TW201005416A - Fuzzy control device for zoom and autofocus aperture of video camera lens - Google Patents

Fuzzy control device for zoom and autofocus aperture of video camera lens Download PDF

Info

Publication number
TW201005416A
TW201005416A TW97127700A TW97127700A TW201005416A TW 201005416 A TW201005416 A TW 201005416A TW 97127700 A TW97127700 A TW 97127700A TW 97127700 A TW97127700 A TW 97127700A TW 201005416 A TW201005416 A TW 201005416A
Authority
TW
Taiwan
Prior art keywords
control
image
lens
aperture
target
Prior art date
Application number
TW97127700A
Other languages
Chinese (zh)
Other versions
TWI440949B (en
Inventor
Ying-Shing Shiao
Chau-Shing Wang
Ding-Tsair Su
Original Assignee
Univ Nat Changhua Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Changhua Education filed Critical Univ Nat Changhua Education
Priority to TW97127700A priority Critical patent/TWI440949B/en
Publication of TW201005416A publication Critical patent/TW201005416A/en
Application granted granted Critical
Publication of TWI440949B publication Critical patent/TWI440949B/en

Links

Abstract

This invention relates to a fuzzy control device for zooming and autofocus aperture of video camera lens, which uses the technique of image processing and the fuzzy control method to track a target and to control the focus, aperture, and zoom of a video camera lens. In respect of autofocus control of the present invention, the spectrum of the image is captured and used to design an input membership function for controlling the focus of the video camera lens; in respect of automatic control of aperture of the lens, the input membership function is designed by using the standard deviation and grayscale mean value of the target for controlling the aperture of the video camera lens; in addition, the input membership function is designed by using the reliability of the image captured with the target dimension, the change of movement velocity and the target's size so as to achieve the control of autofocus of the video camera lens.

Description

201005416 九、發明說明: 【發明所屬之技術領域】 本發明係-麵雜鏡頭自動對域難賴糊控制装 置。本發計-絲聽_方法錢__綠來追縱移 動目標物及控制攝影機鏡頭的對焦、光圈及變焦。 【先前技術】201005416 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an automatic mismatch control device for a face-to-face lens. The hair-sharing method __ green is used to track the moving target and control the focus, aperture and zoom of the camera lens. [Prior Art]

隨著電腦科技的進步,結合攝影機的電腦視覺的應用和發展 也愈來愈廣泛,舉凡國防、氣象、醫學、工業生產與製造、交通 運輸、農漁業、保全監控料,皆可看到使用攝影機的應用例。 目前動態影像的處理是電腦視覺主要的研究項目之―,視覺舰 追縱或解標系統是典獅研究主題。在即時視服追縱的相 關研究中,完成精確的導引和追礙是主要應用項目之―;在攝影 機鏡頭控制的相關研究中’主要是研究如何控制鏡頭的對焦、光 圈和變焦,清晰且大小射的目標_像,關於後續的處 理、分析、辨識和追縱控制等應用。 視覺飼服追_第-步是練縣,練影伽品質好壞關 係著後翻服追縱結果的成敗,因此,影像峨取品質是很重要 的。然而’由於影響影像榻取品質好壞的因素,除了受到當時的 環境光源时與飾目標雜速度_料,取賴影機的鏡頭 控制亦是神影像品質__素。所以,在娜影像時,若擷 取的衫U很差_g_目標物影雜小,而當環境背景时無法改 變時’可能會發生不正確秘像處理結果,導脚時追縱失敗。 因此,以控制攝影機鏡頭的自動對焦、光圈自動調整及自動變焦 201005416 追蹤,並且適當的縮放目標物的大小,以操取清晰的影像’可利 於後續的處理。為了達到即時追縱的目的,因此,鏡頭的控制和 影像處理須具備即時且快速運算的功能。 攝影機鏡頭的控制,是控制攝影機鏡頭的對焦、光圈及變焦, 以便取得清晰且適當大小的目標影像。例如目標物在影像中非常 微小且以高速隨機移動,則目標物影像資訊和目標物外形輪廓的 可信任度會降低’加上雜訊太多,及取像時的環境光源變化太大, 都可能使目標物超出辨識的範圍,導致追蹤失敗。因此本發明希 望追蹤目標物的影像,能控制在適當的大小範圍内。故取像考慮 的因素有目標物的大小、移動速度和移動方向的變化與當時環 背景等。 又 【發明内容】 ❹ 本發明案卿機鏡獅取像控制,由攝雜⑽)掘取影像 時’首先判斷欲追蹤之目標物是否在所擷取的影像中,且其戶_ =之衫像疋否β晰可辨,祕移動目標物的不規則移動,追縱時 環境背景的光線、照明條件的改變,加上移動目標物在追縱時 類取之影像大小等等條件的變簡素,若攝繼職 糊控 調整與_不料,财造棘像翻,較絲觸是何^ 動物件與無法追蹤目標物。因此,鏡取像控制纽重要的, =明案勵自峨、辆自_及自動 基於上述目的,為了有較好的取像 制的方法纽計鏡_控_。邮像_譜做魏 201005416 的輸入歸屬函數。以影像灰階值的平均值和標準差做為鏡頭光圈 控制的輸入歸屬函數。以目標物的大小、移動速度的變化及外形 輪廓改變時影像的可信任度,做為鏡頭變焦控制的輪入歸屬函 數。這些輸人觸錄簡_論運算來決定賴、細及變隹 模糊控,器的模糊規則關係,並以極大—極小演算做為模糊合成推、 論的運异法’並利用加權平均(weighted average)解模糊化後做 為鏡頭對焦、光圈及變焦模糊控制器的輸出,最後再將賴糊化 ❹的輸纽果轉換成實際的鏡輯焦、細及馬達的控制電塵。 【鏡頭自動對焦的模糊控制器】 正確的對线棘清晰影像的第—步,對-倾職鏡頭而 r景物域像_射用高斯透鏡錄定律(G_ian _ 來表示: 7With the advancement of computer technology, the application and development of computer vision combined with cameras has become more and more extensive. For all defense, meteorology, medicine, industrial production and manufacturing, transportation, agriculture, fishery, and security monitoring materials, we can see the use of cameras. Application examples. At present, the processing of motion pictures is the main research project of computer vision, and the visual ship tracking or unmarking system is the research theme of the lion. In the related research of real-time viewing and tracking, it is the main application project to complete accurate guidance and tracking; in the related research of camera lens control, 'mainly study how to control the focus, aperture and zoom of the lens, clear and Large and small targets _ like, for subsequent processing, analysis, identification and tracking control applications. The visual feeding suit chasing _ the first step is to practice the county, and the quality of the photographic gamma is related to the success or failure of the smashing of the results. Therefore, the image quality is very important. However, due to the factors affecting the quality of the image couch, in addition to the ambient light source and the target target speed, the lens control of the camera is also the image quality of the god. Therefore, in the case of Na Na, if the shirt U is very poor, the target image is small, and when the environment is not changed, the result of the incorrect secret image processing may occur, and the tracking fails. Therefore, by controlling the autofocus of the camera lens, auto-tuning of the iris, and auto-zooming 201005416, and appropriately scaling the size of the object to obtain a clear image can be used for subsequent processing. In order to achieve the purpose of instant tracking, the lens control and image processing must have the function of instant and fast calculation. The camera lens is controlled to control the focus, aperture and zoom of the camera lens in order to obtain a clear and appropriately sized target image. For example, if the target is very small in the image and moves at a high speed, the trustworthiness of the target image information and the outline of the target will be reduced. 'There is too much noise, and the ambient light source when the image is taken changes too much. It may cause the target to exceed the identified range, resulting in tracking failure. Therefore, the present invention hopes to track the image of the object and can be controlled within an appropriate size range. Therefore, the factors considered in the image are the size of the target, the moving speed and the change of the moving direction, and the background of the ring at that time. [Explanation] ❹ The invention of the case of the lion mirror control, when the image is captured by the camera (10), 'first judge whether the target to be tracked is in the captured image, and its household _ = shirt Such as 疋 No β is clearly identifiable, the irregular movement of the secret moving object, the change of the light of the environmental background during the tracking, the change of the lighting condition If the photo-advancement of the post-advancement control and _ unexpectedly, the fortune of the fortune is turned over, and the silk touch is what the animal is and cannot track the target. Therefore, the image acquisition control is important, = the case is self-defeating, the vehicle is self-contained, and the automatic is based on the above purpose, in order to have a better method of image acquisition. The mail image _ spectrum is the input attribution function of Wei 201005416. The average and standard deviation of the image grayscale values are used as the input attribution function for the lens aperture control. The image's trustworthiness is determined by the size of the target, the change of the moving speed, and the change of the contour of the image. These losers touch the simple _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Average) Defuzzification is used as the output of the lens focus, aperture and zoom fuzzy controller, and finally the converted fruit is converted into the actual mirror focus, fine and motor control dust. [Fuzzy autofocus fuzzy controller] The correct step for the sharp image of the line, the opposite - the demotion lens and the r scene object image - the Gauss lens recording law (G_ian _ to indicate: 7

