TW201009100A - Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film - Google Patents

Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film Download PDF

Info

Publication number
TW201009100A
TW201009100A TW97133289A TW97133289A TW201009100A TW 201009100 A TW201009100 A TW 201009100A TW 97133289 A TW97133289 A TW 97133289A TW 97133289 A TW97133289 A TW 97133289A TW 201009100 A TW201009100 A TW 201009100A
Authority
TW
Taiwan
Prior art keywords
substrate
zno
transparent conductive
film
minutes
Prior art date
Application number
TW97133289A
Other languages
Chinese (zh)
Inventor
Yu-Zen Tsai
Na-Fu Wang
Chun-Lung Tsai
Original Assignee
Univ Cheng Shiu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Cheng Shiu filed Critical Univ Cheng Shiu
Priority to TW97133289A priority Critical patent/TW201009100A/en
Publication of TW201009100A publication Critical patent/TW201009100A/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a method for manufacturing a transparent conductive ZnO: F film. The method of the invention includes the steps of: (a) providing a substrate; (b) disposing the substrate in a sputtering chamber, into which predetermined flow rates of O2 and Ar are entered, and utilizing a ZnF2 target to form a ZnO: F thin film on the substrate by reactive RF magnetron sputtering to form a base material with ZnO: F thin film; and (c) proceeding with a thermal annealing to anneal the base material with ZnO: F thin film at a predetermined temperature. Thereby, the transparent conductive ZnO: F film manufactured by the method of the invention has a (002) preferred orientation, high transmittance in the wavelength range of visible light and low resistivity. Thus, it performs with superior electric and optical characteristics and can be used as a transparent conductive thin film in commerce.

