TW201008028A - High gain steerable phased-array antenna with selectable characteristics - Google Patents

High gain steerable phased-array antenna with selectable characteristics Download PDF

Info

Publication number
TW201008028A
TW201008028A TW098114863A TW98114863A TW201008028A TW 201008028 A TW201008028 A TW 201008028A TW 098114863 A TW098114863 A TW 098114863A TW 98114863 A TW98114863 A TW 98114863A TW 201008028 A TW201008028 A TW 201008028A
Authority
TW
Taiwan
Prior art keywords
antenna
slot
slots
feed line
microstrip feed
Prior art date
Application number
TW098114863A
Other languages
Chinese (zh)
Inventor
Forrest Wolf
Debashis Bagchi
Original Assignee
Pinyon Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pinyon Technologies Inc filed Critical Pinyon Technologies Inc
Publication of TW201008028A publication Critical patent/TW201008028A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2682Time delay steered arrays

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A high gain, phased array antenna includes a conducting sheet having a number of one or more slots defined therein. For each slot, an electrical microstrip feed line is electronically coupled with a corresponding slot to form a magnetically-coupled LC resonance element. A main feed line couples with the one or more microstrip feed lines. A specific azimuth pattern, antenna frequency, and/or beam direction is/are selectable in accordance with specific structural or electrical characteristics of the antenna.

Description

201008028 六、發明說明: 本申請案係關於2007年3月30曰申請之美國專利申請案 第11/694,916號及關於20〇5年2月9日申請而發佈於2〇〇7年4 月10日之美國專利案第7,2〇2,830號。此等專利案之每一者 係以引用的方式併入於此。 【先前技術】201008028 VI. INSTRUCTIONS: This application was published on US Patent Application No. 11/694,916, filed March 30, 2007, and on February 9, 2005. It was published on April 10, 2007. Japanese Patent Case No. 7, 2, 2, 830. Each of these patents is hereby incorporated by reference. [Prior Art]

習知相位陣列天線將波導技術與天線元件合併。波導係 一控制一電磁波的傳播以便強迫該波遵循藉由該波導的_實 體結構界定之一路徑的裝置。主要可在諸如將一雷達組之 輸出放大器連接至其天線之類應用中用於微波頻率之波導 一般採用矩形中空金屬管之形式但亦係已構建至積體電路 内。一給定尺寸之一波導不會傳播低於一特定頻率(钱止 頻率)之電磁波。總而言之,當一電磁波正行進穿過—波 導時,該波之電場及磁場具有若干可行配置。此等配置之 每一者係稱為—傳播模式。需要具有提供增強的功能性與 增益特性之一相位陣列天線。 【發明内容】 *曰供數個高增ϋ可操縱相位陣列天線,其各包括—傳導 薄片傳導薄片具有界定於其中的多個槽孔。針對該等 槽孔之每-者,—電微帶饋送線與該槽孔麵合以形成—墙 生麵口的LC共振元件…主饋送線係與該等微帶饋送線輛 0 在一第一天線 決定該天線之一 甲,一延遲電路係設於經選擇性控制用以 方位圖案之—方向的該等槽孔之—或多者 140231.doc 201008028 之每一者上。 在第一天線中,藉由同一微帶饋送線來饋送第一及第 二槽孔。該第一槽孔係電壓饋電。該微帶饋送線並不終止 於該第一槽孔處。該第二槽孔係電流饋接。該微帶館送線 確係終止於該第二槽孔處。 在一第三天線中,不同定向之至少兩個槽孔係設於一電 路板上用於接收及/或發射信號。針對每一槽孔之信號具 有與該多個槽孔的不同定向對應之不同定向 在-第四天線中’至少一槽孔包括一蝴蝶結形狀。該蝴 φ 蝶結形狀的槽孔在可具有該蝴蝶結形狀槽孔的多_尺寸之 僅一尺寸的一矩形槽孔上產生一增加的頻寬。 在一第五天線中’一非共振槽孔係設於與一共振槽孔相 同之f路板上。該非共振槽孔接收具有與該共振槽孔不 同之-極化或離開該電路板之邊緣或兩者兼具的信號。 在第天線中,—非共振槽孔具備一明確選定的形 狀,包括-或多自尖銳及/或圓形特徵或尖銳與圓形特徵 之一組合,此形狀係已知用以產生一選定頻寬。 在此專天線之任何天線中: 可將在至少兩個槽孔之間的一間隔選擇成使得該天線▲, 生一特定方位圖案’其包括-第-間隔以建立-f蓿葉® · 案或小於該第-間隔之—第二間隔以建立一數字8圖案, 或包括兩者; 可依據針對該對應槽孔之—特定頻寬來選擇至少—微帶 饋送線之阻抗; 140231.doc -4- 201008028 至少一微帶饋送線可以係耦合至一50歐姆的源極,以使 其阻抗不同於驅動該天線之—無線電之—輸出電路 抗; 可依據藉由該天線產生之—特定方位圖案來選擇_槽孔 之寬度; 該微帶饋送線可以係電連接至其對應槽孔; 該微帶饋送線可以係橫跨其對應槽孔從一側耦合至 側; 兩個槽孔可具有不同大小及/或形狀及因此不同的共振 頻率; 、x 一或多個槽孔可具有一長方形的形狀; 該主饋送線可與一同轴電纜連接器附件耦合; 可將多個層提供成使得在—第—層上形成該微帶饋送線 而在一第二層内界定該槽孔;及/或 可提供一種延遲電路用於藉由選擇性改變在該微帶饋送 線上之信號相位來電操縱該天線。該天線可包括基於程式 碼來操作之—或多個處理器,其連續或週期性地決定一較 佳信號方向並控制該延遲電路以在該較佳方向上操縱該天 線。 ” 還提供一種製造一高增益可操縱相位陣列天線之方法, 該高增益可操縱相位陣列天線包括一傳導薄片,該傳導薄 片具有界定於其中的一或多個槽孔。針對該等槽孔之每一 者,一電微帶饋送線係與該槽孔耦合以形成一磁性耦合的 LC共振元件。一主饋送線與該一或多個微帶饋送線耦合。 140231.doc 201008028 广方法包括選擇針對該天線之—特定方位圖案。在已知用 :產生該選定方位圖案的槽孔之至少兩者之間選擇一間 3形成電路板,其包括具有處於該選定間隔的至少該 2槽孔之傳導薄片。針對每—槽孔,—微帶饋送線係麵 °該槽孔以形成一磁性搞合的LC共振元件。一主饋 係與該等微帶饋送線之每一者耗合。 只送線 提供其t選擇針對該天線之—特定頻寬的另—方法。針 士已头帛以產生該豸定頻寬之一微帶饋it、線,選擇一阻 抗〇 提供其中選擇針對該天線之 法。選擇至少一槽孔之一寬度, 方位圖案。 參 一特定方位圖案的另一方 其係習知用以產生該選定 ^特定方位圖案可包括—苜#葉圖案或—數字8圖案。 提供其中選擇針對該天線之—特定頻寬的另—方法。選 擇已失用以產生該選^頻寬之至少-槽孔之-形狀。 〆等方法之任何方法可包括將至少—微帶饋送線電連接 ,、、應槽孔及/或將至少_微帶饋送線橫跨其對應槽孔❹ 從一側耦合至另一側。 可針對該天線選擇兩個不同.共振頻率。至少兩個槽孔V - 擇改不同的大小及/或形狀形成以用於產生該等冑 定的兩個不同共振頻率。 、 :或多個槽孔可以係形成為具有一長方形的形狀。 :亥主饋送線可以係與—同軸電纜連接器附件耦合。 可幵v成夕個層’包括在—第—層上形成該微帶饋送線而 14023I.doc -6 - 201008028 在一第二層内形成該槽孔。 可依據針Μ槽孔之-明確選定的頻寬來選擇至少一微 帶讀送線之一阻抗。 -天線可以係部分藉由本文所說明之任何方法來形成。 . 【實施方式】 .參考圖1 ’依據-較佳具體實施例之—高增益可操縱相 ㈣列天線包括—料W該傳導薄片酬交佳的係 11由一”電材料分離的兩個或兩個以上層之薄片金屬(例 罾如銅)之一區域,且可由各種金屬或其他導體之一或多者 組成。四個槽孔104係切割至該傳導薄片1〇2内。可使用任 意數目之更多或更少槽孔104,但較佳的係將該等槽孔104 以-使其在一相位陣列圖案中互為補充的方式來配置。每 次槽孔數目加倍時,便使得該增益增加3dBi。 該等槽孔104較佳的係長方形而更佳的係矩形。但是, 該等槽孔104可以係方形或圓形或一任意形狀。該薄片之 瘳較佳尺寸係5 7/8"寬乘以5 1/8"高。該等矩形槽孔之較佳尺 寸係5/8"χ2 1/8"。該等槽孔1〇4之尺寸一般較佳的係一半 波(λ/2)寬與一四分之一波(λ/4)高。該等槽孔ι〇4之驅動阻 抗較佳的係(60)sq/73=494歐姆。由於在向377 564歐姆之 自由空間的轉變中無損失,因此實現—有利的增益特性。 較佳的係藉由焊接將一同軸電纜〗〇5連接至該薄片】〇2。 儘管圖2將更詳細顯示該天線之電配置,但圖i顯示在該等 矩形槽孔104之長邊緣之中部的四個經焊接之連接ι〇6。圖 1中還顯不一信號電纜1〇5,連同從後側至該薄片之少 140231.doc 201008028 數其他焊接連接110。 圖2解說依據一較佳具體實施例之一高增益可操縱相位 陣列天線的一後侧視圖。該天線之此侧包括具有各種電連 接之一電路板。圖2中以虛線顯示在前侧切割至該傳導薄 片内之槽孔104用於對其相對於在該後侧上的電組件之位 置進行透視。該等微帶饋送線連接2〇6對應於至在該前側 上的傳導薄片102之焊接連接1〇6。此等連接2〇6較佳的係 處於該等長方形而較佳的係矩形之槽孔1〇4之長邊緣之中 心。該等連接206可以係替代地位於短邊緣之中心,或者 該等槽孔104可同樣係方形或圓形或任意形狀。 該等槽孔104係藉由一耦合機構而共振。該耦合機構使 用微帶饋送線212連接至該等共振槽孔1〇4。該等微帶饋送 線係構於該天線之一分離平面上。較佳的係藉由1 〇 〇歐 姆微帶饋送線212,來平行地饋送該等共振槽孔1〇4。該等 微帶饋送線212係顯示為與該等矩形槽孔1〇4之短尺寸交又 於其中心。該等微帶饋送線2 12係各連接至一系列電子電 路組件214。圖2中,每一微帶饋送線21 2具有此等組件21 4 之四個組件(係解說為方形)。此等組件214包括允許可對該 天線進行方向操縱之電子延遲。較佳的係,該等組件21 4 包括PIN二極體與電感器。該等二極體可以係Panas〇nicConventional phase array antennas combine waveguide technology with antenna elements. The waveguide system controls the propagation of an electromagnetic wave to force the wave to follow a path defined by the solid structure of the waveguide. Waveguides for microwave frequencies, primarily in applications such as connecting an array of output amplifiers to their antennas, typically take the form of rectangular hollow metal tubes but are also built into integrated circuits. A waveguide of a given size does not propagate electromagnetic waves below a certain frequency (the frequency of the stop). In summary, when an electromagnetic wave is traveling through a waveguide, the electric and magnetic fields of the wave have several possible configurations. Each of these configurations is referred to as a propagation mode. There is a need for a phased array antenna that provides enhanced functionality and gain characteristics. SUMMARY OF THE INVENTION A plurality of high-enhanced steerable phased array antennas each including a conductive sheet-conducting sheet having a plurality of slots defined therein. For each of the slots, the electric microstrip feed line is combined with the slot to form an LC resonant element for the wall surface ... the main feed line and the microstrip feed line 0 An antenna determines one of the antennas, and a delay circuit is provided on each of the slots that are selectively controlled for the orientation pattern - or a plurality of 140231.doc 201008028. In the first antenna, the first and second slots are fed by the same microstrip feed line. The first slot is a voltage feed. The microstrip feed line does not terminate at the first slot. The second slot is a current feed. The microstrip library feed line is terminated at the second slot. In a third antenna, at least two slots of different orientations are provided on a circuit board for receiving and/or transmitting signals. The signal for each slot has a different orientation corresponding to the different orientations of the plurality of slots. In the -four antenna, at least one of the slots includes a bow shape. The butterfly φ bow-shaped slot produces an increased bandwidth on a rectangular slot of only one dimension of the multi-size of the bow-shaped slot. In a fifth antenna, a non-resonant slot is provided on the same f-plate as a resonant slot. The non-resonant slot receives a signal that is different from the resonant slot - polarized or leaves the edge of the board or both. In the antenna, the non-resonant slot has a well-defined shape, including - or multiple self-sharp and/or circular features or a combination of sharp and circular features, which are known to produce a selected frequency width. In any of the antennas of the dedicated antenna: an interval between the at least two slots can be selected such that the antenna ▲ produces a particular orientation pattern 'which includes - the first interval to establish the -f蓿 leaf® case Or less than the first interval - the second interval to establish a number 8 pattern, or both; the impedance of at least the microstrip feed line can be selected according to the specific bandwidth for the corresponding slot; 140231.doc - 4- 201008028 At least one microstrip feed line may be coupled to a 50 ohm source such that its impedance is different from that of the radio-output circuit that drives the antenna; depending on the particular orientation pattern produced by the antenna To select the width of the slot; the microstrip feed line may be electrically connected to its corresponding slot; the microstrip feed line may be coupled from one side to the side across its corresponding slot; the two slots may have different Size and/or shape and thus different resonant frequencies; x one or more slots may have a rectangular shape; the main feed line may be coupled to a coaxial cable connector attachment; multiple layers may be provided such that In the first layer The microstrip feed line is formed to define the slot in a second layer; and/or a delay circuit can be provided for invoking the antenna by selectively changing the phase of the signal on the microstrip feed line. The antenna can include a code based operation - or a plurality of processors that continuously or periodically determine a preferred signal direction and control the delay circuit to manipulate the antenna in the preferred direction. There is also provided a method of fabricating a high gain steerable phased array antenna comprising a conductive sheet having one or more slots defined therein. Each of the electrical microstrip feed lines is coupled to the slot to form a magnetically coupled LC resonant element. A primary feed line is coupled to the one or more microstrip feed lines. 140231.doc 201008028 Wide method including selection a specific orientation pattern for the antenna. Selecting a 3 forming circuit board between at least two of the slots known to produce the selected orientation pattern includes at least the 2 slots at the selected interval Conductive sheet. For each slot, the microstrip feeds the line to the slot to form a magnetically coupled LC resonant element. A primary feed is associated with each of the microstrip feed lines. The feed line provides another method for t-selecting a specific bandwidth for the antenna. The pin has been turned on to generate one of the set bandwidths of the microstrip feed it, the line, and an impedance is selected to provide for the antenna It One of the at least one slot is selected to have a width, orientation pattern. The other side of the particular orientation pattern is used to generate the selected orientation pattern, which may include a - leaf pattern or a number 8 pattern. Selecting a different method for the particular bandwidth of the antenna. Selecting a shape that has been lost to produce at least the slot of the selected bandwidth. Any method of the method may include at least - the microstrip feed line Connect, , , , and/or connect at least the _ microstrip feed line across its corresponding slot ❹ from one side to the other. Two different resonant frequencies can be selected for the antenna. At least two slots V-selecting different sizes and/or shapes to form two different resonant frequencies for the determination. . . . : or a plurality of slots may be formed to have a rectangular shape. The system is coupled to the coaxial cable connector attachment. The microstrip feed line can be formed on the first layer to form the microstrip feed line and the 14023I.doc -6 - 201008028 is formed in a second layer. Can be selected according to the needle slot Width to select one of the impedances of at least one of the microstrip read lines. - The antenna may be formed in part by any of the methods described herein. [Embodiment] Referring to Figure 1 'Based on - Preferred Embodiment - High The gain steerable phase (four) column antenna comprises a region of the sheet metal of two or more layers separated by an "electric material" (for example, copper), and may be various One or more of metal or other conductors. Four slots 104 are cut into the conductive sheet 1〇2. Any number of more or fewer slots 104 may be used, but it is preferred that the slots 104 be configured such that they complement each other in a phase array pattern. When the number of slots is doubled each time, the gain is increased by 3dBi. The slots 104 are preferably rectangular and more preferably rectangular. However, the slots 104 can be square or circular or of any shape. The preferred size of the sheet is 5 7/8"width multiplied by 5 1/8" high. The preferred size of the rectangular slots is 5/8"χ2 1/8". The size of the slots 1 〇 4 is generally preferably half a wave (λ/2) wide and one quarter wave (λ/4) high. The driving resistance of the slots ι 4 is preferably (60) sq / 73 = 494 ohms. Since there is no loss in the transition to the free space of 377 564 ohms, an advantageous gain characteristic is achieved. Preferably, a coaxial cable 〇5 is connected to the sheet by soldering. Although Figure 2 will show the electrical configuration of the antenna in more detail, Figure i shows four soldered connections ι6 in the middle of the long edges of the rectangular slots 104. Also shown in Figure 1 is a signal cable 1〇5, along with a number of other solder joints 110 from the back side to the sheet 140231.doc 201008028. 2 illustrates a rear side view of a high gain steerable phased array antenna in accordance with a preferred embodiment. This side of the antenna includes a circuit board having various electrical connections. The slot 104 cut into the conductive sheet on the front side is shown in phantom in Figure 2 for fluoroscopy of its position relative to the electrical component on the back side. The microstrip feed line connections 2〇6 correspond to the solder connections 1〇6 to the conductive sheets 102 on the front side. Preferably, the connections 2〇6 are in the center of the long edge of the rectangular, preferably rectangular, slot 1〇4. The connections 206 may alternatively be located in the center of the short edges, or the slots 104 may be square or circular or of any shape. The slots 104 resonate by a coupling mechanism. The coupling mechanism is coupled to the resonant slots 1〇4 using a microstrip feed line 212. The microstrip feed lines are tied to a separate plane of the antenna. Preferably, the resonant slots 1〇4 are fed in parallel by a 1 〇 ohm microstrip feed line 212. The microstrip feed lines 212 are shown to intersect the short dimension of the rectangular slots 1 〇 4 and at the center thereof. The microstrip feed lines 2 12 are each connected to a series of electronic circuit assemblies 214. In Figure 2, each microstrip feed line 21 2 has four components (illustrated as squares) of such components 21 4 . These components 214 include electronic delays that allow for directional steering of the antenna. Preferably, the components 21 4 include a PIN diode and an inductor. The diodes can be Panas〇nic

