201006037 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種應用於無線網路之天線,詳言之,係 關於一種應用於全球互通微波存取(WiMax)及無線區域網 路(WLAN)之整合型天線。 【先前技術】 隨著無線通訊技術的蓬勃發展,各式多頻的通訊產品也 如雨後春筍般的出現’也因此無線通訊產品逐漸成為人類 生活中的一部分,幾乎所有的新產品都會具備無線傳輸的 功能’以滿足大眾的需求(例如:筆記型電腦或行動式多 媒體裝置時常需要資料傳輸的動作),無線傳輸可以簡化 其許多接線與設定上的困擾,而為達成無線傳輸的目的, 無線傳輸天線的配置成為必要。 然而’目前習用之無線通訊產品之天線大都只能單頻操 作於2.4 GHz頻帶或雙頻操作(滿足2 4及5 GHz頻帶),無法 完全涵蓋目前全球各地所有全球互通微波存取(WiMax)通 訊頻率以及無線區域網路(WLAN)所需之頻率。 因此’有必要提供一種創新且具進步性的可同時應用於 全球互通微波存取(WiMax)及無線區域網路(WLAN)之整合 型天線,以解決上述問題。 【發明内容】 本發明係提供一種應用於全球互通微波存取(WiMax) 及無線區域網路(WLAN)之整合型天線’其包括一基板、 一接地金屬片、一第一輻射金屬片、一連接金屬片、一第 131783.doc 201006037 二輻射金屬片及一第三輻射金屬片。該基板具有一第一表 面°該第一輻射金屬片位於該基板之第一表面上,該第一 轄射金屬片係不連接該接地金屬片,該第一輻射金屬片具 有一第一部分、一第二部分及一開口,該第一部分及該第 二部分分別位於該第一輻射金屬片之二端,該開口係位於 該第一部分及該第二部分之間。該連接金屬片位於該基板 之第一表面上,且連接該接地金屬片。該第二輻射金屬片 位於該基板之第一表面上,該第二輻射金屬片係不連接該 第一輻射金屬片’該第二輻射金屬片具有一本體部分及一 轉折部分’該本體部分係連接該連接金屬片,該轉折部分 與該本體部分間具有一夾角,該轉折部分伸入該第一輻射 金屬片之該開口。該第三輻射金屬片係位於該基板之第一 表面上,且連接該接地金屬片。 該第一部分係位於該接地金屬片、該連接金屬片及該第 二輻射金屬片所圍出之區域内。該第一輻射金屬片與該第 二輻射金屬片耦合共振以產生一第一共振模態,該第三輻 射金屬片輻射出一第二共振模態,該第一輻射金屬片輻射 出一第三共振模態。 藉此’本發明之天線涵蓋了三個頻帶(2.3 GHz至2.7 GHz、3.3 GHz至 3.8 GHz及 5.15 GHz至 5.85 GHz),因此可 以涵蓋目前全球各地所有全球互通微波存取(WiMax)通訊 及無線區域網路(WLAN)所需之頻率。 【實施方式】 請參考圖1及2’分別顯示本發明之天線設置於一筆記型 131783.doc 201006037 電腦螢幕外殼框架之示意圖及局部放大示意圖β本發明之 天線可應用於各種無線電子裝置,包括但不限於筆記型電 腦,其他諸如一般之個人數位助理(pda)等電子產品均可 利用本發明之天線,以達到無線通訊之目的,該筆記型電 腦1具有一螢幕11及一螢幕外殼框架12,本發明之天線 2(如圖3所示)設置於該筆記型電腦i之螢幕外殼框架12,並 : 以一同軸線29連接該天線2至該筆記型電腦1之控制電路, _ 俾利用該天線2進行資料傳輸》 該天線2具有至少一接合結構,用以固定該天線2至該螢 幕外殼框架12。在本實施例中,該接合結構係為一黏膠層 (圖中未示)’其係位於該天線2之背面,用以將該天線2黏 貼於該螢幕外殼框架12。 參考圖3,顯示本發明應用於全球互通微波存取(wiMax) 及無線區域網路(WLAN)之整合型天線之第一實施例之示 意圖。該天線2包括一基板21、一接地金屬片22、一第一 ❿ 輻射金屬片23、一連接金屬片24、一第二輻射金屬片25及 一第三輻射金屬片30〇該基板21具有一第一表面211。該 基板21之材質係選自由塑膠、泡綿、陶瓷、FR_4、印刷電 路板及軟性印刷電路板所組成之群。較佳地,該基板21之 介電常數係高於該第一輻射金屬片23及該第二輻射金屬片 25’而具有降頻之功能。 該接地金屬片22係用以接地。在本實施例中,更包括一 輔助接地金屬片26,貼合於該接地金屬片22。該輔助接地 金屬片26可為鋁箔材質。該輔助接地金屬片%之寬度係為 131783.doc • 8 · 201006037 該接地金屬片22之長度之二分之一至三分之二,且該辅助 接地金屬片26之右側係切齊該接地金屬片22之右端。 該第一輻射金屬片23係位於該基板21之第一表面2U 上。該第一輻射金屬片23係不連接該接地金屬片22、該連 接金屬片24及該第二輻射金屬片25。該第一輻射金屬片23 具有一第一部分231、一第二部分232及一開口 233。該第 一部分231及該第二部分232分別位於該第一輻射金屬片23 ◎ 之二端,該開口 233係位於該第一部分23 1及該第二部分 232之間。亦即,該第一部分231係由該開口 233朝向囷中 左側延伸,且該第二部分233係由該開口 233朝向囷中右側 延伸。 在本實施例中,該第一部分23 1、該第二部分232及該開 口 233均為矩形,且該第一部分231、該第二部分232及該 開口 233係位於該第一輻射金屬片23之上半部,而該第一 輻射金屬片23之下半部係為半圓形》然而在其他應用中, φ 該第一輻射金屬片23之下半部也可以是三角形(如圖4之第 二實施例之天線2A所示)或矩形(如圖5之第三實施例之天 線2B所示)。 該連接金屬片24係位於該基板21之第一表面211上,且 連接該接地金屬片22及該第二輻射金屬片25 »在本實施例 中,該連接金屬片24係為三角形外觀,然而在其他應用 中,該連接金屬片24也可以是其他形狀。 該第二輕射金屬片25係位於該基板21之第_表面211 上。該第二輻射金屬片25係不連接該第一輻射金屬片23。 131783.doc -9- 201006037 該第·一輕射金屬片25具有一本體部分251及·—轉折部分 252。該本體部分251係連接該連接金屬片24,且該本鱧部 分251係平行該第一輻射金屬片23之第一部分231,且該本 趙部分251與該第一部分231間具有一間距G,在本實施例 中,該間距G約為0.5公釐。該轉折部分252與該本趙部分 251間具有一夾角,該夾角係80至1〇〇度,較佳為90度。 該轉折部分252伸入該第一輻射金屬片23之該開口 233 » Φ 該第一輻射金屬片23之該第一部分231係位於該接地金屬 片22、該連接金屬片24及該第二輻射金屬片25所圍出之區 域内,而該第一輻射金屬片23之該第二部分232則位於該 區域之外。 該第三輻射金屬片30係位於該基板21之第一表面211 上’且連接該接地金屬片22。在本實施例中,該第三輻射 金屬片30係為倒L外形,其係由該接地金屬片22向上後向 第一方向(圖中右侧)延伸。然而在其他應用中,該第三輻 φ 射金屬片30也可以是其他形狀》 在本實施例中,該第一輻射金屬片23、該連接金屬片 24、該第二輻射金屬片25及該第三輻射金屬片30係貼合於 該基板21之第一表面211。較佳地,該接地金屬片22、該 連接金屬片24、該第二輻射金屬片25及該第三輻射金屬片 3 0係為一體成型,該連接金屬片24係由該接地金屬片22向 上延伸,該第二輻射金屬片25之本體部分251係由該連接 金屬片24之上端朝向第一方向(圖中右側)延伸,該轉折部 分252係由該本體部分251向下延伸》因此,該接地金屬片 131783.doc -10· 201006037 22、該連接金屬片24及該第二輻射金屬片25所圍出之區域 係類似側U形。該第三輻射金屬片30係由該接地金屬片22 向上後向第一方向(圖中右側)延伸。 該第一輻射金屬片23與該第二輻射金屬片25耦合共振以 產生一第一共振模態,其頻率為2.3 GHz至2.7 GHz。該第 三輻射金屬片30係輻射出一第二共振模態,其頻率為3.3 GHz至3.8 GHz。該第一輻射金屬片23係輻射出一第三共振 模態,其頻率為5.15 GHz至5.85GHz » 在本實施例中,該第一輻射金屬片23下半部右側更包括 一饋入點27 ’該接地金屬片22更包括一接地點28。該饋入 點27及該接地點28用以分別與一同轴線29之一訊號端及一 接地端電性連接。 本發明之天線2涵蓋了三個頻帶(2.3 GHz至2.7 GHz、3.3 GHz至3.8 GHz及5.15 GHz至5.85 GHz),因此可以涵蓋目 前全球各地所有全球互通微波存取(WiMax)通訊及無線區 域網路(WLAN)所需之頻率。 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明》因此’習於此技術之人士對上述實施例進 行修改及變化仍不脫本發明之精神。本發明之權利範圍應 如後述之申請專利範圍所列。 【圖式簡單說明】 圖1顯示本發明之天線設置於一筆記型電腦螢幕外殼框 架之示意圖; 圖2顯示本發明之天線設置於一筆記型電腦螢幕外殼框 131783.doc • 11· 201006037 架之局部放大示意圖; 圖3顯示本發明應用於全球互通微波存取(WiMax)及無線 區域網路(WLAN)之整合型天線之第一實施例之示意圖; 圖4顯示本發明應用於全球互通微波存取(WiMax)及無線 區域網路(WLAN)之整合型天線之第二實施例之示意 圖;及201006037 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an antenna for use in a wireless network, and more particularly to a global interoperability microwave access (WiMax) and wireless local area network (WLAN) ) Integrated antenna. [Prior Art] With the rapid development of wireless communication technology, various multi-frequency communication products have sprung up. 'So wireless communication products have gradually become a part of human life, almost all new products will have wireless transmission. The function 'to meet the needs of the public (for example, notebooks or mobile multimedia devices often need data transmission actions), wireless transmission can simplify many of its wiring and settings, and for the purpose of wireless transmission, wireless transmission antenna The configuration becomes necessary. However, most of the antennas currently used in wireless communication products can only operate in the 2.4 GHz band or dual-band operation (satisfying the 24 and 5 GHz bands), and cannot fully cover all global interoperable microwave access (WiMax) communications. Frequency and frequency required for wireless local area networks (WLANs). Therefore, it is necessary to provide an innovative and progressive integrated antenna that can be applied to both Worldwide Interoperability for Microwave Access (WiMax) and Wireless Local Area Network (WLAN) to solve the above problems. SUMMARY OF THE INVENTION The present invention provides an integrated antenna for global interoperability microwave access (WiMax) and wireless local area network (WLAN), which includes a substrate, a grounded metal piece, a first radiating metal piece, and a Connecting the metal piece, a 131783.doc 201006037 two-radiation metal piece and a third radiation metal piece. The substrate has a first surface. The first radiation metal piece is located on the first surface of the substrate. The first metal plate is not connected to the ground metal piece. The first radiation metal piece has a first portion and a first portion. a second portion and an opening, the first portion and the second portion are respectively located at two ends of the first radiating metal piece, and the opening is located between the first portion and the second portion. The connecting metal piece is located on the first surface of the substrate and is connected to the grounding metal piece. The second radiating metal piece is located on the first surface of the substrate, and the second radiating metal piece is not connected to the first radiating metal piece. The second radiating metal piece has a body portion and a turning portion. Connecting the connecting metal piece, the turning portion has an angle with the body portion, and the turning portion extends into the opening of the first radiating metal piece. The third radiating metal piece is located on the first surface of the substrate and is connected to the grounding metal piece. The first portion is located in a region surrounded by the grounding metal piece, the