Description

201009100 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種摻氟氧化辞(ZnO:F )透明導電薄 膜之製作方法,詳言之’係關於一種以ZnF2靶材濺鍍形成 ZnO:F透明導電薄膜之製作方法。 【先前技術】 近年來’由於光電半導體應用的快速發展,因而其相關 的研究不斷的被提出,其中又以平面顯示器及太陽能電池 關連之透明導電薄媒更是獨目的焦點。由於玻璃並不具有 導電性’因此需要在玻璃上面鍍上一層透明導電電極,以 提供所需的電性,而最常見的透明導電電極就是透明導電 氧化物(Transparent conductive oxide,TCO)。在習知技術 中最常使用的TCO薄膜為銦錫氧化物(Tin doped Indium oxide’ ITO)薄膜,因ιτο具高透光性與良好的導電性,已 廣泛應用在各種光電元件之透明導電電極。然而因為銦 〇 的含量短缺、價格昂貴、具毒性[1],且容易和氫電零產生 還原反應[2] ’ ‘必須尋求其他替代之材料。 鋅為地球含量豐富之元素,價格相對便宜而氧化鋅本 身亦無毒|± 在氫電漿中具高化學穩定及低成長溫度等 特點[3, 4],所以近年來引起廣泛之研究。氧化辞的電阻 率通常在1]00 Q_cm之間[5],其導電度仍不足以作為電 極’因此通常會再摻雜雜質以降低其電阻率其中,最常 使用的摻雜包括銘(A1)、嫁(Ga)和姻(in)等原子。 氧化鋅常用的摻雜原子通常是陽離子,然而由半導體物理 正修說明書.doc -6 201009100 的概念可知,利用-1價的陰離子取代_2價的氧離子亦可提 高氧化鋅透明導電膜的導電性。 由於氟(F)離子與氧離子的離子半徑非常的相近,所 以掺雜F離子除了可提高載子的濃度外,也可提高載子的 移動率。然而,摻雜F離子之相關研究仍然不多,且大多 使用化學噴霧法沉積換氣氧化鋅(Zn〇:F)之透明導電薄 膜’但成長出來ZnO:F薄膜的電特性大部份是不符合需求 φ [6·8]。另一方面,在習知技術中另有研究指出,利用真空 電孤電漿蒸鍵(vacuum arc plasma evaporation,VAPE)法 [9, 10]或磁控共濺鍍法[11,12]可成長高品質的含氟氧化鋅 透明導電薄膜’例如:Minami等人[9]使用VAPE法沉積共 摻鎵及氟的氧化辞透明導電薄膜,在l〇〇°C的鍍膜温度之 下,可得最低電阻係數為4.5χ10·4 Ω-cm的ZnO:Ga,F透明導 電薄膜。Choi等人[11]則利用磁控共濺鍍法研究ZnO:Al,F 透明導電薄膜的光電特性,所得薄膜在1〇·6 Torr的高真空 ❹ 下,經300 °C、2小時退火後,可得最低電阻係數為 4.75χ10·4Ω-οιη的ZnO:Al,F透明導電薄膜。雖然,VAPE法 或磁控共濺鍍法皆可成長摻氟氧化辞透明導電薄膜,但是 在習知技術中所使用的靶材或初始原料皆為ZnO及少量 ZnF2共燒的陶瓷靶,且需共摻其他的陽離子,製程參數較 複雜,控制不易。 因此,有必要提供一創新且富有進步性之ZnO:F透明導 電薄膜之製作方法,以解決上述問題。 以下為參考先前技術列表: 正修說明書.doc 201009100 1. X. Jiang, F.L. Wong, M.K, Fung and S.T. Lee, Appl. Phys. Lett. 83 2. (2003) 1875. L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato and R. Martins, Thin Solid Films 511-512 (2006) 295. 3. W.J. Jeong and GC. Park, Sol. Energ. Mater. Sol. Cells 65 (2001) 37. 4. T. Minami, H. Sonohara, S. Takata and H. Sato, Jap. J. Appl. Phys. 33 (1994)L1693. 5. ❹ D.L. Raimondi and E. Kay, J. Vac. Sci. Technol. Vol.7, No.l (1969) 96. 6. M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza and D.R. Acosta, Thin Solid Films 394 (2001) 242. 7. M.de la L. Olvera, A. Maldonado and R. Asomoza, Sol. Energ. Mater. Sol. Cells 73 (2002) 425. 8. J. Rodriguez-Baez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Perez and M. de la L. Olvera, Mater. Lett. 60 (2006) 1594. ❹ 9. T. Minami, S. Ida, T. Miyata and Y. Minamoto, Thin Solid Films 445 (2003) 268. 10. T. Miyata, S. Ida and T. Minami, J. Vac. Sci. Technol. A 21 (2003) 1404. 11. B.G. Choi, I.H. Kim, D.H Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.J. Baik and W.M. Kim, J. Eur. Ceram. Soc. 25 (2005) 2161. 12. I. Kim, K.S. Lee, T.S. Lee, J.h. Jeong, B.k. Cheong, Y.J. Baik and W. M. Kim, J. Appl. Phys. 100 (2006) 63701. 【發明内容】 正修說明書.doc -8 201009100 本發明提供一種摻氟氧化鋅(Zn〇:F)透明導電薄膜之 製作方法’該製作方法包括以下步驟··(a)提供一基板; (b)設置該基板於一濺鍍腔體中,以ΖηΙ?2為靶材且通入一設 定分率之〇2及Ar至該濺鍍腔體中,利用反應性射頻磁控濺 鍍方法形成一 ZnO:F薄膜於該基板之表面,以形成一具 ZnO:F薄膜基材,及(c)在一設定溫度下將該具Zn〇:F薄膜 基材進行熱退火處理。 藉此,本發明Zn〇:F透明導電薄膜之製作方法所製得之 ZnO:F透明導電薄膜具有(002)優選排向,且在可見光範圍 具有高光穿透率及低的電阻率,故本發明之Zn〇:F透明導 電薄膜具有良好之電特性及光學特性,可作為商用之透明 導電薄膜。 【實施方式】 圖1顯示本發明Zn0:F透明導電薄膜之製作方法流程圖。 參考步驟S11,首先提供一基板。該基板可為玻璃基板 ❹ (例如··康寧7059玻璃基板)、矽基板或氧化鋁基板。較 佳地,在步驟S11中’另包括一清潔該基板表面之步驟, 例如:將該基板依序置於丙酮、甲醇及去離子水中,以一 超曰波震盈器分別震盡一設定時間(例如,5分鐘),以去 除該基板表面之油脂或污染物質。 在清潔該基板表面之後,另包括一去除水份之步驟,以 高壓氮氣吹乾該基板’再烘烤乾燥該基板以去除水氣,例 如:將該基板置入一精密烤箱中,於l〇〇°C下烘烤1小時以 去除該基板之水氣。 正修說明書.doc -9 201009100 參考步驟S12,設置該基板於一濺鍍腔體中,以氟化辞 (ZnF2)為無材且通入一設定分率之〇2及Ar至該減鍍腔體 中’利用反應性射頻磁控濺鍍方法形成一ZnO:F薄膜於該 基板之表面,以形成一具ZnO:F薄膜基材,在本實施例 中’該ZnO:F薄膜係為透明導電薄膜,使用iZnF2起材純 度較佳係大於99.99%。較佳地,在步驟S12中另包括一以 射頻功率90W進行預濺鍍5分鐘之步驟,以去除211172無材 ^ 上之污染並使製程系統達到穩定的狀態。在本實施例中, 反應性射頻磁控濺鍍之射頻功率為90W,該基板之溫度可 為室溫(RT)至350°C之間,該濺鍍腔體中之壓力可為3至 9 m torr ( 1〇_3 torr ),該設定分率可為10%至3〇%,其 中’該設定分率為〇2與〇2及Ar之流率比(〇2/〇2+Ar)。 參考步驟S13,在一設定溫度下將該具Zn〇:F薄膜基材進 行熱退火處理。其中,該設定溫度係為3001至5〇〇°c,例 如:300 C、40CTC或500。(:,而該設定溫度較佳為400〇c。 〇 在步驟S13中,其係以升温速率為15°C/分鐘至30(TC/分 鐘,退火時間為10至30分鐘進行熱退火處理,藉由該設定 溫度、升温速率及退火時間,以瞭解真空熱退火處理對 ZnO:F透明導電薄膜的光電特性的影響。 以下之實例為本發明利用反應性射頻磁控濺鍍法,以 ZnF2為靶材,在玻璃基板上沉積211〇:1?透明導電薄膜並 探討不同溫度的真空退火處理對Zn〇:F透明導電薄膜之電 特性、結構及光學特性之影響,唯並不意謂本發明僅偈限 於此等實例所揭示之内容。 正修說明書.doc -10 201009100 實例: 利用反應性射頻磁控濺鍍法,在玻璃基板上成長Zn〇:F 透明導電薄膜’其中靶材為3吋之ZnF2靶、純度為 99.99°/。’該玻璃基板為康寧7〇59玻璃基板,該玻璃基板在 艘膜前先依序置於丙酮、甲醇及去離子水中,以超音波震 盘器分別震盪5分鐘,以去除該玻璃基板表面的油脂或污 染物質’再以高壓氮氣吹乾後,放入精密烤箱於1〇〇。匸下 ❹ 烘烤1小時以去除水氣。在該實例中,濺鍍的條件分別 為:濺鍍壓力為5 m torr ’射頻功率為90W,基板溫度為 ,氧氣的流率為20% (〇2 / 〇2+Ar)。此外,為了去除 靶材上污染並使製程系統達到穩定的狀態,所以在鍍膜前 進行90W約5分鐘預濺鍍。最後,將磁控濺鍍所製得之試 片在真空環境下,分別於300°C、400。(:和500°C進行熱退火 處理,以改善ZnO:F透明導電薄膜的光電特性,其中,熱 退火處理之升温速率為15°C/min,退火時間則為30分鐘, φ 藉以瞭解真空熱退火處理對薄膜的光電特性的影響。 在ZnO:F透明導電薄膜特性分析方面:分別利用又^叮繞 射分析儀(SIEMENS D5000)分析ZnO:F透明導電薄膜的晶 體結構,其中使用的X-ray光源為銅Κα (λ=1.5418A),掃描 範圍2Θ=20°〜80°、掃描速率2°/min、掃描間隔為〇.1。;以 UV-VIS光譜儀(HITACHI U-4100)進行ZnO:F透明導電薄膜 的光穿透率之量測,掃描的波長範圍為240-900 nm ;以霍 爾量測系統(HL 5500IU)來量測ZnO:F透明導電薄膜的電阻 率、電子濃度和電子遷率。 正修說明書.doc •11 201009100 圖2顯示本發明之初鍍膜以及經爐管300°C、400°C和 500°C以升温速率30(TC /分鐘退火處理10分鐘後之試片的X 光繞射(XRD)圖。其中,曲線L21、L22、L23及L24分 別為初鍍膜以及經爐管300°C、400°C和500°C以升温速率 300°C/分鐘退火處理1〇分鐘後之試片的X光繞射曲線。在 結構特性方面,經與JCPDS卡比對之後可發現,不論是初 鍵膜或是退火處理後的試片,均只見Zn〇繞射峰,而未見 ΖηΙ?2的繞射峰’可見大多數的ZnF2在濺鍍過程中都已被氧 〇 化成ZnO。此外’ X光繞射圖中只有Zn〇(002)繞射峰,顯 示所滅鍍的ZnO:F透明導電薄膜具有c轴優先取向。 圖3顯示本發明以升温速率3〇〇<=c/分鐘退火處理1〇分鐘 後的試片之電阻率、霍爾移動率及載子濃度與退火溫度的 關係圖。其中,曲線L31、L32及L33分別為電阻率、霍爾 移動率及載子濃度之變化曲線。在電特性方面,初鍍膜中 由於氟離子大多位於晶格間隙,並未取代氧離子而位於氧 © 的晶格位置,因此片電阻過高,無法由霍爾量測測得相關 參數。然而’由圖3可得知4〇〇〇c真空退火處理後的試片, 具有最低的電阻率〖.8640-3 n_cm、最高的霍爾移動率89 Cm2/V-S及最高之載子濃度3.78x 1020/cm3。 圖4顯示本發明之初鍍膜以及經爐管300°C、400。(:和 500 C以升溫速率3〇(rc/分鐘退火處理1〇分鐘後之試片的 UV-VIS穿透囫譜。其中,曲線L4i、l42、l43及[44分別 為初鍍膜以及經爐管300°C、400。(:和50(TC退火處理後之試 片的穿透率曲線。由圖4可得知,所有的ZnO:F透明導電薄 正修說明書.doc 42 201009100 膜在可見光範圍的平均穿透率都超過90%以上,且在波長 為360 nm附近有明顯的吸收邊界(absorpti〇n band edge) 〇 圖5顯示本發明在不同氧氣分率,經真空環境下於 以升温速率300°C/分鐘熱退火10分鐘後ZnO:F透明導電薄 膜的之電阻率、霍爾移動率及載子濃度與退火溫度的關係 圖’其中’曲線L51、L52及L53分別為電阻率、霍爾移動 率及載子激度之變化曲線;圖6顯示本發明在不同氧氣分 ^ 率,經真空環境下於50(TC以升温速率30(TC/分鐘熱退火10 分鐘後ZnO:F透明導電薄膜的UV-VIS穿透圖譜,其中,曲 線L61、L62、L63、L64及L65分別係氧氣分率為1〇%、16 %、20%、26%及3 0%時之穿透率曲線。