SSG 的 PIN 60 V 100 mA S mini-2P 類型二極體(MFG P/N MA2JP0200L ; digikey MA2JP0200LTR-ND),或較佳的係 Shottky二極體、Agilent p/n HSMS-2850或等效物。該等電 感器可以係 Panasonic的 1.0 μΗ +/- 5% 1210類型(MFG P/N 140231.doc -S · 201008028 ELJ-FA1R0JF2 ; digikey PCD1825TR-ND)。電容器可較佳 的係1000pF TDK C1608X7R1H102K或等效物。電阻器可 較佳的係470歐姆、Yaeg〇 9C06031A4700JLHFT或等效 物。 藉由向該等微帶饋送線212添加該延遲電路214來電操縱 該天線。該延遲改變在該等微帶饋送線上的信號之相位。 該延遲電路包括該pIN二極體與切割至該電路板的銅平面 内之一觸點。當接通該PIN二極體時,向該電路添加延 遲。此意味著其可用於跟隨該信號之源極。該信號可源自 一無線接取點、一可攜式電腦或另一裝置。 該等微帶饋送線212各連接至一主饋送線216。在圖2之 天線之上半部中的兩個微帶饋送線212係連接至該主饋送 線216之上半部,而在圖2之天線之下半部中的兩個微帶饋 送線212係連接至該主饋送線216之下半部。該等主饋送線 係於其中心連接至一共軸連接片段218,該共軸連接片段 218係連接至該共轴電纜1〇5。各種跡線22〇係顯示為将延 遲觸點214連接至信號電纜108。該信號電纜1〇8進而連接 至電腦操作的控制設備。 圖1至2之天線具有四個共振槽孔丨〇4 ^該天線之頂部與 底部對半係彼此之鏡像。兩個1〇〇歐姆饋送線饋送在圖上所 不天線之上半部中的兩個共振槽孔1〇4。該等ι〇〇歐姆饋送 線係平行。所付電阻係5 〇歐姆。此與該5 〇歐姆主饋送線 216之電阻匹配。當對該天線之下半部加以考量時,該天 線之中心係處於25歐姆,即兩個平行的5〇歐姆電路。依據 140231.doc 201008028 該較佳具體實施例將該天線之輸入阻抗選擇為5〇歐姆。一 35.35歐姆之阻抗匹配觸點實現此點。 現參考圖3 ’解說微饋送線耦合點3〇6 ^此等輕合點3〇6 係處於該等共振槽孔104之長邊緣之中心。該等微帶饋送 線212與該等槽孔104之短尺寸交又。由於圖3僅係用於解 說,因此僅顯示該等槽孔104、微帶饋送線212及連接點 3 06。在圖3之天線之下半部中的兩個槽孔1〇4之連接川6係 處於該等槽孔H)4之下部長邊緣。圖2中,其係顯示為連接 至該等槽孔104之上部長邊緣。至在該天線之上半部中的 兩個槽孔之微帶饋送線連接亦可能係至該等槽孔丨〇 4之下 部邊緣。此外,可將該等槽孔1〇4及微帶鎮送線212旋轉九 十度,或另一任意度數,或者僅可旋轉該等槽孔,或僅可 紅轉該等微帶饋送線212。 圖4不意性解說依據一較佳具體實施例與微帶饋送線2^ 耦合用於操縱該相位陣列天線之延遲電子元件214。該等 微帶饋送線212之每-者在圖4中係顯示為與包括—梢式二 極體觸點424及-電感器426之三個電子元件群組轉合。在 選擇線上分職由_+5伏特與韻特之—電壓來啟用與停 用該等延遲觸點424。 、圖从至犯顯示依據„_較佳具體實施例基於不同波瓣# 選擇之在各種方向上的範例性信號分佈圖。圖4中所解寄 的觸點係標記為一至六,或觸點#1、#2、紹、料、㈣ 。基於選擇性接通觸點#1至#6之特定觸點來產生該等, 號分佈圖。圖5A解說#僅選擇觸點#ι時該天線之一信號^ 14023l.doc 201008028 佈。圖5B解說當選擇觸論、#2及#3之每-者時該天線之 L號刀佈。圖5C解說當僅選擇觸點#4時該天線之一信號 /刀佈。圖5D解說當選擇觸點料、“及%之每—者時該天線 之一信號分佈。 圖6示意性解說依據—較佳具體實施例—相位陣列天線 的元件之一電子組件表示。該等槽孔1〇4、微帶镇送線 212、主饋送線216、同車由附接點218及微帶饋送線附接點 3G6係各顯tf於圖巾且較佳的係如上所述1等微帶饋送 •線附接點306較佳的係接地,如圖6令解說。該等梢式二極 體觸點似與電感器426係藉由具有其共同的電表示來解 說。SSG's PIN 60 V 100 mA S mini-2P type diode (MFG P/N MA2JP0200L; digikey MA2JP0200LTR-ND), or preferably Shottky diode, Agilent p/n HSMS-2850 or equivalent. These sensors can be of the Panasonic 1.0 μΗ +/- 5% 1210 type (MFG P/N 140231.doc -S · 201008028 ELJ-FA1R0JF2; digikey PCD1825TR-ND). The capacitor may preferably be 1000pF TDK C1608X7R1H102K or equivalent. The resistor may preferably be 470 ohms, Yaeg 〇 9C06031 A4700 JLHFT or equivalent. The antenna is invoked by adding the delay circuit 214 to the microstrip feed lines 212. This delay changes the phase of the signals on the microstrip feed lines. The delay circuit includes a contact of the pIN diode with a copper plane cut into the board. When the PIN diode is turned on, a delay is added to the circuit. This means that it can be used to follow the source of the signal. The signal can originate from a wireless access point, a portable computer or another device. The microstrip feed lines 212 are each connected to a main feed line 216. Two microstrip feed lines 212 in the upper half of the antenna of Figure 2 are connected to the upper half of the main feed line 216, while two microstrip feed lines 212 in the lower half of the antenna of Figure 2 It is connected to the lower half of the main feed line 216. The main feed lines are connected at their center to a coaxial connecting segment 218 that is coupled to the coaxial cable 1〇5. Various traces 22 are shown to connect the delay contact 214 to the signal cable 108. The signal cable 1〇8 is in turn connected to a computer-operated control device. The antenna of Figures 1 to 2 has four resonant slots 丨〇 4 ^ the top and bottom of the antenna are mirror images of each other. Two 1 ohm ohm feed lines are fed to the two resonant slots 1 〇 4 in the upper half of the antenna. The ι ohms feed lines are parallel. The resistance is 5 ohms. This matches the resistance of the 5 〇 ohm main feed line 216. When considering the lower half of the antenna, the center of the antenna is at 25 ohms, that is, two parallel 5 ohm ohm circuits. According to a preferred embodiment, the input impedance of the antenna is selected to be 5 ohms. A 35.35 ohm impedance matching contact achieves this. Referring now to Figure 3', the microfeed line coupling points 3〇6 are located at the center of the long edges of the resonant slots 104. The microstrip feed lines 212 intersect the short dimensions of the slots 104. Since Fig. 3 is only for illustration, only the slots 104, the microstrip feed line 212, and the connection point 306 are shown. The connection of the two slots 1〇4 in the lower half of the antenna of Fig. 3 is at the leading edge below the slots H)4. In Figure 2, it is shown attached to the leading edge above the slots 104. Microstrip feed line connections to the two slots in the upper half of the antenna may also be tied to the lower edge of the slot 丨〇4. In addition, the slots 1 〇 4 and the microstrip ballast 212 can be rotated by ninety degrees, or another arbitrary degree, or only the slots can be rotated, or only the microstrip feed lines 212 can be red-turned. . 4 is a schematic illustration of a delay electronic component 214 coupled to a microstrip feed line 2^ for manipulation of the phased array antenna in accordance with a preferred embodiment. Each of the microstrip feed lines 212 is shown in FIG. 4 as being coupled to a group of three electronic components including a tip diode contact 424 and an inductor 426. The delay contacts 424 are enabled and disabled by the _+5 volts and the volts on the select line. The graphs are based on the exemplary signal distributions in various directions selected based on different lobes #. The contact points addressed in Figure 4 are labeled as one to six, or contacts. #1##2, 绍,料, (4). The number distribution map is generated based on the selective contact of the contacts #1 to #6. Figure 5A illustrates the antenna only when the contact #1 is selected. One of the signals ^ 14023l.doc 201008028 cloth. Figure 5B illustrates the L-knife of the antenna when the touch, #2, and #3 are selected. Figure 5C illustrates the antenna when only contact #4 is selected A signal/knife. Figure 5D illustrates the signal distribution of one of the antennas when the contact material, "and %" is selected. Figure 6 is a schematic illustration of an electronic component representation of an element of a phased array antenna in accordance with a preferred embodiment. The slots 1〇4, the microstrip township line 212, the main feed line 216, the same vehicle attachment point 218, and the microstrip feed line attachment point 3G6 are each shown in the figure and are preferably as described above. The first microstrip feed and the wire attachment point 306 are preferably grounded as illustrated in FIG. The tip diode contacts and inductor 426 are illustrated by having their electrical representation in common.

圖7至8係依據一較佳具體實施例針對基於監視—相位陣 列天線之波瓣之輸送量來選擇信號分佈波瓣而實行的操作 之-流程圖。儘管可能有兩個波瓣或三個以上波瓣可用, 但假定圖7之範例性程序為解說而採用三個波瓣。在7〇2 中,獲得一已連接的無線裝置之吓位址。針對至該天線之 此連接而掃描並登入該波瓣資料。在可選擇的波瓣中,: 擇具有最高輸送量之波辦。輸送量係—無線網路每單位時 間端至端地處理資料之速度。一般係以每秒百萬位元Figures 7 through 8 are flow diagrams of operations performed to select signal distribution lobes based on the amount of lobes of the monitor-phase array antenna in accordance with a preferred embodiment. Although two lobes or more than three lobes may be available, it is assumed that the exemplary procedure of Figure 7 employs three lobes for illustration. In 7〇2, a scared address of a connected wireless device is obtained. The lobe data is scanned and logged for this connection to the antenna. Among the selectable lobes, the wave with the highest throughput is selected. Traffic Volume—The speed at which data is processed end-to-end per unit time of the wireless network. Generally in millions of bits per second

(Mbps)來量度。在此範例中,將假定選擇三個波瓣之中= 者。 B 只要該輸送量保持高於一臨限位準,此波辦便係保持為 該選疋波瓣。該臨限位準可以係一預定輸送量付進“ 里H +,或低 於一最大、平均或預設定的輸送量位準之一預定的輸送量 140231.doc -11· 201008028 Γ 分比,或可以係基於與其他輸送量之一比較。 將進—步詳細說明之圖8中,若-信號強度下降至 一雜則立準或在一特定量值的百分比之-雜訊位準内,則 此下降的仏號強度係用於決定何時選择另一波瓣。在加 處依據圖7之程序連續或週期性地監視該輸送量。除非決 定該輸送量已降低至低於該臨限位準,否則該程序在708 處保持實行此監視。接著在710處選擇另一波瓣,例如靠 右=下一最接近的波瓣。在712處決定採用此波瓣之輸 送量是否係高於或低於該臨限值。若採用此新波瓣之輸送 量係高於該臨限值,則該程序移至714。在714處,保存該 新波瓣之波瓣編號與信號強度及/或其他資料。現在,在 716處之監視將針對該新波瓣繼續,正如其在7〇8處針對初 始波瓣所為。?卩,該程序將週難或連續地監視與該新波 瓣的連接之輸送量。僅當在716處將採用該新波瓣之輸送 量決定為低於該臨限位準時,該程序才移至718。回過來 參考712,若在此將採用該新波瓣之輸送量決定為低於該 臨限值,則該程序直接移至718。在718,選擇另一波瓣 (一第二波瓣)’例如該初始波瓣的左側之最接近波瓣。在 720處決定採用該輸送量是否係高於或低於該臨限值。若 其係高於該臨限值,則此波瓣將保持該選定波瓣而直至該 輸送量下降至低於該臨限。若該輸送量確係降低至低於該 臨限值,則在724處掃描並登入波瓣資料,而該程序返回 至706來再次選擇最高輸送量的波瓣。 在圖8中的程序解說依據另一具體實施例針對所有該等 140231.doc -12- 201008028 波瓣的L號強度及其他資料之監視,例如用於選擇最強的 波瓣現在參考圖s,例如,在so?處選擇波瓣#^。在如4 處4取纟線裝置之連接之信號強度。若將該信號強度決 為门於雜λ位準,或者若該信號強度係高於高於該雜 fl位準的《預定量或百分比,則在謂處計算該輸送 . * °在810處登人該波瓣編號、信號強度及輸送量,而該 程序移至812。若在8〇6處,將該信號強度決定為處於一雜 隸準或者處於或低於高於該雜訊位準之-預定量或百分 匕則在814處登入該波瓣編號、信號強度及輸送量(等於 0),而該程序移至814。 在812處,決定是否已處理關於最後波瓣之資料。若尚 未處理,則該程序返回至8〇4以實行針對下一波瓣之監 視。若已監視並決定針對所有該等波瓣之波瓣資料,則該 程序在818處返回至呼·叫者。 對原美國申請案序號11/055 490及/或6〇/6176〇9(其係以 參 引用的方式併入於此)所揭示的特徵之一些特徵作如下概 述。—高增益相位陣列天線包括:一傳導薄片,該傳導薄 片具有界定於其中之若干一或多個槽孔之傳導薄片;以及 針對該等槽孔之每-者,-饰置於與該槽孔平行之一平面 内的電微帶饋送線。該等微帶饋送線及對應的槽孔形成磁 性輕。的乙(:共振TG件。-主饋送線與該等微帶饋送線輕 合。 該等槽孔可具有一長方形的形&,例如一矩形或橢圓形 狀。該等微帶饋送線可延伸(較佳的係)於該等長方形槽孔(Mbps) to measure. In this example, it will be assumed that one of the three lobes is selected. B As long as the delivery volume remains above a threshold level, the wave is maintained as the selective lobes. The threshold level may be a predetermined delivery amount of “inside H+, or a predetermined delivery amount of 140231.doc -11· 201008028 Γ, which is lower than a maximum, average or preset delivery level. Or it may be based on comparison with one of the other delivery quantities. In Figure 8 of the detailed description, if the signal strength drops to a miscellaneous or within a certain amount of the value - the noise level, The reduced nickname strength is then used to determine when to select another lobes. The delivery amount is continuously or periodically monitored at the point of addition according to the procedure of Figure 7. Unless it is determined that the delivery volume has decreased below the threshold Level, otherwise the program maintains this monitoring at 708. Next, another lob is selected at 710, such as right = next closest lobes. At 712, it is decided whether the delivery of the lobes is high. At or below the threshold. If the delivery rate of the new lobes is above the threshold, the program moves to 714. At 714, the lobe number and signal strength of the new lobes are preserved and / or other information. Now, monitoring at 716 will continue for this new lobe As it is for the initial lobes at 7〇8, the program will monitor the delivery of the connection to the new lobes in a difficult or continuous manner. The delivery of the new lobes will only be used at 716. When it is determined that the threshold is below the threshold, the program moves to 718. Referring back to 712, if the delivery of the new lobes is determined to be below the threshold, the procedure moves directly to 718. At 718, another lobes (a second lobes) are selected, such as the closest lobes to the left of the initial lobes. At 720, it is determined whether the delivered amount is above or below the threshold. If the line is above the threshold, the lobes will hold the selected lobes until the delivery drops below the threshold. If the delivery is indeed below the threshold, then Scanning and logging in to the lobe data at 724, and the program returns to 706 to again select the lobe of the highest throughput. The program in Figure 8 illustrates all of the 140231.doc -12-201008028 waves in accordance with another embodiment. Monitoring of the L-strength of the flap and other data, for example for selecting the strongest lobes Referring to the diagram s, for example, selecting the lobe #^ at so?, the signal strength of the connection of the twisting device is taken at 4, for example, if the signal strength is determined as the gate λ level, or if the signal strength If the predetermined amount or percentage is above the mis-fl level, the delivery is calculated at the point. * ° The lob number, signal strength and delivery amount are entered at 810, and the procedure moves to 812. If at 8〇6, the signal strength is determined to be at a miscellaneous or at or below a predetermined amount or percentage above the noise level, then the lobe number, signal strength is entered at 814. And the amount of delivery (equal to 0), and the program moves to 814. At 812, it is determined whether the information about the last lobe has been processed. If not yet processed, the program returns to 8〇4 to perform monitoring for the next lobe. If the lobe data for all of the lobes has been monitored and determined, then the program returns to the caller at 818. Some features of the features disclosed in the prior U.S. Patent Application Serial No. 11/055,490, and/or the entire disclosure of which is incorporated herein by reference. - a high gain phase array antenna comprising: a conductive sheet having conductive sheets defining a plurality of one or more slots therein; and for each of the slots, - disposed with the slot Electrical microstrip feed lines in one plane parallel. The microstrip feed lines and corresponding slots are magnetically light. B (: Resonance TG member. - The main feed line is in direct contact with the microstrip feed lines. The slots may have a rectangular shape &, for example, a rectangular or elliptical shape. The microstrip feed lines may be extended (preferably) in the rectangular slots

