia by the dye. This material has the following advantages: Sensitivity and speed by the material in the hole material The high specific surface area 'can improve the detection and speed' is more effective in detecting low-concentration ammonia gas. The saving of H improves the detection efficiency and reduces the amount of dye added, which can meet the environmental protection requirements. The hole material in the Utr metal 'because of increasing the position of the material' is more dangerous to improve the sensing ability of the ammonia gas. However, the λ gas sensing material can be reused by the regenerative process, which saves cost and conforms Environmental Protection Requirements 201009319 [Embodiment] Example 1 is made of citric acid in the Buddha! I ammonia material in the hole material of I. 21.2 g. Minutes, then prepare 4 N sulfuric acid (sulfurie aCld 98%) solution slowly drip, control the pH of the solution to 10.5, then the solution will form a gel. Then configure the surfactant cetyltrimethyl ^
化銨(cetyltrimethylammonium bromite, CTAB),秤量 CTAB 7.2 g並加入25 mL的去離子水中攪拌,攪拌完後緩緩滴 入前置步驟溶液中,在滴入CTAB時,溶液會有絮凝的現 象產生。經過3小時攪拌後,將溶液置入壓力鍋中並玫入 烘箱中,以145°C水熱法進行36小時合成。從烘箱取出待 冷部後進行抽氣過濾,並以去離子水重複沖洗數次,接著 取出濾餅置於11(TC下烘乾6小時,最後再放置到55〇t 燒6小時。Cetyltrimethylammonium bromite (CTAB), weigh CTAB 7.2 g and add 25 mL of deionized water to stir. After stirring, slowly drip into the pre-step solution. When the CTAB is dropped, the solution will flocculate. After stirring for 3 hours, the solution was placed in a pressure cooker and placed in an oven, and hydrothermally synthesized at 145 ° C for 36 hours. After the cold portion was taken out from the oven, suction filtration was performed, and the washing was repeated several times with deionized water, and then the filter cake was taken out and placed at 11 (drying for 6 hours at TC, and finally at 55 〇t for 6 hours).
接著量取0.1 g、0.3 g與〇.6g之矽酸鹽中孔洞材料及 o.ool g的指示劑溴曱酚綠(bromocres〇1 green)並同時溶於 100 mL的溶劑丙酮中,在室溫下攪拌3小時後,將溶液倒 入坩鍋中並置入l10°c烘箱中進行乾燥,最後可得到經過 染劑修飾之氨氣感測材料。 實施例2製備含鋁矽酸盪中孔洞材料之氨氣感測材料 不同矽/鋁比之鋁矽酸鹽中孔洞材料的合成方式,首先 秤量所需之偏梦酸鈉(s〇diUm metasilicate)並加入80 mL的 去離子水’不同矽/鋁比所需之偏矽酸鈉如表1所示,接著 201009319 抨量所需之硫酸紹(aluminum sulfate)加入20 mL去離子水 中,混合兩種溶液後攪拌30分鐘,後續配置方式同前製備 矽酸鹽中孔洞材料的方法’鍛燒時間改為1〇小時。 表1Then weigh 0.1 g, 0.3 g and 〇.6g of the citrate hole material and o.ool g indicator bromocresyl green (bromocres 〇 1 green) and dissolve in 100 mL of solvent acetone, in the room After stirring for 3 hours at a temperature, the solution was poured into a crucible and placed in an oven at 10 ° C for drying, and finally a dye-modified ammonia gas sensing material was obtained. Example 2 Preparation of Ammonia Sensing Material Containing Aluminium Citrate Hole Material A method for synthesizing a hole material in an aluminosilicate having different bismuth/aluminum ratios, first weighing the desired sodium s(di-Um metasilicate) And add 80 mL of deionized water 'different bismuth/aluminum ratio required sodium citrate as shown in Table 1, then 201009319 所需 quantity of aluminum sulfate required to add 20 mL of deionized water, mix two After the solution was stirred for 30 minutes, the subsequent configuration was the same as the method for preparing the pore material in the citrate. The calcination time was changed to 1 hr. Table 1