由圖5及囷6可得 知,在氧氣分率為10-30%時,ZnO:F透明導電薄膜具有相 當佳之電特性(包括:電阻率、霍爾移動率、載子濃度) 及可見光穿透率。 圖7顯示本發明在不同的減锻壓力,經真空環境下於 ❿ 500 C以升溫速率300°C/分鐘熱退火10分鐘後ZnO:F透明導 電薄膜的之電阻率、霍爾移動率及載子濃度與濺鍍壓力的 關係圖’其中,曲線L71、L72及L73分別為電阻率、霍爾 移動率及載子濃度之變化曲線;圖8顯示本發明在不同的 滅鍵麗力,經真空環境下於500°C以升温速率300。(:/分鐘熱 退火10分鐘後Zn〇:F透明導電薄膜的UV-VIS穿透圖譜,其 中’曲線L81、L82、L83及L84分別係濺鍍壓力為3 m torr 、5 m torr、7 m torr及9 m torr時之穿透率曲線。由 圖7及圖8可得知,在濺鍵壓力為3-9 m torr時,ZnO:F透明 正修說明書.doc 43 201009100 導電薄膜具有相當佳之電特性(包括:電阻率、霍爾移動 率、載子濃度)及可見光穿透率。 圖9顯示本發明在不同濺鍍基板溫度,經真空環境下於 500°C以升溫速率300°C/分鐘熱退火1〇分鐘後ZnO:F透明導 電薄膜之電阻率、霍爾移動率及載子濃度與退火溫度的關 係圓’其中,曲線L91、L92及L93分別為電阻率、霍爾移 動率及載子濃度之變化曲線;圖1〇顯示本發明在不同基板 溫度,經真空環境下於500°C以升温速率300°C/分鐘熱退火 〇 10分鐘後ZnO:F透明導電薄膜的UV-VIS穿透圖譜,其中, 曲線L101、L102、L103及L104分別係基板溫度為室溫 (不加熱)、150°C、25(TC及35(TC時之穿透率曲線。由圊9 及圖10可得知’在基板溫度為室溫至350°C時,ZnO:F透明 導電薄膜具有相當佳之電特性(包括:電阻率、霍爾移動 率、載子濃度)及可見光穿透率。 藉此,本發明ZnO:F透明導電薄膜之製作方法所製得之 φ ZnO:F透明導電薄膜具有(〇〇2)優選排向,且在可見光範圍 具有高光穿透率及低的電阻率,故本發明之ZnO:F透明導 電薄膜具有良好之電特性及光學特性,可作為商用之透明 導電薄膜。 上述實施例僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列β 【圖式簡單說明】 正修說明書.doc •14 201009100 圖1顯示本發明ZnO:F透明導電薄膜之製作方法流程圖; 圖2顯示本發明之初鍍膜以及經爐管300°C、400°C和 500 °C以升溫速率300 °C/分鐘退火處理10分鐘後之試片的X 光繞射圖; 圖3顯示本發明以升温速率300°C/分鐘退火處理10分鐘 後的試片之電阻率、霍爾移動率及載子濃度與退火溫度的 關係圖; 圖4顯示本發明之初鍍膜以及經爐管300°C、400°C和 Ο 500°C以升温速率300°C/分鐘退火處理10分鐘後之試片的 UV-VIS穿透圖譜; 圖5顯示本發明在不同氧氣分率,經真空環境下於5〇〇。〇 以升温速率300°C/分鐘熱退火1〇分鐘後ZnO:F透明導電薄 膜的之電阻率、霍爾移動率及載子濃度與退火溫度的關係 圖; 囷6顯示本發明在不同氧氣分率,經真空環境下於5〇〇。〇 ❺以升溫速率300°C/分鐘熱退火1〇分鐘後Zn〇:F透明導電薄 膜的UV-VIS穿透圖譜; 圖7顯示本發明在不同的濺鍍壓力,經真空環境下於 500°C以升溫速率300〇C/分鐘熱退火1〇分鐘後ZnO:F透明導 電薄族的之電阻率、霍爾移動率及載子濃度與濺鍍壓力的 關係圖; 囷8顯示本發明在不同的濺鍍壓力,經真空環境下於 500°C以升溫速率300。(:/分鐘熱退火10分鐘後Zn〇:F透明導 電薄膜的UV-VIS穿透圖譜; 正修說明書.doc -15 201009100 圖9顯示本發明在不同濺鍍基板溫度,經真空環境下於 500°C以升温速率300°C/分鐘熱退火10分鐘後ZnO:F透明導 電薄膜之電阻率、霍爾移動率及載子濃度與退火溫度的關 係圖; 圖10顯示本發明在不同基板溫度,經真空環境下於 500°C以升温速率300°C/分鐘熱退火10分鐘後ZnO:F透明導 電薄膜的UV-VIS穿透圖譜。 【主要元件符號說明】 ❹ ^ (無) 正修說明書.doc -16201009100 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for fabricating a fluorine-doped oxidized (ZnO:F) transparent conductive film, which is described in detail as a method for forming ZnO by sputtering with a ZnF2 target. : F manufacturing method of transparent conductive film. [Prior Art] In recent years, due to the rapid development of optoelectronic semiconductor applications, related research has been continuously proposed, and transparent conductive thin media which is connected with flat panel displays and solar cells is the sole focus of attention. Since glass is not electrically conductive, it is necessary to plate a transparent conductive electrode on the glass to provide the required electrical properties. The most common transparent conductive electrode is a transparent conductive oxide (TCO). The most commonly used TCO film in the prior art is a Tin doped Indium oxide (ITO) film, which has been widely used in transparent conductive electrodes of various photovoltaic elements due to its high light transmittance and good electrical conductivity. . However, because of the shortage of indium bismuth, it is expensive, toxic [1], and it is easy to produce a reduction reaction with hydrogen zero [2] ‘ ‘other alternative materials must be sought. Zinc is a rich element of the earth, and the price is relatively cheap, and zinc oxide itself is non-toxic. ± High chemical stability and low growth temperature in hydrogen plasma [3, 4], so it has caused extensive research in recent years. The resistivity of the oxidized word is usually between 1]00 Q_cm [5], and its conductivity is still not enough as an electrode'. Therefore, impurities are usually doped again to lower its resistivity. Among the most commonly used dopings include Ming (A1). ), marry (Ga) and marriage (in) and other atoms. The commonly used dopant atoms for zinc oxide are usually cations. However, it is known from the concept of the semiconductor physics manual. doc -6 201009100 that the substitution of a valence ion with a -1 valence can also increase the conductivity of the transparent conductive film of zinc oxide. . Since the ionic radius of the fluorine (F) ion and the oxygen ion are very close, the doping of the F ion can increase the carrier's mobility in addition to the concentration of the carrier. However, there are still few studies on doping F ions, and most of them use a chemical spray method to deposit a transparent conductive film of zinc oxide (Zn〇:F), but the electrical properties of the ZnO:F film are mostly grown. Meet the demand φ [6·8]. On the other hand, another study in the prior art indicates that the vacuum arc plasma evaporation (VAPE) method [9, 10] or the magnetron co-sputtering method [11, 12] can be used to grow. High-quality fluorine-containing zinc oxide transparent conductive film 'Minami et al. [9] used VAPE method to deposit oxidized transparent conductive film with gallium and fluorine, which can be obtained at a coating temperature of 10 ° C. A ZnO:Ga,F transparent conductive film having a resistivity of 4.5 χ10·4 Ω-cm. Choi et al. [11] studied the photoelectric properties of ZnO:Al,F transparent conductive films by magnetron co-sputtering. The obtained films were annealed at 300 °C for 2 hours under high vacuum of 1 〇·6 Torr. A transparent conductive film of ZnO:Al,F having a minimum resistivity of 4.75χ10·4 Ω-οιη is obtained. Although the VAPE method or the magnetron co-sputtering method can grow a fluorine-doped oxidized transparent conductive film, the target or the starting material used in the prior art is a ceramic target in which ZnO and a small amount of ZnF2 are co-fired, and Co-doping other cations, the process parameters are more complicated, and the control is not easy. Therefore, it is necessary to provide an innovative and progressive method for fabricating ZnO:F transparent conductive films to solve the above problems. The following is a list of prior art references: Revision Manual.doc 201009100 1. X. Jiang, FL Wong, MK, Fung and ST Lee, Appl. Phys. Lett. 83 2. (2003) 1875. L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato and R. Martins, Thin Solid Films 511-512 (2006) 295. 