14〇231.dOC •13· 201008028 之短或者長尺寸上。該主饋送線可與-同轴電缓連接器附 件麵合。可藉由該等微帶饋送線來平行饋送該等槽孔。 槽孔之數目可以係兩個或四個,而其中―或兩㈣孔分 別可以係佈置於該主饋送線(其係在中心藉由-同軸電境 附件來饋送)之每-侧上,由此提供該主饋送線之兩個對 半。在此具體實施例中,該主饋送線之每-半可具有相同 電阻,其亦可以係與對應於該主饋送線之該一半的微帶饋 送線之平行組合相同之總電阻。該天線之輸入阻抗可以係 選擇為與該主饋送線之制^主} 深之對丰相同之電阻。該天線信號可包 括延伸離開該天線之一或多個離散波瓣。 亦可能值存在藉由一同軸電瘦附件來饋送之一單一槽 孔在此障況下,该天線之輸入阻抗可以係選擇為與該同 軸阻抗相同。在此情況下之天線信號亦可包括延伸離開該 天線之一或多個離散波瓣。 可能僅存在藉由—微帶饋送線來饋送之—單一槽孔。在 月兄下β亥天線之輸入阻抗可以係選擇為與該微帶饋送 同纟此清況下之天線信號亦可包括延伸離開該天線 之一或多個離散波辦。 另—高增益可操縱相位陣列天線包括具有多個槽孔之一 板或傳導薄片。針對該等槽孔之每—者一電微帶饋送線 係佈置於與該槽孔平行之—平面内。料微帶饋送線及對 應的槽孔形成磁性耦合的LC共振元件。一主饋送線與該等 微帶饋送線耦合。延遲電路係用於藉由選擇性改變在該等 微帶饋送線上的信號相位來電操縱該天線。基於程式碼來 140231.doc -14· 201008028 操作之-或多個處理器連續或週期性地決定一較佳信號方 向並控制該延遲電路以在該較佳方向上操縱該天線。較佳 的係’該等槽孔係長方形或矩形。該等微帶饋送線較佳的 係延伸於該等槽孔之短尺寸上。 還提供-種操作-高增益可操縱相輯列天線之方法。 該方=包括藉由控制該延遲電路、連續或週期性地決定一 較佳信號方向並控制該延遲電路以選擇性地改變在該等微14〇231.dOC •13· 201008028 Short or long size. The main feed line can be mated with the - coaxial electrical connector attachment. The slots can be fed in parallel by the microstrip feed lines. The number of slots may be two or four, and wherein - or two (four) holes may be respectively arranged on each side of the main feed line (which is fed at the center by a coaxial electrical attachment), This provides two halves of the main feed line. In this embodiment, each of the main feed lines may have the same resistance, which may also be the same total resistance as the parallel combination of the microstrip feed lines corresponding to the half of the main feed line. The input impedance of the antenna can be selected to be the same as the resistance of the main feed line. The antenna signal can include one or more discrete lobes extending away from the antenna. It is also possible that there is a single slotted hole fed by a coaxial electrical thin attachment. In this case, the input impedance of the antenna can be selected to be the same as the coaxial impedance. The antenna signal in this case may also include one or more discrete lobes extending away from the antenna. There may be only a single slot fed by the microstrip feed line. The input impedance of the β-hai antenna under the moon brother may be selected to be the same as the microstrip feed. The antenna signal in this condition may also include one or more discrete waves extending away from the antenna. Alternatively, the high gain steerable phased array antenna includes a plate or a conductive sheet having a plurality of slots. An electro-microstrip feed line for each of the slots is disposed in a plane parallel to the slot. The microstrip feed line and the corresponding slot form a magnetically coupled LC resonant element. A main feed line is coupled to the microstrip feed lines. A delay circuit is used to electrically manipulate the antenna by selectively changing the phase of the signals on the microstrip feed lines. Based on the code 140231.doc -14· 201008028 operation - or a plurality of processors determine a preferred signal direction continuously or periodically and control the delay circuit to manipulate the antenna in the preferred direction. Preferably, the slots are rectangular or rectangular. Preferably, the microstrip feed lines extend over the short dimensions of the slots. A method of operating - high gain steerable phase array antenna is also provided. The party = includes controlling the delay circuit to continuously or periodically determine a preferred signal direction and controlling the delay circuit to selectively change in the micro

帶饋送線上之信號相位並由此在該較佳方向上操縱該天線 來電操縱上述天線。 還提供另 高增益可操縱相位陣列天線,連同其一對應 的操作方法。該天線包括多個共振元件及與該等共振元件 麵合之-主鎮送。電子元件係用於藉由向該等共振元件提 供不同輸人來操縱該天I基於程式碼來㈣之— 處理器基於-方向輸送量決定來制或週職地決定一較 佳信號方向,並控制該等電子元件以在該較佳方向上操縱 該天線。該等共振元件較佳的係界定於—板中的長 矩形槽孔。 &双 該天線信錄佳㈣包括在不財向上㈣離開該 之多個離散波瓣。較佳的係藉由基於該方向輸 、、 控制該等電子元件來選擇該等波瓣。 、、疋而 旦該方向輸送量決;t可包括:監視-初始敎波瓣 里及該輸送量何時降低至低於一臨限值或降低一預〜]^ 比量,或變成高於一雜訊位準之一預定量,或其組=刀 者改變為—相鄰波辦並以類似方式監視其輸送量。二,接 "*· « 5 «St 14023l.doc -15- 201008028 鄰波瓣係决疋為具有低於—臨限值之一輸送量或係低於一 最大2至少-預定百分比量或係低於—高於—雜訊位準 之預疋里值或其組合時’則將該選^波瓣改變為在該初始 l疋波瓣之相對侧上的另一相鄰波瓣。該方向輸送量決定 亦γ包括掃描遍歷並決定料波瓣之所有或多個波瓣之輸 达篁,其中選擇具有最高輪送量之波瓣。 還提供具有體現於其上的處理器可讀取程式碼之一或多 個處理ϋ可讀取儲存裝置。該處理器可讀取程式碼程式化 一或多個處理器以實行本文所說明之操作—高增益可操縱 相位陣列天線之方法之任何方法。 下面參考新的圖式9至17。可與已經參考圖1至8說明的 特徵(其係揭示於原美國專利申請案序號〗1/〇55,49〇及/或 60/617,6G9,該等專利案係以引用的方式併人於此)組合起 來或憑藉其來有利地利用此等新特徵。 上面參考圖2、3、4及6來說明微帶饋送線212。此等微 帶饋送線212提供一精密共振頻率。在一具體實施例中, 該頻率係約2.4 GHz。該電阻係約1〇〇歐姆,其提供取決於 電抗之一特定的q因數。在另一具體實施例中,提供一更 寬頻帶,例如分別在2.3 GHz至2.5 GHz或2.3 GHz至2.7 GHz之間的一 200 MHz或400 MHz寬頻帶、在3.3 GHz至3.8 GHz之間的500 Mhz寬頻帶、在4.9 GHz至5.9 GHz之間的1 Mhz寬頻帶、在3.168 Ghz至4.488 Ghz之間的ι·32 Ghz寬頻 帶。此可以係藉由將該電阻減小(例如)至約5〇至8〇歐姆以 增強q因數來實現。在驅動端匹配新的電阻。 140231.doc • 16 - 201008028The antenna is manipulated by the signal phase on the feed line and thereby manipulating the antenna in the preferred direction. A further high gain steerable phased array antenna is also provided, along with a corresponding method of operation. The antenna includes a plurality of resonant elements and a primary ballast that is in contact with the resonant elements. The electronic component is used to manipulate the day I based on the code by providing different inputs to the resonant components (4) - the processor determines or determines a better signal direction based on the direction of the amount of delivery, and The electronic components are controlled to manipulate the antenna in the preferred direction. Preferably, the resonant elements are defined by long rectangular slots in the panel. & double The antenna letter (4) includes a plurality of discrete lobes that leave the undone (four). Preferably, the lobes are selected by inputting, controlling, and controlling the electronic components based on the direction. And, in the meantime, the direction of delivery; t may include: monitoring - the initial chopping lobes and when the delivery amount is reduced below a threshold or decreasing a pre-~^^ ratio, or becomes higher than one One of the noise levels is predetermined, or its group = knife change to - adjacent wave and monitor its delivery in a similar manner. Second, connect "*· « 5 «St 14023l.doc -15- 201008028 The adjacent lobes are either one of the lower than - threshold or less than a maximum of 2 - a predetermined percentage or Below or above - the pre-dial value of the noise level or a combination thereof' then changes the selected lobe to another adjacent lobe on the opposite side of the initial lobe. The directional transport amount decision γ also includes scanning traversal and determining the output enthalpy of all or more lobes of the lobes, wherein the lobes having the highest rounds are selected. Also provided is one or more processing readable storage devices having processor readable code embodied thereon. The processor can read any method of programming a program to program one or more processors to perform the operations described herein - a high gain steerable phased array antenna. Reference is made to the new patterns 9 to 17 below. The features that have been described with reference to Figures 1 to 8 (which are disclosed in the original U.S. Patent Application Serial No. 1/〇55,49, and/or 60/617,6G9, the disclosures of which are incorporated herein by reference. This is a combination of or by virtue of which these new features are advantageously utilized. The microstrip feed line 212 is described above with reference to FIGS. 2, 3, 4, and 6. These microstrip feed lines 212 provide a precision resonant frequency. In a specific embodiment, the frequency is about 2.4 GHz. The resistance is about 1 ohm, which provides a specific q factor depending on one of the reactances. In another embodiment, a wider frequency band is provided, such as a 200 MHz or 400 MHz wide band between 2.3 GHz to 2.5 GHz or 2.3 GHz to 2.7 GHz, 500 between 3.3 GHz and 3.8 GHz, respectively. Mhz wideband, 1 Mhz wideband between 4.9 GHz and 5.9 GHz, and ι·32 Ghz wideband between 3.168 Ghz and 4.488 Ghz. This can be accomplished by reducing the resistance, for example, to about 5 〇 to 8 〇 ohms to enhance the q factor. Match the new resistor on the drive side. 140231.doc • 16 - 201008028

可提供不同的微帶饋送線以實現減小的電阻及增強的ς 因數。可橫跨該等槽孔之中心而提供該等微帶饋送線,從 而產生如已經說明之-半波λ/2共振條件,並可替代地在 槽孔之端處提供該等饋送線而產生—四分之—波糾条 件’如圖9處所解說,其解說具有—微帶饋送線912之一槽 孔904 ’該微帶饋送線912係橫跨該槽孔9()4佈置於從該等 長側之—侧起的路程之三分之_至人分之_(或,如圖所 不’例如㈣等短側之一側起之一長側的長度之六分之 一)處。相關聯的電子電路組件係藉由方塊914來表示,而 三角形944係設於該印刷電路板⑸上。可利㈣等微帶館 送線之其❿「偏心」的定位,例如從該等短側之—側起之 一長侧的長度之四分之一或五分之一,而該饋送線9丨2可 以一角度與任一侧交叉。 例如’與圖2、3、4或6處所解說者相比’亦可加寬該跡 線,如圖10a示意性解說的槽孔1〇〇4之寬微帶饋送線ι〇ΐ2 所解說。設於印刷電路板1〇54上與圖9的三角形944類似之 三角形1044。 在另一具體實施例中,針對圖1〇B所解說的槽孔1〇18提 供不同寬度之多層跡線1012、1〇16。第一跡線可以係圖 10A之微帶饋送線。可將比該第一跡線1〇12更寬之第二跡 線1016施加於該第一跡線1012上而處於整個跡線1〇 12之一 局部片段處。可將更寬的第二跡線1016施加於一更大或更 短長度片段上’而可將多個更寬或更窄跡線施加於整個跡 線1012之多個片段上。即,可提供不同寬度及長度之各種 140231.doc •17· 201008028 跡線。相對於圖10C所解說之槽孔1022,將多個寬跡線 1020在不同方向上且與略微不同的片段部分重疊地施加於 整個跡線1012之一短片段上。可建立截獲。可建立—跡 線,其從一端至另一端改變其寬度,或者僅具有具與其他 片段不同之一寬度的一或多個選定片段。不同寬度之片段 可具有恆定寬度或變化寬度。可針對具有各種寬度及 長度之一單一槽孔提供多個跡線。 如圖11所解說,一行動電話1024具備大致尺寸為—英吋 乘一又一分之一英吋或1 "x2.5,'之一或多個槽孔1026。解說 一偏心的微帶饋送線912,但可使用多個不同組態。該槽 孔102 6及饋送線912在圖11中係顯示為接近其他蜂巢式電 話電子元件1028但從該等電子元件1〇28位移。 一槽孔可為在其最窄處之一英忖寬與六英忖長,作為另 一範例,而該寬度可在其六英吋長度(或其具有的任何長 度)上改變。 一 1C還具備在頂部層中之一電流驅動槽孔,如圖12A所 解說。該1C可以係封裝為一覆晶或任何其他IC封裝。圖 12A解說四個層1202、1204、1206及1208。在該頂部層 1208中向在向下的第三層12〇4中之一功率放大器1211 (其 可局達20 dB)提供一導通孔121〇。在該頂部層12〇8處還可 找到天線1212。電容係設於内部或外部。以此方式,可容 易地調諧該頻率。可在一…中提供成批的此等組件,其中 數十個此等槽孔1212之一排列組態可將電力線要求減小_ 因數10 °在每一 Ic中的邏輯裝置可以係一發送/接收開 140231.doc -18- 201008028 關,或Τ/R開關1214、低雜訊放大器或!^八1216及—功率 放大器或PA 1211。亦在圖12B中以方塊形式解說此等組 件,即天線1212、T/R開關1214、功率放大器1211及低雜 訊放大器1216。 圖1 3A至13F解說針對提供其他功能性的槽孔之不同形 狀。對於以下範例中的許多範例,可將該形狀視為具有所 解說形狀之一單一槽孔,或兩個或兩個以上槽孔(以—使 其組合產生所尋求實現之天線之射頻特性的方式重疊或間 隔開)。例如,藉由圖13A之槽孔13〇4及饋送線1312來解說 十字形狀,其中該饋送線1312亦可以各種其他方式交又。 圖13B中以饋送線丨322解說一x形狀的槽孔1314。亦可提供 重疊的長方形槽孔之其他組態,例如T、V.L組態、或字 母表的任何其他字母、或筆直及/或彎曲片段之其他組 合。仍可針對每一雙數而獲得額外的3 dB增益。 此等形狀亦可用於增強天線方向性。此等形狀可以係相 關於該頻寬之交叉極化,一尺寸可以係2 5倍頻程,從而 使得1 mm提供1〇 GHz而2.5 mm提供1 GHz。 槽孔1324可以係如圖i3C中所示具有饋送線1332之蝴 蝶結形狀,其中該蝴蝶結可以係定向於任何方向上。在替 代性具體實施例中,分別提供一鉤式交又或乐字形狀或聖 誕樹形狀,或具有突伸部分之長方形槽孔或鐵十字形狀, 如圖13D、13E、13F及13G中所解說。 此類組態提供較佳的係36〇。之操縱靈活性及方位。比可 以係具備上述之延遲觸點,或可以係憑藉該等延遲觸點來 14023l.doc •19- 201008028 提供。可基於輸送量、強度及信號對雜訊比之任_ 部來操縱該天線。 5 如圖14所解說,亦可應用干涉測量原理。即,可添加來 自具有同-頻率及相位的槽孔之增益。使用兩個或兩個以 上槽孔,每-槽孔發揮-點源極之作用。圖14中顯示三個 槽孔1404,每—者具有其自己的讀送線⑷2。在圖14之罝 體實施例巾’該三㈣送線連接於—制饋送賴Μ及無 線電142G。每-槽孔從—單—源極接收—不同信號。該等 不同信號經組合用以顯示該單一源極之三維圖像。 如圖15所解說,可提供一電路板。可在包括其他裝置電 子兀件1520之一電路板的轉角處提供兩個晶片ΐ5ι〇(即, 1C封裝或作為覆晶)。該兩個晶片之間隔可以係任何距 離。 如顯示無線電1640之圖16所解說,亦可提供一合成孔 徑。藉由從一饋送點1630發出之不同長度的饋送線1612及 1622來控制具有相同頻率之兩個或兩個以上槽孔1 6〇4 *該 等馈送線之長度對應於在該等槽孔之間的間隔而使得該等 槽孔在預定義點攔截該信號。當傳入信號之波長比該槽孔 天線更長時,使用此方法。兩個小槽孔常常係呈現為較大 孔徑之一較長槽孔,而形成一合成孔徑。 如圖17之槽孔1704及饋送線1712所解說,亦可實現超寬 頻效能。首先,藉由在該槽孔1704處減小在該镇送線1712 上的電容量值來加載Q。此係藉由減小在PCB 17 54的後側 上之三角形1744之大小來實現。其次,與該槽孔交叉的饋 140231.doc -20· 201008028 送線片段1760之阻抗係小於丨〇〇歐姆。接著,該馈送線 1712轉變至對源極ι780具有一 5〇歐姆的阻抗之一更寬片段 1770 〇 如圖18中所解說’實現增強的超寬頻及雙頻帶效能。兩 個超寬頻槽孔天線1804與1806或一標準天線1 806及具有比 二角开> 18 09及標準天線18〇6的尺寸更小的三角形18〇8及尺 寸之一寬頻天線1804係放置於一共同基板181〇上且係藉由 一共同饋送線1812來饋送。該等槽孔18〇4與18〇6共振於不 • 同頻率。可將每一槽孔之頻寬及中心頻率調整成使得該兩 個槽孔天線之頻譜重疊。亦可針對其中該等頻譜不重疊之 不同頻帶而調整每一槽孔之頻寬及中心頻率。 現在參考圖19A至19B,在特定具體實施例中該天線 1900較佳的係由兩個或兩個以上層形成。該等材料可以係 印刷電路板材料《該微帶饋送線1912可以係形成於該頂部 層上而該底部層可包含一槽孔19〇4與三角形1944(亦參 ❹ 見,例如圖9之槽孔9〇4與三角形944及圖1〇a之槽孔1〇〇4與 二角形1044,等等)。該微帶饋送線1912(亦參見圖9及l〇a 之tl件912及1012,等等)較佳的係與一分離開一距離且一 介電材料的第二層相互作用。 圖19A解說來自該微帶側的天線19〇〇之一視圖,而圖 19B解說來自相對側或該槽孔側的天線19〇〇之一視圖。 該天線1900亦可以係構建於一四層pcB上。在該四層具 體實施例中,層-及四係分別稱為頂部與底部層,而層二 及二係空置或不包含銅(或類似導體)。 140231.doc •21· 201008028 可使用FR4以及Rogers &司之Ro—3010及r〇_435〇b(參見 www.rogerscorporation.com,其係以引用的方式併入於 此’而特定言之係關於r〇4〇〇〇及R〇3〇〇〇系列高頻率電路 材料之章節)。可使用不同的介電材料,其允許該天線以 一更低損失切線及更高的增益展現增強的效能。 該天線亦可經選擇性的大小調節成大於或小於上面所解 說或說明者。例如,該天線之尺寸可以係收縮。藉由使 用一較高介電常數(例如,尺〇_3010之介電常數高於典型介Different microstrip feed lines can be provided to achieve reduced resistance and enhanced ς factor. The microstrip feed lines may be provided across the center of the slots to produce a half-wave λ/2 resonance condition as already explained, and may alternatively be provided at the ends of the slots to produce the feed lines - quarter-wave correction condition 'as illustrated in Figure 9, which illustrates having a slot 904 for one of the microstrip feed lines 912' that the microstrip feed line 912 is disposed across the slot 9() On the same length side, the third of the distance from the side is _ to the person's point (or, as shown in the figure, for example, (four), one-sixth of the length of one of the short sides of one side of the short side). The associated electronic circuit components are represented by block 914, and a triangle 944 is attached to the printed circuit board (5). The positioning of the "eccentricity" of the microstrip line of the micro-strips, such as one-quarter or one-fifth of the length of one of the long sides from the side of the short sides, and the feed line 9丨2 can intersect with either side at an angle. For example, the trace can also be widened as compared to the illustrator of Figures 2, 3, 4 or 6, as illustrated by the wide microstrip feed line ι 2 of slot 1 示意 4 as schematically illustrated in Figure 10a. A triangle 1044 similar to the triangle 944 of Fig. 9 is provided on the printed circuit board 1〇54. In another embodiment, the plurality of traces 1012, 1 〇 16 of different widths are provided for the slots 1 〇 18 illustrated in Figures 〇B. The first trace can be the microstrip feed line of Figure 10A. A second trace 1016 wider than the first trace 1 〇 12 can be applied to the first trace 1012 at a partial segment of the entire trace 1 〇 12 . A wider second trace 1016 can be applied to a larger or shorter length segment' while multiple wider or narrower traces can be applied to multiple segments of the entire trace 1012. That is, various 140231.doc •17· 201008028 traces of different widths and lengths are available. Relative to the slot 1022 illustrated in Figure 10C, a plurality of wide traces 1020 are applied across a short segment of the entire trace 1012 in different directions and partially overlapping the slightly different segments. Interception can be established. A trace can be created that changes its width from one end to the other, or only one or more selected segments having a width different from the other segments. Fragments of different widths may have a constant width or a varying width. Multiple traces can be provided for a single slot having one of various widths and lengths. As illustrated in FIG. 11, a mobile telephone 1024 is provided with one or more slots 1026 having a size of approximately one inch or one inch or more and one "x2.5,'. An eccentric microstrip feed line 912 is illustrated, but a number of different configurations can be used. The slot 1026 and the feed line 912 are shown in Figure 11 as being proximate to but displaced from the other cellular electronic components 1028. A slot may be one inch wide and six inches long at its narrowest point, as another example, and the width may vary over its six inch length (or any length it has). A 1C also has a current drive slot in the top layer, as illustrated in Figure 12A. The 1C can be packaged as a flip chip or any other IC package. Figure 12A illustrates four layers 1202, 1204, 1206, and 1208. A via hole 121 is provided in the top layer 1208 to one of the power amplifiers 1211 (which can be up to 20 dB) in the downward third layer 12A. An antenna 1212 can also be found at the top layer 12〇8. The capacitor is either internal or external. In this way, the frequency can be easily tuned. A batch of such components can be provided in a range of which dozens of such slots 1212 are arranged in a configuration to reduce power line requirements - a factor of 10 ° in each Ic logic device can be sent / Receive open 140231.doc -18- 201008028 off, or Τ / R switch 1214, low noise amplifier or! ^8 1216 and - power amplifier or PA 1211. These components are also illustrated in block form in Figure 12B, namely antenna 1212, T/R switch 1214, power amplifier 1211, and low noise amplifier 1216. Figures 1A through 13F illustrate different shapes for slots providing other functionality. For many of the examples below, the shape can be viewed as a single slot having one of the illustrated shapes, or two or more slots (in a manner that combines to produce the RF characteristics of the antenna sought to be implemented) Overlap or spaced apart). For example, the cross shape is illustrated by the slot 13 〇 4 and the feed line 1312 of Figure 13A, wherein the feed line 1312 can also be re-arranged in various other ways. An x-shaped slot 1314 is illustrated in FIG. 13B by feed line 322. Other configurations of overlapping rectangular slots, such as T, V.L configurations, or any other letter of the alphabet, or other combinations of straight and/or curved segments, may also be provided. An additional 3 dB gain is still available for each double number. These shapes can also be used to enhance antenna directivity. These shapes can be phased with respect to the cross-polarization of the bandwidth, one size can be 2 octaves, such that 1 mm provides 1 GHz and 2.5 mm provides 1 GHz. The slot 1324 can be in the shape of a butterfly having a feed line 1332 as shown in Figure i3C, wherein the bow can be oriented in any direction. In an alternative embodiment, a hook or a zigzag shape or a sacred tree shape, or a rectangular slot or an iron cross shape having a protruding portion is provided, as illustrated in Figures 13D, 13E, 13F and 13G. This type of configuration provides a better system. Manipulation flexibility and orientation. The delay contact can be provided as described above, or can be provided by the delay contact 14023l.doc • 19- 201008028. The antenna can be manipulated based on the amount of transmission, intensity, and signal to the noise ratio. 5 As explained in Figure 14, the principle of interferometry can also be applied. That is, the gain from the slot having the same frequency and phase can be added. Use two or more slots, each of which acts as a point source. Three slots 1404 are shown in Figure 14, each having its own read line (4) 2. In the embodiment of Fig. 14, the three (four) feed lines are connected to the feed system and the radio 142G. Each slot is received from a single-source source - a different signal. The different signals are combined to display a three-dimensional image of the single source. As illustrated in Figure 15, a circuit board can be provided. Two wafers (i.e., 1C package or as flip chip) may be provided at the corners of the circuit board including one of the other device electronics 1520. The spacing between the two wafers can be any distance. A composite aperture can also be provided as illustrated in Figure 16 of the display radio 1640. Two or more slots having the same frequency are controlled by feed lines 1612 and 1622 of different lengths from a feed point 1630. The lengths of the feed lines correspond to the slots in the slots. The spacing between the slots causes the slots to intercept the signal at a predefined point. Use this method when the wavelength of the incoming signal is longer than the slot antenna. The two small slots are often presented as one of the larger apertures and form a synthetic aperture. As illustrated by slot 1704 and feed line 1712 of Figure 17, ultra-wideband performance can also be achieved. First, Q is loaded by reducing the capacitance value on the town bus 1712 at the slot 1704. This is accomplished by reducing the size of the triangle 1744 on the back side of the PCB 17 54. Secondly, the feed that intersects the slot is 140231.doc -20· 201008028. The impedance of the wire segment 1760 is less than 丨〇〇 ohm. Next, the feed line 1712 transitions to one of the impedances of the source ι 780 having a 5 ohm ohm width 1770 〇 as illustrated in Figure 18 to achieve enhanced ultra-wideband and dual-band performance. Two ultra-wideband slot antennas 1804 and 1806 or a standard antenna 1 806 and a triangular 18 〇 8 and a size broadband antenna 1804 having a smaller size than the two-angle opening > 18 09 and the standard antenna 18 〇 6 are placed. It is fed onto a common substrate 181 and is fed by a common feed line 1812. The slots 18〇4 and 18〇6 resonate at the same frequency. The bandwidth and center frequency of each slot can be adjusted such that the spectrum of the two slot antennas overlap. The bandwidth and center frequency of each slot can also be adjusted for different frequency bands in which the spectrums do not overlap. Referring now to Figures 19A through 19B, in a particular embodiment the antenna 1900 is preferably formed from two or more layers. The material may be a printed circuit board material. The microstrip feed line 1912 may be formed on the top layer and the bottom layer may include a slot 19〇4 and a triangle 1944 (see also, for example, the slot of Figure 9). Holes 9〇4 and triangles 944 and slots 1〇〇4 and 21044 of Fig. 1A, etc.). The microstrip feed line 1912 (see also Figures 912 and 1012 of Figures 9 and 10a, etc.) preferably interacts with a second layer separated by a distance and a dielectric material. Fig. 19A illustrates a view of the antenna 19 from the side of the microstrip, and Fig. 19B illustrates a view of the antenna 19 from the opposite side or the side of the slot. The antenna 1900 can also be constructed on a four-layer pcB. In the four-layered embodiment, the layers - and the four layers are referred to as the top and bottom layers, respectively, while the layers two and two are vacant or do not contain copper (or a similar conductor). 140231.doc •21· 201008028 FR4 and Rogers & Ro-3010 and r〇_435〇b can be used (see www.rogerscorporation.com, which is incorporated herein by reference) About the r〇4〇〇〇 and R〇3〇〇〇 series of high frequency circuit materials). Different dielectric materials can be used which allow the antenna to exhibit enhanced performance with a lower loss tangent and higher gain. The antenna can also be selectively sized to be larger or smaller than the ones illustrated or described above. For example, the size of the antenna can be contracted. By using a higher dielectric constant (for example, the dielectric constant of the ruler _3010 is higher than the typical dielectric