~ Γ-"_ "' FL λ DI rh A U1 ⑴ 式(1)中aFL為鏡頭的焦—th),DI是目標物與鏡面中心之 距離,A是鏡面中心與成像平面的距離,亦即所謂的影像寬度細辟 =她),也稱為攝影機常數(camera_㈣,一般而言,办孔。 =像平面移A亦隨即改變,可齡使影像模糊,因此必須 =焦距FL的長度,以取得清晰的影像。欲判斷擷 =頻=的:像以富立葉轉換 命模糊^ 稳機愈清晰’反之’則表示影像 其差Ϊ值俞^ 是計算影像邊緣二侧的_度之差異值,若 、、一 ’則表示影聽清晰,反之’職示影像愈模糊。 201005416 由於計算影像的富立葉轉換較快速’且容易分析其轉換結 果’因此本發明利用影像富立葉轉換計算影像的頻譜,建立對焦 控制的輸入歸屬函數。 本發明採用輸入及輸出變數的論域與語言項歸屬函數離散化 的方法’來設計模糊控制器。對焦控制的輸入及輸出變數的論域 離散化對照表如表1所示,其中輸入變數為影像的富立葉頻譜/, 其論域為[0〜256],輸出變數為對焦馬達的控制電壓&,其論域為 表1對焦控制的輸入及輸出變數論域離散化對照表~ Γ-"_ "' FL λ DI rh A U1 (1) where aFL is the focal length of the lens—th), DI is the distance between the target and the center of the mirror, and A is the distance between the center of the mirror and the imaging plane. Also known as the image width fine = her), also known as the camera constant (camera_ (four), in general, the hole. = image plane shift A also changes, the age can make the image blur, so must = the length of the focal length FL, In order to obtain a clear image. To judge 撷 = frequency =: like the Fu Li Ye conversion life blur ^ The more stable the machine is, the opposite is the opposite of the image, the difference between the image and the value of the image is the difference between the two sides of the image. If , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The input attribution function of the focus control is established. The invention adopts the method of discretizing the domain and the language term attribution function of the input and output variables to design the fuzzy controller. The discretization of the input and output variables of the focus control The comparison table is shown in Table 1, where the input variable is the Fourier spectrum of the image /, the domain is [0~256], and the output variable is the control voltage & of the focus motor. The field of view is the input of the focus control of Table 1. Discrete table of output variable domain

離散位階 影像FFT頻譜/s 對焦馬達控制電壓F/ -3 〇^<32 -8 ^ V/K -6 -2 32 部 <64 -6^Vf<A -1 64^fs<96 -4^Vf<-2 0 96^/^160 Γ -2^Vf^2 +1 160</,^192 2<Vf^4 +2 192 </<224 4<Vf^6 +3 224</^256 6<Vf^S 〇 影像富立葉轉換頻譜語言項的輸入歸屬函數如表2所示。其 中定義影像富立葉轉麵譜語言項歸屬函數FFi(Lqw)表示影像富 立葉轉換的結果,其頻譜分饰的高頻成份較少,低頻成份較多, 亦即表示擷取的影像很模糊。表示其頻譜分佈的高頻 成份與低頻成份分佈適中,代表掏取的影像清晰。奶邱幽表示 其頻譜分佈的高頻成份較多,代表娜的影像很清晰。 對焦馬達控制電壓語言項的輸出歸屬函數如表3所示,其中 定義對焦馬達控制電壓語言項歸屬函數%(Dee·)表示縮短焦 201005416 距’ /^(Medium)表示適中’凡咖⑽脱)表示增長焦距Discrete level image FFT spectrum / s focus motor control voltage F / -3 〇 ^ <32 -8 ^ V/K -6 -2 32 parts <64 -6^Vf<A -1 64^fs<96 -4 ^Vf<-2 0 96^/^160 Γ -2^Vf^2 +1 160</,^192 2<Vf^4 +2 192 </<224 4<Vf^6 +3 224</ The input attribute function of ^256 6<Vf^S 〇 image Fourier transform spectrum language term is shown in Table 2. The definition function FFi(Lqw) of the image of the image of the Fourier transform surface of the image indicates the result of the image-rich leaf transformation. The spectrum component has fewer high-frequency components and more low-frequency components, which means that the captured image is blurred. The high-frequency components and low-frequency components of the spectral distribution are moderately distributed, indicating that the captured image is clear. Milk Qiuyou said that the spectrum has a high frequency component, and the image of Na is very clear. The output attribution function of the focus motor control voltage language term is shown in Table 3, in which the focus motor control voltage language term attribution function %(Dee·) is defined to indicate that the shortened focus 201005416 is from '/^(Medium) means moderate 'every coffee (10) off) Indicates the growth focal length

表2影像FFT賴語言項錄人歸屬函數Table 2 image FFT linguistic item entry attribute function

制電壓語言項輸出歸屬函Voltage language item output attribution letter

決定了輸入和輸出歸屬函數後,利肋Then .的 式來描述影像的富立轉換結果和鏡觀焦控制的義,、經S 模糊控制規則如下所示: 定義其 i?Fi - IF fs is FFx and Afs is plus TiffiN ^ .g ^ 也:IF Ais ^ and 从 is minus ^ ^ ❹ 知:IF A is FF2 and ^ is pks TH£n ^ is ^ ^:IF fs is FF2 and^ is ^ TiffiN F/ .§ ^ ^F5:IF fs is FF3 TfffiN vf is FL2 其中輸入變數/,是觀的影像的富立轉換頻譜訊號,㈣ 6和/2時擷取的影像的富立葉轉換頻譜訊號的差值,戶^ =,)/⑹研’砂2 ’项為影像的富立葉轉換頻譜訊號 屬函數讀鱗她彻的輪出魏,肋控制對焦 、”達/¾ ’/¾ ’ 7¾是對焦馬達控制電壓的輸出歸屬函數。 在控制對焦馬達的模糊控制規則中,例如模糊控制規則知, 201005416 Ο 若擷取的雜的富立飾細譜峨< 是FFi,絲其低頻成份較 多’高頻成份較少,且从為正時,則其模糊輪出歸屬函數為吨, 表不須保制先增加或齡的控糖,,料增長或雜焦距的方 向是正顧,其械朗鱗控魏麵輸歧卜不須改 變電壓的大小和極性。例如模糊控制規貝W ’其輸出控制與知 相同,只是心的變化量較小。例如模糊控制規則^,若顧取的影 =的富立葉轉換頻軸U是研,且从為負時,則其模糊輸出 歸屬函數為~絲秋增絲縮織賴方向與正顧焦的方 向是相反的,必須改變原先增加或減少的控制量,亦即須改變輪 出·的大小和極性,朝與原先相反之方向縮短或增長隹距,並 ,對應的對焦馬達控制輕的輸出是又例如模她制規則 其輸出控制與^相同,只是咪變化量較小。其他的模糊 控制規則如是類推。 決定了鏡頭對焦控制的模糊控制規則後,再以模糊推論運算 、'、疋其模糊健縣,其運算法表示如下··After determining the input and output attribution functions, the formula of the tiling Then. describes the image of the rich conversion result and the mirror focus control. The S fuzzy control rule is as follows: Define its i?Fi - IF fs is FFx and Afs is plus TiffiN ^ .g ^ Also: IF Ais ^ and from is minus ^ ^ ❹ Know: IF A is FF2 and ^ is pks TH£n ^ is ^ ^:IF fs is FF2 and^ is ^ TiffiN F / .§ ^ ^F5:IF fs is FF3 TfffiN vf is FL2 where the input variable /, is the rich conversion spectrum signal of the image, (4) the difference between the Fourier transform spectrum signals of the captured image at 6 and /2 , household ^ =,) / (6) research 'sand 2' item for the image of the Fourier transform spectrum signal is a function to read the scales her thorough round, Wei control focus, "Da / 3⁄4 '/3⁄4 ' 73⁄4 is the focus motor control The output of the voltage belongs to the function. In the fuzzy control rule that controls the focus motor, for example, the fuzzy control rule is known, 201005416 Ο If the miscellaneous Fu Li decorated fine spectrum 峨 < is FFi, the wire has more low frequency components. The composition is less, and when it is positive, its fuzzy round-off attribution function is ton, and the table does not need to be protected first or The age of sugar control, the growth of the material or the direction of the focal length is positive, and its mechanical scale control Wei surface loss does not need to change the magnitude and polarity of the voltage. For example, the fuzzy control gauge W' its output control is the same as knowing, just The amount of change of the heart is small. For example, the fuzzy control rule ^, if the shadow of the Fourier transform frequency axis U is the research, and the slave is negative, then the fuzzy output attribution function is ~ silk autumn increase silk weaving The direction is opposite to the direction of the positive focus. It is necessary to change the amount of control that was originally increased or decreased, that is, the size and polarity of the wheel must be changed, shortening or increasing the distance in the opposite direction to the original, and the corresponding focus. The light output of the motor control is, for example, the same as the output control of the module, but the amount of change of the microphone is small. Other fuzzy control rules are analogous. After determining the fuzzy control rule of the lens focus control, the fuzzy inference operation is performed. , ', 疋 模糊 模糊 健 Jianxian, its algorithm is expressed as follows··

Kf =^, URF2 u^3 uRfs ⑺ 求得輸入和輸出的模糊關係規則之後,本發明以極大 鼻法做合成演算,如下式_ : = max{min{A(/i)5/U(^)}} (3) =中/</;)為輸入歸屬函數’代_取的影像的富立葉轉換頻譜 ° 為模糊關係規則庫‘的歸屬函數。 求件模糊推論結果後,再選擇加權平均,將模糊推論所得之 201005416 其方法如下式 (4)Kf =^, URF2 u^3 uRfs (7) After obtaining the fuzzy relation rule of input and output, the present invention performs the synthetic calculus with the maximal nasal method, as follows: _ : = max{min{A(/i)5/U(^ )}} (3) =中/</;) is the attribution function of the Fourier transform spectrum of the image of the input attribution function 'generation_ is the fuzzy relation rule base'. After the fuzzy inference results are obtained, the weighted average is selected, and the fuzzy inference is obtained. The method is as follows: (4)