3. WJ Jeong and GC. Park, Sol. Energ. Mater. Sol. (2001) 37. 4. T. Minami, H. Sonohara, S. Takata and H. Sato, Jap. J. Appl. Phys. 33 (1994) L1693. 5. ❹ DL Raimondi and E. Kay, J. Vac Sci. Technol. Vol.7, No.l (1969) 96. 6. M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza and DR Acosta, Thin Solid Films 394 (2001) 242 7. M. de la L. Olvera, A. Maldonado and R. Asomoza, Sol. Energ. Mater. Sol. Cells 73 (2002) 425. 8. J. Rodriguez-Baez, A. Maldonado, G. Torres- Delgado, R. Castanedo-Perez and M. de la L. Olvera, Mater. Lett. 60 (2006) 1594. ❹ 9. T. Minami, S. Ida, T. Miyata and Y. Minamoto, Thin Solid Films 445 ( 2003) 268. 10. T. Miyata, S. Ida and T. Minami, J. Vac. Sci. Tech No. A 21 (2003) 1404. 11. BG Choi, IH Kim, DH Kim, KS Lee, TS Lee, B. Cheong, YJ Baik and WM Kim, J. Eur. Ceram. Soc. 25 (2005) 2161. 12. I. Kim, KS Lee, TS Lee, Jh Jeong, Bk Cheong, YJ Baik and WM Kim, J. Appl. Phys. 100 (2006) 63701. [Summary of the Invention] Directive. doc -8 201009100 The present invention provides A method for fabricating a fluorine-doped zinc oxide (Zn〇:F) transparent conductive film includes the following steps: (a) providing a substrate; (b) disposing the substrate in a sputtering chamber to ΖηΙ? 2 is a target and a set fraction of 〇2 and Ar is introduced into the sputtering cavity, and a ZnO:F film is formed on the surface of the substrate by reactive RF magnetron sputtering to form a ZnO. : F film substrate, and (c) thermally annealing the Zn〇:F film substrate at a set temperature. Therefore, the ZnO:F transparent conductive film prepared by the method for producing a Zn〇:F transparent conductive film of the present invention has a (002) preferred alignment and a high light transmittance and a low resistivity in the visible light range. The Zn〇:F transparent conductive film of the invention has good electrical and optical properties and can be used as a commercial transparent conductive film. Embodiments Fig. 1 is a flow chart showing a method of fabricating a Zn0:F transparent conductive film of the present invention. Referring to step S11, a substrate is first provided. The substrate may be a glass substrate (for example, Corning 7059 glass substrate), a tantalum substrate or an alumina substrate. Preferably, in step S11, a step of cleaning the surface of the substrate is further included, for example, the substrate is sequentially placed in acetone, methanol and deionized water, and each set time is shaken by a super-chopper oscillator. (for example, 5 minutes) to remove grease or contaminants from the surface of the substrate. After cleaning the surface of the substrate, a step of removing moisture is further included, and the substrate is blown dry with high pressure nitrogen gas. The substrate is then baked and dried to remove moisture, for example, the substrate is placed in a precision oven. Bake at 〇 ° C for 1 hour to remove moisture from the substrate. Proof of revision.doc -9 201009100 Referring to step S12, the substrate is placed in a sputtering chamber, and the fluorination (ZnF2) is omitted and a set fraction of 〇2 and Ar is introduced to the deplating chamber. Forming a ZnO:F film on the surface of the substrate by reactive RF magnetron sputtering to form a ZnO:F film substrate. In this embodiment, the ZnO:F film is a transparent conductive film. The purity of the material using iZnF2 is preferably greater than 99.99%. Preferably, in step S12, a step of pre-sputtering for 5 minutes with a radio frequency power of 90 W is further included to remove the contamination of the 211172 material and to stabilize the process system. In this embodiment, the RF power of the reactive RF magnetron sputtering is 90 W, the temperature of the substrate may be between room temperature (RT) and 350 ° C, and the pressure in the sputtering chamber may be 3 to 9. m torr (1〇_3 torr ), the set fraction can be 10% to 3〇%, where 'this set rate is the flow ratio of 〇2 to 〇2 and Ar (〇2/〇2+Ar) . Referring to step S13, the Zn?:F film substrate is thermally annealed at a set temperature. Wherein, the set temperature is 3001 to 5 〇〇 ° C, for example, 300 C, 40 CTC or 500. (:, and the set temperature is preferably 400 〇c. 