矽/鋁比 添加之硫酸鋁重量 25 0.684 50 0.342 75 0.228 100 0.171 150 0.114 接著量取0.3 g之不同矽鋁比的鋁矽酸鹽中孔洞材料 及0.001 g的指示劑漠甲齡綠(broin〇cresol green)或溪甲酌· 紫(bromocresol purple)並同時溶於1〇〇 mL的溶劑丙酮中, 在室溫下擾拌3小時後,將溶液倒入掛錯中並置入 烘箱中進行乾燥,最後可得到經過染劑修飾之氨氣感測材 料。 實施例3製儐含銅矽酸鹽中孔洞材料之氨氣感測材料 不同矽/銅比之銅矽酸鹽中孔洞材料的合成方式,首先 秤量所需之偏梦酸納(sodium metasilicate)並加入80 mL的 去離子水’不同矽/銅比所需之偏矽酸鈉如表2所示,接著 秤量所需之硝酸銅(Cu(N03)2)加入20 mL去離子水中,混 合兩種溶液後攪拌30分鐘,後續配置方式同前製備矽酸鹽 201009319 中孔洞材料的方法’鍛燒時間改為10小時。 表2 梦/銅比 添加之硝酸銅重景f 25 —-------- Vo/ 0.241 50 0.483 75 0.723 接著量取0.3 g之不同梦銅比的銅發酸鹽中孔洞材料 ❸及0.001 g的指示劑演曱酚綠(bromocresol green)並同時溶 於100 mL的溶劑丙酮中,在室溫下攪拌3小時後,將溶 液倒入掛鍋中並置入11〇。〇烘箱中進行乾燥,最後可得到 經過染劑修飾之氨氣感測材料。 »施例4製餚含飴矽酸鹽中孔洞材料之氨氣感測材料 不同矽/鈷比之鈷矽酸鹽中孔洞材料的合成方式,首先 祥量所需之偏硬酸納(sodium metasilicate)並加入80 mL的 • 去離子水’不同矽/鈷比所需之偏矽酸鈉如表3所示,接著 秤量所需之硝酸鈷(c〇(N〇3)2 . 6H2〇)加入20 mL去離子水 中’混合兩種溶液後攪拌3〇分鐘,後續配置方式同前製備 發酸鹽中孔洞材料的方法,鍛燒時間改為10小時。 表3 — 碎/始比 添加之確酸銘重量(g) 25 0.291 50 〜 一— 0.582 75 0.873 13 201009319 接著量取G’3 g之不同梦銘比的勤發酸鹽中孔洞材料 及0.001 g的如示劑溪甲盼綠(br〇m⑽以。】gran)並同時溶 於100必的溶劑丙酮中,在室溫下攪拌3小時後,將溶 液倒入韻中並置入not烘箱中進行乾燥,最後可得到 經過染劑修飾之氨氣感蜊材料。 實施例5氨氣吸衔實驗 、氨氣感咖m方式採帛連續流式反應时為效率測試 β方法:反應系統架設於一怪溫冰箱中,實驗進行實則控制 於25 C下進行。本系統之吸附反應管其内徑為0.8公分, 管内利用玻璃綿作為載台’並將實施例卜2、3、4之氨氣 感,,料填充於載台之上,經由質量流量控制器控制所需 之氨氣濃度’經稀釋後之氨氣濃度為0.5、卜5Ppm,相對 廣度為55±5%’在濃度為卜⑽皿時其氣體總流量為1〇〇〇 ccm ’而濃度為〇 5 ppm時,氣體總流量為2〇〇〇 ccm,系 統後端利用氨氣分析儀(SIR m〇dd-S5012, Spanish)量測氨 氣(ammonia gas)的濃度變化分析。 第1圖為實施例2之氨氣感測材料對不同氨氣濃度之 反應時間圖,當氨氣濃度在1 ppm時,可在30秒内偵測到 氨氣然而當氨氣濃度在〇·5 ppm時,需要20分鐘的時間 才能偵測到氨氣。 表4顯示實施例1之氨氣感測材料對氨氣之吸附容 量’以測試最佳樣品填充量以做為後續實驗使用,在此以 0.3 g做為最佳之樣品填充量。而表$顯示實施例2之氨氣 14 201009319 感測材料對氨氣之吸附容量,當矽鋁比為50時,其吸附效 果最佳,其吸附容量值可達4.3 mg/g。表6顯示實施例3 之氨氣感測材料對氨氣之吸附容量,當矽銅比為50時,其 吸附效果最佳,其吸附容量值可達1.49 mg/g。表7顯示實 施例4之氨氣感測材料對氨氣之吸附容量,當矽鈷比為50 時,其吸附效果最佳,其吸附容量值可達0.83 mg/g。矽/aluminum ratio added aluminum sulfate weight 25 0.684 50 0.342 75 0.228 100 0.171 150 0.114 Then weigh 0.3 g of different bismuth aluminum ratio of aluminosilicate hole material and 0.001 g of indicator Mojia 绿 green (broin〇 Cresol green) or bromocresol purple and dissolved in 1 mL of solvent acetone. After 3 hours of stirring at room temperature, pour the solution into the wrong place and place it in an oven for drying. Finally, a dye-modified ammonia gas sensing material can be obtained. Example 3: Ammonia sensing material for the pore material containing copper bismuth citrate The synthesis method of the pore material in the copper bismuth silicate with different bismuth/copper ratio, firstly weigh the required sodium metasilicate and Add 80 mL of deionized water 'different bismuth/copper ratio required sodium citrate as shown in Table 2, then weigh the required copper nitrate (Cu(N03)2) into 20 mL of deionized water, mix two After the solution was stirred for 30 minutes, the subsequent configuration was the same as the method for preparing the hole material in the phthalate 201009319, and the calcination time was changed to 10 hours. Table 2 Dream/Copper Ratio Added Copper Nitrate Heavy F 25 —-------- Vo/ 0.241 50 0.483 75 0.723 Then weigh 0.3 g of different copper-to-copper ratio in the copper carboxylate 0.001 g of the indicator was bromocresol green and dissolved in 100 mL of solvent acetone. After stirring at room temperature for 3 hours, the solution was poured into a hanging pot and placed at 11 Torr. Drying is carried out in a 〇 oven, and finally a dye-modified ammonia gas sensing material is