connecting metal piece, and the second radiating metal piece. The first radiating metal piece and the second radiating metal piece are coupled to resonate to generate a first resonant mode, the third radiating metal piece radiates a second resonant mode, and the first radiating metal piece radiates a third Resonance mode. Thus, the antenna of the present invention covers three frequency bands (2.3 GHz to 2.7 GHz, 3.3 GHz to 3.8 GHz, and 5.15 GHz to 5.85 GHz), thereby covering all global interoperable microwave access (WiMax) communications and wireless devices worldwide. The frequency required for a local area network (WLAN). [Embodiment] Referring to Figures 1 and 2', respectively, the antenna of the present invention is disposed on a notebook 131783.doc 201006037 computer screen housing frame and a partial enlarged view. The antenna of the present invention can be applied to various wireless electronic devices, including However, it is not limited to a notebook computer, and other electronic products such as a general personal digital assistant (PDA) can utilize the antenna of the present invention for wireless communication. The notebook computer 1 has a screen 11 and a screen shell frame 12 The antenna 2 (shown in FIG. 3) of the present invention is disposed on the screen casing frame 12 of the notebook computer i, and: the coaxial cable 29 is connected to the control circuit of the notebook computer 1 by using a coaxial cable 29, and the The antenna 2 performs data transmission. The antenna 2 has at least one engagement structure for fixing the antenna 2 to the screen housing frame 12. In this embodiment, the bonding structure is an adhesive layer (not shown) disposed on the back of the antenna 2 for bonding the antenna 2 to the screen housing frame 12. Referring to Fig. 3, there is shown a schematic view of a first embodiment of the integrated antenna of the present invention applied to global interoperable microwave access (wiMax) and wireless local area network (WLAN). The antenna 2 includes a substrate 21, a grounding metal piece 22, a first radiant metal piece 23, a connecting metal piece 24, a second radiant metal piece 25, and a third radiant metal piece 30. The substrate 21 has a First surface 211. The material of the substrate 21 is selected from the group consisting of plastic, foam, ceramic, FR_4, printed circuit board, and flexible printed circuit board. Preferably, the substrate 21 has a dielectric constant higher than that of the first radiating metal piece 23 and the second radiating metal piece 25'. The grounding metal piece 22 is used for grounding. In this embodiment, an auxiliary grounding metal piece 26 is further included to be attached to the grounding metal piece 22. The auxiliary grounding metal piece 26 may be made of aluminum foil. The width of the auxiliary grounding metal piece is 131783.doc • 8 · 201006037 The length of the grounding metal piece 22 is one-half to two-thirds, and the right side of the auxiliary grounding metal piece 26 is cut to the grounding metal The right end of the slice 22. The first radiating metal piece 23 is located on the first surface 2U of the substrate 21. The first radiating metal piece 23 is not connected to the grounding metal piece 22, the connecting metal piece 24, and the second radiating metal piece 25. The first radiating metal piece 23 has a first portion 231, a second portion 232, and an opening 233. The first portion 231 and the second portion 232 are respectively located at two ends of the first radiating metal piece 23 ◎ , and the opening 233 is located between the first portion 23 1 and the second portion 232 . That is, the first portion 231 extends from the opening 233 toward the left side of the crucible, and the second portion 233 extends from the opening 233 toward the right side of the crucible. In this embodiment, the first portion 23 1 , the second portion 232 , and the opening 233 are both rectangular, and the first portion 231 , the second portion 232 , and the opening 233 are located in the first radiating metal sheet 23 . The upper half, and the lower half of the first radiating metal piece 23 is semi-circular. However, in other applications, the lower half of the first radiating metal piece 23 may also be a triangle (as shown in FIG. 4). The antenna 2A of the second embodiment is shown or rectangular (as shown by the antenna 2B of the third embodiment of Fig. 5). The connecting metal piece 24 is located on the first surface 211 of the substrate 21, and connects the grounding metal piece 22 and the second radiating metal piece 25. In the embodiment, the connecting metal piece 24 has a triangular appearance. In other applications, the connecting metal sheet 24 can also be other shapes. The second light-emitting metal piece 25 is located on the first surface 211 of the substrate 21. The second radiating metal piece 25 is not connected to the first radiating metal piece 23. 131783.doc -9- 201006037 The first light-emitting metal piece 25 has a body portion 251 and a turning portion 252. The body portion 251 is connected to the connecting metal piece 24, and the body portion 251 is parallel to the first portion 231 of the first radiating metal piece 23, and the present portion 251 and the first portion 231 have a spacing G therebetween. In this embodiment, the pitch G is about 0.5 mm. The corner portion 252 has an angle with the portion 251 of the present portion, and the angle is 80 to 1 degree, preferably 90 degrees. The turning portion 252 extends into the opening 233 of the first radiating metal piece 23. Φ The first portion 231 of the first radiating metal piece 23 is located on the grounding metal piece 22, the connecting metal piece 24, and the second radiating metal. The area enclosed by the sheet 25 is located outside the area of the second portion 232 of the first radiating metal sheet 23. The third radiating metal piece 30 is located on the first surface 211 of the substrate 21 and is connected to the grounding metal piece 22. In the present embodiment, the third radiating metal piece 30 is an inverted L outer shape which is extended from the grounding metal piece 22 upward and rearward in the first direction (the right side in the drawing). In other applications, however, the third radiant metal sheet 30 may be of other shapes. In this embodiment, the first radiant metal sheet 23, the connecting metal sheet 24, the second radiant metal sheet 25, and the The third radiating metal piece 30 is attached to the first surface 211 of the substrate 21. Preferably, the grounding metal piece 22, the connecting metal piece 24, the second radiating metal piece 25 and the third radiating metal piece 30 are integrally formed, and the connecting metal piece 24 is upwardly connected by the grounding metal piece 22. Extendingly, the body portion 251 of the second radiating metal piece 25 extends from the upper end of the connecting metal piece 24 toward the first direction (the right side in the drawing), and the turning portion 252 is extended downward from the body portion 251. The grounding metal piece 131783.doc -10· 201006037 22, the area surrounded by the connecting metal piece 24 and the second radiating metal piece 25 is similar to the side U shape. The third radiating metal piece 30 extends from the grounding metal piece 22 upward and rearward in a first direction (right side in the drawing). The first radiating metal piece 23 is coupled to the second radiating metal piece 25 to resonate to generate a first resonant mode having a frequency of 2.3 GHz to 2.7 GHz. The third radiating metal piece 30 radiates a second resonant mode having a frequency of 3.3 GHz to 3.8 GHz. The first radiating metal piece 23 radiates a third resonant mode having a frequency of 5.15 GHz to 5.85 GHz. In the embodiment, the lower side of the lower half of the first radiating metal piece 23 further includes a feeding point 27 The grounding metal sheet 22 further includes a grounding point 28. The feed point 27 and the ground point 28 are electrically connected to a signal end and a ground end of a coaxial line 29, respectively. The antenna 2 of the present invention covers three frequency bands (2.3 GHz to 2.7 GHz, 3.3 GHz to 3.8 GHz, and 5.15 GHz to 5.85 GHz), and thus can cover all global interoperable microwave access (WiMax) communications and wireless area networks around the world. The frequency required for the road (WLAN). However, the above-described embodiments are merely illustrative of the principles of the present invention and its effects, and are not intended to limit the scope of the present invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the antenna of the present invention disposed on a notebook computer screen frame; FIG. 2 is a view showing the antenna of the present invention disposed on a notebook screen casing frame 131783.doc • 11· 201006037 FIG. 3 is a schematic diagram showing a first embodiment of the integrated antenna of the present invention applied to global interoperability microwave access (WiMax) and wireless local area network (WLAN); FIG. 4 shows the application of the present invention to global interoperable microwave storage. A schematic diagram of a second embodiment of an integrated antenna of (WiMax) and wireless local area network (WLAN); and
圖5顯示本發明應用於全球互通微波存取(WiMax)及無線 區域網路(WLAN)之整合型天線之第三實施例之示意圖。 【主要元件符號說明】 1 筆記型電腦 2 本發明之天線之第一實施例 2A 本發明之天線之第二實施例 2B 本發明之天線之第三實施例 11 螢幕 12 螢幕外殼框架 21 基板 22 接地金屬片 23 第一輻射金屬片 24 連接金屬片 25 第二輻射金屬片 26 辅助接地金屬片 27 饋入點 28 接地點 29 同袖線 131783.doc •12· 201006037 30 第三輻射金屬片 211 基板之第一表面 231 第一部分 232 第二部分 233 開口 251 本體部分 252 轉折部分 131783.doc -13-Figure 5 is a diagram showing a third embodiment of the integrated antenna of the present invention applied to Worldwide Interoperability for Microwave Access (WiMax) and Wireless Local Area Network (WLAN). [Description of main component symbols] 1 Notebook computer 2 First embodiment of antenna of the present invention 2A Second embodiment of antenna of the present invention 2B Third embodiment of antenna of the present invention 11 Screen 12 Screen frame 21 Substrate 22 Ground Metal sheet 23 First radiating metal sheet 24 Connecting metal sheet 25 Second radiating metal sheet 26 Auxiliary grounding metal sheet 27 Feeding point 28 Grounding point 29 Same sleeve line 131783.doc •12· 201006037 30 Third radiating metal sheet 211 Substrate First surface 231 first portion 232 second portion 233 opening 251 body portion 252 turning portion 131783.doc -13-