〇 In step S13, the thermal annealing treatment is performed at a heating rate of 15 ° C / min to 30 (TC / min, annealing time of 10 to 30 minutes, The effect of vacuum thermal annealing on the photoelectric properties of the ZnO:F transparent conductive film is understood by the set temperature, the heating rate and the annealing time. The following example uses the reactive RF magnetron sputtering method with ZnF2 as the present invention. Target, depositing 211〇:1? transparent conductive film on the glass substrate and discussing the effects of vacuum annealing treatment at different temperatures on the electrical properties, structure and optical properties of the Zn〇:F transparent conductive film, but the invention is not intended to偈 偈 偈 doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc doc The target has a purity of 99.99°/. The glass substrate is a Corning 7〇59 glass substrate, which is placed in acetone, methanol and deionized water in front of the membrane, and oscillated for 5 minutes with an ultrasonic vibrator. To remove the grease or contaminant on the surface of the glass substrate and then dry it with high pressure nitrogen, put it in a precision oven at 1 Torr. Bake for 1 hour to remove moisture. In this example, the conditions of the sputtering The sputtering pressure is 5 m torr 'the RF power is 90 W, the substrate temperature is 20% (〇2 / 〇2+Ar). In addition, in order to remove the contamination on the target and make the process system reach Stable state, so 90W for about 5 minutes before the coating is pre-sputtered. Finally, the test piece prepared by magnetron sputtering is vacuumed at 300 ° C, 400 ° (: and 500 ° C Thermal annealing treatment to improve the photoelectric properties of the ZnO:F transparent conductive film, wherein the thermal annealing treatment has a heating rate of 15 ° C / min and an annealing time of 30 minutes. φ is used to understand the photoelectric properties of the film by vacuum thermal annealing. In the analysis of the characteristics of ZnO:F transparent conductive film: the crystal structure of ZnO:F transparent conductive film was analyzed by using the 叮-diffraction analyzer (SIEMENS D5000), and the X-ray source used was copper Κα (λ). =1.5418A), scan range 2Θ=20° ~80°, scanning rate 2°/min, scanning interval 〇.1; measurement of light transmittance of ZnO:F transparent conductive film by UV-VIS spectrometer (HITACHI U-4100), scanning wavelength range It is 240-900 nm; the resistivity, electron concentration and electron mobility of ZnO:F transparent conductive film are measured by Hall measurement system (HL 5500 IU). Correction manual.doc •11 201009100 Figure 2 shows the beginning of the invention The coating and the X-ray diffraction (XRD) pattern of the test piece after annealing at 300 ° C, 400 ° C and 500 ° C for 30 minutes at TC / min. Wherein, the curves L21, L22, L23 and L24 are respectively the initial coating film and the X-ray winding of the test piece after annealing at 300 ° C, 400 ° C and 500 ° C at a heating rate of 300 ° C / min for 1 minute. Shoot the curve. In terms of structural characteristics, after comparison with the JCPDS card, it can be found that both the primary bond film and the annealed test piece only see the Zn〇 diffraction peak, and the diffraction peak of ΖηΙ?2 is not visible. Most of ZnF2 has been oxidized to ZnO during sputtering. In addition, only the Zn〇(002) diffraction peak is present in the X-ray diffraction pattern, indicating that the ZnO:F transparent conductive film to be plated has a c-axis preferential orientation. Fig. 3 is a graph showing the relationship between the resistivity, the Hall shift ratio, the carrier concentration and the annealing temperature of the test piece after annealing at a heating rate of 3 〇〇 <=c/min for 1 minute. Among them, the curves L31, L32, and L33 are curves of the resistivity, the Hall shift rate, and the carrier concentration, respectively. In terms of electrical characteristics, in the initial coating, since the fluoride ions are mostly located in the lattice gap and do not replace the oxygen ions and are located at the lattice position of the oxygen ©, the sheet resistance is too high, and the relevant parameters cannot be measured by Hall measurement. However, it can be seen from Fig. 3 that the test piece after vacuum annealing treatment has the lowest resistivity of 〖.8640-3 n_cm, the highest Hall mobility of 89 Cm2/VS and the highest carrier concentration of 3.78. x 1020/cm3. Figure 4 shows the initial coating of the present invention and the furnace tubes at 300 ° C, 400. (: and 500 C at a heating rate of 3 〇 (r/min annealing treatment for 1 minute after the UV-VIS breakthrough 试 spectrum of the test piece. Among them, the curves L4i, l42, l43 and [44 are the initial coating and the furnace respectively Tube 300 ° C, 400. (: and 50 (the transmittance curve of the test piece after TC annealing. As can be seen from Figure 4, all ZnO: F transparent conductive thin repair manual. doc 42 201009100 film in the visible range The average transmittance is more than 90%, and there is a significant absorption boundary (absorpti〇n band edge) around the wavelength of 360 nm. Figure 5 shows the present invention at different oxygen fractions, under vacuum conditions at the heating rate The relationship between resistivity, Hall mobility and carrier concentration and annealing temperature of ZnO:F transparent conductive film after thermal annealing at 300 ° C / min for 10 minutes. 