obtained. »Example 4: The ammonia gas sensing material containing the hole material in the citrate is different from the 矽/cobalt ratio of the cobalt citrate in the synthesis of the pore material, firstly the amount of sodium metasilicate required. And add 80 mL of • deionized water 'different bismuth/cobalt ratio required for sodium metasilicate. See Table 3, then weigh the required cobalt nitrate (c〇(N〇3)2.6H2〇) Mixing the two solutions in 20 mL of deionized water and stirring for 3 minutes. The subsequent configuration is the same as the method of preparing the pore material in the acid salt. The calcination time is changed to 10 hours. Table 3 — Broken/start ratio added acid weight (g) 25 0.291 50 ~ one — 0.582 75 0.873 13 201009319 Then take the G'3 g different dreams of the dilute acid hole material and 0.001 g As the indicator xixi green (br〇m (10) to .] gran) and simultaneously dissolved in 100 must-have solvent acetone, stirred at room temperature for 3 hours, the solution was poured into the rhyme and placed in a not oven Drying, finally, a dye-modified ammonia gas sensation material can be obtained. Example 5 Ammonia gas suction experiment, ammonia gas sensor m method for continuous flow reaction for efficiency test β method: The reaction system is set in a strange temperature refrigerator, and the experiment is actually controlled at 25 C. The adsorption reaction tube of the system has an inner diameter of 0.8 cm, and the glass wool is used as a stage in the tube, and the ammonia gas sensation of the examples 2, 3, and 4 is filled on the stage through the mass flow controller. The concentration of ammonia gas required for control 'diluted ammonia concentration is 0.5, 5 Ppm, relative breadth is 55 ± 5%'. At a concentration of (10), the total gas flow is 1 〇〇〇 ccm ' and the concentration is At 〇5 ppm, the total gas flow rate is 2〇〇〇ccm, and the concentration change of ammonia gas is measured at the back of the system using an ammonia analyzer (SIR m〇dd-S5012, Spanish). Fig. 1 is a reaction time chart of ammonia gas sensing materials of Example 2 for different ammonia gas concentrations. When the ammonia gas concentration is 1 ppm, ammonia gas can be detected within 30 seconds. However, when the ammonia gas concentration is at 〇· At 5 ppm, it takes 20 minutes to detect ammonia. Table 4 shows the adsorption capacity of ammonia gas sensing material for ammonia gas of Example 1 to test the optimum sample filling amount for use in subsequent experiments, where 0.3 g was used as the optimum sample filling amount. While Table $ shows the ammonia gas of Example 2 14 201009319 The adsorption capacity of the material for ammonia gas is sensed. When the ratio of bismuth to aluminum is 50, the adsorption effect is the best, and the adsorption capacity value can reach 4.3 mg/g. Table 6 shows the adsorption capacity of the ammonia gas sensing material of Example 3 for ammonia gas. When the beryllium copper ratio is 50, the adsorption effect is the best, and the adsorption capacity value can reach 1.49 mg/g. Table 7 shows the adsorption capacity of the ammonia gas sensing material of Example 4 for ammonia gas. When the samarium-cobalt ratio is 50, the adsorption effect is the best, and the adsorption capacity value can reach 0.83 mg/g.