松糊結果解模糊,做為對焦控綱實際輪出信號 所示: ° J FI,The result of the looseness is unambiguous, as the actual turn-off signal of the focus control unit: ° J FI,

ZRLP 式(4)中是解模糊的輪出結果,表示控 號,^是合絲_論絲的齡錢戈付t出控制信 歸屬函數之歸屬度。最後將解模糊的輪::轉:莫: 的對焦馬達的輸出控制電壓(,如式(5)所示: 、*ZRLP (4) is the result of the deblurring rotation, which indicates the control number, and ^ is the degree of attribution of the attribution function of the control letter of the age of the wire. Finally, the deblurred wheel:: turn: Mo: The output control voltage of the focus motor (as shown in equation (5): , *

Vf=-FI (5) 【鏡頭光圈的模糊控制器】 數位影像的灰階統計圖隱含著影像的—些特性和資訊 如:灰階㈣平均值錄的是縣明細程度,平均值較高代表 的是較党的影像,反之,平均值較低則代表較暗的影像,所以与 做階值的平均值與影像的明亮度成正比。又灰階值的標準差^ 〇表的意義是影像灰階⑽_細,高_範_影像表示其變 異數高,反之,則表示其變異數低。 因此’利用灰階統計圖來設計鏡頭光圈的模糊控制器,若影 像灰階值的平均錄尚’則表示光源太亮或鏡頭的光圈太大,須 將光圈縮小;反之,麵將細加大。因魏影像麵值的平均 值和標準差做為光__二個輸人觸函數,將其歸屬函數集 合分別假設為G,•和马’以便決定鏡頭光圈的大小。將輸入變數_ 定義為影像的灰階平均值,如下式所示: 201005416 - NxM ⑹ 式(6)中"^於是影像的像素總數,若一幅影像的# = Λ/,則總像素 另外將輪入變數%定義為影像灰階值的標準差,則。如 所示: σ" 式 [255 CTn=yi(g-g„)2P(g) ^ ρω=ψ ❹斗、 Ν (8) 式(8)中g是影像的灰階值,是影像中像素灰階值為g的點數, 故Pfe)為影像灰階值為g的機率。本發明的影像灰階值範 [〇〜255]。 马 光圈控制的輸入及輸出變數的論域離散化對照表如表4所 示,其中影像灰階平均值瓦的論域為[0〜255],影像灰階值的標準 差%的論域為[〇〜128],輸出變數光圈馬達控制電壓的論域為 [~8~~β] 〇 "、、 表4光圈控制的輸入及輸出變數論域離散化對照表 離散位階 影像灰階平均值艮 影像灰階值標準差σ„ 光圈馬達控制電壓^ -3 〇^g„<64 0^σ„<16 -2 —---- 64$ 瓦 <96 16 鑫 σ„<32 -1 96彡瓦<112 32^σΛ<48 -4^Vm<.2 0 —-------------- 112^^^144 48^ σ„ ^80 -2^Vm^2 +1 —----— 144<g„^160 80<σ„^96 2<Vl +2 --- 160<g„^192 96<σ„^112 4<Vm^6 +3 —--- 192<g„^255 112<σ„^128 6<Vi^8 影像明亮度語言項的輸入歸屬函數G,·如表5所示。其中將表 12 201005416 :像職賴影縣辭均㈣輸人觸錢定誠七個亮度 3言項觸純,以雜_),㊉知撕剛,^表 0示射(ZR),Q表示綱,&表示過 G表示很亮(PB)。 ❹ 表5 y像灰階平均值語言項的輸入歸屬函數Vf=-FI (5) [Fuzzy controller for lens aperture] The grayscale statistical graph of the digital image implies the image--some characteristics and information such as: grayscale (four) average value is the county level, the average value is higher It represents a more image of the party. Conversely, a lower average value represents a darker image, so the average value of the order value is proportional to the brightness of the image. The standard deviation of the grayscale value is the grayscale (10)_thin, and the high_nor_image indicates that the variation is high, and vice versa, the variation is low. Therefore, the fuzzy controller that uses the gray scale statistical map to design the lens aperture, if the average recording of the grayscale value of the image is 'or the light source is too bright or the aperture of the lens is too large, the aperture must be reduced; otherwise, the surface will be enlarged. Because the average value and standard deviation of the Wei image surface values are used as the two input function of the light __, the set of attribution functions is assumed to be G, • and horse respectively to determine the size of the lens aperture. The input variable _ is defined as the grayscale average of the image, as shown in the following equation: 201005416 - NxM (6) In equation (6), "^ is the total number of pixels in the image. If # = Λ/ of an image, the total pixel is additionally Define the wheeled variable % as the standard deviation of the image grayscale value. As shown: σ" [255 CTn=yi(gg„)2P(g) ^ ρω=ψ ❹, Ν (8) where (g) is the grayscale value of the image, which is the gray level of the pixel in the image. The value is the number of points of g, so Pfe) is the probability that the gray scale value of the image is g. The gray scale value of the image of the present invention is [〇~255]. The discretization of the input and output variables of the horse aperture control is as follows: Table 4 shows that the field of the image grayscale mean watt is [0~255], the standard deviation of the image grayscale value is [〇~128], and the field of the output variable aperture motor control voltage is [~8~~β] 〇",, Table 4 Aperture Control Input and Output Variables Discretization Comparison Table Discrete Position Image Grayscale Average 艮 Image Grayscale Value Standard σ„ Aperture Motor Control Voltage ^ -3 〇^g„<64 0^σ„<16 -2 —---- 64$ watts <96 16 鑫σ„<32 -1 96 彡 <112 32^σΛ<48 -4^ Vm<.2 0 —-------------- 112^^^144 48^ σ„ ^80 -2^Vm^2 +1 —----- 144<g„^ 160 80<σ„^96 2<Vl +2 --- 160<g„^192 96<σ„^112 4<Vm^6 +3 —--- 192<g„^255 112<σ„^128 6<Vi^8 The input attribute function G of the image brightness language item is as shown in Table 5. Among them, Table 12 201005416: like the Lai Ying County resignation (four) loses people to touch the money Dingcheng seven brightness 3 words touch pure, to miscellaneous _), ten know tears, ^ table 0 shot (ZR), Q indicates The outline, & indicates that G is very bright (PB). ❹ Table 5 y image input function of gray level mean language term

::ί,值標準差語言項的輸入歸屬函數乓如表 ❹ ==階=差的輪,函數:::二_,=:=準差—表示過低過高_,馬表示後高㈣。、(ZR)4表不桃S)’私表示 差語言項的輪入歸屬函數 0.6 0.5 0~ +1 ~+Γ +3 ~ ~Γ 0 0 ~0~ ~~〇~ 0.6 0 0 0 丄 0.5 0 b 0-6 1 0.6 0 0 0.7 1 0.7 0 0.6 0.8 1 纽上項的輪出歸屬函數如表7所示。其中 °項的1錄定義成七個語言項歸 丑1_) ^6 〇 ~0~ J^6(PM) 光圈馬達控制電壓語言 將光圈馬達控制電壓 201005416 屬祕,况表示光圈開度很小 罐s),表示適中㈣,/ )_ f2表不過小_,表示 恥表示报大_。 5 τ大(PS) ’风表示過大(PM) ’ 決定了輸入與輪出歸屬函數後,利用庄 式來描述職灰_辭触和縣_.THEN...賴糊齡 則之關係,其模糊控制規則如下式所示;、兄項光圈的模糊控制規 ^•IF gn isGiand σ j ❹ 式(9)中 /=1,2,.··7,凤2,..·7,㈠ 2 ”7 :咖㈣ (9) 時間,《時的影像灰階平均值,σ柄門㈣,2,..49,輸入變數瓦為 以影像_侧_輸人„:^=触做難標準差, 輸入歸屬函數’匕是光圈模糊控制器的輪=灰:值標準差的 馬達,是光圈馬達控細的輸出歸^數’用以控制光圈 以離散位階 +2 0.6 +3 ❹ 0 0.5 0::ί, the value of the standard deviation language entry input attribute function such as table ❹ == order = difference round, function ::: two _, =: = standard deviation - means too low too high _, horse means after high (four) . (ZR)4 is not a peach S) 'Private indicates the round-in attribution function of the difference language item 0.6 0.5 0~ +1 ~+Γ +3 ~ ~Γ 0 0 ~0~ ~~〇~ 0.6 0 0 0 丄0.5 0 b 0-6 1 0.6 0 0 0.7 1 0.7 0 0.6 0.8 1 The round-off assignment function of the upper term is shown in Table 7. The 1 record of the ° item is defined as seven language items ugly 1_) ^6 〇~0~ J^6(PM) The aperture motor control voltage language will control the aperture motor control voltage 201005416, which means that the aperture opening is very small s), indicating moderate (four), /) _ f2 table is not small _, indicating shame indicates big _. 5 τ大(PS) 'Win means too large (PM)' After determining the input and rotation attribution function, use Zhuang style to describe the relationship between the job ash and the county _.THEN... The fuzzy control rule is as follows: the fuzzy control rule of the brother's aperture ^•IF gn isGiand σ j ❹ In the formula (9) /=1,2,.··7, Feng 2,..·7, (1) 2 "7: Coffee (4) (9) Time, "the average gray level of the image, the stalk door (four), 2, ..49, the input variable watt is the image _ side _ input _: ^ = touch difficult standard deviation , input attribution function '匕 is the aperture of the aperture fuzzy controller = gray: the standard deviation of the motor, is the aperture motor control fine output ^ ' to control the aperture to discrete scale +2 0.6 +3 ❹ 0 0.5 0