'The curves L51, L52 and L53 are resistivity, respectively. The change rate of the mobility and the carrier excitation; FIG. 6 shows that the present invention has a different oxygen fraction at 50 (TC) at a heating rate of 30 (TC/min thermal annealing for 10 minutes after ZnO: F transparent conduction) UV-VIS penetration map of the film, where the curves L61, L62, L63, L64 and L65 The oxygen permeability is 1%, 16%, 20%, 26%, and 30%. The transmittance curve is shown in Fig. 5 and Fig. 6, when the oxygen fraction is 10-30%, ZnO : F transparent conductive film has quite good electrical properties (including: resistivity, Hall mobility, carrier concentration) and visible light transmittance. Figure 7 shows the present invention at different reduced forging pressures, under vacuum environment at ❿ 500 C. The relationship between resistivity, Hall mobility and carrier concentration of ZnO:F transparent conductive film after thermal annealing at a heating rate of 300 ° C / min for 10 minutes, where the curves L71, L72 and L73 are respectively It is a curve of resistivity, Hall shift rate and carrier concentration; FIG. 8 shows that the present invention has a heating rate of 300 at 500 ° C under different vacuum conditions in a vacuum environment. (: / minute thermal annealing 10 minutes UV-VIS transmission pattern of post-Zn〇:F transparent conductive film, where 'curves L81, L82, L83 and L84 are respectively worn at a sputtering pressure of 3 m torr, 5 m torr, 7 m torr and 9 m torr Permeability curve. It can be seen from Fig. 7 and Fig. 8 that when the sputtering pressure is 3-9 m torr, the ZnO:F transparent repair manual.doc 43 20100910 0 Conductive film has quite good electrical properties (including: resistivity, Hall mobility, carrier concentration) and visible light transmittance. Figure 9 shows the present invention at different sputtering substrate temperatures, at 500 ° C under vacuum The heating rate of 300 ° C / min thermal annealing 1 〇 minutes after the ZnO: F transparent conductive film resistivity, Hall mobility and carrier concentration and annealing temperature relationship circle 'where the curves L91, L92 and L93 are resistivity , Hall mobility and carrier concentration curve; Figure 1 shows the ZnO:F transparent after the thermal annealing of the invention at different substrate temperatures in a vacuum environment at 500 ° C at a heating rate of 300 ° C / min for 10 minutes. The UV-VIS transmission pattern of the conductive film, wherein the curves L101, L102, L103, and L104 are the substrate temperature at room temperature (no heating), 150 ° C, and 25 (TC and 35 (TC) transmittance curves, respectively. It can be seen from 圊9 and Fig. 10 that the ZnO:F transparent conductive film has excellent electrical properties (including: resistivity, Hall mobility, carrier concentration) and visible light when the substrate temperature is from room temperature to 350 °C. Penetration rate. Thereby, the φ ZnO:F transparent conductive film produced by the method for producing a ZnO:F transparent conductive film of the present invention has a ((2) preferred alignment and has high light transmittance and low resistivity in the visible light range, Therefore, the ZnO:F transparent conductive film of the present invention has good electrical and optical properties and can be used as a commercially available transparent conductive film. The above embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the present invention should be as set forth in the scope of the patent application described later. [Simplified description of the drawings] Proof of the manual. Doc • 14 201009100 FIG. 1 is a flow chart showing the manufacturing method of the ZnO:F transparent conductive film of the present invention; FIG. 2 shows the present invention. The initial coating and the X-ray diffraction pattern of the test piece after annealing at 300 ° C, 400 ° C and 500 ° C for 10 minutes at a heating rate of 300 ° C / min; Figure 3 shows the temperature rise rate of the present invention 300 Fig. 4 shows the relationship between the resistivity of the test piece after 10 minutes of annealing at °C/min, the Hall shift rate, and the carrier concentration and the annealing temperature. Fig. 4 shows the initial coating of the present invention and the furnace tube at 300 ° C, 400 ° C. And the UV-VIS breakthrough pattern of the test piece after annealing at 500 ° C for 10 minutes at a heating rate of 300 ° C / min; Figure 5 shows that the present invention is at a different oxygen fraction at 5 Torr under vacuum.电阻The relationship between the resistivity, Hall mobility and carrier concentration of the ZnO:F transparent conductive film after annealing at 300 ° C/min for 1 〇, and the annealing temperature; 囷6 shows the different oxygen in the present invention. Rate, 5 经 under vacuum. UV UV-VIS breakthrough pattern of Zn〇:F transparent conductive film after thermal annealing at 300°C/min for 1 minute; Figure 7 shows the present invention at different sputtering pressures at 500° under vacuum C is a graph showing the relationship between resistivity, Hall mobility and carrier concentration of ZnO:F transparent conductive thin group after thermal annealing at 300 〇C/min for 1 〇 minutes; 囷8 shows that the present invention is different The sputtering pressure was 300 at a heating rate of 500 ° C under vacuum. (:/min UV-VIS penetration map of Zn〇:F transparent conductive film after 10 minutes of thermal annealing; Proof of repair. doc -15 201009100 Figure 9 shows the temperature of the substrate at different sputtering substrates at 500° under vacuum C is a relationship between resistivity, Hall mobility, and carrier concentration and annealing temperature of ZnO:F transparent conductive film after thermal annealing at 300 ° C/min for 10 minutes. FIG. 10 shows the temperature of the substrate at different substrate temperatures. UV-VIS penetration pattern of ZnO:F transparent conductive film after thermal annealing at 500 ° C for 10 minutes at 500 ° C under vacuum. [Main component symbol description] ❹ ^ (None) Correction manual.doc - 16