表4 樣品填充量(g) 吸附容量(mg/g) 0.1 1.9 0.3 2.0 0.6 2.0 表5 矽/鋁比 吸附容量(mg/g) 25 2.7 50 4.3 75 3.5 100 3.3 150 3.2 15 201009319 表6 石夕/銅比 吸附容量(mg/g) 25 1.02 50 1.49 75 1.20 表7 石夕/始比 吸附容量(mg/g) 25 0.71 50 0.83 75 0.79Table 4 Sample filling amount (g) Adsorption capacity (mg/g) 0.1 1.9 0.3 2.0 0.6 2.0 Table 5 矽/aluminum specific adsorption capacity (mg/g) 25 2.7 50 4.3 75 3.5 100 3.3 150 3.2 15 201009319 Table 6 Shi Xi /copper specific adsorption capacity (mg/g) 25 1.02 50 1.49 75 1.20 Table 7 Shixi/start specific adsorption capacity (mg/g) 25 0.71 50 0.83 75 0.79
雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何所屬技術領域中具有通常知識者, 在不脫離本發明之精神和範圍内,當可作任意之更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 16 201009319 【圖式簡單說明】 第1圖為一不同氨氣濃度對反應時間之關係圖,用以 說明本發明之實施例偵測氨氣的反應時間。 【主要元件符號說明】 無。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and it is possible to make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. 16 201009319 [Simplified description of the drawings] Fig. 1 is a graph showing the relationship between the concentration of different ammonia gases and the reaction time for explaining the reaction time for detecting ammonia gas in the embodiment of the present invention. [Main component symbol description] None.
1717
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97132054A TW201009319A (en) | 2008-08-22 | 2008-08-22 | Ammonia sensing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97132054A TW201009319A (en) | 2008-08-22 | 2008-08-22 | Ammonia sensing material |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201009319A true TW201009319A (en) | 2010-03-01 |
Family
ID=44827769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97132054A TW201009319A (en) | 2008-08-22 | 2008-08-22 | Ammonia sensing material |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201009319A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101666755B (en) * | 2008-09-05 | 2011-12-14 | 财团法人工业技术研究院 | Ammonia sensing material |
-
2008
- 2008-08-22 TW TW97132054A patent/TW201009319A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101666755B (en) * | 2008-09-05 | 2011-12-14 | 财团法人工业技术研究院 | Ammonia sensing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Coumarin-embedded MOF UiO-66 as a selective and sensitive fluorescent sensor for the recognition and detection of Fe 3+ ions | |
Ruan et al. | UiO-66 derivate as a fluorescent probe for Fe3+ detection | |
Liu et al. | Photoresponsive nanocomposite formed by self‐assembly of an azobenzene‐modified silane | |
Tran-Thi et al. | Optical chemical sensors based on hybrid organic–inorganic sol–gel nanoreactors | |
Nicole et al. | Advanced selective optical sensors based on periodically organized mesoporous hybrid silica thin films | |
CN102416482B (en) | A kind of nano-Au solution and utilize this nano-Au solution to detect Co 2+method | |
Hou et al. | ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+ | |
Xu et al. | Fabrication of hybrid magnetic HKUST-1 and its highly efficient adsorption performance for Congo red dye | |
Chu et al. | Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS | |
El-Safty et al. | Uniformly mesocaged cubic Fd 3 m monoliths as modal carriers for optical chemosensors | |
Dashtian et al. | Preparation and characterization of a novel optical chemical sensor for determination of trace amounts of Praseodymium ion by UV/Vis spectrophotometry | |
Takagai et al. | “Turn-on” fluorescent polymeric microparticle sensors for the determination of ammonia and amines in the vapor state | |
Yang et al. | Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation detection | |
CN108855220A (en) | A kind of titania additive ZIF and its preparation method and application | |
Zhong et al. | Turn-on fluorescent sensor based on curcumin@ MOF-5 for the sensitive detection of Al 3+ | |
Zhang et al. | Synthesis of novel organic-inorganic hybrid fluorescent microspheres and their applications as Fe (III), Hg (II) and biothiols probes | |
JP5314672B2 (en) | Method for detecting gaseous halogen compounds | |
Ji et al. | A lanthanide-MOF based host–guest intelligent dual-stimulus response platform for naked-eye and ratiometric fluorescence monitoring of food freshness | |
Han et al. | Two host-guest hybrids by encapsulation AlQ3 in zeolitic imidazolate framework-8 as luminescent sensors for Fe3+, CrO42-and acetone | |
Shen et al. | Fluorophor Embedded MOFs Steering Gas Ultra‐Recognition | |
Onida et al. | Permeability of micelles in surfactant-containing MCM-41 silica as monitored by embedded dye molecules | |
Huang et al. | One-pot trapping luminescent rhodamine 110 into the cage of MOF-801 for nitrite detection in aqueous solution | |
Chen et al. | Ultrastable MAPbBr3@ ZIF-8Co5% as a novel fluorescence probe for highly selectively sensing Fe3+ in water | |
Nandi et al. | An acetoxy functionalized Al (III) based metal–organic framework showing selective “turn on” detection of perborate in environmental samples | |
CN101666755B (en) | Ammonia sensing material |