電常數)實際上促進該收縮。採用此等材料,兩層或四層 具體實施例係較佳。The electrical constant) actually promotes this contraction. With such materials, two or four layer embodiments are preferred.

在此概述2007年3月30日申請之美國專利申請案序號 11/694,916(其係以引用的方式併入於此)中所說明的特徵 之一些特徵,其可與本文所說明之其他具體實施例組合成 替代性具體實施例。在該,916申請案中提供一高增益可操 縱相位陣列天線。一傳導薄片具有藉由一介電材料分離之 兩個或兩個以上層之一或多個槽孔(界定於該傳導薄片 中)。針對該等槽孔之每一者,—電微帶饋送線與該槽孔 耦合以形成一磁性耦合的LC共振元件。一主饋送線與 或多個微帶饋送線耦合。至少一微帶饋送線可包括寬度比 其他片段更大之至少一月段以減小電阻並產生一增強的q 因數來針對該天線提供一選定的更寬頻寬。 更大寬度之片段可包括具有其他片段的寬度之一原始 送線與在該原始饋送線上之一額外跡線。具有更大寬度 片段可具有一矩形形狀。 140231.doc •22· 201008028 提供另-高增益相位陣列天線。_傳導薄片具有藉由一 介電材料分離之兩個或兩個以上層之一或多個槽孔(界定 於該傳導薄片中)一對應的電微帶饋送線係與每一槽孔 電耦合以形成-磁性耦合㈣共振元件一主饋送線與該 . —或多㈣帶饋送_合。至少i孔可包括產生針對該 • a線提供m頻特性之—形狀的至少-非矩形片段。 此等天線之任一者可進一步包括以下特徵之一或多者: 錄帶饋送線m電連接至其對應槽孔、橫跨-對應槽 孔從-側福合至另一側及/或於中心或偏心地橫跨該槽孔。 一行動電話及/或1C天線裝置可包括任一天線。 /-或多個槽孔可包括在十字形狀設計、—X形狀設 。十鉤式交又形狀、一鐵十字形狀或聖誕樹形狀設計或 其組合中重疊的至少兩個長方形槽孔。該-或多個槽孔可 包括具有蝴蝶結形狀設計之一槽孔。 該-或多個槽孔可包括不同大小或形狀或兩者及因此不 ❹目的共振頻率之至少兩個槽孔。此等至少兩個槽孔可在一 交又設計中彼此重疊及/或可提供雙頻帶或增強㈣U 能力,或兩者。 該-或多個槽孔可包括經配置用以提供干涉測量功能性 之兩個或兩個以上槽孔。 兩個或兩個以上槽孔可共用從一共同饋送點具有不同長 度之一共同饋送線以形成一合成孔徑。 該天線亦可包括:延遲電路,其用於藉由選擇性地改變 在該微帶饋送線上之信號相位來電操縱該天線;及基於程 140231.doc •23- 201008028 式碼來操作之一或多個處 較佳信財向#相㈣㈣地決定一 天線。❹控制錢遲電路以在該較佳方向上操縱該 狀該::::槽孔具有一長方形形狀’例如-矩形或橢圓形 微帶饋送線可延伸於該長方形槽孔之短尺寸上。 该主饋送線可與一同軸電境連接器附件輕合。 之個槽孔可包括藉由該等微帶饋送線來平行饋送 可將相等數目之槽孔佈置於該主饋送線之任一側上,該 主饋送線可以係在中心、藉由__同轴電欖連接器附件來饋 送,由此提供該主饋送線之兩個對半。每一半可具有相同 電阻’其亦可以係與對應於該主饋送線之該一半的微帶饋 送線之平行組合相同之總電阻。該天線之輸入阻抗可以係 選擇為與該主饋送線之兩個對半相同之電阻。 改變/選擇方位圖案 現參考圖2GA至2GD,說明依據—具體實施例用於選擇 性地改變-高增益天線的方位圖案之一程序。兩個或兩個 以上槽孔之間的間隔係依據該天線可在將其槽孔設定於此 湞間隔而產生之一或多個已知的方位圖案來選擇。 藉由改變該等槽孔之間的間隔來控制一多槽孔天線之方 位圖案。在圖20A中示意性解說依據另一具體實施例之一 天線2000,其包括槽孔2〇〇4、具有三角形2〇44之微帶饋送 線20 12及主饋送線2016。圖20A及20C中將在該等槽孔之 間的間隔顯示為「A」。該距離r A」可以係設定為已知用 140231.doc -24- 201008028 以產生-特定圖案(例如_f着葉圖案或一數字8圖案)之— 2定㈣。—般地,針對-首蓿葉圖案之間隔係大於針對 數予8圖案之間隔。例如,Some of the features described in the U.S. Patent Application Serial No. 11/694,916, the disclosure of which is incorporated herein in The examples are combined into alternative embodiments. In this, the 916 application provides a high gain operational phase array antenna. A conductive sheet has one or more slots (defined in the conductive sheet) of two or more layers separated by a dielectric material. For each of the slots, an electrical microstrip feed line is coupled to the slot to form a magnetically coupled LC resonant element. A main feed line is coupled to the plurality of microstrip feed lines. The at least one microstrip feed line can include at least one month longer than the other segments to reduce the resistance and produce an enhanced q factor to provide a selected wider bandwidth for the antenna. A segment of greater width may include one of the widths of the other segments, the original feed line, and one of the additional traces on the original feed line. With a larger width, the segment can have a rectangular shape. 140231.doc •22· 201008028 Provides an additional-high gain phased array antenna. The conductive sheet has one or more slots (defined in the conductive sheet) of two or more layers separated by a dielectric material, and a corresponding electrical microstrip feed line is electrically coupled to each slot To form a magnetically coupled (four) resonant element - a main feed line is combined with the - or more (four) strip feed. At least the i-hole may include at least a non-rectangular segment that produces a shape that provides m-frequency characteristics for the • a line. Any of these antennas may further include one or more of the following features: the tape feed line m is electrically connected to its corresponding slot, the cross-corresponding slot is from the side to the other side and/or Center or eccentrically span the slot. A mobile phone and/or 1C antenna device can include any antenna. /- or a plurality of slots may be included in the cross shape design, - X shape design. At least two rectangular slots that overlap in a ten-hook shape, an iron cross shape, or a Christmas tree shape design or combination thereof. The one or more slots may include a slot having a bow shape design. The one or more slots may include at least two slots of different sizes or shapes or both and therefore unobtrusive resonant frequencies. The at least two slots may overlap each other in a crossover design and/or may provide dual band or enhanced (iv) U capability, or both. The one or more slots may include two or more slots configured to provide interferometric functionality. Two or more slots may share a common feed line having a different length from a common feed point to form a synthetic aperture. The antenna may further include: a delay circuit for manipulating the antenna by selectively changing a signal phase on the microstrip feed line; and operating one or more based on a code 140231.doc • 23-201008028 code It is better to have a good faith to determine the antenna by #相(四)(四). The memory circuit is controlled to manipulate the shape in the preferred direction:::: The slot has a rectangular shape. For example, a rectangular or elliptical microstrip feed line may extend over a short dimension of the rectangular slot. The main feed line can be lightly coupled to a coaxial electrical connector attachment. One of the slots may include parallel feeding by the microstrip feed lines to arrange an equal number of slots on either side of the main feed line, the main feed line may be centered, by __ The shaft connector is fed to provide two halves of the main feed line. Each half may have the same resistance' which may also be the same total resistance as the parallel combination of the microstrip feed lines corresponding to the half of the main feed line. The input impedance of the antenna can be selected to be the same resistance as the two halves of the main feed line. Changing/Selecting the Azimuth Pattern Referring now to Figures 2GA through 2GD, a procedure for selectively changing the azimuth pattern of the high gain antenna in accordance with the specific embodiment is illustrated. The spacing between two or more slots is selected based on the antenna being capable of generating one or more known orientation patterns by setting its slots at this spacing. The orientation pattern of a multi-slot antenna is controlled by varying the spacing between the slots. An antenna 2000 according to another embodiment is schematically illustrated in Fig. 20A, which includes a slot 2〇〇4, a microstrip feed line 2012 having a triangle 2〇44, and a main feed line 2016. In Figs. 20A and 20C, the interval between the slots is shown as "A". The distance r A " can be set to be known to use 140231.doc -24 - 201008028 to produce a -specific pattern (e.g., a _f leaf pattern or a number 8 pattern) - 2 (4). Typically, the spacing for the -first leaf pattern is greater than the spacing of the number 8 pattern. E.g,