0J 1 入 歸屬^ ^ 發明設計了 2組共7x7.個輸 1屬函數’並且設計了7個輸出歸屬函數 键K $如 因此’由2組輸入 歸屬函數、域的IF...THEN."模輸含趣 4〇^ \ 3式福述的模糊控制規則共有 、为別由及R1,及IR2,…及ir49組成,例如. : IF gn is G1 and σ„ is El THEN Vm is IRy 2010054160J 1 into the attribution ^ ^ Invented the design of 2 groups of 7x7. A lose 1 genera function ' and designed 7 output attribution function key K $ as such 'by 2 sets of input attribution function, domain IF...THEN.&quot The fuzzy control rules of the model input are 4, ^ 3, and the fuzzy control rules are common, and are composed of R1, and IR2, ... and ir49, for example. : IF gn is G1 and σ„ is El THEN Vm is IRy 201005416

Rjr2 · IF gn is Gx and ση is E2 THEN VIR is IR6Rjr2 · IF gn is Gx and ση is E2 THEN VIR is IR6

Rm : IF gn is Gx and is THEN VIR is /J?6 i?iR47: IF gn is Gn and σ„ is Es THEN Vm is IR2 Riras : IF g; is G7 and ση is E6 THEN VIR is ir2Rm : IF gn is Gx and is THEN VIR is /J?6 i?iR47: IF gn is Gn and σ„ is Es THEN Vm is IR2 Riras : IF g; is G7 and ση is E6 THEN VIR is ir2

Rir49 : IF is Gn and σ„ is Εη THEN VIR is 在控制光圈馬達的模糊控制規則令,例如模糊控制規則, 若擷取的影像的灰階平均值很低,影像亮度很暗(Gi),且影像的灰 階值標準差很低(五〇時,則其模糊輸出歸屬函數為汉?,表示須將 光圈打開到很大的開度,其相對應的光圈馬達控制電壓的輸出是 厂《’又例如模糊控制規則及JR*9’若操取的影像的灰階平均值很高, 影像亮度很亮(Gy),且影像的灰階值標準差很高(石)時,則其模糊 輸出歸屬函數為/見,表示須將光圈關到很小的開度,其相對應的 光圈馬達控制餅的輸出是而其它的模糊控制規則如是類 推,整個鏡頭光圈控制的模糊控制規則如表8所示。 表8攝影機光圈的模糊控制規則 state Ei e3 e4 E5 e6 Εη Gi 1R7 IRi IRe IR6 1¾ TR1 〇2 1K6 IKi IK5 IRs IRs IR4 IR^ (¾ IRe IRs IRs IR4 IR4 TR, IR3— 〇α 1K6 IRs IR4 IR4 IR4 1¾' TR, g5 IRs 1K5 1K4 IR4 IR3 IRs IR, g6 IRs IR4 1R3 IR3 IR3 TR. IR, Gy IR4 IR3 1R2 1R2 IR2 ir2 IR) 決定了鏡頭光圈控制的模糊控制規則後,再以模糊推論運算 法決定其模糊關係規則庫,其運算法表示如下: _ 15 201005416 ^mlR — VJ RIR2 U......。^«48 ^ 及所49 (j〇) 求传輸入和輪出的模糊關係規則之後,以極大-極小演算法做 合成演算,如下式所示: =max {min{(//(gn)η μ(σ„)), M(Rm!R) }} (11) 式(11)中Μ&1)&Μσ")為輸入歸屬函數,分別代表影像灰階平均值g 及衫像灰階值標準差為整個模糊關係規則庫及㈣的歸屬 函數。 Ο 求得模掏推論結_,再以加權平均將模糊推論所得之模糊 、”》果解獅’做為細控制的實際輸出信號,其方法如下式所示: 7 uIRi ς^λ (12: ΣΜη ίί /Λ/ 式()中4·«;^解模糊的輸出結果,表示控制光圈大小的實際輪注 控制信m合絲_論絲_合贿,是合成相 糊推論結細_數之歸屬度。本發財_所使用之_梢 鏡頭的細其她為F22c,絲細的初始錄 的位置。 最後將解模糊的輸出結果轉換成實際的光圈馬達的輸出控制 電壓PiR,如下式所示: (13) 【鏡頭變焦的模糊控制器】 大小 攝影機鏡頭的變焦模糊控制器,其輸入變數&定義為目^ d、,且將其輸入歸屬函數集合設為為,輸入變數心定義為目標 16 201005416 物移動速度的變化,且將其輸入歸屬函數集合設為易,輪入變數 c«定義為影像處理所得之目標物外形輪廓的可信任度,且將其輸 入歸屬函數集合設為q,用上述的輸入歸屬函數集合決定縮放目 標物的大小’以便完成鏡頭的變焦控制。 本發明將輸入變數a定義為在時間時目標物投影到x軸和 少轴的水平和垂直長度d),/y(g)的對角線,知如下式所示: an = (0 + ^(0 (14) ΟRir49 : IF is Gn and σ„ is Εη THEN VIR is a fuzzy control rule that controls the aperture motor, such as the fuzzy control rule. If the grayscale average of the captured image is low, the image brightness is very dark (Gi), and The standard deviation of the grayscale value of the image is very low (when the time is five, the fuzzy output attribution function is Han?, indicating that the aperture must be opened to a large opening, and the output of the corresponding aperture motor control voltage is the factory' For example, if the fuzzy control rule and JR*9' have a high grayscale average value, the image brightness is very bright (Gy), and the grayscale value of the image is very high (stone), then the fuzzy output is The attribution function is / see, indicating that the aperture must be closed to a small opening, the corresponding aperture motor controls the output of the cake and other fuzzy control rules are analogous. The fuzzy control rules for the entire lens aperture control are shown in Table 8. Table 8 Fuzzy control rules for camera aperture state Ei e3 e4 E5 e6 Εη Gi 1R7 IRi IRe IR6 13⁄4 TR1 〇2 1K6 IKi IK5 IRs IRs IR4 IR^ (3⁄4 IRe IRs IRs IR4 IR4 TR, IR3— 〇α 1K6 IRs IR4 IR4 IR4 13⁄4' TR, g5 IRs 1K 5 1K4 IR4 IR3 IRs IR, g6 IRs IR4 1R3 IR3 IR3 TR. IR, Gy IR4 IR3 1R2 1R2 IR2 ir2 IR) After determining the fuzzy control rules of the lens aperture control, the fuzzy inference algorithm is used to determine the fuzzy relation rule base. The algorithm is expressed as follows: _ 15 201005416 ^mlR — VJ RIR2 U....^«48 ^ and 49 (j〇) After finding the fuzzy relation rule of the input and the round, the maximum-minimum calculus is used. The synthesis is calculated as follows: =max {min{(//(gn)η μ(σ„)), M(Rm!R) }} (11) Μ&1)&;Μσ") is the input attribution function, which represents the gray level average g of the image and the standard deviation of the grayscale value of the shirt image as the entire fuzzy relation rule base and (4) the attribution function. Ο Find the model inference _, and then use the weighted average to make the fuzzy inference derived from the fuzzy inference, as the actual output signal of the fine control, the method is as follows: 7 uIRi ς^λ (12: ΣΜη ίί /Λ/ In the formula () 4·«; ^ unambiguous output, indicating the actual circle control letter of the control aperture size m wire _ _ silk _ bribe, is the synthesis of the paste inference _ number The degree of attribution. The margin of the _ the lens used is F22c, the position of the silky initial recording. Finally, the output of the deblurred output is converted into the output control voltage PiR of the actual aperture motor, as shown in the following equation. : (13) [Fuzzle Zoom Blur Controller] The zoom blur controller of the size camera lens whose input variable & is defined as the target d, and the input attribute set is set to , and the input variable heart is defined as the target 16 201005416 The change of the moving speed of the object, and set its input attribute set to easy, the rounding variable c« is defined as the trustworthiness of the contour of the target obtained by the image processing, and the input attribute set is set to q, Using the above The set of belonging functions determines the size of the zoom target' to complete the zoom control of the lens. The present invention defines the input variable a as the horizontal and vertical length d) of the target projected to the x-axis and the less-axis at time, /y(g The diagonal line of the equation is as follows: an = (0 + ^(0 (14) Ο

輸入變數定義為在時間和G時’目標物移動速度的變化 關係,如式(15)所示: (15) (16) b _ 式中The input variable is defined as the relationship of the moving speed of the target at time and G, as shown in equation (15): (15) (16) b _

MO 式(15)及式(16)中’ 和b表示在時間&和匕!時移動目標 的移動速度和Α(ί„-ι)表示在時間4和U夺鏡頭的焦距,^是 前後二張影像的焦距比。 輸入變數c”定義為目標物影像的可信度。設不為目標物外形 輪廓的一個特徵值,定義為目標物外形輪廓的水平寬度々仏)與水 平寬度&〇«)加垂直寬度//匕)之比例,則將£?„和足表示如下: (〇^c„<i> (17) 式中 (18) y 一’“Ο ” 4(〇+冬(〇MO in equations (15) and (16) where ' and b indicate the moving speed of the moving target at time & 匕! and Α(ί„-ι) indicate the focal length of the lens at time 4 and U, ^ is before and after The focal length ratio of the two images. The input variable c" is defined as the reliability of the target image. Let a characteristic value that is not the contour of the target, defined as the horizontal width of the target contour 々仏) and the horizontal width & 〇 «) plus the vertical width / / 匕), then the ?? As follows: (〇^c„<i> (17) where (18) y a '“Ο ” 4 (〇+冬(〇