Claims (1)

201009100 十、申請專利範圍: 1 · 一種摻氟氧化辞(ZnO:F )透明導電薄膜之製作方法, 包括以下步驟: (a) 提供一基板; (b) 設置該基板於一濺鍍腔體中,以ZnF2為靶材且通入 一設定分率之02及Ar至該濺鍍腔體中,利用反應性 射頻磁控濺鍍方法形成一 ZnO:F薄膜於該基板之表 面,以形成一具ZnO:F薄膜基材;及 (c) 在一設定溫度下將該具ZnO:F薄膜基材進行熱退火處 理。 2.如請求項1之製作方法,其中在步驟(a)中該基板係為玻 璃基板^ 3. 如請求項2之製作方法,其中在步驟(a)中該基板係為康 寧7059玻璃基板》 4. 如請求項1之製作方法,其中在步驟(a)中該基板係為矽 基板。 5. 如請求項1之製作方法,其中在步驟(a)中該基板係為氧 化鋁基板。 6. 如請求項1之製作方法,其中在步驟(a)中另包括一清潔 該基板表面之步驟(al)。 7. 如請求項6之製作方法,其中在步驟(al)中,係將該基板 依序置於丙網、甲醇及去離子水中,以一超音波震盡器 分別震盪一設定時間,以去除該基板表面之油脂或污染 物質。 正修說明書.doc -17- 201009100 8. 如請求項7之製作方法,其中在步驟(al)中,該設定時間 係為5分鐘。 9. 如請求項8之製作方法,其中在步驟(al)之後另包括一去 除水份之步驟(a2)。 10. 如請求項9之製作方法,其中步驟(a2)包括以下步驟: (a21)以高壓氮氣吹乾該基板;及 (a22)烘烤乾燥該基板,以去除水氣。 φ U·如請求項10之製作方法,其中在步驟(a22)中係將該基板 置入一精密烤箱中,於100°C下烘烤1小時。 12. 如請求項1之製作方法,其中在步驟(…中係使用純度大 於99.99%之21^2靶材〇 13. 如請求項1之製作方法,其中在步驟(1>)之前另包括一以 射頻功率90W進行預濺鍍5分鐘之步驟。 14. 如請求項1之製作方法,其中在步驟(b)中,該濺鍍腔體 之射頻功率為90W,該基板之溫度為室溫至35〇乞,該濺 φ 鍍腔體中之壓力為3至9 m torr,該設定分率為1〇%至30 % ’其中該設定分率為〇2與〇2及Ar之流率比(〇2 / 〇2+Αγ) 〇 15. 如請求項1之製作方法,其中在步驟(c)中,該設定溫度 係為 300°C 至 500°C。 16. 如請求項15之製作方法,其中在步驟(幻中,該設定溫度 係為 300°C、400°C 或 500。(〇。 17. 如請求項1之製作方法’其中在步驟(c)中係以升温速率 為15°C/分鐘至300°C/分鐘,退火時間為1〇至30分鐘進行 正修說明書.doc -18- 201009100 熱退火處理。 18. 如請求項17之製作方法,其中在步驟(c)中係以升温速率 為15t/分鐘,退火時間為30分鐘進行熱退火處理。 19. 如請求項17之製作方法,其中在步驟(c)中係以升温速率 為300°C/分鐘,退火時間為10分鐘進行熱退火處理。201009100 X. Patent application scope: 1 · A method for preparing a fluorine-doped oxidized (ZnO:F) transparent conductive film, comprising the steps of: (a) providing a substrate; (b) disposing the substrate in a sputtering chamber ZnF2 is used as a target and a set fraction of 02 and Ar is introduced into the sputtering chamber, and a ZnO:F film is formed on the surface of the substrate by reactive RF magnetron sputtering to form a a ZnO:F film substrate; and (c) thermally annealing the ZnO:F film substrate at a set temperature. 2. The method of claim 1, wherein the substrate is a glass substrate in the step (a). 3. The method of claim 2, wherein the substrate is a Corning 7059 glass substrate in the step (a) 4. The method of claim 1, wherein the substrate is a germanium substrate in the step (a). 5. The method of claim 1, wherein the substrate is an aluminum oxide substrate in the step (a). 6. The method of claim 1, wherein the step (a) of cleaning the surface of the substrate is further included in the step (a). 7. The method of claim 6, wherein in step (al), the substrate is sequentially placed in a network, methanol, and deionized water, and each ultrasonic shock absorber is oscillated for a set time to remove Grease or contaminant on the surface of the substrate. Correction Manual.doc -17- 201009100 8. The method of claim 7, wherein in the step (al), the set time is 5 minutes. 9. The method of claim 8, wherein the step (a) is followed by a step (a2) of removing moisture. 10. The method of claim 9, wherein the step (a2) comprises the steps of: (a21) drying the substrate with high pressure nitrogen; and (a22) baking the substrate to remove moisture. φ U. The method of claim 10, wherein in the step (a22), the substrate is placed in a precision oven and baked at 100 ° C for 1 hour. 12. The method of claim 1, wherein in the step (..., a 21^2 target having a purity greater than 99.99% is used. 13. The method of claim 1, wherein the method further comprises a step before the step (1>) The method of claim 5, wherein the RF power of the sputtering chamber is 90 W, and the temperature of the substrate is room temperature to (1). 35〇乞, the pressure in the splashed φ plating chamber is 3 to 9 m torr, and the set fraction is 1〇% to 30% 'where the set rate is the flow ratio of 〇2 to 〇2 and Ar ( 〇2 / 〇2+Αγ) 〇 15. The method of claim 1, wherein in the step (c), the set temperature is from 300 ° C to 500 ° C. 16. The method of claim 15 Wherein in the step (the illusion, the set temperature is 300 ° C, 400 ° C or 500. (〇 17. 17. The manufacturing method of claim 1) wherein in step (c) the heating rate is 15 ° C /min to 300 ° C / min, annealing time is 1 〇 to 30 minutes for the repair of the manual. doc -18- 201009100 thermal annealing treatment. 18. According to the requirements of item 17 The method wherein the step (c) is performed by a thermal annealing treatment at a heating rate of 15 t/min and an annealing time of 30 minutes. 19. The method of claim 17, wherein the heating rate is in the step (c) The thermal annealing treatment was performed at 300 ° C / min and an annealing time of 10 minutes. 正修說明書.doc -19-Direct repair manual.doc -19-
TW97133289A 2008-08-29 2008-08-29 Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film TW201009100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133289A TW201009100A (en) 2008-08-29 2008-08-29 Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133289A TW201009100A (en) 2008-08-29 2008-08-29 Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film