具有具間隔A而產生一數字8 —二/孔之一天線可能替代地具有經增加以替代地產生 目宿葉圖案(例如’圖18所解說者)之間隔圖2叱所解 說之W間隔Α可導致產生—數字8圖案之天線2㈣,如圖 1D中所不。該天線2G5G可具有與圖觀之天線·〇相同大 !及形狀之槽孔2GG4 ’但該主饋送線2()56可因減小的間隔 A而具有較短的長度,而針對該減小的間隔A可替代地或 亦為對該等微帶饋送線2〇12之大小及/或形狀之—順應。 該等距離A及A係由頻率決定而取決於頻率。隨著該頻率 增加’該等距離A、A等減小。 在-第-範例中,已在採用一數字8方位圖案之情況下 結合在4_9此與5.825 Ghz之間的一操作範圍利用類似於 在圖20A中示意性解說之一共振槽孔天線。此第一範例之 天線具有在1.18英忖的槽孔之間的一間隔A。在—第二範 例中’採用-苜蓿葉圖案之針對相同操作頻率之天線具有 一 2.19英吋之一間隔a。 在-態樣中’該槽孔間隔係在製造時固定。在此態樣 中’在製造之前選擇該方位圖案,而根據先前知識及蜮 根據新的研究或測試來決定在兩個或兩個以上槽孔之間的 間隔。以此方式,可例如由一客戶請求具有一特定方位圖 案之-天線,而可製造並交付提供該特定方位圖案之一天 線。可將一天線製造成使得該間隔一經設定便不可調整。 140231.doc 25- 201008028 在另—態樣中,可由一終端#用I+丄 ^ g 、知使用者或由特定的專業服務人 員或错由將該天線返還給製料來調整該間隔,該製造商 =二調整並㈣該H可能存在—預定數目的槽孔間 隔又疋每0又定對應於一特定方位圖案。例如,—天線 可具有兩個設定:針對一苜蓿葉圖案之第—設定;及針對 數予8圖案之第二設定。可使用一旋鈕或一組—或多個 開關來相當容易地調整此等㈣。該天線槽孔間隔在另— 具體實施财可以係可連續調整,因此使得—熟練的終端 使用者在其具有正確的診斷設備便可調諧該天線之方位圖 案。 電改變標高圖案 現參考圖21,該天線在該天線21〇〇之任—側上產生三維 圖案。該圖案之最強點可以係偏移向右或左與向上或下或 在三維空間中的方向之一組合。此係藉由啟用或停用在各 別微帶2112(其饋送在圖21中示意性解說的範例性四槽孔 天線中之四個槽孔2104)上之延遲電路D〗、〇2、D3及〇4來 實現。 下表提供用於針對天線強度產生特定的方向偏移之範例 性的延遲觸點控制: 延遲觸點 圖案偏移 1 向上及向左 2 向上及向右 3 向下及向左 4 向下及向右 1與2 向上 3與4 高下 140231.doc •26- 201008028 組合式電流饋接式與電壓饋電式天線 圖22中示思性解說之天線2200包含至少兩個共振槽孔§丨 與S2 °槽孔S2係具有終止於槽孔S2的微帶片段2216之電流 饋接式’該微帶片段2216包括三角形2244與該微帶2216至 該槽孔I之一侧的一電連接2246以使得該微帶2216與該槽 孔S2交又。圖22中,該微帶2216與該槽孔S2之短尺寸在中 間交又,但可使用不同組態來以如本文其他地方所說明之 不同方式及其他方式與該槽孔交叉。槽孔Si係藉由介於槽 孔S2的主饋送線2220與饋送線2216之間的微帶片段2218來 電壓饋電。 藉由選擇微帶阻抗來選擇頻寬 現參考圖23 ’示意性解說具有一單一槽孔23〇4之一天線 2300。可包括一個以上槽孔,而可將本文所說明之其他特 徵與該槽孔23 04組合,如下所述。 可在製造時選擇及/或由一專業服務人員及/或終端使用 者藉由選擇已知會導致該天線2300產生一特定頻寬的微帶 片段A之阻抗來改變或調整該天線2300之頻寬。該程序可 涉及改變及/或調整該微帶片段A之阻抗,或者該阻抗可以 係在製造後隨即固定。一般地,隨著圖23中所解說的微帶 片段A之阻抗增加’天線2300之頻寬減小。藉由選擇或改 變一或多個微帶片段A、B及/或C之寬度,一使用者可# 制該天線2300之阻抗。減小該微帶片段a之寬度來增加該 阻抗。 在一範例中’一天線已經測試並結合一阻抗為37歐姆之 140231.doc -27- 201008028 微帶用於在2.412 Ghz與2·484 Ghz之間的一操作範圍内, 其已在3 Ghz損失1.1 db之增益。藉由將該阻抗增加至i〇〇 I姆’該天線在3 Ghz損失5.3 db之增益。 將與該槽孔交又的微帶之阻抗耦合至一 5〇歐姆的源極 例如,圖23之頻寬調整微帶可具有一與驅動該天線23〇〇 的一無線電(未顯示)之一輸出電路或本文所說明的其他具 體實施例之一阻抗不同的阻抗。可藉由一四分之一波長微 帶耦合兩個阻抗。例如,圖23之微帶B在此範例中係耦合 微帶。Μ帶3之阻抗成為微帶八的阻抗乘以微帶匚的阻抗之 平方根。微帶Β之長度係一四分之一波長。 在此具體實施例中,50歐姆係較佳,但該阻抗不必精確 的係50歐姆。50歐姆之選擇對應於5〇歐姆的該無線電之阻 抗。該無線電一般可取25至1〇〇歐姆。最佳功率傳輸係在 該無線電之阻抗與該無線電之阻抗匹配時。因此,對於此 具體實施例,一般而言,與該無線電的阻抗相等之一阻抗 係橫跨一共振槽孔而耦合。 選擇槽孔寬度以設定方位圖案 可在製造時選擇或使用在機械上相對可調整的組件來改 變如本文中的多帛具體實施射所說明之一共振槽孔之尺 寸,以便針對一給定頻率選擇及/或調整該天線之方位圖 案。圖24Α顯示一具有比產生圖2仙中所示方位圖案的天 線寬34_8%而短32%之_槽孔的2·4服共振槽孔天線之方 位圖案。圖24A之方位圖案係比圖24B之方位圖案更寬, 而在該天線的邊緣處之增益在圖24A中比在圖MB中更 140231.doc -28- 201008028 大而峰值增益針對具有較寬/較短槽孔的天線(圖24A)比 十對/、有較窄/較尚槽孔(圖24B)的天線更小。 圖24B顯示比圖24A中的天線窄34 8%而長之一 2 4An antenna having an interval A and a number of 8 - 2 / holes may alternatively have an interval that is increased to alternatively produce a view of the leaf pattern (e.g., as illustrated by Figure 18). An antenna 2 (four) that produces a digital 8-pattern can be produced, as shown in Figure 1D. The antenna 2G5G may have the same size as the antenna 〇 of the figure! and the slot 2GG4' of the shape but the main feed line 2() 56 may have a shorter length due to the reduced interval A, and for this reduction The spacing A may alternatively or also be compliant with the size and/or shape of the microstrip feed lines 2〇12. The equidistances A and A are determined by frequency and depend on frequency. As the frequency increases, the equidistances A, A, etc. decrease. In the -example, an operational range between 4_9 and 5.825 Ghz has been utilized with a digital 8-azimuth pattern using a resonant slot antenna similar to that illustrated in Figure 20A. The antenna of this first example has an interval A between the 1.18 inch slots. In the second example, the antenna for the same operating frequency using the - 苜蓿 leaf pattern has a spacing a of 2.19 inches. In the case - the slot spacing is fixed at the time of manufacture. In this aspect, the orientation pattern is selected prior to manufacture, and the spacing between two or more slots is determined based on prior knowledge and 蜮 based on new research or testing. In this manner, an antenna having a particular orientation pattern can be requested, for example, by a customer, and an antenna providing the particular orientation pattern can be manufactured and delivered. An antenna can be fabricated such that the interval is not adjustable as soon as it is set. 140231.doc 25- 201008028 In another aspect, the interval can be adjusted by a terminal # using I+丄^ g, knowing the user or by returning the antenna to the material by a specific professional service personnel or by mistake. The quotient = two adjustments and (d) the H may be present - a predetermined number of slot spacings, each of which corresponds to a particular orientation pattern. For example, the antenna can have two settings: a first setting for a leaf pattern; and a second setting for a number 8 pattern. This knob (or four) can be adjusted fairly easily using a knob or a set - or multiple switches. The spacing of the antenna slots can be continuously adjusted, so that a skilled end user can tune the orientation pattern of the antenna with the correct diagnostic equipment. Electrically Changing the Elevation Pattern Referring now to Figure 21, the antenna produces a three-dimensional pattern on either side of the antenna 21''. The strongest point of the pattern can be combined by shifting one of the directions to the right or left and up or down or in three dimensions. This is by enabling or disabling the delay circuits D, 〇 2, D3 on the respective microstrips 2112 that feed the four slots 2104 of the exemplary four-slot antennas schematically illustrated in FIG. And 〇 4 to achieve. The following table provides exemplary delay contact controls for generating a specific direction offset for antenna strength: Delayed contact pattern offset 1 Up and left 2 Up and right 3 Down and Left 4 Down and towards Right 1 and 2 Up 3 and 4 Up 140231.doc •26- 201008028 Combined Current Feeder and Voltage Feeder Antenna The antenna 2200 of the illustrative diagram in Figure 22 contains at least two resonant slots §丨 and S2 The slot S2 is a current feed type having a microstrip segment 2216 terminating in the slot S2. The microstrip segment 2216 includes a triangle 2244 and an electrical connection 2246 of the microstrip 2216 to one side of the slot I such that The microstrip 2216 intersects the slot S2. In Figure 22, the microstrip 2216 and the slot S2 have a short dimension interposed therebetween, but different configurations can be used to intersect the slot in different ways and other manners as explained elsewhere herein. The slot Si is voltage fed by the microstrip segment 2218 between the main feed line 2220 and the feed line 2216 of the slot S2. Selecting the Bandwidth by Selecting the Microstrip Impedance An antenna 2300 having a single slot 23〇4 is schematically illustrated with reference to Figure 23'. More than one slot may be included, and other features described herein may be combined with the slot 23 04 as described below. The bandwidth of the antenna 2300 can be changed and adjusted at the time of manufacture and/or by a professional service personnel and/or end user by selecting an impedance of the microstrip segment A known to cause the antenna 2300 to produce a particular bandwidth. . The procedure may involve changing and/or adjusting the impedance of the microstrip segment A, or the impedance may be fixed immediately after manufacture. In general, as the impedance of the microstrip segment A illustrated in Fig. 23 increases, the bandwidth of the antenna 2300 decreases. By selecting or changing the width of one or more of the microstrip segments A, B, and/or C, a user can make the impedance of the antenna 2300. The width of the microstrip segment a is reduced to increase the impedance. In one example, an antenna has been tested and combined with an impedance of 37 ohms. 140231.doc -27- 201008028 Microstrip for an operating range between 2.412 Ghz and 2·484 Ghz, which has been lost at 3 Ghz 1.1 db gain. By increasing the impedance to i 〇〇 I, the antenna loses 5.3 db at 3 Ghz. The impedance of the microstrip that intersects the slot is coupled to a 5 ohm source. For example, the bandwidth adjustment microstrip of FIG. 23 can have a radio (not shown) that drives the antenna 23A. The output circuit or one of the other embodiments described herein impedance different impedances. The two impedances can be coupled by a quarter-wavelength microstrip. For example, the microstrip B of Figure 23 is coupled to a microstrip in this example. The impedance of the band 3 is the impedance of the microstrip eight multiplied by the square root of the impedance of the microstrip. The length of the microstrip is one quarter wavelength. In this embodiment, a 50 ohm system is preferred, but the impedance need not be exactly 50 ohms. The choice of 50 ohms corresponds to the impedance of the radio of 5 ohms. The radio is typically 25 to 1 ohm. The optimum power transmission is when the impedance of the radio matches the impedance of the radio. Thus, for this particular embodiment, in general, one of the impedances equal to the impedance of the radio is coupled across a resonant slot. Selecting the slot width to set the orientation pattern can be selected at the time of manufacture or using a mechanically relatively adjustable component to change the size of one of the resonant slots as illustrated herein for a given frequency. Select and/or adjust the orientation pattern of the antenna. Fig. 24A shows a square pattern of a 4.6-well resonant slot antenna having a slot diameter of 34_8% and 32% shorter than the antenna pattern of the orientation pattern shown in Fig. 2. The orientation pattern of Fig. 24A is wider than the orientation pattern of Fig. 24B, and the gain at the edge of the antenna is larger in Fig. 24A than in Fig. MB 140231.doc -28-201008028 and the peak gain is wider/ The shorter slot antenna (Fig. 24A) is smaller than the ten pairs/of the narrower/more slotted (Fig. 24B) antenna. Figure 24B shows that it is 34 8% narrower than the antenna in Figure 24A.