Mn=c„-X„+{\-cn)Mn_x 17 (19) 201005416 在式(17)中’不為在時間匕時所預估的目標物外形輪廓,< 和分別為在時間^和4 ι時,儲存在記憶體緩衝區的目標物外 形輪廓,並假設其初值竭=0.5,亦即目標物外形輪廓的可信任度 之初始值為0.5。因此’當石和愈相近時,則q亦隨之增加。 變焦控制輸入變數的論域離散化對照表如表9所示,其中輸 入變數目標物大小A的論域為[0〜800],單位為像素(pixel),目Mn=c„-X„+{\-cn)Mn_x 17 (19) 201005416 In equation (17), 'not the estimated contour of the target at time ,, < and respectively at time ^ and 4 ι, the outline of the object stored in the memory buffer, and assume that its initial value = 0.5, that is, the initial value of the object's outline is 0.5. Therefore, when the stone is closer, the q increases. The discretization comparison table of the zoom control input variable is shown in Table 9, wherein the field of the input variable size A is [0~800], and the unit is pixel (pixel).

Ο 標物移動速度的變化關係心的論域為[04],目標物影像的可信任 度^的論域為[〇〜1]。 變焦控制輸出變數的論域離散化對照表如表1〇所示,其中輸 出變數變焦馬達控制電壓&的論域為卜_8]。 表9變焦控制的輸入變數論域離散化對照表 離散位階 目標物大小 an 目標物 移動速度變化 目镡物影像的 可信任度c„ -3 Ο$α„<30 〇^ό„<〇.ι 0 客 c„<0.1 -2 30^α„<60 〇·1^ό„<〇.2 0.1^c„<0.2 -1 60^α„<80 〇.2^ό„<〇.4 0.2^c„<0.4 0 80^α„^160 〇·4^ό„^〇.6 0.4 ^c„ ^0.6 +1 160<α„^180 °·6<6„^〇.8 0.6 <c„ ^0.8 +2 「180<fl„S210 0·8<δ„^〇.9 0.8 <c„ ^0.9 +3 *- 一—. 210<α„^800 °·9<όΛ^ι 〇.9<c„^l 表10變焦控制輸出變數論域離散化對照表 離散位階 變焦、馬達控制雷麼r -3 -8^Fk-6 -2 -6g^<.4 -1 _4 外 <-2 0 +1 2<V/^4 +2 4<^/S6 +3 201005416 變焦控制的目標物大小的語言項輸入歸屬函數為如表11所 示,其中將目標物大小定義為三個語言項歸屬函數,分別為為表 示小(Small),為表示適中(Medium),A3表示大(Large)。 表11目標物大小的語言項輸入歸屬函數 4離散位階 -3 -2 -1 0 +1 +2 +3 冷(Small) 1 0.9 0.7 0 0 0 0 ^(Medium) 0 0 0.6 1 0.6 0 0 j3(Large) 0 0 0 0 0.7 0.9 1 變焦控制的目標物移動速度變化的語言項輸入歸屬函數巧如 〇 表12所示,其中將目標物移動速度的變化關係定義為三個語言項 歸屬函數,分別為氏表示速度變化慢(Slow),表示速度變化適 中(Medium),表示速度變化快(Fast) 〇 表12目標物移動速度變化的語言項輸入歸屬函數 爲離散位階 -3 -2 -1 〇 +1 +2 +3 5i(Slow) 1 0.8 0.5 〇 〇 〇 〇 ^(Medium) 〇 〇 0.6 1 0.6 〇 〇 53(Fast) 〇 〇 〇 〇 0.5 0.8 1 變焦控制的目標物外形輪廓可信任度的語言項輸入歸屬函數 ❹ G如表13所示,其中將目標物外形輪廓的可信任度定義為二個語 言項歸屬函數,分別為q表示信任度低(Bad),C2表示信任度高 (Good) 〇 表13目標物外形輪廓可信任度的語言項輸入歸屬函數 g離散位階 -3 -2 -1 〇 +1 +2 +3 Ci(Bad) 1 0.9 0.6 0.5 0.2 〇 〇 C2(Good) 〇 〇 0.2 0.5 0.6 0.9 1 鏡頭變焦馬達控制電壓的語言項輸出歸屬函數如表14所示, 其中定義鏡頭變焦馬達控制電壓語言項歸屬函數R表示目標物很 19 201005416 小(NB),須放大很多’ A表不目標物過小师^,須再放大一些, &表示目標物小_ ’須放大’匕表示目標物大小適中(zr)\ 表示目標物大(PS),須縮小,F6表示目標物過大阔,須再縮^ 一些,A表示目標物很大(PB),須縮小报多。 表14變焦馬達控言項絡厲函數 laCNS) le(PM) -ϋ.5 0,8 1 含式2==歸屬函數後,再細…刪...的模_ 鏡=::::=變化及外一任度與 示: 職則之關係,其模糊控制規則如下式所 其中卜1,2,3 叫〜SQ顆㈣ (2〇) a A^-gdtpB 蛀,〜’2’/==1,2,...7,輪入變數 «為在時間^時移動目樟 變數 屬函數,u在時心時印物2為移動目標物大小的輸入歸 動速度之魏的輸_屬'7連度之變化’料目標物移 的可#•任A,C為日*為在咖4時目標物外形輪靡The subject of the change of the moving speed of the target is [04], and the domain of the trustworthiness of the target image is [〇~1]. The discretization comparison table of the zoom control output variable is shown in Table 1〇, where the field of the output variable zoom motor control voltage & is _8]. Table 9 Input Variable Theory of Zoom Control Discretization Comparison Table Discrete Position Target Size an Target Movement Speed Change Target Image Trustworthiness c„ -3 Ο$α„<30 〇^ό„<〇 .ι 0 guest c„<0.1 -2 30^α„<60 〇·1^ό„<〇.2 0.1^c„<0.2 -1 60^α„<80 〇.2^ό „<〇.4 0.2^c„<0.4 0 80^α„^160 〇·4^ό„^〇.6 0.4 ^c„ ^0.6 +1 160<α„^180 °·6<6„ ^〇.8 0.6 <c„ ^0.8 +2 "180<fl„S210 0·8<δ„^〇.9 0.8 <c„ ^0.9 +3 *- 一—. 210<α„^800 ° ·9<όΛ^ι 〇.9<c„^l Table 10 zoom control output variable field discretization comparison table discrete step zoom, motor control Ray r -3 -8^Fk-6 -2 -6g^< .4 -1 _4 outer <-2 0 +1 2<V/^4 +2 4<^/S6 +3 201005416 The language entry input attribution function of the zoom control target size is as shown in Table 11, which will The target size is defined as three language item attribution functions, which are small (Small), medium (Medium), and A3 (Large). Table 11 Language item of target size input attribution function 4 discrete level -3 -2 -1 0 +1 +2 +3 Cold (Small) 1 0.9 0.7 0 0 0 0 ^(Medium) 0 0 0.6 1 0.6 0 0 j3 (Large) 0 0 0 0 0.7 0.9 1 The language entry of the target speed of the zoom control changes the input function as shown in Table 12, in which the change relationship of the target moving speed is defined as the three language item attribution function. It means that the speed changes slowly (Slow), indicating that the speed changes moderately (Medium), indicating that the speed changes quickly (Fast) 〇 Table 12 The moving object speed change of the language item input attribution function is discrete level -3 -2 -1 〇 +1 +2 +3 5i(Slow) 1 0.8 0.5 〇〇〇〇^(Medium) 〇〇0.6 1 0.6 〇〇53(Fast) 〇〇〇〇0.5 0.8 1 Zoom Control Target Outline Confidence The language item input attribution function ❹ G is as shown in Table 13, in which the trustworthiness of the outline of the target is defined as two language item attribution functions, respectively, q for low trust (Bad) and C2 for high trust (Good) 〇 Table 13 object outline contour trustworthiness language entry input attribution function g散级级 -3 -2 -1 〇+1 +2 +3 Ci(Bad) 1 0.9 0.6 0.5 0.2 〇〇C2(Good) 〇〇0.2 0.5 0.6 0.9 1 Lens zoom motor control voltage language item output attribution function as table 14, which defines the lens zoom motor control voltage language term attribution function R indicates that the target is very 19 201005416 small (NB), must be enlarged a lot 'A table is not a target too small teacher ^, must be enlarged, & indicates the target Small _ 'to be enlarged' 匕 indicates that the target size is moderate (zr)\ indicates that the target is large (PS) and must be reduced. F6 indicates that the target is too large and wide, and must be reduced, and A indicates that the target is large (PB). It is necessary to reduce the number of reports. Table 14 Zoom motor control term system function laCNS) le(PM) -ϋ.5 0,8 1 Included 2 == attribution function, then fine... delete the mode _ mirror =::::= Change and external degree and indication: The relationship between the job and the fuzzy control rule is as follows: 1, 2, 3 is called ~SQ (4) (2〇) a A^-gdtpB 蛀,~'2'/== 1,2,...7, the round-in variable «is a function of moving the target variable at time ^, and when the time is at the time of the heart, the print 2 is the input of the moving target size. The change of 7 consecutive degrees 'material target shift can be #•任A, C is the day* is the target shape rim in the coffee 4