Publications (1)

Publication Number Publication Date
TW201009100A true TW201009100A (en) 2010-03-01

Family

ID=44827676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133289A TW201009100A (en) 2008-08-29 2008-08-29 Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film

Country Status (1)

Country Link
TW (1) TW201009100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952678A (en) * 2014-04-11 2014-07-30 浙江大学 Preparation method of fluorine-doped zinc oxide-based transparent conducting thin film with high mobility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952678A (en) * 2014-04-11 2014-07-30 浙江大学 Preparation method of fluorine-doped zinc oxide-based transparent conducting thin film with high mobility
CN103952678B (en) * 2014-04-11 2016-04-06 浙江大学 A kind of preparation method mixing fluorine zinc-oxide-base transparent conducting film of high mobility

Similar Documents

Publication Publication Date Title
Xirouchaki et al. Photoreduction and oxidation of as‐deposited microcrystalline indium oxide
CN104261873B (en) A kind of method that regulates vanadium dioxide film phase transition temperature
CN101575697B (en) ZnO-based transparent conductive film co-doped with Al-F and preparation method thereof
JP2000067657A (en) Transparent conductive film excellent in infrared transmission and its manufacture
Tseng et al. Synthesis of c-axis preferred orientation ZnO: Al transparent conductive thin films using a novel solvent method
Nguyen et al. Synthesis of tantalum-doped tin oxide thin films by magnetron sputtering for photovoltaic applications
CN110028058B (en) Nitrogen-doped graphene material and preparation method thereof
WO2018090926A1 (en) Transparent conductive film and preparation method therefor, sputtering target, transparent conductive substrate and solar cell
CN108456850A (en) A kind of Sandwich film and the preparation method and application thereof
TWI558830B (en) Method of making a transparent conductive oxide layer
CN102373425B (en) Method for preparing Na-doped p-type NnO film
US20130248780A1 (en) Electrically conductive film, preparation method and application therefor
KR101582200B1 (en) A method for preparing CZTS thin film for solar cell
JP2010231972A (en) Conductor substrate, manufacturing method for the same, device, and electronic apparatus
CN109082631A (en) A kind of Ga2O3Base transparent conducting film and preparation method thereof
KR20110089143A (en) Transparent conductive zinc oxide display film and production method therefor
TW201009100A (en) Deposition method of fluorine doped zinc oxide (ZnO:F) transparent conductive thin film
CN108930019B (en) Preparation method of TSC ceramic film, product and application thereof
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
Patel et al. Structural, optical and electrical study of ZnO: Al thin films: A review
JP2014514442A (en) Multi-element doped zinc oxide thin film, fabrication method and application
JP2014077197A (en) Zinc oxide precursor and method of depositing zinc oxide-based thin film using the same
KR100806681B1 (en) Fabrication of highly conductive zno using low temperature rapid thermal annealing
KR20120071100A (en) Method for fabricating transparent conductive film and transparent conductive film by thereof
CN105908127A (en) P-type doped tin dioxide transparent conductive film and preparation method thereof