Ghz 振槽孔天線之方位圖案。該方位圖案係更窄,在該 * m的邊緣處之增益係更小而該峰值增益係大於該較寬天 線。 在一範例中,已針對2.4 Ghz設計具有一 0.3〇3,,槽孔寬度 1具有在65度的3此點量度之-波束寬度的-天線。已操 罾作具有一 〇,455 ”槽孔寬度與一8〇度波束寬度之另一天線。 選擇/調整槽孔尺寸以選擇(增加/減小)頻寬 如圖25中所示,一槽孔25〇4可以係蝴蝶結形狀。該槽孔 可以係選擇性或隨機地定向於任何方向上。在該槽孔25〇4 的中心之短尺寸A係小於在該槽孔25〇4的外側之尺寸B, 而該槽孔寬度從中間至該兩個短邊緣之每一者(在長方向 上)逐漸改變。一矩形槽孔一般會係設計成在一較小頻寬 φ (例如,小於100 ·Ζ)内操作。但是,在圖25所解說之具 體實施例中,針對在該槽孔之一高操作頻率時該天線的操 #而選擇該尺寸A’而針對在該槽孔之一低操作頻率時該 天線的操作而選擇該尺寸6’由此因為該蝴蝶結形槽孔 2504之變化的短尺寸而提供針對該槽孔25〇4之一更寬的頻 寬。 以不同方式選擇性對齊多個槽孔 圖26中示意性解說之天線2_包括在—或多個印刷電路 板2608上組合之兩個槽孔26〇4與26〇6(可能存在兩個以 140231.doc •29· 201008028 上)。該等槽孔2604與2606之定向係彼此相對地而在絕對 意義上係相對於該天線之架構之結構組件而不同。槽孔 2604與2606之不同定向係用於有效地接收具有一個以上定 向之信號及/或發射此類信號。 組合一共振槽孔與另一類天線 圖27示意性解說之天線包括如本文之若干具體實施例中 所說明之一共振槽孔2704,其係與在同一印刷電路板2702 上之一非共振槽孔2708組合。該共振槽孔2704具有與其交 叉以產生上文所說明的有利LC共振之一微帶饋送線2709, ^ 以及二角形2744。該微帶係藉由主饋送線272〇來饋送。該 非共振槽孔2708不具有橫跨其之一微帶饋送線。該非共振 槽孔天線2708可用於接收(或發射)具有一不同極性之信號 或用以接收(或發射)離開該印刷電路板27〇2的邊緣之信 號。 具有圓形形狀的電流饋接式共振槽孔天線 一電流饋接式共振槽孔可以採取一圓形、橢圓或其他彎 曲設計之形狀,例如一心形、梨形、苜蓿葉形狀、數字8 _ 形狀及/或經修改成具有圓形轉角之任何多邊形,例如一 方形、矩形、三角形、五邊形、菱形、梯形等(除本文所 說明之共振槽孔形狀外,可替代或額外地使用具有或不具 有圓形轉角之此等範例性多邊形及其他多邊形)。圖2 8解 說一包括具有三角形2803與圓形共振槽孔28〇4之一微帶饋 送線2802的共振槽孔天線2800。 該圓形槽孔2804之面積係選擇為約等於相同頻率之—矩 140231.doc -30· 201008028 形槽孔天線之面積。電場線2806或E場線2806係在給該天 線供電時橫跨該圓2804建立。該等E場線2806—般係平行 於該微帶饋送線2802。該等E場線2806在中心係最長而在 該圓2804之端係最短。該等E場線2806係在圖28中顯示為 虛線。由於該等E場線2806具有變化的長度,因此該天線 係與相同頻率的矩形槽孔天線相比之一更寬頻帶的天線, 因為該圓形天線涵蓋比該矩形槽孔的頻譜更大之一頻譜。 可藉由從變化形狀及圓度的槽孔中選擇來很明確地預定特 β 定中心頻率及/或隨附頻率及頻率範圍之一共振槽孔天線 之頻寬。 雙極化的單向天線 在其他具體實施例中,一共振槽孔天線係與一垂直極化 的單向天線組合。圖29Α至29C中解說此設計之三個具體 實施例。圖29Α至29C之具體實施例之每一者包括組合以 產生一雙極化單向天線之此等兩個天線元件。 參考圖29Α,一共振槽孔天線2920係與一單向天線2910 — 組合。在圖29Α中,此等天線2910與2920係相互堆疊地放 置。圖29Α中所示之組合係一雙極化天線2930,而該槽孔 天線2920係水平極化而在頂部上的單向天線2910係垂直極 化。兩個天線2910與2920皆係從相同源極饋送。 圖29Α之單向天線2910可以係一雙頻帶單向。其可在2.4 Ghz及5 Ghz上共振。其可併入兩個偶極2940,兩個在左側 而兩個在右側。較短的偶極係針對5 Ghz而較長者係針對 2.4 Ghz。該偶極之兩個對半係在該PCB 2950之相對側 140231.doc -31 - 201008028 上。 圖29B解說一雙極化單向天線2950之另一具體實施例。 在此設計中,一共振槽孔天線2952係與單向天線2954並排 提供。如圖所示,饋送線2956係居中。一其中無銅之區域 2958亦係顯示於天線2954的兩個傳導區域2953之最右者之 右側。此區域2958係解說為0.5英吋寬而從天線2954之右 側開始。另一半英吋區域2959係從區域2958之右侧邊緣提 供至該槽孔天線2952之左側邊緣。兩個天線皆係顯示為從 該天線2950之頂部起0.5英吋,而在該槽孔2952的底部與 其饋送線之間顯示0.5英吋,因其纏繞於該天線2952與該 饋送線2956之間。該饋送線2956本身係顯示為從該天線之 底部起約0.3英吋。該共振槽孔天線2952係顯示為具有一 槽孔,但如先前具體實施例中所說明,該天線2952可包括 一個以上槽孔且可依據本文所說明的其他共振槽孔天線具 體實施例之任何具體實施例加以組態。 圖29C解說一雙極化單向天線2960之另一具體實施例, 其包括一共振槽孔天線2962與一單向垂直極化天線2964。 在此具體實施例中,該單向垂直極化天線2964係在該底部 上,而該共振槽孔天線2962係在該頂部上,例如從該頂部 起約0.5英吋。該槽孔2962係顯示為其左側邊緣係從該天 線2960的左側起約0.25英吋。該饋送線2965係顯示為在約 250密爾寬之一絕緣路徑中113密爾寬。該饋送線2966再次 顯示為從該天線之底部起約0.3英吋。傳導區域2963係顯 示為約2.2英吋長。顯示在該區域296c與該槽孔2962的底 140231.doc -32- 201008028 部之間的一 0 _ 5英时之距離。 此等天線之元件之所有距離及位置可不同,而上述情形 僅係範例。針對在幾何定位及間隔方面該等雙重天線的元 件之相對配置’存在許多可行的變化方案。 • 上面已參考若干較佳及替代性具體實施例來說明本發 明。但是,熟習此項技術者在閱讀此揭示内容後會明白, 可對所說明之具體實施例作變化及修改而不脫離本發明之 範疇。期望將此等及其他變化或修改包括在本發明之範疇 瘳 内,如隨附申請專利範圍及其結構及功能等效物中所表 述。例如,具體實施例一般係顯示為具有四個共振槽孔或 一單一共振槽孔。但是,具體實施例可包括任何數目之槽 孔,包括一或兩個槽孔,或例如,圖3〇示意性解說一八個 槽孔的天線,包括槽孔3004、微帶饋送線3〇〇2及主饋送線 3020與3022。 此外,在可依據較佳具體實施例實行且可能已在上面說 參 月及/或如下面申请專利範圍中所述之方法中,已按選定 的子丨Ρ序列在上面說明及/或在下面述及該等操作。但 疋&quot;亥等序列係已選定且為刊印方便起見而如此排序,而 無意於暗示用於實行該等操作之任何特定順序。 此外,除本發明章節之技術領域及發明說明外,上文所 述及之所有參考因揭示替代性具體實施例及組件而在此係 以引用的方式併入於該等較佳具體實施例之詳細說明尹。 以下參考亦係以引用的方式併入: 美國專利案第 3,705,283、3,764,768、5,025,264 ' 5,087,921、 140231.doc -33- 201008028 5,119,107、5,347,287、6,611,231、6,456,241、6,388,621、 6,292,133、6,285,337、6,130,648、5,189,433號;以及 美國公告專利申請案第2005/0146479、2003/0184477、 2002/0171594 及 2002/0021255 號;以及 歐洲公告專利申請案第EP 0 384 780 A2/A3、EP 0 384 777 A2/A3號;以及Azimuth pattern of the Ghz vibrating slot antenna. The orientation pattern is narrower, the gain at the edge of the *m is smaller and the peak gain is greater than the wider antenna. In one example, the design has a 0.3 〇 3 for the 2.4 Ghz, and the slot width 1 has a -beamwidth-antenna measured at 3 points of 65 degrees. Another antenna with one 〇, 455 ” slot width and one 8 波束 beamwidth has been manipulated. Select/adjust the slot size to select (increase/decrease) the bandwidth as shown in Figure 25, one slot The hole 25〇4 may be in the shape of a bow. The slot may be selectively or randomly oriented in any direction. The short dimension A in the center of the slot 25〇4 is smaller than the outside of the slot 25〇4. Dimension B, and the slot width is gradually changed from the middle to each of the two short edges (in the long direction). A rectangular slot is generally designed to have a smaller bandwidth φ (for example, less than 100). In operation, however, in the specific embodiment illustrated in Figure 25, the size A' is selected for the operation of the antenna at a high operating frequency of the slot and is low for one of the slots The operation of the antenna at the operating frequency selects the size 6' thereby providing a wider bandwidth for one of the slots 25〇4 due to the varying short dimension of the bow shaped slot 2504. Selectively aligned in different ways Multiple Slots The antenna 2_ schematically illustrated in Figure 26 is included in - or multiple prints Two slots 26 〇 4 and 26 〇 6 are combined on the road plate 2608 (there may be two on 140231.doc • 29· 201008028). The orientations of the slots 2604 and 2606 are opposite each other and in absolute meaning. The upper portion differs from the structural components of the architecture of the antenna. The different orientations of the slots 2604 and 2606 are for effectively receiving signals having more than one orientation and/or transmitting such signals. Combining one resonant slot with another Antenna The antenna schematically illustrated in Fig. 27 includes a resonant slot 2704 as illustrated in several embodiments herein, which is combined with a non-resonant slot 2708 on the same printed circuit board 2702. The resonant slot 2704 There is a microstrip feed line 2709, ^ and a dipole 2744 that intersect with it to produce the advantageous LC resonance described above. The microstrip is fed by a main feed line 272. The non-resonant slot 2708 does not have a cross One of the microstrip feed lines. The non-resonant slot antenna 2708 can be used to receive (or transmit) signals having a different polarity or to receive (or transmit) signals exiting the edge of the printed circuit board 27〇2. A current-fed resonant slot antenna having a circular shape - a current-fed resonant slot can take the form of a circular, elliptical or other curved design, such as a heart shape, a pear shape, a crotch shape, a number 8 _ shape And/or modified to have any polygon with a rounded corner, such as a square, rectangle, triangle, pentagon, diamond, trapezoid, etc. (in addition to the resonant slot shape described herein, alternatively or additionally used with or Such exemplary polygons and other polygons that do not have rounded corners. Figure 28 illustrates a resonant slot antenna 2800 that includes a microstrip feed line 2802 having a triangle 2803 and a circular resonant slot 28〇4. The area of the circular slot 2804 is selected to be approximately equal to the same frequency - the radius of the 140231.doc -30· 201008028 shaped slot antenna. Electric field line 2806 or E field line 2806 is established across the circle 2804 when powering the antenna. The E field lines 2806 are generally parallel to the microstrip feed line 2802. The E field lines 2806 are the longest in the center and the shortest in the end of the circle 2804. These E field lines 2806 are shown as dashed lines in Figure 28. Since the E field lines 2806 have varying lengths, the antenna is a wider band antenna than a rectangular slot antenna of the same frequency because the circular antenna covers a larger spectrum than the rectangular slot. a spectrum. The bandwidth of the resonant slot antenna, which is one of the specific centering frequency and/or the accompanying frequency and frequency range, can be clearly defined by selecting from the slot of varying shape and roundness. Dual Polarized Unidirectional Antenna In other embodiments, a resonant slot antenna is combined with a vertically polarized unidirectional antenna. Three specific embodiments of this design are illustrated in Figures 29A through 29C. Each of the specific embodiments of Figures 29A through 29C includes such two antenna elements combined to produce a dual polarized unidirectional antenna. Referring to Figure 29A, a resonant slot antenna 2920 is combined with a unidirectional antenna 2910. In Fig. 29A, the antennas 2910 and 2920 are placed one on top of the other. The combination shown in Fig. 29A is a dual polarized antenna 2930, and the slot antenna 2920 is horizontally polarized and the unidirectional antenna 2910 on the top is vertically polarized. Both antennas 2910 and 2920 are fed from the same source. The unidirectional antenna 2910 of Figure 29 can be a dual band unidirectional. It can resonate at 2.4 Ghz and 5 Ghz. It can be incorporated into two dipoles 2940, two on the left and two on the right. The shorter dipole is for 5 Ghz and the longer is for 2.4 Ghz. The two opposite halves of the dipole are on the opposite side of the PCB 2950 140231.doc -31 - 201008028. FIG. 29B illustrates another embodiment of a dual polarized unidirectional antenna 2950. In this design, a resonant slot antenna 2952 is provided alongside the unidirectional antenna 2954. As shown, the feed line 2956 is centered. A copper-free region 2958 is also shown to the right of the rightmost of the two conductive regions 2953 of the antenna 2954. This region 2958 is illustrated as being 0.5 inches wide and starting from the right side of the antenna 2954. The other half of the inch region 2959 is provided from the right edge of the region 2958 to the left edge of the slot antenna 2952. Both antennas are shown as 0.5 inches from the top of the antenna 2950, and 0.5 inches between the bottom of the slot 2952 and its feed line, as it is wrapped between the antenna 2952 and the feed line 2956. . The feed line 2956 itself is shown to be about 0.3 inches from the bottom of the antenna. The resonant slot antenna 2952 is shown as having a slot, but as illustrated in the previous embodiments, the antenna 2952 can include more than one slot and can be in accordance with any of the other embodiments of the resonant slot antenna described herein. The specific embodiment is configured. 29C illustrates another embodiment of a dual-polarized unidirectional antenna 2960 that includes a resonant slot antenna 2962 and a unidirectional vertically polarized antenna 2964. In this embodiment, the unidirectional vertically polarized antenna 2964 is attached to the base and the resonant slot antenna 2962 is attached to the top, for example about 0.5 inches from the top. The slot 2962 is shown with its left edge being about 0.25 inches from the left side of the antenna 2960. The feed line 2965 is shown to be 113 mils wide in one of the insulated paths of about 250 mils wide. The feed line 2966 is again shown to be about 0.3 inches from the bottom of the antenna. Conduction zone 2963 is shown to be about 2.2 inches long. A distance of 0 _ 5 inches between the region 296c and the bottom 140231.doc -32- 201008028 portion of the slot 2962 is shown. All distances and positions of the elements of such antennas may vary, and the above is merely an example. There are many possible variations to the relative configuration of the elements of the dual antennas in terms of geometric positioning and spacing. • The invention has been described above with reference to a number of preferred and alternative embodiments. However, it will be apparent to those skilled in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Such changes and modifications are intended to be included within the scope of the present invention, as expressed in the scope of the appended claims and their structural and functional equivalents. For example, the specific embodiment is generally shown as having four resonant slots or a single resonant slot. However, particular embodiments may include any number of slots, including one or two slots, or, for example, Figure 3A schematically illustrates an eight-slot antenna, including slot 3004, microstrip feed line 3〇〇 2 and main feed lines 3020 and 3022. Furthermore, in the methods which may be carried out in accordance with the preferred embodiments and which may have been described above in the above description and/or as claimed in the following claims, the selected sub-sequences have been described above and/or below These operations are described. However, sequences such as &quot;Hai have been selected and are so ordered for the convenience of publication, and are not intended to imply any particular order for carrying out such operations. In addition, the above-mentioned and all of the references are incorporated herein by reference to the preferred embodiments and the disclosure Details Yin. The following references are also incorporated by reference: U.S. Patent Nos. 3,705,283, 3,764,768, 5,025,264 '5,087,921, 140231.doc -33-201008028 5,119,107, 5,347,287, 6,611,231, 6,456,241, 6,388,621, 6,292,133, 6, 285, 337, 6, 130, 648, 5, 189, 433; and U.S. Patent Application Nos. 2005/0146479, 2003/0184477, 2002/0171594, and 2002/0021255; and European Patent Application No. EP 0 384 780 A2/A3, EP 0 384 777 A2/A3; and

Brown等人的「一 GPA數位相位陣列天線及接收器」, IEEE相位陣歹ij討論會記錄,力口州Dana Point,2000年5月, 4頁; 靈敏型相位陣列天線,Roke Manor Research公司,20〇2 年;以及Brown et al., "A GPA Digital Phase Array Antenna and Receiver", IEEE Phase Matrix 歹 Discussion Session, Dana Point, Likou, May 2000, 4 pages; Sensitive Phase Array Antenna, Roke Manor Research, 20〇2 years; and

Galdi等人,「同軸端饋送式波導相位陣列天線之 Cad(computer asided design;電腦輔助設計)」,微波與光 學技術學刊第34卷第4號,2002年8月20日,第276至281 頁。 【圖式簡單說明】 圖1解說依據一較佳具體實施例之一高增益可操縱相位 陣列天線的一正視圖; 圖2解說依據一較佳具體實施例之一高增益可操縱相位 陣列天線的一後視圖; 圖3解說依據一較佳具體實施例耦合至共振槽孔之微饋 送線; 圖4示意性解說依據一較佳具體實施例與微帶饋送線耦 合用於操縱一相位陣列天線之延遲電子元件; 140231.doc •34- 201008028 圖5A至圖5D顯示依據—較佳具體實施例基於不同波瓣 的選擇之在各種方向上的範例性信號分佈圖; 圖6示意性解說依據一較佳具體實施例一相位陣列天線 的元件之一電子組件表示; • 圖7至圖8係依據一較佳具體實施例針對選擇一相位陣列 天線之彳5號分佈波瓣而實行的操作之一流程圖; 圖9不意性解說具有一偏心的微帶饋送線之共振槽 孔; ^ 圖1〇A示意性解說依據一具體實施例之具有已加寬之一 微帶饋送線的一LC共振槽孔; 圖10B示意性解說依據另一具體實施例具有一微帶饋送 線之一 LC共振槽孔,該微帶馈送線具有不同寬度的跡線之 多個層; 圖10C示意性解說依據特定具體實施例具有一微帶饋送 線之一LC共振槽孔,該微帶饋送線具有一片段,該片段具 有在各個片段部分上施加於各個方向上的各種寬度之各種 跡線; • 圖11示意性解說依據一具體實施例具有一LC共振槽孔之 一蜂巢式電話; 圖12A示意性解說依據一具體實施例之一 IC天線; 圖12B解說圖12A之1C天線之組件; 圖13A至圖13G解說依據其他具體實施例針對具有不同 功能性的槽孔之不同形狀; 圖14示意性解說包括多個槽孔且利用干涉測量原理之一 140231.doc -35· 201008028 天線之一具體實施例; 圖1 5示意性解說依據另一具體實施例具有兩個晶片之 電路板; 圖16示意性解說依據一具體實施例之一合成孔徑; 圖17示意性解說依據另一具體實施例之—超寬頻效能天 線; b 圖18示意性解說依據另一具體實施例具有增強型超寬頻 與雙頻帶效能之一天線; ^ 圖19A顯示依據一較佳具體實施例之一天線的一微帶視 圖; 圖19B顯示圖19A之天線之一槽孔視圖或相對侧視圖,· 圖20A至圖20D解說藉由選取—特定的槽孔間隔(特定言 之係用於選擇-苜#葉圖案或—數字8圖案)來改變依據一 具艘實施例之一天線之一方位圖案; 圖21解說藉由啟用或停用在饋送該等槽孔的微帶上之延 遲電路來電改變依據-具體實施例之—天線之—標高圖 圖22解說依據另 具體實施例之一組合的電流饋接與電 壓饋電天線; 圖23解說藉由選擇與該槽;^丨六1 _ 畀邊糟孔父又之一微帶之阻抗來改變 依據一具體實施例之一天線之—頻寬; 圖湯至圖鳩解說藉由選擇一槽孔之寬度來選取依據 一具體實施例之一天線之一方位圖案; 圖25解說依據一具體實始也丨+ , 貫施例之—天線之一蝴蝶結形狀的 140231.doc -36- 201008028 槽孔; 圖26解說將兩個或兩個以上槽孔對齊於不同定向上來接 收及/或發射具有一個以上的定向及/或極性之信號; 圖27解說依據另一具體實施例組合一共振槽孔與另一類 天線; 圖28示意性解說依據另一具體實施例具有一圓形形狀之 一電流饋接式共振槽孔天線;Galdi et al., "Cad (computer asided design)", "Microwave and Optical Technology, Vol. 34, No. 4, August 20, 2002, 276-281 page. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a front view of a high gain steerable phased array antenna in accordance with a preferred embodiment; FIG. 2 illustrates a high gain steerable phase array antenna in accordance with a preferred embodiment. 1 is a rear view; FIG. 3 illustrates a microfeed line coupled to a resonant slot in accordance with a preferred embodiment; FIG. 4 is a schematic illustration of coupling to a microstrip feed line for manipulating a phased array antenna in accordance with a preferred embodiment Delayed electronic components; 140231.doc • 34- 201008028 FIGS. 5A-5D show exemplary signal profiles in various directions based on the selection of different lobes in accordance with a preferred embodiment; FIG. 6 is a schematic illustration based on a comparison DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT One electronic component representation of an element of a phased array antenna; • Figures 7 through 8 are one flow of operations performed to select a 彳5 distributed lobes of a phased array antenna in accordance with a preferred embodiment. Figure 9 is a schematic illustration of a resonant slot having an eccentric microstrip feed line; ^ Figure 1A schematically illustrates a microstrip having a widened according to a specific embodiment An LC resonant slot of the feed line; Figure 10B schematically illustrates an LC resonant slot having a microstrip feed line having a plurality of layers of traces of different widths in accordance with another embodiment; 10C schematically illustrates an LC resonant slot having a microstrip feed line having a segment having various traces of various widths applied in various directions on respective segment portions, in accordance with a particular embodiment. Figure 11 is a schematic illustration of a cellular telephone having an LC resonant slot in accordance with an embodiment; Figure 12A schematically illustrates an IC antenna in accordance with an embodiment; Figure 12B illustrates the components of the antenna of Figure 1A 13A-13G illustrate different shapes for slots having different functionalities in accordance with other embodiments; FIG. 14 schematically illustrates a plurality of slots and utilizes one of the principles of interferometry. 140231.doc -35· 201008028 Antenna A specific embodiment; FIG. 15 is a schematic illustration of a circuit board having two wafers according to another embodiment; FIG. 16 is a schematic illustration of a synthesis according to one embodiment Figure 17 is a schematic illustration of an ultra-wideband performance antenna in accordance with another embodiment; b Figure 18 schematically illustrates an antenna having enhanced ultra-wideband and dual-band performance in accordance with another embodiment; ^ Figure 19A shows A microstrip view of an antenna of one preferred embodiment; FIG. 19B shows a slot view or an opposite side view of the antenna of FIG. 19A, FIG. 20A through FIG. 20D illustrate by selecting a particular slot spacing (specific It is used to select - 苜 #叶图案 or - numeral 8 pattern) to change the orientation pattern of one of the antennas according to one of the embodiments; Figure 21 illustrates the micro-feeding of the slots by enabling or disabling The delay circuit with the incoming call is changed according to the specific embodiment - the antenna - the elevation map. Figure 22 illustrates the current feed and voltage feed antenna combined according to one of the other embodiments; Figure 23 illustrates the selection by the slot; ^丨六1 _ 畀 糟 孔 孔 父 父 又 又 又 又 又 又 又 又 又 又 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据Specific embodiment One of the antennas has an orientation pattern; FIG. 25 illustrates a 140231.doc-36-201008028 slot in the shape of a bow of one antenna according to a specific implementation, and FIG. 26 illustrates two or more. The slots are aligned in different orientations to receive and/or transmit signals having more than one orientation and/or polarity; FIG. 27 illustrates combining one resonant slot with another type of antenna in accordance with another embodiment; FIG. 28 is illustratively illustrated in accordance with another A specific embodiment has a circular shape of a current fed-in resonant slot antenna;

圖29A至圖29C解說包括依據另一具體實施例的雙極化 單向天線之具體實施例; 圖3 0解說依據另一具體實施例之一八個槽孔的天線。 【主要元件符號說明】 #1 至 #6 102 104 105 106 108 110 206 212 214 216 218 220 觸點 傳導薄片 槽孔 同軸電纜 經焊接之連接 信號電纜 焊接連接 微帶饋送線連接 微帶饋送線 電子電路組件 主饋送線 共軸連接片段 跡線 140231.doc .37- 201008028 296c 區域 306 微饋送線耦合點 424 梢式二極體觸點 426 電感器 904 槽孔 912 微帶饋送線 912 饋送線 914 電子電路組件 944 三角形 954 印刷電路板 1004 槽孔 1012 寬微帶饋送線/第一跡線 1016 第二跡線 1018 槽孔 1020 寬跡線 1022 槽孔 1024 行動電話 1026 槽孔 1028 蜂巢式電話電子元件 1044 三角形 1054 印刷電路板 1204 第三層 1206 層 1208 頂部層 140231.doc -38- 201008028 1210 導通孔 1211 功率放大器或PA 1212 槽孔 1214 T/R開關 1216 低雜訊放大器或LNA 1304 槽孔 1312 饋送線 1314 槽孔 ❿ 1322 饋送線 1324 槽孔 1332 饋送線 1404 槽孔 1412 饋送線 1418 共同饋送點 1420 無線電 1510 晶片 1520 裝置元件 . 1604 槽孔 1612 * 饋送線 1622 饋送線 1630 饋送點 1704 槽孔 1712 饋送線 1744 三角形 140231.doc •39- 201008028 1760 饋送線片段 1770 片段 1780 源極 1804 超寬頻槽孔天線 1806 超寬頻槽孔天線/標準天線 1808 三角形 1809 三角形 1810 共同基板 1812 共同饋送線 1900 天線 1904 槽孔 1912 微帶饋送線 1944 三角形 2000 天線 2004 槽孔 2012 微帶饋送線 2016 主饋送線 2044 三角形 2050 天線 2056 主饋送線 2100 天線 2104 槽孔 2112 微帶 2200 天線 140231.doc -40- 201008028Figures 29A-29C illustrate a specific embodiment including a dual-polarized unidirectional antenna in accordance with another embodiment; Figure 30 illustrates an eight-slot antenna in accordance with another embodiment. [Main component symbol description] #1 to #6 102 104 105 106 108 110 206 212 214 216 218 220 Contact conduction sheet slot coaxial cable Soldered connection signal cable Solder connection Microstrip feed line Connection microstrip feed line Electronic circuit Component main feed line coaxially connected segment trace 140231.doc .37- 201008028 296c region 306 microfeed line coupling point 424 tip diode contact 426 inductor 904 slot 912 microstrip feed line 912 feed line 914 electronic circuit Component 944 Triangle 954 Printed Circuit Board 1004 Slot 1012 Wide Microstrip Feed Line / First Trace 1016 Second Trace 1018 Slot 1020 Wide Trace 1022 Slot 1024 Mobile Phone 1026 Slot 1028 Honeycomb Telephone Electronics 1044 Triangle 1054 Printed Circuit Board 1204 Third Layer 1206 Layer 1208 Top Layer 140231.doc -38- 201008028 1210 Via 1211 Power Amplifier or PA 1212 Slot 1214 T/R Switch 1216 Low Noise Amplifier or LNA 1304 Slot 1312 Feed Line 1314 Slot ❿ 1322 Feed Line 1324 Slot 1332 Feed Line 1404 Slot 1412 Feed Line 1418 Same feed point 1420 Radio 1510 Wafer 1520 Device component. 1604 Slot 1612 * Feed line 1622 Feed line 1630 Feed point 1704 Slot 1712 Feed line 1744 Triangle 140231.doc • 39- 201008028 1760 Feed line segment 1770 Fragment 1780 Source 1804 Ultra Broadband Slot Antenna 1806 Ultra Wide Band Slot Antenna / Standard Antenna 1808 Triangle 1809 Triangle 1810 Common Substrate 1812 Common Feed Line 1900 Antenna 1904 Slot 1912 Microstrip Feed Line 1944 Triangle 2000 Antenna 2004 Slot 2012 Microstrip Feed Line 2016 Main Feed Line 2044 Triangle 2050 Antenna 2056 Main Feed Line 2100 Antenna 2104 Slot 2112 Microstrip 2200 Antenna 140231.doc -40- 201008028

2216 微帶(片段)/饋送線 2218 微帶片段 2220 主饋送線 2244 三角形 2246 電連接 2300 天線 2304 槽孔 2504 槽孔 2600 天線 2604 槽孔 2606 槽孔 2608 印刷電路板 2702 印刷電路板 2704 共振槽孔 2708 非共振槽孔 2709 微帶饋送線 2720 主饋送線 2744 三角形 2800 共振槽孔天線 2802 微帶饋送線 2803 三角形 2804 圓形共振槽孔 2806 電場線 2910 單向天線 140231.doc -41- 201008028 2920 共振槽孔天線 2930 雙極化天線 2940 偶極 2950 PCB/雙極單向天線 2952 共振槽孔天線 2953 傳導區域 2954 單向天線 2956 饋送線 2958 無銅之一區域 2959 半英吋區域 2960 雙極單向天線 2962 共振槽孔天線 2963 傳導區域 2964 單向垂直極化天線 2965 饋送線 2966 饋送 3002 微帶饋送線 3004 槽孔 3020與3022 主饋送線 A 間隔(圖20A、圖20C) A, B及/或C 微帶片段(圖23) Dl, D2, D3及 D4 延遲電路 S 1 與 S2 共振槽孔 140231.doc •42-2216 microstrip (fragment) / feed line 2218 microstrip clip 2220 main feed line 2244 triangle 2246 electrical connection 2300 antenna 2304 slot 2504 slot 2600 antenna 2604 slot 2606 slot 2608 printed circuit board 2702 printed circuit board 2704 resonant slot 2708 Non-resonant slot 2709 Microstrip feed line 2720 Main feed line 2744 Triangle 2800 Resonant slot antenna 2802 Microstrip feed line 2803 Triangle 2804 Circular resonant slot 2806 Electric field line 2910 Unidirectional antenna 140231.doc -41- 201008028 2920 Resonance Slot antenna 2930 Dual-polarized antenna 2940 Dipole 2950 PCB/Bipolar unidirectional antenna 2952 Resonant slot antenna 2953 Conduction area 2954 Unidirectional antenna 2956 Feed line 2958 One-copper area 2959 Half-inch area 2960 Bipolar one-way Antenna 2962 Resonant Slot Antenna 2963 Conducted Area 2964 Unidirectional Vertically Polarized Antenna 2965 Feed Line 2966 Feed 3002 Microstrip Feed Line 3004 Slot 3020 and 3022 Main Feed Line A Interval (Figure 20A, Figure 20C) A, B and/or C microstrip segment (Figure 23) Dl, D2, D3 and D4 delay circuit S 1 and S2 resonant slot 14 0231.doc •42-

Claims (1)

201008028 七、申請專利範圍: 1. 一種向增益可操縱相位陣列天線,其包含: () 傳導薄片,其具有界定於其中的多個槽孔; (b) 針對該等槽孔之每一者,一電微帶饋送線,其與 .該槽孔耦合以形成一磁性耦合的LC共振元件; (c) 主饋送線,其與該等微帶饋送線搞合;以及 (d) 延遲電路,其係在經選擇性控制用以決定該天 線之—方位圖案之一方向的該等槽孔之一或多者之每一 參 者上。 2. 如請求項丨之天線,其中在該等槽孔的至少兩者之間的 間隔係選擇成使得該天線產生一特定方位圖案,其包 括一第一間隔以建立一苜蓿葉圖案或小於該第一間隔之 一第二間隔以建立一數字8圖案,或包括兩者。 3. 如請求項1之天線,其中依據針對對應槽孔之一特定頻 寬來選擇至少一微帶饋送線之阻抗。 4. 如請求項3之天線,其中該至少一微帶饋送線係耦合至 一 50歐姆的源極,以使其阻抗不同於驅動該天線之一無 線電之一輸出電路之阻抗。 5·如請求項丨之天線,其中依據藉由該天線產生之一特定 方位圖案來選擇至少一槽孔之寬度。 6. 如請求項1之天線,其申至少一槽孔具有已知用以產生 一選定頻寬之一明確選定的形狀。 7. 一種高增益可操縱相位陣列天線,其包含: (a) 一傳導薄片,其具有包括一第一槽孔與一第二槽 140231.doc 201008028 孔的界定於其中之多個槽孔; (b) 針對該等槽孔之每一者,一電微帶饋送線,其該 槽孔耦合以形成一磁性耦合的LC共振元件,· (c) 一主饋送線,其與該等微帶饋送線耦合;以及 (d) 其中該第一槽孔及該第二槽孔係藉由一同一微帶 馈送線來饋送,而該第一槽孔包含不具有終止於該第一 槽孔的該微帶饋送線之一電壓饋電式槽孔,而該第二槽 孔包含具有終止於該第二槽孔的該微帶績送線之一電流 饋接式槽孔》 8.如清求項7之天線,其中在該等槽孔的至少兩者之間❾ 一間隔係選擇成使得該天線產生一特定方位圖案,其包 :-第-間隔以建立一苜稽葉圖案或小於該第一間隔之 一第二間隔以建立一數字8圖案,或包括兩者。 膏求項7之天線,其中依據針對對應槽孔之一特定頻 寬來選擇至少—微帶饋送線之阻抗。 。月求項9之天線,其中該至少一微帶饋送線係耦合至 歐姆的源極,以使其阻抗不同於驅動該天線之一無 參 線電之一輪出電路之阻抗。 U·如請求項7之天線,其中依據藉由該天線產生之—特定 、 方位圖案來選擇至少一槽孔之寬度。 ^月求項7之天線,其中至少兩個槽孔具有不同大小或 形狀或兩者及因此不同的共振頻率。 如μ求項7之天線’其中至少-槽孔具有已知用以產生 選定頻寬之一明確選定的形狀。 140231.doc -2 - 201008028 14. 一種向增益可操縱相位陣列天線,其包含: (a) —傳導薄片,其具有界定於其中的多個槽孔; (b) 針對該等槽孔之每-一電微帶饋送線,其與 該槽孔耦合以形成一磁性耦合的LC共振元件; • (C)—主饋送線,其與該等微帶饋送線耦合;以及 ⑷《中該多個槽孔包含不同定向之至少兩個槽孔以 用於接收或發射信號或兩者,而該些信號具有不同定 向。 ❹15·如請求項14之天線,其中在該等槽孔的至少兩者之間的 間隔係選擇成使得s亥天線產生一特定方位圖案,其包 括一第一間隔以建立一苜蓿葉圖案或小於該第一間隔之 一第二間隔以建立一數字8圖案,或包括兩者。 16. 如請求項14之天線,其中依據針對對應槽孔之一特定頻 寬來選擇至少一微帶饋送線之阻抗。 17. 如請求項16之天線,其中該至少一微帶饋送線係耦合至 φ 一 50歐姆的源極,以使其阻抗不同於驅動該天線之一無 線電之一輸出電路之阻抗。 18. 如請求項14之天線,其中依據藉由該天線產生之一特定 方位圖案來選擇至少一槽孔之寬度。 19. 如請求項14之天線,其中至少兩個槽孔具有不同大小或 形狀或兩者及因此不同的共振頻率。 20. 如請求項14之天線,其中至少一槽孔具有已知用以產生 一選定頻寬之一明確選定的形狀。 21 · —種高增益可操縱相位陣列天線,其包含: 140231.doc 201008028 (a) 孔; 一傳導薄片 其具有界定於其中的一或多個槽 W針對該等槽孔之每-者,一電微帶饋送線,其與 該槽孔耦合以形成一磁性耦合的1(:共振元件; ⑷-主镇送線,其與該—或多個微帶饋送線輕合; 以及201008028 VII. Patent Application Range: 1. A gain-adjustable phased array antenna comprising: () a conductive sheet having a plurality of slots defined therein; (b) for each of the slots, An electrical microstrip feed line coupled to the slot to form a magnetically coupled LC resonant element; (c) a main feed line that mates with the microstrip feed lines; and (d) a delay circuit Each of the ones or more of the slots are selectively controlled to determine one of the orientation patterns of the antenna. 2. The antenna of claim 1 wherein the spacing between at least two of the slots is selected such that the antenna produces a particular orientation pattern comprising a first spacing to establish a leaf pattern or less One of the first intervals is a second interval to create a number 8 pattern, or both. 3. The antenna of claim 1, wherein the impedance of the at least one microstrip feed line is selected based on a particular bandwidth for one of the corresponding slots. 4. The antenna of claim 3, wherein the at least one microstrip feed line is coupled to a 50 ohm source such that its impedance is different from the impedance of one of the output circuits that drive one of the antennas of the antenna. 5. The antenna of claim 1, wherein the width of the at least one slot is selected based on a particular orientation pattern produced by the antenna. 6. The antenna of claim 1 wherein the at least one slot has a shape that is known to produce a selected one of the selected bandwidths. 7. A high gain steerable phased array antenna comprising: (a) a conductive sheet having a plurality of slots defined therein including a first slot and a second slot 140231.doc 201008028; b) for each of the slots, an electrical microstrip feed line coupled to form a magnetically coupled LC resonant element, (c) a main feed line, and the microstrip feed a line coupling; and (d) wherein the first slot and the second slot are fed by a same microstrip feed line, and the first slot includes the microstation that does not terminate in the first slot a voltage feed slot with one of the feed lines, and the second slot includes a current feed slot having one of the microstrip lines terminated in the second slot. 8. An antenna, wherein at least two of the slots are selected such that the antenna produces a particular orientation pattern, the packet: - the first interval to establish a chirp pattern or less than the first interval One of the second intervals to create a number 8 pattern, or both. The antenna of claim 7 wherein at least the impedance of the microstrip feed line is selected in accordance with a particular bandwidth for one of the corresponding slots. . The antenna of claim 9, wherein the at least one microstrip feed line is coupled to the source of the ohmic so that the impedance is different from the impedance of one of the ones of the antenna that drives the one of the antennas. U. The antenna of claim 7, wherein the width of the at least one slot is selected in accordance with a particular, orientation pattern produced by the antenna. ^An antenna of item 7, wherein at least two of the slots have different sizes or shapes or both and thus different resonant frequencies. An antenna such as μ of item 7 wherein at least the slot has a shape that is known to produce a selected one of the selected bandwidths. 140231.doc -2 - 201008028 14. A gain-adjustable phased array antenna comprising: (a) a conductive sheet having a plurality of slots defined therein; (b) for each of the slots An electrical microstrip feed line coupled to the slot to form a magnetically coupled LC resonant element; (C) - a main feed line coupled to the microstrip feed lines; and (4) "the plurality of slots The apertures include at least two slots of different orientations for receiving or transmitting signals or both, and the signals have different orientations. The antenna of claim 14 wherein the spacing between at least two of the slots is selected such that the s-ai antenna produces a particular orientation pattern comprising a first spacing to establish a lobed pattern or less One of the first intervals is a second interval to create a number 8 pattern, or both. 16. The antenna of claim 14, wherein the impedance of the at least one microstrip feed line is selected in accordance with a particular bandwidth for one of the corresponding slots. 17. The antenna of claim 16, wherein the at least one microstrip feed line is coupled to a source of φ to 50 ohms such that the impedance is different from the impedance of one of the output circuits that drive one of the antennas of the antenna. 18. The antenna of claim 14, wherein the width of the at least one slot is selected in accordance with a particular orientation pattern produced by the antenna. 19. The antenna of claim 14, wherein the at least two slots have different sizes or shapes or both and thus different resonant frequencies. 20. The antenna of claim 14, wherein at least one of the slots has a shape that is known to produce a selected one of the selected bandwidths. 21 - A high gain steerable phased array antenna comprising: 140231.doc 201008028 (a) a hole; a conductive sheet having one or more slots W defined therein for each of the slots, one An electrical microstrip feed line coupled to the slot to form a magnetically coupled 1 (: a resonant element; (4) a main town-sending line that is lightly coupled to the one or more microstrip feed lines; 其中至)-槽孔包含一蝴蝶結形狀,該蝴蝶結形 狀槽孔在具有該蝴蝶結形狀槽孔的多個尺寸之僅一尺寸 的一矩形槽孔上具有一增加的頻寬。 22.如請求項21之天線,其中在該等槽孔的至少兩者之間的 一間隔係選擇成使得該天線產生—敎方位圖荦,其包 括一第—間隔以建立-苜蓿葉圖案或小於該第—間隔之 一第二間隔以建立-數字8圖案,4包括兩者。 23·如請求項21之天線,其中依據針對對應槽孔之—特定頻 寬來選擇至少一微帶饋送線之阻抗。 从如請求初之天線’其中該至少—微帶饋送線係耗合至Wherein the slot includes a bow shape having an increased bandwidth on a rectangular slot having a size of the plurality of sizes of the bow-shaped slot. 22. The antenna of claim 21, wherein a spacing between at least two of the slots is selected such that the antenna produces a 敎 azimuth map comprising a first interval to establish a 苜蓿 leaf pattern or Less than one of the first intervals, the second interval to establish a -number 8 pattern, 4 includes both. 23. The antenna of claim 21, wherein the impedance of the at least one microstrip feed line is selected in accordance with a particular bandwidth for the corresponding slot. From the antenna of the request, where the at least the microstrip feed line is consumable 一 50歐姆的源極,以使其阻抗不同於驅動該天線之一無 線電之一輸出電路之阻抗。 25. 如請求項21之天線,其中依據藉由該天線產生之一特定 方位圖案來選擇至少一槽孔之寬度。 26. —種高增益可操縱相位陣列天線,其包含: ⑷-電路板,其包括一傳導薄片,該傳導薄片具有 界定於其令的一或多個槽孔; ()針對該等槽孔之每一者,—電微帶饋送線,其與 140231.doc -4- 201008028 該槽孔耦合以形成一磁性耦合的Lc共振元件; ⑷-主饋送線,其與該一或多個微帶饋送線耦合; 以及 (d)非振槽孔’其係與該槽孔在該相同電路板 i,該非共振槽孔用於接收具有與該槽孔不同之一極化 的信號或離開該電路板之邊緣的信號或該兩者信號。 27·如請求項26之天線,其中在該等槽孔的至少兩者之間的 -間隔係選擇成使得該天線產生一肖定方位圖案,其包 ❹ 括—第—間隔以建立-苜㈣圖案或小於該第-間隔之 -第二間隔以建立-數字8圖案,&lt;包括兩者。 28. 如請求項26之天線,纟中依據針對對應槽孔之一特定頻 寬來選擇至少一微帶饋送線之阻抗。 29. 如請求項28之天線,其中該至少一微帶饋送線係耦合至 一 50歐姆的源極,以使其阻抗不同於驅動該天線之一無 線電之一輸出電路之阻抗。 30_如請求項26之天線,其中依據藉由該天線產生之一待定 方位圖案來選擇至少一槽孔之寬度。 •如請求項26之天線,其中該—或多個槽孔包含不同大小 或形狀或兩者並且因此不同的共振頻率之至少兩個槽 孔。 32.如請求項26之天線,其中該共振槽孔具有已知用以產生 一選定頻寬之一明確選定的形狀。 33 _ —種製造一高增益可操縱相位陣列天線之方法,該高增 益可操縱相位陣列天線包括:一傳導薄片,其具有界定 140231.doc 201008028 於其中之m賴孔4針對料槽孔一 電微帶饋送線,其該槽孔耦合 〇从形成一磁性轉合的LC共 振兀件,及一主饋送線,其斑兮 合,其中該方法包含: 或多個微帶饋送線麵 (a) 選擇針對該天線之一特定方位圖案; (b) 在已知用以產生該選定方位圖案的該等槽孔之至 少兩者之間選擇一間隔; (c) 形成一電路板,其包 至少兩個槽孔之該傳導薄片;處於該歡間隔的該 (d) —針對每—槽孔,將—微帶饋送線耗合至該槽孔以 形成—磁性耦合的LC共振元件;以及 34.如主饋送線與該等微帶饋送線之每-者耦合。 ^ ’ 33之;Jr法,其巾該特定方位 圖案或-數字8圖案。 Μ IS:33之方法’其進—步包含選擇針對該天線之兩 者之至振頻率,並形成選擇性不同的大小或形狀或兩 頻率/兩個槽孔,用於產生該等選定的兩個不同共振 ^ = 之方法’其進—步包含依據針對該槽孔之一 37.如請求^頻寬來選擇至少—微帶饋送線之-阻抗。 n &lt;方法,其進—步包含:選擇針對該天線之 孔形::寬;以及選擇已知用以產生該選定頻寬之-楕 狀。❿其中至少一槽孔係形成為具有I亥選定槽孔形 140231.doc 201008028 38. —種天線,其部分藉由如請求項33之方法所形成。 3 9. —種製造一高增益可操縱相位陣列天線之方法,該高增 益可操縱相位陣列天線包括:一傳導薄片,其具有界定 於其中之一或多個槽孔;及針對該等槽孔之每一者,一 電微帶镇送線’其與該槽孔麵合以形成—磁性耗合的lc ”振7C件’及-主鑛送線,其與該—或多個微帶饋送線 耦合’其中該方法包含: 參 (a)選擇針對該天線之一特定頻寬; ㈨選擇針對已知用以產生該選定頻寬之一微帶饋送 線的一阻抗; ⑷形成-電路板’其包括具有界^其中的至少一 槽孔之該傳導薄片; 將-微帶饋送線耗合至該槽孔以依據該選定阻抗 形成-磁性輕合的LC共振元件來產生該選定頻寬;以及 將一主饋送線與該微帶饋送線耦合。 4〇. 2求項39之方法,其進一步包含將該微帶饋送線輕合 - 50歐姆的源極,以使其阻抗不同於驅動該天線之一 無線電之—輸出電路之阻抗。 41.如凊求項39之方法,装推 . 万去其進一步包含選擇針對該天線之 =?振頻率,並形成選擇性不同的大小或形狀或兩 頻率/兩個槽孔1於產生料較的兩個不同共振 4=種天線,其部分藉由如請求項外之方法所形成。 •一種製造-高增益可操縱相位陣列天線之方法,該高增 140231.doc 201008028 益可操縱相位陣列天線包括:—傳導薄片,其具有界定 於其中之-或多個槽孔;及針對該等槽孔之每一者一 :微帶饋送線,其與該槽孔_合以形成-磁㈣合的LC 共振7L件;及—主镇送線,其與該—或多個微帶饋送線 耦合’其中該方法包含: (a)選擇針對該天線之—特定方位圖案; ⑻選擇已知用以產生該選定方位圖案的至少一槽孔 之一寬度; ⑷形成-電路板,其包括具有處於該選定寬度的該 至少一槽孔之該傳導薄片; ⑷將-微帶饋送線轉合至該至少一槽孔以形成一磁 性耦合的LC共振元件;以及 (e)將一主饋送線與該微帶饋送線耦合。 44. 如請求項43之方法,装φ呤姓〜* 其中”亥特疋方位圖案包含一苜蓿葉 圖案或一數字8圖案。 參 45. 如請求項43之方法,其進—步包含選擇針對該天線之兩 :不同共振頻率’並形成選擇性不同的大小或形狀或兩 者之至少兩個槽孔’用於產生該等選定的兩個不同共振 頻率。 46·如請求項43之方法,其進—步包含依據針對該槽孔之- 明確敎的頻寬來選擇至少—微帶饋送線之—阻抗。 47·如請求項43之方法,j:推一半a a 其進步包含選擇針對該天線之一 特定頻寬,·以及選擇已知用以產生該選定頻寬之一槽孔 形狀’而其中至少—槽孔係形成為具有該選定槽孔形 14023I.doc -8- 201008028 狀。 48. —種天線,其部分藉由如請求項43之方法所形成。 49. 一種製造一鬲增益可操縱相位陣列天線之方法,該高增 益可操縱相位陣列天線包括:一傳導薄片,其具有界定 於其中之一或多個槽孔;及針對該等槽孔之每一者,一 電微帶饋送線,其與該槽孔麵合以形成一磁性搞合的LC 共振π件,及一主饋送線,其與該一或多個微帶饋送線 麵合’其中該方法包含: Ο)選擇針對該天線之一特定頻寬; (b)選擇已知用以產生該選定頻寬的至少一槽孔之一 形狀; ⑷形成-電路板,其包括具有具該選定形狀的該至 少一槽孔之該傳導薄片; ⑷將-微帶饋送線柄合至該至少一槽孔以形成一磁 性麵合的LC共振元件;以及 ❹ (e)將一主饋送線與該微帶饋送線耦合。 50.如凊求項49之方法,其進一步包含選擇針對該天線之兩 :不同共振頻率,並形成選擇性不同的大小或形狀或兩 者之至少兩個槽孔’用於產生 玍°亥專選疋的兩個不同共振 頻罕。 51.::求項49之方法’具進一步比含依據針對該槽孔之 確選疋的頻寬來選擇至少一微帶饋送線之_阻抗。 52’ -種天線’其部分藉由如請求項49之方法所形成。 140231.docA 50 ohm source is used to make the impedance different from the impedance of one of the output circuits that drive one of the antennas. 25. The antenna of claim 21, wherein the width of the at least one slot is selected in accordance with a particular orientation pattern produced by the antenna. 26. A high gain steerable phased array antenna comprising: (4) a circuit board comprising a conductive sheet having one or more slots defined in its order; () for the slots Each, an electrical microstrip feed line, coupled to the slot of 140231.doc -4- 201008028 to form a magnetically coupled Lc resonant element; (4) a main feed line that is fed with the one or more microstrips a line coupling; and (d) a non-vibrating slot hole 'in the same circuit board i as the slot, the non-resonant slot for receiving a signal having a polarization different from the slot or leaving the board The edge of the signal or both signals. 27. The antenna of claim 26, wherein the spacing between at least two of the slots is selected such that the antenna produces a schematic orientation pattern comprising - the interval - to establish - (4) The pattern is either smaller than the first interval - the second interval to create a -number 8 pattern, &lt;includes both. 28. The antenna of claim 26, wherein the impedance of the at least one microstrip feed line is selected based on a particular bandwidth for one of the corresponding slots. 29. The antenna of claim 28, wherein the at least one microstrip feed line is coupled to a 50 ohm source such that its impedance is different than the impedance of one of the output circuits that drive one of the antennas. 30. The antenna of claim 26, wherein the width of the at least one slot is selected based on the one of the pending orientation patterns produced by the antenna. • The antenna of claim 26, wherein the or more slots comprise at least two slots of different sizes or shapes or both and thus different resonant frequencies. 32. The antenna of claim 26, wherein the resonant slot has a shape that is known to produce a selected one of the selected bandwidths. 33 _ - A method of manufacturing a high gain steerable phase array antenna, the high gain steerable phase array antenna comprising: a conductive sheet having a definition 140231.doc 201008028 in which the m ray 4 is directed to the slot hole a microstrip feed line, the slot coupling 〇 from forming a magnetically coupled LC resonant element, and a main feed line splicing, wherein the method comprises: or a plurality of microstrip feed lines (a) Selecting a particular orientation pattern for the antenna; (b) selecting a spacing between at least two of the slots known to produce the selected orientation pattern; (c) forming a circuit board having at least two The conductive sheet of the slot; the (d) at the free interval - for each slot, the microstrip feed line is consumed to the slot to form a magnetically coupled LC resonant element; and 34. The main feed line is coupled to each of the microstrip feed lines. ^ '33; Jr method, which has a specific orientation pattern or a -number 8 pattern. Μ IS: 33's method ''steps' include selecting the oscillating frequency for both of the antennas and forming different sizes or shapes or two frequencies/two slots for generating the selected two The method of the different resonance ^ = 'steps' includes selecting at least the impedance of the microstrip feed line according to one of the slots 37. The n &lt; method, the method further comprising: selecting a hole shape for the antenna:: width; and selecting a - shape known to produce the selected bandwidth. At least one of the slots is formed to have a slot shape selected from the group 140231.doc 201008028 38. An antenna is partially formed by the method of claim 33. 3 9. A method of fabricating a high gain steerable phased array antenna, the high gain steerable phased array antenna comprising: a conductive sheet having one or more slots defined therein; and for the slots Each of them, an electric microstrip township line 'which is combined with the slot to form a magnetically consuming lc" 7C piece and a main ore feed line with the or more microstrip feeds Line coupling' wherein the method comprises: (a) selecting a particular bandwidth for one of the antennas; (9) selecting an impedance for a microstrip feed line known to produce the selected bandwidth; (4) forming a - board The conductive sheet includes at least one slot of the boundary; the microstrip feed line is consuming to the slot to form a magnetically coupled LC resonant element in accordance with the selected impedance to produce the selected bandwidth; A method of coupling a main feed line to the microstrip feed line. The method of claim 39, further comprising: coupling the microstrip feed line to a source of -50 ohms to have an impedance different from driving the antenna One of the radio-output circuit impedances. For example, the method of claim 39, loading and pushing. The further includes selecting the frequency of the vibration for the antenna, and forming two different sizes or shapes or two frequencies/two slots 1 for generating the material. A different resonance 4 = antenna, part of which is formed by a method other than the request. • A method of manufacturing a high gain steerable phase array antenna, the high increase 140231.doc 201008028 The steerable phase array antenna comprises: a conductive sheet having - or a plurality of slots defined therein; and for each of the slots: a microstrip feed line that is combined with the slot to form a magnetic (tetra) LC resonance a 7L piece; and a main town feed line coupled to the one or more microstrip feed lines' wherein the method comprises: (a) selecting a particular orientation pattern for the antenna; (8) selecting a selection to generate the selection a width of at least one slot of the orientation pattern; (4) forming a circuit board including the conductive sheet having the at least one slot at the selected width; (4) coupling the microstrip feed line to the at least one slot To form a magnetic coupling And (e) coupling a main feed line to the microstrip feed line. 44. The method of claim 43, wherein the 亥 呤 〜 ” ” ” A number 8 pattern. 45. The method of claim 43, further comprising selecting at least two slots for the antenna: different resonant frequencies 'and forming selectively different sizes or shapes or both' for generating such Two different resonant frequencies are selected. 46. The method of claim 43, wherein the step of selecting comprises selecting at least the impedance of the microstrip feed line based on the bandwidth of the slot for the slot. 47. The method of claim 43, j: pushing half aa, the progress comprising selecting a particular bandwidth for the antenna, and selecting a slot shape known to produce the selected bandwidth 'at least one of the slots The hole system is formed to have the selected slot shape 14023I.doc -8- 201008028. 48. An antenna, partly formed by the method of claim 43. 49. A method of fabricating a gain steerable phased array antenna, the high gain steerable phased array antenna comprising: a conductive sheet having one or more slots defined therein; and for each of the slots In one case, an electrical microstrip feed line is formed to face the slot to form a magnetically engaged LC resonance π component, and a main feed line that is aligned with the one or more microstrip feed lines. The method comprises: Ο selecting a particular bandwidth for one of the antennas; (b) selecting a shape of at least one slot known to produce the selected bandwidth; (4) forming a circuit board comprising having the selection Forming the conductive sheet of the at least one slot; (4) joining a microstrip feed line handle to the at least one slot to form a magnetically-faced LC resonant element; and ❹ (e) placing a main feed line with the The microstrip feed line is coupled. 50. The method of claim 49, further comprising selecting at least two slots for the antenna: different resonant frequencies and forming different sizes or shapes of selectivity or both for generating The two different resonance frequencies of the election are rare. 51.:: The method of claim 49 further wherein the impedance of the at least one microstrip feed line is selected to be greater than the bandwidth selected for the slot. The 52' antenna is partially formed by the method of claim 49. 140231.doc
TW098114863A 2008-05-05 2009-05-05 High gain steerable phased-array antenna with selectable characteristics TW201008028A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/115,537 US20090273533A1 (en) 2008-05-05 2008-05-05 High Gain Steerable Phased-Array Antenna with Selectable Characteristics