是變咖:器的二物::輪細任度的輸入歸屬函數。K 達控制觸輪_2數,树讎韻,[是變焦馬 據述的模糊II含描述式,本發明設計了 3組共3咖2個 20 201005416 輸入歸屬函數,並且設計了 7個輸出歸屬函數,因此,由3組輸 人歸屬函數組成的正…then…模糊蕴含式描述的模糊控制規則 共有18條’分別由兄lKl8組成,例如: 及zl 及z2 Rz3 Η7 α» is Αχ and bn is B\ and c„ is C\ THEN Vz is 73 ^ is and bn is B2 and cn is Q THEN Vz is Y2 117««is and bn is B3 and c„ is Q THEN Vz is Yl ^zl6 及zl7 及zl8 ❹ ❹ is A3 and bn is Bx and c„ is C2 THEN Vz is γ5 〇n ls K is B2 and c„ is C2 THEN Vz is Y6It is the change of the coffee: the two things of the device: the input attribute function of the round fineness. K reaches the number of control touch wheels_2, tree rhyme, [is the fuzzy type II description of the zoom horse, the design of the three groups of 3 coffee 2 20 201005416 input attribution function, and designed 7 output attribution The function, therefore, consists of three sets of input attribute functions...then...the fuzzy implied description of the fuzzy control rules consists of 18 'composed by the brother lKl8, for example: and zl and z2 Rz3 Η7 α» is Αχ and bn is B\ and c„ is C\ THEN Vz is 73 ^ is and bn is B2 and cn is Q THEN Vz is Y2 117 ««is and bn is B3 and c„ is Q THEN Vz is Yl ^zl6 and zl7 and zl8 ❹ ❹ is A3 and bn is Bx and c„ is C2 THEN Vz is γ5 〇n ls K is B2 and c„ is C2 THEN Vz is Y6

Jp . anlsA2mdbnisB3mdcnisC2THENVz isy7 ^ 變“、、馬達的模糊控制規則中,例如模糊控制規則及a,若目 移動速度,且可信任度低⑹時,Z則其模 變售:馬二函數為K,表示須將目標物緩慢地放大’其相對應的 样物…^鶴的輸出是又例如_控制細‘,若目 :輸出錄移動速度變化快⑹,且可信任度高(Q)時,則其模 多,其相對函數為A ’表示須將目標物快速地縮小,且須縮小很 制規則如是1 的變焦馬達控制電壓的輸出是^而其它的模糊控 推’整個鏡頭變焦控制的模糊控制規則如表15所示。 主1 C地=丈祕么··… state Bi b2 b3 Cl Ai r3 r2 Yi a2 >5 Ya Y3 —-- ~~ «1 — -JL__ Ye Yi C2 A\ r3 r2 Yl a2 r3 r4 Ys L'. a3 ys~ r6 Yi 攝衫機鏡頭變焦控制的模糊控制規則後,再以模糊推 21 201005416 論運算決^其模細魏騎,其運算絲示如下:Jp . anlsA2mdbnisB3mdcnisC2THENVz isy7 ^ variable ",, motor fuzzy control rules, such as fuzzy control rules and a, if the moving speed, and the trustworthiness is low (6), Z is the model change: the horse two function is K, indicating The target must be slowly enlarged 'the corresponding sample...^The output of the crane is again, for example, _ control fineness. If the output movement speed changes rapidly (6) and the trustworthiness is high (Q), then Modularity, the relative function of A ' indicates that the target must be quickly reduced, and the output of the zoom motor control voltage must be reduced. The output of the control voltage of the zoom motor is other than the fuzzy control of the entire lens zoom control. As shown in Table 15. Main 1 C==秘秘...· State Bi b2 b3 Cl Ai r3 r2 Yi a2 >5 Ya Y3 —-- ~~ «1 — -JL__ Ye Yi C2 A\ r3 r2 Yl A2 r3 r4 Ys L'. a3 ys~ r6 Yi After the fuzzy control rule of the lens control of the lens of the camera, the fuzzy push 21 201005416 is used to calculate the fine Wei riding. The operation silk is as follows:

Kmz = R2l u Rz2 (J ……u Rzl7 u 求得輸入和輸出的模糊關係規則之後,以極大·極小演算法 合成演算,如下式所示: 、 ^ = (Μα„)η μφ„)η μ{〇η)) . Rmz 、 =m^{^man)nMibn)^M^cn)),M{Rm) }} (22) ❺ 式(22)中叫、地)及次)為輸入歸屬函數,分別代表目標物大小 〜、目標物移動速度的變化關係\及目標物外形輪廓可信任度c”, 為整個模糊關係規則庫的歸屬函數。 求得模糊推論絲後’本發明以加權平触,賴糊推論所 得之模糊結果解模糊,做為魏控獅實際輸丨錢,其方法如 下式所示: γ Σ〜為 ~~J^T (23) 式(23)中是解模糊的輸出結果,表示控制變焦馬達的實際輪出信 號’处z。,·是合成模糊推論結果的適合程度,私是合成模糊推論 結果的歸>1函數之歸屬度。本發明在實驗時顧之攝影機的變焦 鏡頭的長度範圍為;1'= 7.5〜120mm。 最後將解模糊的輸出結果轉換成實際的變焦馬達的輸出控制 電壓Γζ,如下式所示: (24) 【實施方式】 本發明係利用傅立葉轉換分析擷取的影像的頻域訊號,以及 22 201005416 ^机财® 4算影像的平均值和鮮差,來設賴糊控制器 ^賴職綱_絲細。_,將賴取的軸目標物影 象’經過影像處理運算後,可得到目標物大小、移動速度的變化 柯信任之目標物輪鱗三個變數,做為模糊邏輯運算的三個輸 入歸屬函數’再㈣翻控槪贿雜,控讎職鏡頭的焦 距長短和目‘物大小的縮放,完成鏡頭的自動變焦追縱控制。 ❹ ,為使貞審查委g進—步麵歧目的及本案㈣之具體技 術特徵’茲附圖示說明如后: 圖1疋鏡頭追縱控制系統的控制流程。首先將攝影機取得 的移動目標物影像經由影像處理程式處理後,將處理所得之影像 資訊來控觸影翻、光魏,以娜移動目標物適當 大小及清晰的影像’ _控_服追賴構_服馬達,達到影 像飼服追蹤與鏡頭控制之目的。 圖2為鏡頭追縱控制系統的控制策略。首先進行攝影機系統 ❹ =正’完錢録統的初始設定,齡彡驗正完錢即開始攝影 =測’搜,目標物,並立即判斷目標物是否存在於所娜的影像 旦面中,若否’就繼續娜下一張影像畫面;若是,則進入追縱 及鏡頭控制系統,當目標物移動時就進行追蹤,並判斷追縱的物 體與所要追_目標物衫吻合,若二者吻合,娜持追縱並進 摘影機的鏡頭控制,控制對焦、光圈和變焦,以縮放目標物大 t,並將目標物控制在適當的大小;若不吻合,則重新進入攝影 偵測模式,並判斷目標物是否存在? 本發明案的鏡頭控制包含三部份,第—部份是鏡頭對焦控 23 201005416 制,第二部份是鏡頭光圈控制,第三部份則是鏡頭變焦控制。 第-部份是鏡頭對焦控制。首先將鏡頭焦距調整到過長,使 目標物影賴糊’難控制駿的輪歧形如圖3所示,圖中a 段前部指出對焦控制為_4伏特,此一電齡讓對焦馬達反轉 縮短焦距’ b段後部表示對焦完成後對焦馬達電縣零。圖*為圖 3中&段的放大波糊,圖5為圖3 t b段放大波形圖。接著將鏡 頭焦距調整到過短距離,使目標物影像模糊,完成對焦控制後所 ❹清楚目標物影像,對焦控制電遷的輸出波形如圖6所示,圖7 為圖6中e段的放大波形圖。 第-部份是鏡頭光圈的控制,首先將光圈調整到適中,使擷 取的影像平均值為112〜Μ4,變異數為BO4〜_ 得的亮度為4狐似。光圈控制實驗分成二次進行實驗,第 驗時’將實驗環境的照明突然調暗,使實驗時的亮度為235[狀, 娜的目標物f彡像平均值為78.5,麵數為祖6,細統計圖如 圖8所示。之後開始進行鏡頭光圈的控制實驗,在完成光圈控制 後,擷取的目標物影像平均值為118 2,變異數為期8,灰階統 計圖如圖9所示’光圈控制的電壓波形如圖10所示,圖中d段前 礼出光圈控制電壓為_36伏特,此一電壓會讓光馬達反轉加大光 圈’e段前部指出細控制電壓為+3.2伏特表示細開大太多,須 再反轉縮小光圈,g段後部表示完成光圈控制後,光圈馬達電壓為 零。 第二次進行光圈控制實驗時,以第一次完成光圈控制實驗時 的環境背景為基準,實驗時熟將實驗環境賴_亮,使實驗 24 201005416 時的亮度為621Lux,擷取的目標物影像平均值為182 6,變異數 為1302.8 ’灰階統計圖如圖11所示。之後開始進行鏡頭光圈的控 制實驗,完成光圈控制後,操取的目標物影像平均值為128·5,變 異數為2836.6,灰階統計圖如圖12所示,光圈控制的輸出電壓波 形如圖13所示’圖中h段前部指出光圈控制電壓為+36伏特,此 一電壓會讓光圈馬達反轉縮小光圈,i段前部指出光圈控制電壓 -1.5伏特,表示光圈縮小太多,須再反轉加大光圈,k段後部表示 完成光圈控制後光圈馬達電壓為零。 第三部份是鏡頭變焦控制,變焦控制分成二次進行實驗。第 一次實驗時,先將目標物調整至過小狀態,擷取的目標物影像大 小為36.2 pixel。之後開始進行鏡頭變焦的控制實驗,完成變焦控 制後,擷取的目標物影像大小為126.8pixel。目標物由過小到適令 的變焦控制電壓輸出波形如圖14所示,圖中1段前部指出變焦控 制電壓為-8.4伏特,此一電壓會讓變焦馬達反轉放大目標物,直到 目標物被放大到適當的大小’ 1段後部表示變焦完成後變焦馬達電 Ο 壓為零。 第二次進行變焦控制實驗時,先將目標物調整至過大狀態, 榻取的目標物影像大小為196.4 pixel。之後開始進行鏡頭變焦的控 制實驗’在完成變焦控制後,擷取的目標物影像大小為1465 pixel。目標物由過大到適中的變焦控制的輸出電壓波形如圖15所 示,圖中〇段前部指出變焦控制電壓為+9.6伏特,此一電壓會讓 變焦馬達反轉縮小目標物,直到目標物被縮小到適當的大小,段 後部表示變焦完成後變焦馬達電壓為零,圖15為完成過大到適中 25 201005416 變焦控制的控制電壓波形,。 綜上所述,由鏡頭控制的實驗結果可知,本發明案所提出的 . 鏡頭控制演算法是有效的,且同時可連續地完成鏡頭的控制,擷 取清晰且適當大小的目標物影像。如前所述,本發明案兼耳新賴 性、進步性與實用性,並符合發明專利案之要求,爰依法提出申 請。 【圖示簡單說明】 ❹ 圖1鏡頭追蹤控制系統的控制流程圖 圖2鏡頭追蹤控制系統策略流程圖 圖3焦距過長到完成對焦控制的輸出電壓波形 圖4為圖3的a段放大電壓波形圖 圖5為圖3的b段放大電壓波形圖 圖6焦距過短到完成對焦控制的輪出電壓波形 圖7為圖6的c段放大電壓波形圖 0 圖8光圈控制實驗時過暗影像的灰階統計圖 圖9元成光圈控制的目標物影像的灰階統計圖 圖10針對過暗影像到完成光圈控制的電壓波形 圖11光圈控制實驗時過亮影像的灰階統計圖 圖I2完成光圈控制的目標物影像的灰階統計圖 圖13針對過免影像到完成光圈控制的電壓波形 圖14完成過小到適中變焦控制的控制電驗形 圖15完成過大到適中變焦控制的控制電壓波形 26Kmz = R2l u Rz2 (J ......u Rzl7 u After obtaining the fuzzy relational rules of input and output, the calculus is synthesized by the maximal and minimum algorithms, as shown in the following equation: ^, ( =α„)η μφ„)η μ {〇η)) . Rmz , =m^{^man)nMibn)^M^cn)),M{Rm) }} (22) ❺ In the formula (22), the ground, and the second is the input attribution function. , respectively, represents the target size ~, the change relationship of the target moving speed \ and the target shape contour trust degree c", is the attribution function of the entire fuzzy relation rule base. After obtaining the fuzzy inference silk, the present invention is weighted and flat touched The fuzzy result obtained by the inference is unambiguous, and as the actual control of the Wei lion, the method is as follows: γ Σ~ is ~~J^T (23) The output of the solution is defuzzified in (23) As a result, it is indicated that the actual wheeling signal of the control zoom motor is at z., which is the appropriate degree of the result of the synthetic fuzzy inference, and the degree of attribution of the function of the generalized fuzzy inference result is 1. The camera of the present invention is used in the experiment. The length of the zoom lens ranges from 1' = 7.5 to 120 mm. Finally, the deblurred output is converted into the actual zoom motor. The output control voltage Γζ is as follows: (24) [Embodiment] The present invention analyzes the frequency domain signal of the captured image by using Fourier transform, and the average value and freshness of the image calculated by 22 201005416 ^ To set up the paste controller ^ Lai gang _ silk fine. _, will take the image of the axis target object 'after the image processing operation, you can get the target size, the speed of change, Ke trust, the target wheel scale three The variables, as the three input attribution functions of the fuzzy logic operation, are re-controlled, and the length of the focal length of the lens and the size of the object are zoomed to complete the automatic zoom tracking control of the lens. The following is a description of the specific technical features of the case and the specific technical features of the case (4). Figure 1 shows the control flow of the lens tracking control system. First, the moving object image obtained by the camera is imaged. After processing the program, the resulting image information will be processed to control the touch and the light, and the image will be moved to the appropriate size and clear image of the target. The purpose of tracking and lens control. Figure 2 is the control strategy of the lens tracking control system. Firstly, the camera system ❹ = positive 'the initial setting of the money recording system, the age is checked and the money starts to start photography = test 'search, target Object, and immediately determine whether the target exists in the image of the image of the image, if not 'continue to the next image; if it is, then enter the tracking and lens control system, when the target moves, tracking, And judge that the chasing object is consistent with the target jersey. If the two match, Na holds the lens control of the camera and controls the focus, aperture and zoom to zoom the target and adjust the target. Control to the appropriate size; if not, re-enter the photo detection mode and determine if the target exists? The lens control of the present invention comprises three parts, the first part is lens focus control 23 201005416 system, the second part is lens aperture control, and the third part is lens zoom control. The first part is the lens focus control. Firstly, adjust the focal length of the lens to too long, so that the target object is smeared. The difficulty of controlling the wheel shape is shown in Figure 3. In the front part of the figure, the front part indicates that the focus control is _4 volt. This battery age makes the focus motor Reverse shortening the focal length' The rear part of the b segment indicates that the focus motor is zero after the focus is completed. Fig. 3 is an enlarged wave paste of the & section in Fig. 3, and Fig. 5 is an enlarged waveform diagram of Fig. 3 tb. Then adjust the focal length of the lens to a short distance, so that the image of the target is blurred. After the focus control is completed, the target image is clearly visible. The output waveform of the focus control is shown in Fig. 6. Fig. 7 is the enlargement of the e segment in Fig. 6. Waveform diagram. The first part is the control of the lens aperture. Firstly, the aperture is adjusted to be moderate, so that the average value of the captured image is 112~Μ4, and the variation is BO4~_. The brightness is 4 fox. The aperture control experiment is divided into two experiments. At the first test, the illumination of the experimental environment is suddenly dimmed, so that the brightness of the experiment is 235 [like, the average value of the object f is 78.5, and the number of faces is ancestor 6, The detailed statistics are shown in Figure 8. After that, the control experiment of the lens aperture is started. After the aperture control is completed, the average value of the captured object image is 118 2, the variation number is period 8, and the gray scale statistical chart is as shown in FIG. 9 'The aperture waveform of the aperture control is as shown in FIG. As shown in the figure, before the d segment, the aperture control voltage is _36 volts. This voltage will cause the optical motor to reverse and increase the aperture. The front section of the e section indicates that the fine control voltage is +3.2 volts, indicating that the fine opening is too large. The aperture is reversed to reduce the aperture, and the rear of the g segment indicates that the aperture motor voltage is zero after the aperture control is completed. When the second aperture control experiment was carried out, the environmental background of the first completion of the aperture control experiment was taken as the reference. When the experiment was performed, the experimental environment was rayed bright, so that the brightness of the experiment 24 201005416 was 621 Lux, and the captured target image was taken. The average is 182 6, and the variance is 1302.8. The grayscale statistics are shown in Figure 11. After that, the lens aperture control experiment is started. After the aperture control is completed, the average value of the target image acquired is 128·5, the variation number is 2836.6, and the gray scale statistical graph is shown in Fig. 12, and the output voltage waveform of the aperture control is as shown in the figure. 13 shows the front part of the h segment indicates that the aperture control voltage is +36 volts. This voltage will cause the aperture motor to reverse and reduce the aperture. The front of the i segment indicates the aperture control voltage -1.5 volts, indicating that the aperture is reduced too much. Re-inverting and increasing the aperture, the rear of the k-segment indicates that the aperture motor voltage is zero after the aperture control is completed. The third part is the lens zoom control, and the zoom control is divided into two experiments. In the first experiment, the target was first adjusted to a too small state, and the image size of the captured object was 36.2 pixels. After that, the lens zoom control experiment was started. After the zoom control was completed, the captured target image size was 126.8 pixels. The target has a zoom control voltage output waveform from too small to as shown in Figure 14. The front part of the figure indicates that the zoom control voltage is -8.4 volts. This voltage causes the zoom motor to reverse the magnification of the target until the target Zoomed to the appropriate size '1 segment' rear section indicates that the zoom motor power is zero after the zoom is completed. When the zoom control experiment is performed for the second time, the target is first adjusted to an excessive state, and the target image size of the couch is 196.4 pixels. Then, the control experiment of the lens zoom is started. After the zoom control is completed, the image size of the captured object is 1465 pixels. The output voltage waveform of the target is controlled by an excessively large to moderate zoom. As shown in Figure 15, the front part of the figure indicates that the zoom control voltage is +9.6 volts. This voltage causes the zoom motor to reverse the target down until the target It is reduced to the appropriate size, and the rear of the segment indicates that the zoom motor voltage is zero after the zoom is completed. Figure 15 shows the control voltage waveform of the zoom control that is too large to moderate 25 201005416. In summary, the experimental results of the lens control show that the lens control algorithm proposed in the present invention is effective, and at the same time, the lens control can be continuously performed to obtain a clear and appropriately sized target image. As mentioned above, the present invention combines the new reliance, advancement and practicality, and meets the requirements of the invention patent case, and submits an application according to law. [Simplified illustration of the diagram] ❹ Figure 1 Control flow chart of the lens tracking control system Figure 2 Strategy flow chart of the lens tracking control system Figure 3 Output voltage waveform of the focal length too long to complete the focus control Figure 4 is the amplified voltage waveform of section a of Figure 3 FIG. 5 is an enlarged voltage waveform diagram of the b segment of FIG. 3. FIG. 6 is a short-to-short focal length waveform to complete the focus control. FIG. 7 is an enlarged voltage waveform of the c-segment of FIG. 6. FIG. 8 is a dark image of the aperture control experiment. Gray scale statistical chart Figure 9 Gray scale statistical image of the target image controlled by the aperture Figure 10 Voltage waveform for the dark image to the completion of the aperture control Figure 11 Gray scale statistics of the image during the aperture control experiment Figure I2 Complete the aperture Gray scale statistical chart of the controlled object image FIG. 13 is a control voltage pattern for the image control to complete the aperture control. FIG.