Publications (1)

Publication Number Publication Date
TW201008028A true TW201008028A (en) 2010-02-16

Family

ID=41256773

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114863A TW201008028A (en) 2008-05-05 2009-05-05 High gain steerable phased-array antenna with selectable characteristics

Country Status (3)

Country Link
US (1) US20090273533A1 (en)
TW (1) TW201008028A (en)
WO (1) WO2009137485A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355355B2 (en) 2016-04-15 2019-07-16 Pegatron Corporation Antenna system and control method
TWI818246B (en) * 2021-03-24 2023-10-11 友達光電股份有限公司 Antenna device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717245B1 (en) 2010-03-16 2014-05-06 Olympus Corporation Planar multilayer high-gain ultra-wideband antenna
KR101908063B1 (en) 2012-06-25 2018-10-15 한국전자통신연구원 Direction control antenna and method for controlling of the same
US9615765B2 (en) * 2012-09-04 2017-04-11 Vayyar Imaging Ltd. Wideband radar with heterogeneous antenna arrays
CN102868018A (en) * 2012-09-27 2013-01-09 上海交通大学 High-gain reconfigurable wide-angle antenna
US9899741B2 (en) * 2015-01-26 2018-02-20 Rodradar Ltd. Radio frequency antenna
US10686254B2 (en) * 2017-05-31 2020-06-16 The Boeing Company Wideband antenna system
US10804600B2 (en) * 2018-07-23 2020-10-13 The Boeing Company Antenna and radiator configurations producing magnetic walls
US11169240B1 (en) 2018-11-30 2021-11-09 Ball Aerospace & Technologies Corp. Systems and methods for determining an angle of arrival of a signal at a planar array antenna
TWI705670B (en) * 2019-02-12 2020-09-21 華碩電腦股份有限公司 Control method and communication device
US11327142B2 (en) 2019-03-29 2022-05-10 Ball Aerospace & Technologies Corp. Systems and methods for locating and tracking radio frequency transmitters

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705283A (en) * 1971-08-16 1972-12-05 Varian Associates Microwave applicator employing a broadside slot radiator
US3764768A (en) * 1971-08-16 1973-10-09 W Sayer Microwave applicator employing a broadside slot radiator
US5087921A (en) * 1986-10-17 1992-02-11 Hughes Aircraft Company Array beam position control using compound slots
GB8904302D0 (en) * 1989-02-24 1989-04-12 Marconi Co Ltd Microwave antenna array
GB8904303D0 (en) * 1989-02-24 1989-04-12 Marconi Co Ltd Dual slot antenna
US5347287A (en) * 1991-04-19 1994-09-13 Hughes Missile Systems Company Conformal phased array antenna
US5189433A (en) * 1991-10-09 1993-02-23 The United States Of America As Represented By The Secretary Of The Army Slotted microstrip electronic scan antenna
JPH0661735A (en) * 1992-08-13 1994-03-04 Matsushita Electric Works Ltd Planar antenna
DE19712510A1 (en) * 1997-03-25 1999-01-07 Pates Tech Patentverwertung Two-layer broadband planar source
US6130648A (en) * 1999-06-17 2000-10-10 Lucent Technologies Inc. Double slot array antenna
US6292133B1 (en) * 1999-07-26 2001-09-18 Harris Corporation Array antenna with selectable scan angles
US6388621B1 (en) * 2000-06-20 2002-05-14 Harris Corporation Optically transparent phase array antenna
US6650299B2 (en) * 2000-07-18 2003-11-18 Hitachi Cable, Ltd. Antenna apparatus
US6285337B1 (en) * 2000-09-05 2001-09-04 Rockwell Collins Ferroelectric based method and system for electronically steering an antenna
US6611231B2 (en) * 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
TW535329B (en) * 2001-05-17 2003-06-01 Acer Neweb Corp Dual-band slot antenna
US20030184477A1 (en) * 2002-03-29 2003-10-02 Lotfollah Shafai Phased array antenna steering arrangements
KR100587507B1 (en) * 2002-04-19 2006-06-08 노아텍이엔지(주) leaky-wave dual polarized slot type antenna
US6975267B2 (en) * 2003-02-05 2005-12-13 Northrop Grumman Corporation Low profile active electronically scanned antenna (AESA) for Ka-band radar systems
DE10309075A1 (en) * 2003-03-03 2004-09-16 Robert Bosch Gmbh Planar antenna arrangement
US6703975B1 (en) * 2003-03-24 2004-03-09 The United States Of America As Represented By The Secretary Of The Navy Wideband perimeter configured interferometric direction finding antenna array
JP3903991B2 (en) * 2004-01-23 2007-04-11 ソニー株式会社 Antenna device
US7081858B2 (en) * 2004-05-24 2006-07-25 Science Applications International Corporation Radial constrained lens
US7202830B1 (en) * 2005-02-09 2007-04-10 Pinyon Technologies, Inc. High gain steerable phased-array antenna
US7522114B2 (en) * 2005-02-09 2009-04-21 Pinyon Technologies, Inc. High gain steerable phased-array antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355355B2 (en) 2016-04-15 2019-07-16 Pegatron Corporation Antenna system and control method
TWI818246B (en) * 2021-03-24 2023-10-11 友達光電股份有限公司 Antenna device

Also Published As

Publication number Publication date
WO2009137485A3 (en) 2010-02-25
WO2009137485A2 (en) 2009-11-12
US20090273533A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
TW201008028A (en) High gain steerable phased-array antenna with selectable characteristics
US8378910B2 (en) Slot antennas, including meander slot antennas, and use of same in current fed and phased array configuration
US7218282B2 (en) Antenna device
US6982675B2 (en) Internal multi-band antenna with multiple layers
JP3738577B2 (en) ANTENNA DEVICE AND MOBILE COMMUNICATION DEVICE
US7965242B2 (en) Dual-band antenna
US8446328B2 (en) Antenna
EP2201646B1 (en) Dual polarized low profile antenna
JP4131984B2 (en) Variable slot antenna and driving method thereof
JP2002026638A (en) Antenna system
JP2011519542A (en) Wideband built-in antenna using delayed wave structure
US6946994B2 (en) Dielectric antenna
EP1555720A1 (en) A dipole antenna and radio communication device provided with the same
JP2002530909A (en) Patch antenna device
JP3880295B2 (en) Chip antenna
US6469675B1 (en) High gain, frequency tunable variable impedance transmission line loaded antenna with radiating and tuning wing
JP3571999B2 (en) Planar antenna
JP3735582B2 (en) Multilayer dielectric antenna
JP2019097003A (en) Antenna device
WO2009137991A1 (en) Antenna
JP3699687B2 (en) Multilayer dielectric antenna
JPH08321718A (en) Antenna
JP2004112394A (en) Microstrip antenna and radio communication apparatus using it
JP2003124727A (en) Dielectric antenna
JP2005236389A (en) Array antenna and radio communication apparatus using the same