Claims (1)

201005416 十、申請專利範圍: 1. —種攝影機鏡頭自崎焦細及魏的麵控健置,係採用 模糊控制的方法來設計鏡頭的控制器;以影像的頻譜做為鏡頭 對焦控制的輸人歸屬函數;以影像灰階㈣平均值和標準差做 為鏡頭光圈控制的輸入歸屬函數;以目標物的大小、移動速度 的變化及外形輪廓改變時影像的可信任度,做為鏡頭變焦控ς 的輸^歸屬函數,這些輪入歸屬函數以模糊推論運算來決定對 〇 =、細及聽模她制模舰_係,並以極大-極小演 算做為模糊合成推論的運算法,並利用加權平均㈣魂⑽ avemg__化舰紐頭難、細賴域她制器的輪 出,最後再將解翻化的輸出結果轉換成實際的铜對焦、光 圈及變焦馬達的控制電壓。 2. 如申料利細第!項所述之攝賴鏡頭自轉絲圈及變隹 的模糊控制裝置,該鏡頭取得的移動目標物影像經由影像處理 程式處理後,將處理所得之影像資訊來控制攝影機的對焦、光 圈及魏,以擷取移動目標物射大小及清晰的影像,同時控 湘服追蹤機構的飼服馬達,達到影侧服追縱與鏡頭控制之 目的。 3.如申請專利範圍第〗項所述之攝影機鏡頭自動對焦光圈及變焦 的模糊控織置,魏自動難的模糊控制器,制輸入及輸 出變數的論域與語言項歸屬函數離散化的方法,來料模糊控 制器。 4.如申請專利細第〗項所述之攝影機鏡頭自動對焦光圈及變焦 27 201005416 賴糊控織置,自動光__翻㈣器,侧用灰階統 制來設魏就_模難繼,絲駄雛的平均值較 高,則表示光源太亮或鏡頭的光圈太大,須將細縮小;反之, 則須將光圈加大。 5·如申.月專利範圍第1項所述之攝影機鏡頭自動對焦光圈及變焦 的換糊控織置,追蹤的難控継其輸人變數&定義為 目標物大小,且將其輸入歸屬函數集合設為A,輸入變數么定 ❹ 義為目標物雜速度賴化,JL將其輸人歸屬函錢合設為及., 輸入變數G定義為影像處理所得之目標物外形輪廓的可信任 度’且將其輸入歸屬函數集合設為&,用上述的輸入歸屬函數 集合決定縮放目標物的大小,以便完成鏡頭的變焦控制。201005416 X. The scope of application for patents: 1. A kind of camera lens from the surface of the focus and the face control of Wei, the fuzzy control method is used to design the controller of the lens; the spectrum of the image is used as the input of the lens focus control. The attribution function; the image gray level (four) mean value and standard deviation are used as the input attribution function of the lens aperture control; the lens zoom control is used as the lens size control according to the size of the target object, the change of the moving speed and the change of the contour of the image. The transfer attribute function, these round-in attribution functions use fuzzy inference calculations to determine the 〇=, fine and listen to the model ship, and use the max-minimum calculus as the fuzzy synthesis inference algorithm, and use the weighting Average (four) Soul (10) avemg__ The naval ship is difficult, and the thinning of the system is the rotation of the controller. Finally, the output of the de-turning is converted into the actual copper focus, aperture and zoom motor control voltage. 2. If the application is fine! According to the fuzzy control device for the rotation of the lens and the change of the lens, the image of the moving object obtained by the lens is processed by the image processing program, and the obtained image information is processed to control the focus, aperture and Wei of the camera. The size and clear image of the moving target are taken, and the feeding motor of the tracking device is controlled to achieve the purpose of tracking and lens control. 3. For example, the camera lens autofocus aperture and the fuzzy control of the zoom as described in the patent application scope, the fuzzy controller of Wei's automatic difficulty, the method of discriminating the domain of the input and output variables and the discretization of the language term attribution function , incoming fuzzy controller. 4. For example, the camera lens autofocus aperture and zoom 27 as described in the application for patents 〗 〖2010, the film is controlled by the woven fabric, the automatic light __ turn (four) device, the side with gray-scale system to set Wei _ die difficult, silk If the average value of the scorpion is high, it means that the light source is too bright or the aperture of the lens is too large, and the size must be reduced; otherwise, the aperture must be enlarged. 5·For example, the camera lens autofocus aperture and the zoom control of the zooming method described in the first paragraph of the patent. The tracking is difficult to control, the input variable & is defined as the target size, and the input is attributed to The function set is set to A, the input variable is defined as the target object speed, and JL sets its input attribute to and . The input variable G is defined as the trustworthiness of the target shape of the image processing. Degree 'and its input attribute set is set to &, the above-mentioned input attribution function set is used to determine the size of the zoom target, in order to complete the zoom control of the lens. 2828
TW97127700A 2008-07-21 2008-07-21 Photographic lens control method TWI440949B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97127700A TWI440949B (en) 2008-07-21 2008-07-21 Photographic lens control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97127700A TWI440949B (en) 2008-07-21 2008-07-21 Photographic lens control method

Publications (2)

Publication Number Publication Date
TW201005416A true TW201005416A (en) 2010-02-01
TWI440949B TWI440949B (en) 2014-06-11

Family

ID=44826279

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127700A TWI440949B (en) 2008-07-21 2008-07-21 Photographic lens control method

Country Status (1)

Country Link
TW (1) TWI440949B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454940B (en) * 2011-01-28 2014-10-01 Univ Nat Taiwan Science Tech Method for designining fuzzy membership functions of of fuzzy controller auto focus
TWI474096B (en) * 2012-06-29 2015-02-21 Broadcom Corp Enhanced image processing with lens motion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454940B (en) * 2011-01-28 2014-10-01 Univ Nat Taiwan Science Tech Method for designining fuzzy membership functions of of fuzzy controller auto focus
TWI474096B (en) * 2012-06-29 2015-02-21 Broadcom Corp Enhanced image processing with lens motion
US9191578B2 (en) 2012-06-29 2015-11-17 Broadcom Corporation Enhanced image processing with lens motion

Also Published As

Publication number Publication date
TWI440949B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
Rebecq et al. High speed and high dynamic range video with an event camera
Huang An advanced motion detection algorithm with video quality analysis for video surveillance systems
US20190246036A1 (en) Gesture- and gaze-based visual data acquisition system
Guo et al. Multiview high dynamic range image synthesis using fuzzy broad learning system
US20110032378A1 (en) Facial expression recognition apparatus, image sensing apparatus, facial expression recognition method, and computer-readable storage medium
CN105827960A (en) Imaging method and device
CN102982518A (en) Fusion method of infrared image and visible light dynamic image and fusion device of infrared image and visible light dynamic image
WO2018188309A1 (en) Pedestrian identification device and method, and driving assistance device
Wu et al. Probabilistic undirected graph based denoising method for dynamic vision sensor
Ullah et al. Human action recognition in videos using stable features
CN106203428B (en) Image significance detection method based on blur estimation fusion
Wang et al. Automated camera-exposure control for robust localization in varying illumination environments
TW201005416A (en) Fuzzy control device for zoom and autofocus aperture of video camera lens
CN113870315B (en) Multi-algorithm integration-based action migration model training method and action migration method
CN111798484A (en) Continuous dense optical flow estimation method and system based on event camera
WO2023001110A1 (en) Neural network training method and apparatus, and electronic device
Wen et al. Incremental learning of weighted tensor subspace for visual tracking
Bonetto et al. Image processing issues in a social assistive system for the blind
CN110348355A (en) Model recognizing method based on intensified learning
Mocanu et al. Design of a CNN face recognition system dedicated to blinds
Chacon-Murguia et al. Self-adapting fuzzy model for dynamic object detection using RGB-D information
JP2009064100A (en) Image processor and gain adjustment method
Kim et al. Generic camera attribute control using Bayesian optimization
Dai et al. Hybrid generative–discriminative hash tracking with spatio-temporal contextual cues
Supriyanto et al. Facial tracking based camera motion control system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees