TW201004624A - Xanthine-based cyclic GMP-enhancing Rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line - Google Patents

Xanthine-based cyclic GMP-enhancing Rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line Download PDF

Info

Publication number
TW201004624A
TW201004624A TW97127696A TW97127696A TW201004624A TW 201004624 A TW201004624 A TW 201004624A TW 97127696 A TW97127696 A TW 97127696A TW 97127696 A TW97127696 A TW 97127696A TW 201004624 A TW201004624 A TW 201004624A
Authority
TW
Taiwan
Prior art keywords
activity
kmup
cells
pharmaceutical composition
lung epithelial
Prior art date
Application number
TW97127696A
Other languages
Chinese (zh)
Other versions
TWI386206B (en
Inventor
Ing-Jun Chen
Original Assignee
Univ Kaohsiung Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kaohsiung Medical filed Critical Univ Kaohsiung Medical
Priority to TW97127696A priority Critical patent/TWI386206B/en
Publication of TW201004624A publication Critical patent/TW201004624A/en
Application granted granted Critical
Publication of TWI386206B publication Critical patent/TWI386206B/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A pharmaceutical composition is provided. The pharmaceutical composition comprises a compound of 7-[2-[4-(2-Chlorobenzene)piperazinyl]ethyl]-1, 3, which is a Rho kinase inhibitor, wherein the pharmaceutical composition inhibits a physiological activity of a lung epithelial cell.

Description

201004624 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種以黃嘌呤(xanthine)為基底結構之 化合物,該化合物能夠降低肺上皮細胞株之生理活性, 特別是關於一種具有增加環化鳥甘酸(cyclie Guanine Monophosphate, cGMP)活性之Rho-激酶抑制劑,其藉由增 加cGMP以調節肺上皮細胞中Rho-激酶π/血管内皮生長 因子(ROCK/VEGF)的表現而抑制細胞遷移。 【先前技術】 在引起阻塞性支氣管肺炎及癌細胞轉移等阻塞性支 氣管疾病的病變過程中’肺上皮細胞往往扮演了重要的 角色。上皮細胞内的一氧化氮合成酶/環化鳥甘酸 (NOS/cGMP)訊息參與了呼吸道收縮的控制及細胞生長 的調控,應該與阻塞性支氣管病變息息相關,上皮細胞 可釋放許多對於平滑肌具有抑制作用的調節物質,例如 • 經由上皮組織快速被釋放的NO能影響鄰近肺部平滑肌 細胞的收縮與生長’更有許多免疫學上的證據已顯示 NOS/cGMP訊息在呼吸道上皮具有的特性I,2。 (7- [2- KMUP-1 [4-(2-chl〇r〇 benzene) piperazinyl]ethyl]- 1,3- dimethylxanthine)以黃β票吟為某底 結構,是一種具有促進cGMP之Rho-激酶抑制劑在先 前研究中已發現’由於KUMP-1能藉由活化鳥嘴吟環化 酶(soluble guanynyl cyclase,sGC)與上皮細胞中的 N〇 人 成酶(NOS)’導致細胞質中cGMP增加,而達到放鬆氣^ 201004624 收縮的效果。除此之外,KMUP-1也能透過抑制由腫瘤壞 死因子-a (Tumor necrosis factor, TNF-a)誘導的 NO 合成 酶(inducible NO synthase,iNOS)之表現,參與 sGC 的活 化作用以及鱗酸二酯酶(phosphodiester,PDE)的抑制作用 之機制,而導致氣管平滑肌中環化鳥苷酸/蛋白質激酶G (Protein Kinase G) (cGMP/PKG)的增加 3。因此,在本發 明中KMUP-1被§£'為與抑制肺上皮細胞的增生、促發炎 活性以及遷移有關。 在本發明中,為了證明KMUP-1具有的功效,我們使 用了許多蛋白質或是藥物作為指標,而這些物質的特性 及樂理上的角色分別敘述如下: YC-1是一種SGC活化劑,其具有NO依賴性的cGMP 增強活性。在不同型態的細胞中,γ(>1顯現其對於對抗 細胞增生、抗血管新生、抗癌細胞以及抵抗促發炎的效 果,因此在本發明中用來做為與KMUP4比較的正向對 照。在抑制肺上皮細胞遷移的效果方面,r〇ckii位於 cGMP/PKG訊息路徑的下游,與細胞遷移活性相關’因 此在本發明中也利用ROCK抑制劑Y27632來觀察 KMUP-1對於抑制肺上皮細胞遷移的效果。 對於抑制血管新生的效果,目前已知VEGF是一個重 要的促血管新生因子,同時也是腫瘤生長時所必需的物 質。VEGF的表現會受到很多因素的刺激而引發,包括 缺氧。當受到缺氧活化的轉錄因子,缺氧誘導因子 1 (hypoxic induced factor l mF1)表現時,ΗΠΜ 可以調 201004624 控VEGF基因。而由於YC-1是一種NO依賴性的cGMp 促進劑,因此YC-1也在血管系統中具有重要的功能, 並抑制VEGF及HIF-1 a在Hep3B細胞中的表現6, 7。 另外’與抑制細胞增生有關的週期蛋白依賴性激酶 (cyclin-dependent kinase, CDK)抑制性蛋白 p2l 與 p27, 在本發明中也用來觀察是否在cGMP路徑中增加。除了 P21與P27之外,本發明中也觀察另一種蛋白質激酶^38 的磷酸化現象。p38在發炎細胞、呼吸道結構細胞增生 以及細胞存活時扮演重要的角色8,9。此外,為了了^細 胞凋亡的情形,本發明中也會分析在細胞週期中會伴隨 p21與p27而表現的細胞瑪亡的訊息蛋白質BaX/Bcl-2/ 蛋白酶caspase 3。 在本發明中,提供了一種抑制肺上皮細胞生理活性的 化合物’ KMUP-1 ’透過影響eNOS/sGC/PKG訊息、細胞 凋亡訊息Bax/Bcl-2/caspase 3,以及細胞週期中p21與p27 的表現’特別是在缺氧狀態下ROCKII/VEGF/ HIF-la的 表現,而產生抑制肺上皮細胞增生、遷移及促發炎等活 性。 【發明内容】 本發明首先提出KMUP-1可以透過影響與cGMP相關 的 eNOS/sGC/PKG 訊息、細胞调亡訊息 Bax/Bcl-2/caspase 3以及缺氧狀態下ROCKII/VEGF/ HIF-la的表現,而達 到抑制肺上皮細胞之增生、促發炎及遷移等活性的效果。 因此,本發明提供一種醫藥組合物,其包含一 7-〔 2- 201004624 上4你氣苯)㈣基〕乙基〕+ 3 物,其中該化合物為=基衫呤之化合 具有抑制—肺过纟讀的-生藥組合物 之載根雜據上述構想,該醫藥組合物更包含-藥學上可接受 根據上述構想,其中該生理活性 〜遷移活性以及-促發炎活性至少其中之――增生活性、 活性根據上賴想’其中該遷移活性為-心胞之-轉移 料的痛與抑制Si的 加肺上皮細 本發明再提供一種抑制一 2 的方法,包含將一荦與卜古#如皮胞之一生理活性 嗓基〕乙美Λ Γ 劑量的7-〔2·〔4-(2-氣笨)旅 I基J乙基〕_1,3-二甲基黃嘌呤 ;瓜 的-哺乳動物,其中該化合物係由給予需要 幻1〇-激酶抑制劑。 ,、示成,且為一 戟體根據上述構想,其中該化合物更包含一藥學上之有效 根據上述構想,其中該生理活 1移活性以及-促發炎活性至少其中、一一。3活性、 活性根據上述構想’ Μ料料料二細胞之一轉移 皰中mu’其中該化合物係藉由增加該肺上皮細 細胞的生理活性。_的雜,而抑制該肺上皮 8 201004624 另一方面,本發明提供一種製備一醫藥組合物的方 法,其中該醫藥組合物包含一 7-〔2-〔4-(2-氣苯)哌嗪 基乙基〕-1,3-二甲基黃嘌呤之化合物。 根據上述構想,其中該醫藥組合物具有抑制一肺上皮 細胞之一生理活性的效果,且該生理活性係選自一增生 活性、一遷移活性以及一促發炎活性至少其中之一。 根據上述構想,其中該遷移活性為一癌細胞之一轉移 活性。 • 根據上述構想,其中該醫藥組合物更包含一藥學上之 有效載體。 為了易於說明,本發明得藉由下述之較佳實施例及圖 示而得到充分瞭解,並使得熟習本技藝之人士可以據以 完成之,然本發明之實施型態並不限制於下列實施例 中。 【實施方式】 本發明提供一種具有降低肺上皮細胞生理活性之 KMUP-1化合物。本發明KMUP-1化合物的結構及合成 方法已在美國專利號6,979,687中揭露,故於此不再贅 述。以下為證實KMUP-1藥理活性之測試結果的詳細說 明。 藥理試驗 1.細胞存活率 9 201004624 將自美國模式菌種收集中心(American Type Culture Collection,ATCC)取得的 NCI-H441 細胞培養於 RPMI 1640培養液中,並添加2mM麩胺酸、盤尼西林/鏈黴素 以及10%胎牛血清。在正常含氧狀態(20%氧氣)及缺氧 (1%氧氣)狀態下,細胞培養於5%二氧化碳的37°C培養 箱中進行培養。為達到缺氧狀態,將預先分析過的混合 氣體(95%氮氣-5%二氧化碳)注入培養箱中。 在細胞存活與增生的測試中,將H441細胞以每個培 籲 養格1〇5細胞的密度培養於24孔盤中,並以不同濃度的 KMUP-1處理各種時間後,利用MTT試驗得到細胞存活 率。所有實驗數據皆以平均值±標準誤差表示其結果,樣 本數n=4。對於非成對及成對的樣本,其統計顯著性分 別以獨立及成對t檢定方式進行分析。當對照組與不只 一組的實驗組比較時,使用單因子變異數分析(one-way ANOVA)或雙因子變異數分析(two-way ANOVA)。當 ANOVA分析顯出統計上差異,將結果進一步進行 • Dunnett’s或Tukey分析,其中尸<0.05表示具有顯著性。 實驗數值經由 SigmaStat: Version 2.03 分析,以 SigmaPlot: Version 8.0 (Systat Software, Point Richmond,CA)續'圖, 並利用IBM電腦執行。 請參考第一圖,其係為本發明之不同濃度(1.0, 10與 100 μΜ) KMUP-1在正常(圖1A)及缺氧(圖1B)狀態下處 理24、48及72小時後,對於Η441細胞存活率之抑制 作用。在正常及缺氧狀態下,KMUP-1 (1〇, 1〇, 1〇〇 μΜ) 抑制Η441細胞的存活率。如第一圖(Α)及第一圖(Β)所 201004624 示’局濃度的KMUP-1 0 //Μ)明顯地抑制了 H441細 胞的存活率。 2·細胞週期分佈 收集以騰蛋白酶作用後的細胞’以PBS清洗後,以含 有75%酒精的PBS懸浮細胞’並將細胞置於4°C下30 分鐘。在進行分析前,再次以PBS清洗、懸浮細胞,接 著以PBS中含有〇.〇5 mg/ml碘化丙啶(propidium • iodide)、l.〇mM乙二胺四醋酸(EDTA)、0.1%界面活性劑 TritonX-i〇〇 以及 1 mg/mi rnA 分解酶 RNase A 的蛾化 丙咬溶液進行30分鐘的染色。接著,將細胞懸浮液通過 尼龍過濾網後,以流式細胞儀(Coulter Epics XL-MCL, Beckman Coulter,USA)進行分析。 請參考第二圖,其係為不同濃度的KMUP-1 (0.01,0.1, 1·0,10與1〇〇μΜ)對於細胞週期分佈比例(%)的作用。在 正常狀態下,流式細胞儀分析的結果顯示KMUP-1對細 • 胞週期進展的影響,其中細胞週期的分布受到KMUP-1 濃度(0.01,〇·1,1.0, 10, 100 μΜ)的影響,呈現濃度相關 性。第二圖的結果顯示,G0/G1期的比例隨著KMUP-1 的濃度增加’ S期與G2/M期的比例隨著KMUP-1的濃 度減少。 請參考第三圖(Α)至第三圖(〇,其係顯示本發明之 KMUP-1 (1.〇 μΜ)在6小時至72小時的作用後,對於細 胞週期中各個週期的比例的影響。如第二圖至第三圖(C) 所示,KMUP-1 (100 μΜ)作用72小時後,明顯將細胞週 11 201004624 期阻滯在G0/G1期。 請參考第四圖’其為以流式細胞儀分析的細胞週期區 域圖’其係為本發明之KMUP-1 (1 〇〇 μΜ)與對照組及1 溶劑對照組比較後’對於細胞週期分佈的作用。在第四 圖中,KMUP-1(100 μΜ)作用72小時後,明顯將細胞週 期阻滯在G0/G1期。 3. NOS, sGC及PKG的表現 為 了決定eNOS、iNOS、sGC、PKG、HIF_la、VEGF、 ROCKII、p38、Bax、Bcl-2等蛋白質以及CDK抑制性蛋白 p21與p27在H441細胞中的表現量,在本發明中先將細胞 中所有蛋白質萃取出來’並利用以下西方墨點法進行分 析。 將H441細胞培養於直徑1〇公分的培養盤中,當細胞生 長至半滿時’使細胞停止生長並WKMUPd處理不同時 間。在某些實驗中,在細胞以特殊的抑制劑預先處理, 再給予KMUP-1。在測量iNOS表現量時,係先αΚΜυΐΜ 處理,再於TNF-a (100 ng/ml)存在30分鐘時測量其表現 量。細胞處理完畢後,將其以PBS(pH值7.4)清洗,靜置於 萃取緩衝液中(pH值為7.0的10 mM Tris溶液,含有14〇 mM 氯化鈉、2 mM苯曱基磺氟PMSF、5 mM二硫蘇糖醇DTT、 0,5%界面活性劑NP_4〇、〇〇5 mM胃蛋白抑制劑a以及〇2 mM妈蛋白酶抑制劑ieupeptin)緩慢搖動,然後在η 5〇〇名 12 201004624 的速度下離心30分鐘。接著,將細胞萃取液以1:1的比例 在樣品溶液中(pH值為6.8的100 mM Tris溶液,含有20% 甘油、4%SDS以及0.2%溴酚蘭)煮沸。在10%SDS-聚丙烯 酿胺凝膠的每個樣品槽中放入50 mg的蛋白質,以10伏特 (V)、40mA的條件進行電泳。將經過電泳分離的蛋白質以 100伏特’ 90分鐘轉潰到聚偏二氟乙稀(p〇lyvinylidene difluoride,PVDF)膜上,然後以5%的脫脂奶粉阻擂非專 一性的IgGs抗體,在與專一性抗體靜置一小時。將轉潰膜 再與結合驗性磷酸酶(alkaline phosphatase)的抗小鼠或抗 山羊的IgG抗體(1:1000)作用一小時後,加入化學呈色增 強劑(GE Healthcare Bio-Sciences Corp” Piscataway,NJ)就 能使蛋白質帶變為可見。 請參考第五圖(A)(B),其係顯示在KMUP-1 (1〇 μΜ) 存在(圖5Β)或不存在(圖5Α)時’在正常及缺氧狀態下處理 Η441細胞12、24、48與72小時後對其eN0S表現的作用。 在正常狀態下,ΚΜυρ_1(1〇 μΜ)會刺激H441細胞中 的表現,具有時間的相關性。eN〇s的表現在48小時時達 到最大值。而在缺氧狀態下,H441細胞中eN〇S蛋白質的 表現呈現與時間相關的減少’但又突然被KMUP-丨調升。 凊參考第六圖,其係為不同濃度iKMUPq 〇.〇1,0.1,1·0,與10 μΜ)在正常含氧量下處理48小時,對 13 201004624 於eNOS表現量的影響。如第六圖所示,KMUP-1對於eN〇S 表現量的誘導作用在48小時内也具有濃度相關性。 請參考第七圖(A)與第七圖(B) ’其係為細胞預先以市 售NOS抑制藥物L-NAME (100 μΜ)處理30分鐘後,本發明 之KMUP-1在正常及缺氧狀態下對於eNOS表現量的作 用。如第七圖(A)(B)所示,在兩種狀態下,經過NOS抑制 劑L-NAME (100 μΜ)的預處理後,KMUP-1對於eNOS蛋 • 白質表現量的增加作用被降低。 請參考第八圖及第九圖,其係為本發明之KMUP-1 (10, 100 μΜ)在正常及缺氧狀態下對於H441細胞中sGC/PKG 訊息路徑的作用。細胞分為不含KMUP-1的對照組以及含 有KMUP-1的組別,分別在正常及缺氧狀態下處理48小 時。如第八圖所示,在兩種狀態下,H441細胞中sGCa的 表現都受到KMUP-1(10,100 μΜ)的影響而增加。另外, ® 如第九圖所示,Η441細胞中PKG的表現明顯受到 KMUP-l(l〇, 1〇〇 μΜ)的作用而增加,正常狀態下分別增 加至對照組的146.8±13.9%及157.9± 12.1%,而缺氧狀態 下分別增加至對照組的13〇.1±11.7%及166.6± 18.0%。 在先前的研究中得知,人類細胞中的PKG被活化時, 能有效引發對於細胞生長的抑制作用與細胞凋亡的現 象,也能抑制細胞遷移的現象1〇。在本發明中,ΚΜυΡ-i (1〇, 201004624 100 μΜ)無論在正常或缺氧狀態下都增強了 sGC與PKG在 H441細胞中之表現,顯示其具有刺激細胞凋亡、抑制細 胞生長與遷移的能力。一般來說,6\〇8與8(}(:;的活化有 助於依賴cGMP而增加PKG的表現。根據上述實驗的結 果,可推測尚濃度KMUP-1對細胞生長的抑制作用,與長 時間增加的NO/過氧亞硝酸鹽及eGMP/PKG有關。 4. HIF-la、VEGF 及 ROCKII 訊息 請參考第十圖’其係為本發明之KMUP-1 (1 μΜ)在 Η441細胞暴露於缺氧狀態3至72小時後,對於HIF_la 表現量的影響。在細胞暴露於缺氧狀態3小時後,HIF_la 的表現較為明顯,在6至12小時達到最大。然而在18至24 小時後,HIF-U蛋白質的表現快速下降。而在kmupj 作用下’ HIF-la的表現在12小時時受到抑制,在24小 時時最為明顯。 Φ 請參考第十一圖’其係為本發明之KMUp_l (丨 在Η441細胞暴露於缺氧狀態3至72小時後,對於VEGF 表現量的影響。VEGF的表現也在缺氧狀態下被增強,而 ΚΜϋΡ-1(1.0 μΜ)的抑制作用在 12、18、24、48 及 72 小 時時分別為對照組的59.9±3.0 %、% n〇±il %、50.7±3.5 % 以及 44.2±3.3%。 請參考第十二圖’其係為本發明之KMUP-1 (1 μΜ) 在以L-NAME (100 μΜ)預處理30分鐘後,對於mF_la 以及VEGF表現量在24小時的抑制作用。由第十二圖可 15 201004624 知HIF-la在正常狀態下表現並不明顯,但在缺氧狀態下 明顯可見。在以L-NAME預處理時,並未觀察到kmuh 對於HIF-la表現量的影響’而將L-NAME與KMUP-1 合併作用’在缺氧狀態下也未顯出對HIF-la更進一步的 抑制。。 請參第十三圖(A)與第十三圖(B) ’其係為不同濃度的 KMUP-1 (0.01,〇.1,1.〇, 1〇 及 100 μΜ),對於缺氧狀態下 之HIF_la (圖13Α)及VEGF(圖13Β)表現量在24小時的 ® 作用。如第十三圖(A)及第十三圖(B)所示,HIF-la及 VEGF的表現與KMUP-1呈現濃度相關性(〇.〇1〜100 μΜ)。 請參考第十四圖(Α)及第十四圖(Β),其係為在缺氧狀 態下’ H441細胞以控制組、1.〇 μΜ KMUP-1、1.0 μΜ YCM、100 μΜ SNP以及100 μΜ ΙΒΜΧ等不同處理24小 時後’ HIF-la (圖14Α)及VEGF (圖14Β)的表現量。根據 第十四圖(A)中的數據,在不同處理下HIF-la蛋白質受到 參 抑制的情形如下(以對照組的數據作為100%) : 34.8 土 2.3% (KMUP-1,1.0 μΜ)、31.6 ± 3.4% (YC-1,1.0 μΜ)、 78.7 ± 3.1% (SNP,1〇〇 μΜ)、15.9 ± 5.9% (ΙΒΜΧ,100 μΜ) °而第十四圖(Β)中的數據則顯示,在不同處理下 VEGF蛋白質受到抑制的情形如下(以對照組的數據作為 100%) : 45.5 ± 3.1% (KMUP-1,1.0 μΜ)、47.2 ± 4.4% (YC-1,1.0 μΜ)、80.1 ± 2.8% (SNP,100 μΜ)、20.2 ±4.7% (ΙΒΜΧ,100 μΜ)。 如第十三圖(Α)(Β)所示,KMUP-1 (1·100 μΜ)隨濃度 16 201004624 增加而抑制缺氧所誘發的VEGF與HIF_la表現。另一方 面,如第十二圖所示,在正常狀態下,濃度低於1〇μΜ 的KMUP-1並沒有使VEGF具有任何明顯的表現,也顯 示其不具有促進血管新生的能力。合併上述結果, KMUP-1不僅克服了在缺氧時依賴N〇而產生VEGF的 現象,也具備抑制促發炎及抗血管新生的潛力。在本發 明中,KMUP-1在缺氧狀態下抑制了 VEGF及HIF la蛋 白質,並顯現出以缺氧性蛋白質標誌為標的之抑制血管 0 新生及抗腫瘤的活性。 δ月參考第十五圖,其係為本發明之ΚΜυρ ι(1〇,1〇〇 μΜ) ’在正常及缺氧狀態下對於H441細胞中的 蛋白質表現的作用。ROCKII的表現與濃度呈 現正相關。而在第二十五圖中,KMUpq的作用受到 cGMP拮抗劑Rp冬CPT_cGMP 〇〇 _)的抑制。 5.細胞遷移與ROCKII的抑制作用 • 將Η441細胞培養於六孔盤中,直到細胞生長至九成 滿。利用微吸管的尖端以橫跨培養格的方式在細胞層上 畫出傷π,並以培養液清洗細胞时以去除細胞碎片。 以10 μΜ的KMUIM及Υ-27632處理細胞μ小時及料 小時之後,利用顯微鏡觀察並照像紀錄傷口的邊緣 (Eclipse TS100, Nikon)。在同一個培養格中,測量傷口 寬度的最大與最小的位置,並取其平均值。 為了對應ROCKII表現的結果,本發明利用細胞遷移 的實驗證明KMUP-1對於癌細胞轉移活性的作用。請參 17 201004624 考第十七圖(A)(B)’其係顯示H441細胞經過1〇%胎牛企 清、不含血清的培養液、KMUP-1 (U1〇〇 μΜ)以及R〇CK 抑制劑Y27632 (1 〇 μΜ)等不同處理48小時後,在正常(圖 17Α)及缺氧(圖17Β)狀態下創傷寬度的相對距離。如第 十七圖(Α)及第十七圖(Β)所示,ΚΜυρ]可以在正常或 缺氧狀態下抑制Η441肺上皮細胞的遷移活性。尤其在 KMUP-1的濃度高於50 μΜ時,更明顯地降低培養48 _ 小時後的Η441細胞跨過創傷寬度的遷移,且在正常狀 態下比缺氧時效果更顯著。本發明還利用R〇CKII抑制 劑 Y27632 與 KMUP-1 的結果對照,γ27632 (1〇 也 在正常狀態下對ROCKII具抑制作用,但在缺氧時卻不 然。由於癌上皮細胞的遷移現象會增加癌細胞轉移的風 險,因此在本發明中,KMUP-1對於R0CKII的抑制作 用提供了在肺上皮細胞中對抗轉移的潛力。 6· p21及p27的表現量 • 請參考第十八圖(A)及第十八圖(B),其係為本發明之 KMUP-1在正常及缺氧狀態下,對於不經cGMp拮抗劑, Rp-8-CPT-cGMP預處理(圖18 A)以及經過 Rp-8-CPT-cGMP (10 μΜ)預處理 30 分鐘後(圖 18 b)之 Η441細胞中P21表現量的作用。在正常及缺氧狀態下, 將細胞在添加KMUP-1或不添加KMUP-1的條件下培養 48小時。如第十八圖所示,與對照組相比後,口21受 到KMUP-1 (1〇, 1〇〇μΜ)的影響而增加的情形如下:在正 常狀態下為181.2± 17.6 %及172.9士 18.1 %,在缺氧狀熊 下為151.7± 7.7 %及135.1± 14.7 %。如第十八圖(β)所 201004624 示 ’ Rp-8-CPT-cGMPS (10 μΜ)不能抑制受到 KMUP-1 而 引發的p21蛋白質。 请參考第十九圖(A)及第十九圖(B),其係為本發明之 KMUP-1在正常及缺氧狀態下,對於不經cGMp拮抗劑, Rp-8-CPT-cGMP預處理(圖19 A)以及經過201004624 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a compound having a xanthine-based structure capable of reducing physiological activity of a lung epithelial cell line, particularly with respect to an increase in cyclization Cyclic Guanine Monophosphate (cGMP) active Rho-kinase inhibitor inhibits cell migration by increasing cGMP to modulate the expression of Rho-kinase π/vascular endothelial growth factor (ROCK/VEGF) in lung epithelial cells. [Prior Art] Lung epithelial cells often play an important role in the pathogenesis of obstructive bronchial diseases such as obstructive bronchopneumonia and cancer cell metastasis. The nitric oxide synthase/cyclized ornithine (NOS/cGMP) message in epithelial cells is involved in the regulation of airway contraction and regulation of cell growth. It should be closely related to obstructive bronchial disease. Epithelial cells can release many inhibitory effects on smooth muscle. Regulatory substances, such as • Rapid release of NO via epithelial tissue can affect contraction and growth of smooth muscle cells in adjacent lungs. There are many immunological evidences that have shown that NOS/cGMP messages have characteristics in the respiratory epithelium I,2. (7- [2- KMUP-1 [4-(2-chl〇r〇benzene) piperazinyl]ethyl]- 1,3- dimethylxanthine) is a kind of bottom structure with yellow β ticket, which is Rho- with cGMP promotion. Kinase inhibitors have been found in previous studies to show that KUMP-1 can increase cGMP in cytoplasm by activating guanyl cyclase (sGC) and N〇 human enzyme (NOS) in epithelial cells. And reach the relaxation gas ^ 201004624 contraction effect. In addition, KMUP-1 can also participate in the activation of sGC and selenate by inhibiting the expression of inducible NO synthase (iNOS) induced by Tumor necrosis factor-a (TNF-a). The mechanism of inhibition of phosphodiester (PDE) leads to an increase in cyclized guanylate/protein kinase G (cGMP/PKG) in the smooth muscle of the trachea. Therefore, in the present invention, KMUP-1 is involved in inhibiting proliferation, proinflammatory activity, and migration of lung epithelial cells. In the present invention, in order to prove the efficacy of KMUP-1, we have used a number of proteins or drugs as indicators, and the characteristics and the roles of these substances are described as follows: YC-1 is an SGC activator having NO-dependent cGMP enhancing activity. In different types of cells, γ (>1 appears to have an effect against cell proliferation, anti-angiogenesis, anti-cancer, and resistance to inflammation, and thus is used in the present invention as a positive control compared with KMUP4. In the inhibition of lung epithelial cell migration, r〇ckii is located downstream of the cGMP/PKG message pathway and is associated with cell migration activity. Therefore, in the present invention, the ROCK inhibitor Y27632 was also used to observe KMUP-1 for inhibiting lung epithelial cells. The effect of migration. For the inhibition of angiogenesis, VEGF is currently known to be an important pro-angiogenic factor and a necessary substance for tumor growth. The expression of VEGF is triggered by many factors, including hypoxia. When the hypoxia-activated transcription factor, hypoxic induced factor l mF1, is expressed, ΗΠΜ can regulate the VEGF gene of 201004624. Since YC-1 is a NO-dependent cGMp promoter, YC- 1 also plays an important role in the vascular system and inhibits the expression of VEGF and HIF-1 a in Hep3B cells. The cyclin-dependent kinase (CDK) inhibitory proteins p21 and p27 are also used in the present invention to observe whether or not they are increased in the cGMP pathway. In addition to P21 and P27, the present invention also observes another Phosphorylation of protein kinase 38. p38 plays an important role in inflammatory cells, cell proliferation of respiratory tract cells, and cell survival. 8, In addition, in the case of cell apoptosis, the cells are also analyzed in the present invention. In the present invention, a protein BaX/Bcl-2/protease caspase 3 which is accompanied by p21 and p27 is expressed in the cycle. In the present invention, a compound 'KMUP-1' which inhibits the physiological activity of lung epithelial cells is provided to affect eNOS. /sGC/PKG message, apoptosis message Bax/Bcl-2/caspase 3, and the performance of p21 and p27 in the cell cycle', especially in the presence of ROCKII/VEGF/HIF-la under hypoxia, resulting in inhibition of lung Epithelial cell proliferation, migration, and inflammation-promoting activities. SUMMARY OF THE INVENTION The present invention first proposes that KMUP-1 can affect eNOS/sGC/PKG information related to cGMP, and cell apoptosis information Bax/Bcl- 2/caspase 3 and the expression of ROCKII/VEGF/HIF-la under hypoxic state, thereby achieving an effect of inhibiting the activity of proliferation, inflammation, and migration of lung epithelial cells. Therefore, the present invention provides a pharmaceutical composition comprising a 7-[ 2- 201004624 4 Benzene Benzene) (4) yl]ethyl]+ 3, wherein the compound is a compound of the base 具有 具有 具有 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺It is contemplated that the pharmaceutical composition further comprises - pharmaceutically acceptable according to the above concept, wherein the physiologically active ~ migration activity and - proinflammatory activity are at least one of - proliferative activity, activity according to the reliance 'where the migration activity is - heart Cell-transfer material pain and inhibition of Si plus lung epithelial fines The present invention further provides a method for inhibiting a 2, which comprises administering a dose of a sputum and a physioactive thiol thiophene 7-[2·[4-(2-gas stupid) brigade I-based J-ethyl]-1,3-dimethylxanthine; melon-mammal, wherein the compound is required to be administered by phantom-1 kinase Agent. And, according to the above concept, wherein the compound further comprises a pharmaceutically effective according to the above concept, wherein the physiological activity and the inflammatory activity are at least one. 3 Activity, activity According to the above concept, one of the two cells of the feed material is transferred to the mu' in the blister, wherein the compound is caused by increasing the physiological activity of the lung epithelial cells. In addition, the present invention provides a method of preparing a pharmaceutical composition, wherein the pharmaceutical composition comprises a 7-[2-[4-(2-cepbenzene)piperazine A compound of ethylethyl]-1,3-dimethylxanthine. According to the above concept, the pharmaceutical composition has an effect of inhibiting physiological activity of one of the lung epithelial cells, and the physiological activity is selected from at least one of a proliferative activity, a migration activity, and a pro-inflammatory activity. According to the above concept, wherein the migration activity is a transfer activity of one of the cancer cells. • According to the above concept, wherein the pharmaceutical composition further comprises a pharmaceutically effective carrier. The present invention will be fully understood by the following description of the preferred embodiments and the accompanying drawings. In the example. [Embodiment] The present invention provides a KMUP-1 compound having a physiological activity for reducing lung epithelial cells. The structure and synthesis of the KMUP-1 compound of the present invention are disclosed in U.S. Patent No. 6,979,687, the disclosure of which is hereby incorporated herein. The following is a detailed description of the test results confirming the pharmacological activity of KMUP-1. Pharmacological test 1. Cell viability 9 201004624 NCI-H441 cells obtained from the American Type Culture Collection (ATCC) were cultured in RPMI 1640 medium and added with 2 mM glutamic acid, penicillin/streptococcus And 10% fetal bovine serum. The cells were cultured in a 37 ° C incubator in a state of normal oxygen (20% oxygen) and anoxic (1% oxygen) in a 5% carbon dioxide incubator. In order to achieve anoxic state, a pre-analyzed mixed gas (95% nitrogen - 5% carbon dioxide) was injected into the incubator. In the test of cell survival and proliferation, H441 cells were cultured in a 24-well plate at a density of 1〇5 cells per cell, and treated with different concentrations of KMUP-1 for various times, and cells were obtained by MTT assay. Survival rate. All experimental data are expressed as mean ± standard error, and the number of samples is n=4. For unpaired and paired samples, their statistical significance was analyzed in an independent and paired t-test. One-way ANOVA or two-way ANOVA was used when the control group was compared to more than one experimental group. When the ANOVA analysis showed statistical differences, the results were further performed • Dunnett’s or Tukey analysis, where corpse < 0.05 was considered significant. The experimental values were analyzed via SigmaStat: Version 2.03, continued with SigmaPlot: Version 8.0 (Systat Software, Point Richmond, CA) and executed using an IBM computer. Please refer to the first figure, which is the different concentrations (1.0, 10 and 100 μΜ) of KMUP-1 in the present invention after 24, 48 and 72 hours of normal (Fig. 1A) and anoxic (Fig. 1B) conditions. Inhibition of 441 cell survival rate. KMUP-1 (1〇, 1〇, 1〇〇 μΜ) inhibited the survival rate of Η441 cells under normal and hypoxic conditions. As shown in the first figure (Α) and the first figure (Β), 201004624 shows that the 'local concentration of KMUP-1 0 //Μ) significantly inhibited the survival rate of H441 cells. 2. Cell cycle distribution The cells after the protease were collected. After washing with PBS, the cells were suspended in PBS containing 75% alcohol and the cells were placed at 4 ° C for 30 minutes. Before the analysis, the cells were washed and suspended again with PBS, followed by 〇.〇5 mg/ml propidium iodide, 〇mM ethylenediaminetetraacetic acid (EDTA), 0.1% in PBS. The surfactant TritonX-i〇〇 and the 1 mg/mi rnA decomposing enzyme RNase A were stained for 30 minutes. Next, the cell suspension was passed through a nylon filter and analyzed by flow cytometry (Coulter Epics XL-MCL, Beckman Coulter, USA). Please refer to the second figure, which is the effect of different concentrations of KMUP-1 (0.01, 0.1, 1·0, 10 and 1〇〇μΜ) on the cell cycle distribution ratio (%). Under normal conditions, the results of flow cytometry analysis showed the effect of KMUP-1 on the progression of the cell cycle, where the cell cycle distribution was affected by KMUP-1 concentration (0.01, 〇·1, 1.0, 10, 100 μΜ). Impact, showing concentration correlation. The results in the second graph show that the ratio of G0/G1 phase increases with the concentration of KMUP-1. The ratio of S phase to G2/M phase decreases with the concentration of KMUP-1. Please refer to the third figure (Α) to the third figure (〇, which shows the effect of KMUP-1 (1.〇μΜ) of the present invention on the proportion of each cycle in the cell cycle after 6 hours to 72 hours. As shown in the second to third (C), after 72 hours of KMUP-1 (100 μΜ), the cell cycle 11 201004624 was significantly blocked in G0/G1 phase. Please refer to the fourth figure The cell cycle region map analyzed by flow cytometry is the effect of KMUP-1 (1 〇〇μΜ) of the present invention on the cell cycle distribution after comparison with the control group and the 1 solvent control group. In the fourth figure After KHUP-1 (100 μΜ) for 72 hours, the cell cycle was obviously arrested in G0/G1 phase. 3. The expression of NOS, sGC and PKG was determined in order to determine eNOS, iNOS, sGC, PKG, HIF_la, VEGF, ROCKII, The expression levels of p38, Bax, Bcl-2 and other proteins and CDK inhibitory proteins p21 and p27 in H441 cells, in the present invention, first extract all the proteins in the cells' and analyze them by the following Western blot method. The cells are cultured in a culture dish of 1 〇 cm in diameter, and when the cells grow to half full, Growth was stopped and WKMUPd was treated for different times. In some experiments, KMUP-1 was administered in the cells with a special inhibitor. When measuring iNOS expression, it was treated with αΚΜυΐΜ and then with TNF-a (100 ng). /ml) The amount of performance was measured at 30 minutes. After the cells were processed, they were washed with PBS (pH 7.4) and placed in extraction buffer (10 mM Tris solution with pH 7.0, containing 14 mM) Sodium chloride, 2 mM phenylsulfonyl fluorocarbon PMSF, 5 mM dithiothreitol DTT, 0, 5% surfactant NP_4 〇, 〇〇 5 mM gastric protein inhibitor a, and 〇 2 mM mom protease inhibitor ieupeptin Slowly shake, then centrifuge for 30 minutes at the speed of η 5〇〇名12 201004624. Next, the cell extract is placed in the sample solution at a ratio of 1:1 (100 mM Tris solution with a pH of 6.8, containing 20%) Glycerin, 4% SDS, and 0.2% bromophenol blue) were boiled. 50 mg of protein was placed in each sample tank of a 10% SDS-polyacrylamide gel and electrophoresed at 10 volts (V) and 40 mA. The electrophoretically separated protein was spun at 100 volts for 90 minutes to polyvinylidene fluoride (p〇ly On the vinylidene difluoride (PVDF) membrane, the non-specific IgGs antibody was blocked with 5% skim milk powder and allowed to stand for one hour with the specific antibody. The membrane was combined with the phosphatase (alkaline phosphatase). One hour after anti-mouse or anti-goat IgG antibody (1:1000), the protein band was visualized by the addition of a chemical color enhancer (GE Healthcare Bio-Sciences Corp) Piscataway, NJ. Please refer to the fifth figure (A) (B), which shows that in the presence of KMUP-1 (1〇μΜ) (Fig. 5Β) or in the absence (Fig. 5Α), Η 441 cells are treated under normal and hypoxic conditions. The effect of its eNOS performance after 24, 48 and 72 hours. Under normal conditions, ΚΜυρ_1(1〇 μΜ) stimulates performance in H441 cells with a temporal correlation. The performance of eN〇s reached its maximum at 48 hours. In the hypoxic state, the expression of eN〇S protein in H441 cells showed a time-dependent decrease', but it was suddenly increased by KMUP-丨.凊 Refer to the sixth graph, which is the effect of different concentrations of iKMUPq 〇.〇1, 0.1, 1.0, and 10 μΜ) under normal oxygen content for 48 hours on the expression of eNOS in 13 201004624. As shown in the sixth panel, the induction of the expression of eN〇S by KMUP-1 was also concentration-dependent within 48 hours. Please refer to the seventh (A) and seventh (B) sections of the present invention. The KMUP-1 of the present invention is normal and hypoxic after 30 minutes of treatment with the commercially available NOS inhibitory drug L-NAME (100 μM). The effect of the state on the amount of eNOS expression. As shown in Figure 7 (A) (B), KMUP-1 was reduced in the increase in eNOS egg white matter performance after pretreatment with the NOS inhibitor L-NAME (100 μΜ) in both states. . Please refer to the eighth and ninth figures, which are the effects of KMUP-1 (10, 100 μΜ) of the present invention on the sGC/PKG message pathway in H441 cells under normal and hypoxic conditions. The cells were divided into a control group containing no KMUP-1 and a group containing KMUP-1, which were treated under normal and anoxic conditions for 48 hours, respectively. As shown in the eighth panel, the expression of sGCa in H441 cells was increased by KMUP-1 (10,100 μΜ) in both states. In addition, as shown in the ninth figure, the performance of PKG in Η441 cells was significantly increased by the action of KMUP-1 (1〇, 1〇〇μΜ), which increased to 146.8±13.9% and 157.9 in the control group under normal conditions. ± 12.1%, and increased to 13〇.1±11.7% and 166.6±18.0% of the control group in the hypoxic state. It has been known in previous studies that when PKG is activated in human cells, it can effectively induce inhibition of cell growth and apoptosis, and also inhibit cell migration. In the present invention, ΚΜυΡ-i (1〇, 201004624 100 μΜ) enhances the performance of sGC and PKG in H441 cells under normal or hypoxic conditions, indicating that it stimulates apoptosis, inhibits cell growth and migration. Ability. In general, the activation of 6\〇8 and 8(}(:; helps to rely on cGMP to increase the performance of PKG. Based on the results of the above experiments, it can be speculated that the inhibitory effect of KMUP-1 on cell growth is long. Time-increased NO/peroxynitrite and eGMP/PKG are involved. 4. HIF-la, VEGF and ROCKII information Please refer to the tenth figure, which is the KMUP-1 (1 μΜ) of the invention, which is exposed to Η441 cells. The effect of HIF_la on the amount of HIF_la after 3 to 72 hours of hypoxia. After 3 hours of exposure to hypoxia, HIF_la performed more significantly and reached its maximum at 6 to 12 hours. However, after 18 to 24 hours, HIF The performance of -U protein decreased rapidly. Under the action of kmupj, the performance of HIF-la was inhibited at 12 hours, and it was most obvious at 24 hours. Φ Please refer to the eleventh figure, which is the KMUp_l of the invention (丨The effect of VEGF on the expression of VEGF after exposure to hypoxia for 3 to 72 hours. The performance of VEGF was also enhanced in hypoxic conditions, while the inhibition of ΚΜϋΡ-1 (1.0 μΜ) was at 12, 18, 24 At 48 and 72 hours, they were 59.9±3.0% and % n〇± of the control group. Il %, 50.7 ± 3.5 % and 44.2 ± 3.3%. Please refer to the twelfth figure 'KMUP-1 (1 μΜ) which is the invention, after pretreatment for 30 minutes with L-NAME (100 μΜ), for mF_la And the inhibitory effect of VEGF expression in 24 hours. It can be seen from the twelfth figure 15 201004624 that HIF-la is not obvious under normal conditions, but is obviously visible in the state of hypoxia. When pretreatment with L-NAME, The effect of kmuh on the amount of HIF-la expression was not observed' and the combination of L-NAME and KMUP-1 did not show further inhibition of HIF-la under hypoxia. See thirteenth Figure (A) and Figure 13 (B) 'These are different concentrations of KMUP-1 (0.01, 〇.1,1.〇, 1〇 and 100 μΜ), for HIF_la under hypoxia (Figure 13Α And the expression of VEGF (Fig. 13Β) at 24 hours. As shown in Fig. 13 (A) and Fig. 13 (B), the expression of HIF-la and VEGF is correlated with KMUP-1 concentration. (〇.〇1~100 μΜ). Please refer to Figure 14 (Α) and Figure 14 (Β), which is in the hypoxic state of 'H441 cells in the control group, 1. 〇μΜ KMUP-1 , 1.0 μΜ YCM, 100 'Expression levels of HIF-la (FIG. 14 [alpha]) and VEGF (FIG. 14 [beta) after 24 hours treatment Μ SNP 100 μΜ ΙΒΜΧ and the like are different. According to the data in Fig. 14(A), the HIF-la protein was subjected to inhibition under different treatments as follows (100% of the data from the control group): 34.8 Soil 2.3% (KMUP-1, 1.0 μΜ), 31.6 ± 3.4% (YC-1, 1.0 μΜ), 78.7 ± 3.1% (SNP, 1〇〇μΜ), 15.9 ± 5.9% (ΙΒΜΧ, 100 μΜ) ° and the data in Figure 14 (Β) shows The VEGF protein was inhibited under different treatments as follows (100% of the data from the control group): 45.5 ± 3.1% (KMUP-1, 1.0 μΜ), 47.2 ± 4.4% (YC-1, 1.0 μΜ), 80.1 ± 2.8% (SNP, 100 μΜ), 20.2 ± 4.7% (ΙΒΜΧ, 100 μΜ). As shown in Fig. 13 (Α) (Β), KMUP-1 (1·100 μΜ) inhibited hypoxia-induced VEGF and HIF_la expression with increasing concentration of 16 201004624. On the other hand, as shown in Fig. 12, under normal conditions, KMUP-1 at a concentration of less than 1 μμ does not give any significant expression of VEGF, and it also shows that it does not have the ability to promote angiogenesis. Combining the above results, KMUP-1 not only overcomes the phenomenon of VEGF dependent on N〇 in the absence of oxygen, but also has the potential to inhibit inflammation and anti-angiogenesis. In the present invention, KMUP-1 inhibits VEGF and HIF la protein under hypoxia, and exhibits an activity of inhibiting angiogenesis and antitumor activity marked by an anoxic protein marker. The δ month refers to the fifteenth diagram, which is the effect of ΚΜυρ ι(1〇,1〇〇 μΜ)' of the present invention on protein expression in H441 cells under normal and hypoxic conditions. The performance of ROCKII was positively correlated with the concentration. In the twenty-fifth figure, the effect of KMUpq was inhibited by the cGMP antagonist Rp winter CPT_cGMP 〇〇 _). 5. Cell migration and inhibition of ROCKII • Culture Η441 cells in a six-well plate until the cells grow to over 90%. The π is drawn on the cell layer by the tip of the micropipette in a manner across the culture cell, and the cell debris is removed by washing the cells with the culture solution. The cells were treated with 10 μΜ of KMUIM and Υ-27632 for μ hours and after an hour, and the edges of the wound (Eclipse TS100, Nikon) were visualized and photographed using a microscope. In the same culture, measure the maximum and minimum position of the wound width and take the average. In order to correspond to the results of ROCKII expression, the present invention demonstrates the effect of KMUP-1 on cancer cell metastatic activity using an experiment of cell migration. Please refer to the 17th figure (A)(B) of the 201004624 test. The system shows that H441 cells pass through 1% fetal calf serum, serum-free medium, KMUP-1 (U1〇〇μΜ) and R〇CK inhibitor. Y27632 (1 〇μΜ) The relative distance of the wound width under normal (Fig. 17Α) and hypoxia (Fig. 17Β) conditions after 48 hours of different treatments. As shown in Fig. 17 (Α) and Fig. 17 (Β), ΚΜυρ] can inhibit the migration activity of Η441 lung epithelial cells under normal or hypoxic conditions. Especially when the concentration of KMUP-1 is higher than 50 μΜ, the migration of Η441 cells across the wound width after 48 _ hours of culture is more significantly reduced, and the effect is more significant under normal conditions than under hypoxia. The present invention also utilizes the results of the R〇CKII inhibitor Y27632 and KMUP-1, γ27632 (1〇 also inhibits ROCKII under normal conditions, but not in hypoxia. Since the migration of cancer epithelial cells increases The risk of metastasis of cancer cells, therefore, in the present invention, the inhibitory effect of KMUP-1 on R0CKII provides potential for metastasis in lung epithelial cells. 6·Performance of p21 and p27 • Please refer to Fig. 18(A) And the eighteenth (B), which is the KMUP-1 of the present invention, under normal and hypoxic conditions, for the pretreatment of Rp-8-CPT-cGMP without a cGMp antagonist (Fig. 18A) and by Rp -8-CPT-cGMP (10 μΜ) The effect of P21 expression on Η441 cells after 30 minutes of pretreatment (Fig. 18b). Under normal and hypoxic conditions, cells were added with KMUP-1 or without KMUP- The culture was carried out for 48 hours under the conditions of 1. As shown in Fig. 18, after the comparison with the control group, the mouth 21 was affected by KMUP-1 (1〇, 1〇〇μΜ) and the increase was as follows: under normal conditions It was 181.2 ± 17.6 % and 172.9 ± 18.1%, which was 151.7 ± 7.7 % and 135.1 ± 14.7% under hypoxic bears. Figure 18 (β), 201004624 shows that 'Rp-8-CPT-cGMPS (10 μΜ) does not inhibit the p21 protein induced by KMUP-1. Please refer to Figure 19 (A) and Figure 19 (B). ), which is the KMUP-1 of the present invention under normal and hypoxic conditions, for the pretreatment of Rp-8-CPT-cGMP without a cGMp antagonist (Fig. 19A) and

Rp-8-CPT-cGMP (1〇 μΜ)預處理 30 分鐘後(圖 19 B)之 Η441細胞中Ρ27表現量之作用。如第十九圖(Α)所示, Ρ27受到KMUP-1 (1〇,100 μΜ)的影響而增加的情形如 下.在正常狀態下為162.5± 12.5 〇/〇及201.6±23.5 %,在 缺氧狀態下分別為172.4± 19.5 %及242.2± 21.5 %。如第 十九圖(Β)所示,Rp_8_CPT_cGMps (丨〇 μΜ)也不能抑制受 到KMUP-1而引發的ρ27蛋白質。另外,缺乏血清培養 的細胞中,P21與ρ27的表現也會增加。 在細胞週期中,CDK抑制性蛋白質p21與ρ27是生 長中細胞DNA複製的指標,通常在DNA受損時經由ρ53 而活化。在基因受損時’ Ρ21與ρ27會透過分歧的機制 導致細胞週期停滯在G〇/G1檢查點^ ΚΜυΐΜ ㈨ μΜ)可在缺氧狀態下抑制H441細胞的增生,但在濃度低 於1.0 μΜ時沒有這種抑制作用。然而越來越多的證據也 支持p21與Ρ27在轉譯層次的調節具有重要性。本發明 之KMUP-1在缺氧壓力下’增加p21與ρ27的表現,顯 不其對於癌細胞生長之轉譯層次的影響。然而,KMUi>4 對於引發p21與p27表現的作用,並未受 Rp_8-CPT-eGMPS的影響,表示其中涉及不依賴cGMp 的細胞週期發展。 19 201004624 7. Bax/Bcl-2 與蛋白酶 caspase 3 請參考第二十圖(A)及第二十圖(b),其係為本發明之 KMUP-1 (10, 100 //M)在正常及缺氧狀態下,對於H44i 細胞中Bax (圖20A)及Bcl-2 (圖20B)表現之作用。 KMUP-1(10, 100 μΜ)可在正常狀態下增加Bax的表現至 對照組的125.6±11.4%及103.6±1〇.8 %,而在正常狀態 下降低Bcl-2的表現為對照組的31.9±1.2%,在缺氧狀態 下降低Bcl-2的表現為對照組的56.5±1.3%。因此,如第 二十一圖所示’Bax/Bcl_2的比例會隨著KMup-l的濃度 而增加。如第二十二圖及第二十三圖所示,L-NΑΜΕ與 Rp-8-CPT-cGMP 抑制了 KMUP-1 對於 Bax/Bcl-2 比例之 增加。 請參考第二十四圖’其係為不同濃度的KMUH (1.0, 10及100 μΜ),在正常及缺氧狀態下對於H441細胞 中之未活化procaspase-3/活化caspase_3比例的作用,其 中未活化procaspase-3/活化caspase_3之表現比例受 KMUP-1濃度的影響而增加,且在正常狀態下比缺氧狀 態明顯。 根據本發明中細胞週期的實驗,H441細胞暴露於缺 氧狀態下72小k後,會出現一個sub_Gi期高峰(sub-Gl peak ’也代表細胞凋亡的高峰),而在^^仰心(i〇〇 μΜ) 共同培養下’更增強了此細胞凋亡的高峰。另外, KMUP-1 (10,1〇〇 μΜ)也在缺氧時增加Bax並減少Bcl-2 20 201004624 的表現,所以導致Bax/Bcl-2比例增加。KMUP-1更增強 了蛋白酶caspase-3的表現,顯示其在H441細胞中對細胞 凋亡的活性11。 值得注意的是’ KMUP-1在正常或缺氧狀態都能增加 eNOS表現量’所以理論上NO導致的血管新生及毒性過 氧化亞硝酸離子(ONOO·)也會增加。而且ΚΜυρ_ι對於Rp-8-CPT-cGMP (1〇 μΜ) was used for 30 minutes (Fig. 19B) for the effect of Ρ27 expression in Η441 cells. As shown in the nineteenth figure (Α), the increase of Ρ27 by KMUP-1 (1〇, 100 μΜ) is as follows. Under normal conditions, it is 162.5±12.5 〇/〇 and 201.6±23.5 %, in the absence of The oxygen state was 172.4 ± 19.5 % and 242.2 ± 21.5 %, respectively. As shown in Fig. 19 (Β), Rp_8_CPT_cGMps (丨〇 μΜ) also failed to inhibit the ρ27 protein induced by KMUP-1. In addition, in cells lacking serum culture, the performance of P21 and ρ27 also increased. In the cell cycle, the CDK inhibitory proteins p21 and ρ27 are indicators of DNA replication in growth cells, usually activated by ρ53 when DNA is damaged. In the case of gene damage, Ρ21 and ρ27 may cause cell cycle arrest at the G〇/G1 checkpoint through the mechanism of divergence. ΚΜυΐΜ (9) μΜ) can inhibit the proliferation of H441 cells under hypoxia, but at concentrations below 1.0 μΜ There is no such inhibition. However, more and more evidence supports the importance of the adjustment of p21 and Ρ27 at the translation level. The KMUP-1 of the present invention increased the expression of p21 and ρ27 under hypoxic pressure, indicating no effect on the translational level of cancer cell growth. However, the effect of KMUi>4 on the expression of p21 and p27 was not affected by Rp_8-CPT-eGMPS, indicating that it involved cell cycle progression independent of cGMp. 19 201004624 7. Bax/Bcl-2 and protease caspase 3 Please refer to the twentieth (A) and twentieth (b) drawings, which are the normal KMUP-1 (10, 100 //M) of the present invention. And the effect of Bax (Fig. 20A) and Bcl-2 (Fig. 20B) on H44i cells in hypoxia. KMUP-1 (10, 100 μΜ) can increase the performance of Bax under normal conditions to 125.6±11.4% and 103.6±1〇.8% in the control group, while the Bcl-2 expression in the normal state is lower than that in the control group. 31.9±1.2%, the performance of reducing Bcl-2 in hypoxia was 56.5±1.3% of the control group. Therefore, as shown in Fig. 21, the ratio of 'Bax/Bcl_2 will increase with the concentration of KMup-1. As shown in Fig. 22 and Fig. 23, L-NΑΜΕ and Rp-8-CPT-cGMP inhibited the increase in the ratio of KMUP-1 to Bax/Bcl-2. Please refer to Figure 24 for the effect of different concentrations of KMUH (1.0, 10 and 100 μΜ) on the ratio of unactivated procaspase-3/activated caspase_3 in H441 cells under normal and hypoxic conditions. The expression ratio of activated procaspase-3/activated caspase_3 was increased by the concentration of KMUP-1, and it was more obvious under hypoxic state under normal conditions. According to the cell cycle experiment of the present invention, after exposure of H441 cells to 72 hours under hypoxic conditions, a sub_Gi peak (sub-Gl peak ' also represents the peak of apoptosis) appears, and i〇〇μΜ) co-cultured to further enhance the peak of this apoptosis. In addition, KMUP-1 (10,1〇〇 μΜ) also increased Bax and reduced the performance of Bcl-2 20 201004624 in the absence of oxygen, resulting in an increase in the proportion of Bax/Bcl-2. KMUP-1 enhanced the expression of protease caspase-3 and showed its activity against apoptosis in H441 cells11. It is worth noting that 'KMUP-1 can increase the amount of eNOS expression in normal or hypoxic conditions', so theoretically NO-induced angiogenesis and toxic peroxidic nitrite ions (ONOO·) will also increase. And ΚΜυρ_ι for

Bax/Bcl-2比例的影響,也受到NOS抑制劑l-NAME與 ’籲 PKG抑制劑Rp_8_cPT-cGMPS的抑制(參考第二十二圖 及第二十三圖)。因此本發明中KMUP-1對H441細胞调 亡的作用’可能歸因於NO透過依賴Bax/Bcl-2與cGMP 的路徑’引發過氧化亞硝酸離子過度表現,與YC_1在 HA22T細胞中不依賴cGMP的抗增生活性不同I2。The effect of the Bax/Bcl-2 ratio was also inhibited by the NOS inhibitor l-NAME and the PKG inhibitor Rp_8_cPT-cGMPS (see Figures 22 and 23). Therefore, the effect of KMUP-1 on apoptosis of H441 cells in the present invention may be attributed to the excessive expression of peroxidic nitrite ions by NO through the path of Bax/Bcl-2 and cGMP, and YC_1 is independent of cGMP in HA22T cells. The anti-proliferative activity differs from I2.

8. U46619 引發之 PDE-5A 請參考第二十五圖,其係為本發明之KMUP-1在正常 及缺氧狀態下對於H441細胞中PDE5A表現的作用。進 ❷ 一步參考第二十六圖,其係為不同濃度的KMUP-1 (1.0, 10及50 μΜ)對於以PDE5A促進劑U46619誘導後細胞 中PDE5A表現量的影響。如第二十六圖所示,模擬發炎 因子ΤΧΑ的協同劑U46619 (5 μΜ)在正常狀態下明顯地 引起PDE5A表現的增加。然而,經過KMUP-1 (1,10, 50 μΜ)的預處理,U46619引起上皮細胞中ρ〇Ε5Α的表現, 呈現與KMUP-1濃度相關的減少。8. U46619 Initiated PDE-5A Please refer to the twenty-fifth figure, which is the effect of KMUP-1 of the present invention on PDE5A expression in H441 cells under normal and hypoxic conditions. Further reference is made to Figure 26, which is the effect of different concentrations of KMUP-1 (1.0, 10 and 50 μΜ) on the amount of PDE5A in cells induced by the PDE5A promoter U46619. As shown in Figure 26, the synergist U46619 (5 μΜ), which mimics the inflammatory factor 明显, apparently caused an increase in PDE5A expression under normal conditions. However, after pretreatment with KMUP-1 (1, 10, 50 μΜ), U46619 caused the expression of ρ〇Ε5Α in epithelial cells, exhibiting a decrease associated with KMUP-1 concentration.

9. ρ38的碟酸化與TNF-a誘發的iNOS 21 201004624 請參考第二十七圖,其係為本發明之KMUp l (1〇, 100 μΜ)在正常及缺氧狀態下,對於H441細胞中磷酸化 p38/所有P38之比例的作用。如第二十七圖所示,相對 光學密度比例代表磷酸化P38/所有p38的表現比例,在 不含血清的組別中,該表現比例在正常狀態下降低(樣 本數n=4,p<0.05) ’但在缺氧時有不甚明顯的增加。 KMUP-1 (10,100 μΜ)在正常狀態下將該表現比例降低 至58.9±7.1%及50.9±9.1% ’在缺氧狀態下將該表現比例 • 降低至70·6土6.6%及67.^9.4% (樣本 酸化p38受到KMUP-1的影響而呈現表現下降的現象, 即表示KMUP-1具有抑制促發炎路徑的能力。 P38激梅是一種與促發炎有關的訊息蛋白質,被認為 與調控發炎反應的主要成員有關,而包括缺氧壓力等許 多因素都會活化p38的表現。一旦p38被活化,p38會 使下游的受質磷酸化,以啟動調節許多促發炎因子合成 的一連串訊息。負責調控p38激酶的Rh〇/R〇CK訊息與 鲁 血管平滑肌細胞的遷移相關,同時也容易受到ROCK抑 制劑Y27632的影響。在本發明中,KMUIM減弱 ROCKII/p38的表現’並在正常與缺氧狀態下抑制細胞遷 移的活性,都證明了 KMUP-1能提供肺上皮細胞抗發炎 與抗轉移的活性。 请參考第二十八圖,其係為不同濃度的KMUP49. Disc acidification of ρ38 and TNF-a-induced iNOS 21 201004624 Please refer to the twenty-seventh figure, which is a KMUp l (1〇, 100 μΜ) of the present invention in H441 cells under normal and hypoxic conditions. The role of phosphorylation of p38/proportion of all P38. As shown in Figure 27, the relative optical density ratio represents the ratio of phosphorylation of P38/all p38, and in the serum-free group, the performance ratio is reduced under normal conditions (sample number n=4, p< 0.05) 'But there is an insignificant increase in hypoxia. KMUP-1 (10,100 μΜ) reduced the performance ratio to 58.9±7.1% and 50.9±9.1% under normal conditions. In the anoxic state, the performance ratio was reduced to 70.6 soil 6.6% and 67. ^9.4% (sample acidified p38 is affected by KMUP-1 and shows a decrease in performance, which means that KMUP-1 has the ability to inhibit the path of inflammation. P38 is a protein related to inflammation, which is thought to be regulated. The major members of the inflammatory response are involved, and many factors, including hypoxia stress, activate the expression of p38. Once p38 is activated, p38 phosphorylates downstream receptors to initiate a cascade of messages that regulate the synthesis of many pro-inflammatory factors. The Rh〇/R〇CK message of p38 kinase is associated with the migration of vascular smooth muscle cells and is also susceptible to the ROCK inhibitor Y27632. In the present invention, KMUIM attenuates the expression of ROCKII/p38 and is in normal and hypoxic state. The activity of inhibiting cell migration has proved that KMUP-1 can provide anti-inflammatory and anti-metastatic activity of lung epithelial cells. Please refer to Figure 28 for different concentrations of KMUP4.

(1-100 μΜ)在正常及缺氧狀態下對於TNF-a誘導的iNOS 表現之作用。如第二十八圖所示,ΤΝΚα (1〇〇 ng/mi) 22 201004624 使mos表現量增加’而kmup_i卻能夠在肺上皮細胞中 抑制受TNF- α誘導而表現的iNOS。TNF- α誘導iNOS的 現象受到KMUP-1的作用而減弱,在ΚΜυρ_^度高於5〇 時,無論在正常或缺氧狀態下,都受到更嚴重的破 壞,顯示KMUP-1在兩種狀態下都有抑制促發炎作用的 能力。 _ 綜上所述’ KMUP-1所顯現出對於p38、ROCKII以 及VEGF的抑制作用,已證明其不具毒性,且具有抑制 肺上皮細胞增生、促發炎以及遷移的能力,更足以應用 於預防因發炎造成的阻塞性疾病、促發炎疾病與癌細胞The effect of (1-100 μΜ) on TNF-a-induced iNOS expression under normal and hypoxic conditions. As shown in Fig. 28, ΤΝΚα (1〇〇 ng/mi) 22 201004624 increased the amount of mos expression while kmup_i was able to inhibit iNOS induced by TNF-α in lung epithelial cells. The phenomenon of TNF-α-induced iNOS is attenuated by the action of KMUP-1. When the ΚΜυρ_^ degree is higher than 5〇, it is more severely damaged under normal or hypoxic conditions, indicating that KMUP-1 is in two states. Both have the ability to inhibit the effects of promoting inflammation. _ In summary, KMUP-1 has been shown to inhibit p38, ROCKII and VEGF, has been shown to be non-toxic, and has the ability to inhibit lung epithelial cell proliferation, inflammation and migration, and is more suitable for preventing inflammation. Causing obstructive diseases, inflammatory diseases and cancer cells

惟以上所述者,僅為本發明之較佳實施例 限疋本發明之實施範圍。故凡依本發明申請 其係為本發明之不 在正常(圖1Α)及缺 三角形代表 細胞存活率之抑制作用,其However, the above description is only intended to limit the scope of the present invention to the preferred embodiments of the present invention. Therefore, the application according to the present invention is not inhibited by the normal (Fig. 1A) and the triangle-deficient cell survival rate of the present invention.

第一圖(Α)及第一圖(Β)為曲線圖, 同濃度(1.0, 10 與 1〇〇 μΜ) KMUP-1 氣(圖1Β)狀態下對於Η441細胞存$ 中圓形代表對照組,二备游处主 23 201004624 三角形代表10 μΜ KMUP-l ’正方形代表1〇〇 μΜ KMUP-1。 第二圖係為不同濃度的KMUP-1 (〇.〇1,〇丨,j 〇, 1〇與 ΙΟΟμΜ)對於細胞週期分佈比例(%)的作用,其中FCS代 表含有船牛血清的細胞培養液’ vehicle代表诗養液中僅 添加KMUP-1的溶劑,而Go/Gl、S以及G2/M分別代 表細胞週期中的休眠狀態期/成長期、合成期以及有絲分 ® 裂準備期/有絲分裂期。 第二圖係為本發明之KMUP-1 (1.0从訄)在6小時至72 小時的作用後,對於細胞週期中各個週期的比例的影 響,其中SF與10%FCS分別代表細胞培養於不含血清 及含有10%胎牛jk清的培養液中。 第四圖為以流式細胞儀分析的細胞週期區域圖,其係 擊林發明之KMUIM _ _與龍組及其溶劑對照組 比較後,對於細胞週期分佈的作用。 第五圖(A)(B)係顯不在KMUp] (1〇 μΜ)存在(圖5B) 或不存在(圖5A)時,在正常及缺氧狀態下處理H44l細 胞!2、24、48與72小時後對其eN〇s表現的作用,其 中eNOS的表現量是以fi_actin❼表現量標準化的結果, 斜線長條表示eNOS在〇小時的表現量,而交叉線長條 與白色長條分別表示eNOS在正常及缺氧狀態下不同時 24 201004624 間的表現量,圖示中的*及**符號分別代表與〇小時比較 後/?<0.05以及Ρ<0.01 ,而圖示中的#及##符號分別代表 特定時間下正常與缺氧狀態比較後ρ<0 05以及芦<〇 〇1。 第六圖係為不同濃度之KMUP-1 (o.oono^o」j 〇 與10 μΜ)在正常含氧量下處理48小時,對於eN〇s表 現量的影響,其中eNOS的表現量是以B_actin的表現量 標準化的結果’斜線長條代表對照組,而白色長條代表 鲁 KMUP-1的實驗組。 第七圖係為細胞預先以市售NOS抑制藥物l_NAME (100 μΜ)處理30分鐘後’本發明之Kmuim在正常及缺 氧狀態下對於eNOS表現量的作用,其中斜線長條代表 不經預先處理的組別,而白色長條代表以L-NAME預先 處理的組別,第七圖(A)與第七圖(B)分別代表〇1μΜ及 1·〇 μΜ KMUP-1 的結果。The first graph (Α) and the first graph (Β) are graphs, the same concentration (1.0, 10 and 1〇〇μΜ) KMUP-1 gas (Fig. 1Β) state for Η441 cells, $ in the circle represents the control group The second tour master 23 201004624 The triangle represents 10 μΜ KMUP-l 'square represents 1〇〇μΜ KMUP-1. The second graph is the effect of different concentrations of KMUP-1 (〇.〇1,〇丨,j 〇, 1〇 and ΙΟΟμΜ) on cell cycle distribution ratio (%), where FCS represents cell culture medium containing boat bovine serum. 'The vehicle represents only the solvent of KMUP-1 added to the poetry solution, while Go/Gl, S and G2/M represent the dormant phase/growth phase, synthesis phase and mitosis® fission preparation/mitosis in the cell cycle, respectively. period. The second graph is the effect of the KMUP-1 (1.0 from 訄) of the present invention on the ratio of each cycle in the cell cycle after 6 hours to 72 hours, wherein SF and 10% FCS respectively represent cell culture in the absence of Serum and medium containing 10% fetal calf jk clear. The fourth panel is a cell cycle region map analyzed by flow cytometry, which is the effect of KMUIM _ _ in the invention of the cell cycle distribution after comparison with the dragon group and its solvent control group. Figure 5 (A) (B) shows that H44l cells are treated under normal and hypoxic conditions when KMUp] (1〇 μΜ) is present (Figure 5B) or absent (Figure 5A)! 2. The effect of eN〇s on the performance of 2, 24, 48 and 72 hours, in which the expression of eNOS is normalized by the expression of fi_actin❼, and the oblique line indicates the expression of eNOS in the hour, while the cross line strip and The white strips indicate the amount of eNOS in the normal and hypoxic conditions, respectively, between 24 201004624. The * and ** symbols in the graph represent the comparison with 〇 hours /? < 0.05 and Ρ < 0.01, respectively. The # and ## symbols in the indication represent the ρ < 0 05 and the reed < 〇〇 1 after comparing the normal and the anoxic state at a specific time. The sixth figure is the effect of different concentrations of KMUP-1 (o.oono^o"j 〇 and 10 μΜ) under normal oxygen demand for 48 hours, and the effect of eNOS is The results of standardization of B_actin's performance amount 'slashed bars represent the control group, while white bars represent the experimental group of Lu KMUP-1. The seventh panel shows the effect of Kmuim of the present invention on eNOS expression in normal and hypoxic conditions after 30 minutes of treatment with commercially available NOS inhibitory drug l_NAME (100 μΜ), wherein the diagonal strips represent no pretreatment. The group, while the white bar represents the group pre-processed with L-NAME, and the seventh (A) and seventh (B) represent the results of 〇1μΜ and 1·〇μΜ KMUP-1, respectively.

第八圖係為本發明之KMUP-1 (1〇, 100 μΜ)在正常及 缺氧狀態下對於Η441細胞中sGC表現的作用,其中SF 代表細胞培養於不含血清的培養液中,而斜線長條與白 色長條分別代表正常及缺氧狀態。 第九圖係為本發明之KMUP-1在正常及缺氧狀態下 對於H441細胞中PKG表現量的影響,其中sf代表細 25 201004624 胞培養於不含血清的培養液中,而斜線長條與白色長條 分別代表正常及缺氧狀態。 第十圖係為本發明之KMUP-l (1 μΜ)在H441細胞暴 露於缺氧狀態3至72小時後,對於HIF-la表現量的影 響’其中斜線長條與白色長條分別代表對照組及KMUP-1 的實驗組。 第十一圖係為本發明之KMUP-1 (1 μΜ)在H441細胞 暴露於缺氧狀態3至72小時後,對於VEGF表現量的影 響’其中斜線白色長條與長條分別代表對照組及KMUP4 的實驗組。 第十二圖係為本發明之KMUPd (i μΜ)在以L-NAME (100 μΜ)預處理30分鐘後,對於mF_la以及VEgf表現 量在24小時的抑制作用,其中n代表正常狀態,Η代表 缺氧狀態。 第十三圖(Α)及(Β)係為不同濃度的KMUP-1(0.01, 0.1, 1.0, 10及100 μΜ),對於缺氧狀態下之mF_la (圖13A) 及VEGF(圖13B)表現量在24小時的作用,其中斜線長條 與白色長條分別代表對照組及KMUP-1的實驗組。 第十四圖(A)及(B)係為在缺氧狀態下,H441細胞以控 制組、1.0 μΜ KMUP-1、1.〇 μΜ YCM、100 μΜ SNP 以及 26 201004624 100 μΜ IBMX等不同處理24小時後,HIF ia (圖14A)及 VEGF (圖14B)的表現量。 第十五圖係為本發明之KMUP-1 (10, l00/WM),在正 吊及缺氧狀態下對於H441細胞中的ROCKII蛋白質表現 的作用其中SF代表細胞培養於不含血清的培養液中, 而斜線長條與白色長條分別代表正常及缺氧狀態。 第十六圖係為細胞預先以市售Rp_8_CPT_cGMp (1〇 μΜ)處理30分鐘後,以本發明之(1〇 μΜ)在正常 及缺氧狀態下處理48小時後,對於Rho激晦表現的作 用,其中斜線長條與白色長條分別代表正常及缺氧狀態。 第十七圖(A)及(B)係顯示H441細胞經過1〇%胎牛血 清、不含血清的培養液、KMUP-1 (1-100 μΜ)以及rock 抑制劑Y27632 (10 μΜ)等不同處理48小時後,在正常(圖 17Α)及缺氧(圖17Β)狀態下創傷寬度的相對距離。 第十八圖(Α)及(Β)係為本發明之KMUP-1在正常及缺 氧狀態下,對於不經cGMP拮抗劑,Rp-8-CPT-cGMP預 處理(圖18 A)以及經過Rp-8-CPT-cGMP (1〇 μΜ)預處理 30分鐘後(圖18 Β)之Η441細胞中p21表現量的作用,其 中CTL代表對照組’ SF代表細胞培養於不含血清的培養 液中,而斜線長條與白色長條分別代表正常及缺氧狀態。 27 201004624 第十九圖(A)及(B)係為本發明之KMUP-1在正常及缺 氧狀態下’對於不經cGMP拮抗劑,Rp-8-CPT-cGMP預 處理(圖19 A)以及經過Rp_8-CPT-cGMP (10 μΜ)預處理 30分鐘後(圖19 Β)之Η441細胞中Ρ27表現量之作用, 其中CTL代表對照組,SF代表細胞培養於不含血清的培 養液中,而斜線長條與白色長條分別代表正常及缺氧狀 態。 _ 第二十圖(Α)及(Β)係為本發明之KMUP-1 (10,100 yM)在正常及缺氧狀態下,對於Η441細胞中(圖2〇α) 及Bcl-2 (圖20Β)表現之作用’其中SF代表細胞培養於 不含血清的培養液中’而斜線長條與白色長條分別代表 正常及缺氧狀態。 第二十-圖係為本發明之KMUIM (1〇,謂以M)在正 常及缺氧狀態下’對於H441細胞巾的比狀作用,其中 籲SF代表細胞培養料含血相培養液中,而斜線長條與 白色長條分別代表正常及缺氧狀雜。 第二十二圖係為細胞預先以市售NOS抑制藥物 L-NAME (100 μΜ)處理3〇分鐘後,以本發明之腿购 (1〇〇μΜ)在正常及缺氧狀態下處理48小時後,對於 W2比例的仙,其中斜線長條與白色長條分別代 表正常及缺氧狀態。 28 201004624 第二十三圖係為細胞預先以市售之cGMP拮抗劑, Rp-8-CPT-cGMP (10 μΜ)處理30分鐘後,以本發明之 KMUP-1 (100 μΜ)在正常及缺氧狀態下處理48小時後, 對於Bax/Bcl-2比例的作用,其中斜線長條與白色長條分 別代表正常及缺氧狀態。 第二十四圖係為不同濃度的KMUP-1 (1.0,1〇及1〇〇 μΜ),在正常及缺氧狀態下對於H441細胞中之未活化 procaspase-3/活化caspase_3比例的作用,其中斜線長條 與白色長條分別代表對照組及KMUP-1的實驗組。 第二十五圖係為本發明之KMUP4在正常及缺氧狀態 下對於H441細胞中pDE5A表現的作用,其中SF代表細 胞培養於不含血清的培養液中,而斜線長條與白色長條 分別代表正常及缺氧狀態。The eighth figure is the effect of KMUP-1 (1〇, 100 μΜ) of the present invention on sGC expression in Η441 cells under normal and hypoxic conditions, wherein SF represents cell culture in serum-free medium, and oblique lines. Long strips and white strips represent normal and hypoxic conditions, respectively. The ninth graph is the effect of KMUP-1 of the present invention on the amount of PKG expression in H441 cells under normal and hypoxic conditions, wherein sf represents fine 25 201004624 cell culture in serum-free medium, and oblique strips and The white strips represent normal and hypoxic conditions, respectively. The tenth figure is the effect of KMUP-1 (1 μΜ) of the present invention on the expression of HIF-la after exposure of H441 cells to hypoxia for 3 to 72 hours, wherein the oblique strips and white strips respectively represent the control group. And the experimental group of KMUP-1. The eleventh figure is the effect of KMUP-1 (1 μΜ) of the present invention on the expression of VEGF after exposure of H441 cells to hypoxia for 3 to 72 hours. The oblique white strips and strips respectively represent the control group and Experimental group of KMUP4. The twelfth figure is the inhibition effect of the KMUPd (i μΜ) of the present invention on the expression of mF_la and VEgf for 24 hours after pretreatment with L-NAME (100 μΜ) for 30 minutes, wherein n represents a normal state, and Η represents Anoxic state. Figure 13 (Α) and (Β) are different concentrations of KMUP-1 (0.01, 0.1, 1.0, 10 and 100 μΜ) for mF_la (Fig. 13A) and VEGF (Fig. 13B) under hypoxic conditions. The effect of the amount in 24 hours, in which the diagonal strips and the white strips represent the control group and the experimental group of KMUP-1, respectively. Figure 14 (A) and (B) are different treatments of H441 cells in the control group, 1.0 μΜ KMUP-1, 1.〇μΜ YCM, 100 μΜ SNP and 26 201004624 100 μΜ IBMX under hypoxia. The amount of HIF ia (Fig. 14A) and VEGF (Fig. 14B) after hours. The fifteenth figure is the effect of KMUP-1 (10, l00/WM) of the present invention on the expression of ROCKII protein in H441 cells under positive and hypoxic conditions, wherein SF represents cell culture in serum-free medium. Medium, and the diagonal strips and white strips represent normal and hypoxic states, respectively. The sixteenth figure is the effect on the Rho stimulating performance after the cells were treated with the commercially available Rp_8_CPT_cGMp (1 〇μΜ) for 30 minutes, and treated with the (1 〇μΜ) of the present invention for 48 hours under normal and hypoxic conditions. , wherein the diagonal strips and the white strips represent normal and hypoxic states, respectively. Figure 17 (A) and (B) show that H441 cells are treated with 1% fetal calf serum, serum-free medium, KMUP-1 (1-100 μΜ), and rock inhibitor Y27632 (10 μΜ). After 48 hours of treatment, the relative distance of the wound width was normal (Fig. 17A) and hypoxia (Fig. 17A). Figure 18 (Α) and (Β) are the KMUP-1 of the present invention under normal and hypoxic conditions, for the pretreatment of Rp-8-CPT-cGMP without cGMP antagonist (Fig. 18 A) and after The effect of p21 expression in 441 cells after Rp-8-CPT-cGMP (1〇μΜ) pretreatment for 30 minutes (Fig. 18 ,), wherein CTL represents the control group 'SF stands for cell culture in serum-free medium And the diagonal strips and the white strips represent the normal and hypoxic states, respectively. 27 201004624 The nineteenth (A) and (B) are the KMUP-1 of the present invention under normal and hypoxic conditions for Rp-8-CPT-cGMP pretreatment without cGMP antagonist (Fig. 19 A) And the effect of Ρ27 expression in Η441 cells after pretreatment with Rp_8-CPT-cGMP (10 μΜ) for 30 minutes (Fig. 19 ,), wherein CTL represents the control group, and SF represents the cell culture in the serum-free medium. The diagonal strips and the white strips represent the normal and hypoxic states, respectively. _ Figure 20 (Α) and (Β) are the KMUP-1 (10,100 yM) of the present invention in normal and hypoxic conditions for Η441 cells (Fig. 2〇α) and Bcl-2 (Fig. 20Β) The role of performance 'where SF stands for cell culture in serum-free medium' and the diagonal strips and white strips represent normal and hypoxic conditions, respectively. The twentieth-picture is the ratio of KMUIM (1, M) in the normal and hypoxic state of the invention to the H441 cell towel, wherein SF represents the cell culture medium containing the blood phase culture solution, and Slanted strips and white strips represent normal and hypoxic, respectively. The twenty-second picture shows that the cells were pretreated with the commercially available NOS inhibitory drug L-NAME (100 μΜ) for 3 minutes, and then treated with the leg of the present invention (1 μμΜ) for 48 hours under normal and anoxic conditions. After that, for the W2 ratio, the oblique line and the white strip represent the normal and anoxic states, respectively. 28 201004624 The twenty-third figure shows that the cells are pre-treated with commercially available cGMP antagonist, Rp-8-CPT-cGMP (10 μΜ) for 30 minutes, and the KMUP-1 (100 μΜ) of the present invention is normal and absent. After 48 hours of treatment under oxygen conditions, for the Bax/Bcl-2 ratio, the oblique strips and the white strips represent normal and hypoxic states, respectively. The twenty-fourth figure is the effect of different concentrations of KMUP-1 (1.0, 1〇 and 1〇〇μΜ) on the ratio of unactivated procaspase-3/activated caspase_3 in H441 cells under normal and hypoxic conditions. The diagonal strips and the white strips represent the control group and the experimental group of KMUP-1, respectively. The twenty-fifth diagram is the effect of KMUP4 of the present invention on the expression of pDE5A in H441 cells under normal and hypoxic conditions, wherein SF represents cell culture in serum-free medium, and oblique strips and white strips are respectively Represents normal and hypoxic conditions.

第二十六圖係為不同濃度的KMUP-1 (1.0,1〇及5〇 μΜ)對於以PDE5A促進劑U46619誘導後細胞中pDE5A 表現量的影響’其中斜線長條與白色長條分別代表正常 及缺氧狀態。 第一十七圖係為本發明之KMUP-1 (10, 1〇〇 μΜ)在正 常及缺氧狀態下,對於Η441細胞㈣酸化ρ38/所有ρ38 之比例的作用’其中SF代表細胞培養於不含血清的培養 液中’而斜線絲與自色長條分別代表正常及缺氧狀態。 29 201004624 第二十八圖係為不同濃度的KMUP-l (1-100 μΜ)在正 常及缺氧狀態下對於TNF-a誘導的iNOS表現之作用, 其中斜線長條與白色長條分別代表正常及缺氧狀態。 【主要元件符號說明】 無 •❿The twenty-fifth image shows the effect of different concentrations of KMUP-1 (1.0, 1〇 and 5〇μΜ) on the expression of pDE5A in cells induced by PDE5A promoter U46619, where the oblique strips and white strips represent normal And anoxic state. The seventeenth figure is the effect of KMUP-1 (10, 1〇〇μΜ) of the present invention on the ratio of acidification ρ38/all ρ38 in Η441 cells (4) under normal and hypoxic conditions. In the serum-containing culture medium, the diagonal line and the self-color strip represent the normal and hypoxic state, respectively. 29 201004624 The twenty-eighth figure is the effect of different concentrations of KMUP-1 (1-100 μΜ) on TNF-a-induced iNOS expression under normal and hypoxic conditions, in which the oblique strips and white strips represent normal And anoxic state. [Main component symbol description] None •❿

30 201004624 引用文獻 1. Zhan X., Li D., and Johns R.A. (1999) J. Histochem. Cytochem. 47, 1369-1374 2. Nijkamp FP, van der Linde HJ, Folkerts G (1993) Am Rev Respir30 201004624 Citations 1. Zhan X., Li D., and Johns R.A. (1999) J. Histochem. Cytochem. 47, 1369-1374 2. Nijkamp FP, van der Linde HJ, Folkerts G (1993) Am Rev Respir

Dis. 148, 727-734 3. Wu, B. N., Chen, C. W., Liou, S. F., Yeh, J. L., Chung, Η. H., and Chen, I. J. (2006) Molecular pharmacology 70 (3), 977-985.Dis. 148, 727-734 3. Wu, B. N., Chen, C. W., Liou, S. F., Yeh, J. L., Chung, Η. H., and Chen, I. J. (2006) Molecular pharmacology 70 (3), 977-985.

4. Thompson, H. J., Jiang, C., Lu, J., Mehta, R. G., Piazza, G. A., Paranka, N. S., Pamukcu, R., and Ahnen, D. J. (1997) Cancer research 57(2), 267-271. 5. Soh, J. W., Mao, Y., Kim, M. G., Pamukcu, R., Li, H., Piazza, G. A.,4. Thompson, HJ, Jiang, C., Lu, J., Mehta, RG, Piazza, GA, Paranka, NS, Pamukcu, R., and Ahnen, DJ (1997) Cancer research 57(2), 267-271 5. Soh, JW, Mao, Y., Kim, MG, Pamukcu, R., Li, H., Piazza, GA,

Thompson, W. J., and Weinstein, I. B. (2000) Clin Cancer Res 6(10), 4136-4141. 6. Yeo, E. J., Chun, Y. S., and Park, J. W. (2004) Biochemical 參 pharmacology 68(6), 1061-1069. 7. Chun, Y. S., Yeo, E. J., Choi, E., Teng, C. M., Bae, J. M., Kim, M. S., and Park, J. W. (2001) Biochemical pharmacology 61(8), 947-954. 8. Nath, P., Leung, S. Y., Williams, A., Noble, A., Chakravarty, S. D., Luedtke, G. R., Medicherla, S., Higgins, L. S., Protter, A., and Chung, K. F. (2006) European journal of pharmacology 544(1-3), 160-167. 31 201004624 9. Yoshioka, Y., Yamamuro, A., and Maeda, S. (2006) Journal of pharmacological sciences 101(2), 126-134. 10. Deguchi, A., Thompson, W. J., and Weinstein, I. B. (2004) Cancer Res. 64, 3966-3973 11. Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., and Dosaka-Akita, H. (2005) Cancer Res. 65, 10776-10782Thompson, WJ, and Weinstein, IB (2000) Clin Cancer Res 6(10), 4136-4141. 6. Yeo, EJ, Chun, YS, and Park, JW (2004) Biochemical Reference pharmacology 68(6), 1061- 1069. 7. Chun, YS, Yeo, EJ, Choi, E., Teng, CM, Bae, JM, Kim, MS, and Park, JW (2001) Biochemical pharmacology 61(8), 947-954. 8. Nath , P., Leung, SY, Williams, A., Noble, A., Chakravarty, SD, Luedtke, GR, Medicherla, S., Higgins, LS, Protter, A., and Chung, KF (2006) European journal of Pharmacology 544(1-3), 160-167. 31 201004624 9. Yoshioka, Y., Yamamuro, A., and Maeda, S. (2006) Journal of pharmacological sciences 101(2), 126-134. 10. Deguchi , A., Thompson, WJ, and Weinstein, IB (2004) Cancer Res. 64, 3966-3973 11. Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., and Dosaka-Akita, H. (2005) Cancer Res. 65, 10776-10782

12. Zhu, B., Vemavarapu, L., Thompson, W. J., and Strada, S. J. (2005) J. Cell. Biochem. 94, 336-35012. Zhu, B., Vemavarapu, L., Thompson, W. J., and Strada, S. J. (2005) J. Cell. Biochem. 94, 336-350

3232

Claims (1)

201004624 十、申請專利範圍: 1. 一種醫藥組合物,其包含: 一 7-〔2-〔 4-(2-氯苯)哌嗪基〕乙基〕-1,3二曱基 黃嗓呤之化合物, 其中該化合物為一 Rho-激酶抑制劑,該醫藥組合物 具有抑制一肺上皮細胞的一生理活性的效果。 2. 如申請專利範圍第1項之醫藥組合物,更包含一藥學 上可接受之載體。 3. 如申請專利範圍第1項之醫藥組合物,其中該生理活 性係選自一增生活性、一遷移活性以及一促發炎活性 至少其中之一。 4. 如申請專利範圍第3項之醫藥組合物,其中該遷移活 性為一癌細胞之一轉移活性。 5. 如申請專利範圍第1項之醫藥組合物,其中該生理活 性係藉由增加肺上皮細胞中的cGMP與抑制Rho-激酶 的活性而達成。 6. —種抑制一肺上皮細胞之一生理活性的方法,包含: 將一藥學上有效劑量的7-〔2-〔4-(2-氣苯)哌嗪基〕 乙基〕-1,3-二曱基黃嘌呤之一化合物,給予需要的一 哺乳動物, 其中該化合物係由黃11票呤合成,且為一 Rho-激酶 抑制劑。 7. 如申請專利範圍第6項之方法,其中該化合物更包含 一藥學上之有效載體。 8. 如申請專利範圍第6項之方法,其中該生理活性係選 33 201004624 自一增生活性、一遷移活性以及一促發炎活性至少其 中之一。 八 9.如申請專利範圍第8項之方法,其中該遷移活性為一 癌細胞之一轉移活性。 10.如申請專利範圍第6項之方法,其中該化合物係藉由 增加該肺上皮細胞中的cGMP與抑制Rh0-激酶的活 性’而抑制該肺上皮細胞的生理活性。 種製備-醫藥組合物的方法,其中該醫藥組合物包 含一 7_〔2_〔4-(2-氯苯)哌嗪基〕乙基〕心,3_二曱基 黃嘌呤之化合物。 12·如申請專利範圍第u項之方法,其中該醫藥組合物具 有抑制一肺上皮細胞之一生理活性的效果,且該生理 活性係選自-增生活性、一遷移活性以及一促發炎活 性至少其中之一。 以如申凊專利範圍第12項之方法,其巾該遷移活性為一 癌細胞之一轉移活性。 鲁14·如申请專利範圍第U項之方法,其中該醫藥組合物更 包含一藥學上之有效載體。 34201004624 X. Patent Application Range: 1. A pharmaceutical composition comprising: a 7-[2-[4-(2-chlorophenyl)piperazinyl]ethyl]-1,3-didecyl-xanthine A compound wherein the compound is a Rho-kinase inhibitor, the pharmaceutical composition having an effect of inhibiting a physiological activity of a lung epithelial cell. 2. The pharmaceutical composition of claim 1 further comprising a pharmaceutically acceptable carrier. 3. The pharmaceutical composition according to claim 1, wherein the physiological activity is at least one selected from the group consisting of a proliferative activity, a migration activity, and an inflammatory activity. 4. The pharmaceutical composition of claim 3, wherein the migration activity is one of a cancer cell metastatic activity. 5. The pharmaceutical composition according to claim 1, wherein the physiological activity is achieved by increasing cGMP in the lung epithelial cells and inhibiting the activity of Rho-kinase. 6. A method of inhibiting physiological activity of a lung epithelial cell comprising: administering a pharmaceutically effective amount of 7-[2-[4-(2-cephenyl)piperazinyl]ethyl]-1,3 - a compound of diterpene xanthine, which is administered to a mammal in need thereof, wherein the compound is synthesized from yellow 11-nose and is a Rho-kinase inhibitor. 7. The method of claim 6, wherein the compound further comprises a pharmaceutically effective carrier. 8. The method of claim 6, wherein the physiological activity is selected from the group consisting of at least one of a proliferative activity, a migration activity, and an inflammatory activity. 8. The method of claim 8, wherein the migration activity is one of a cancer cell transfer activity. 10. The method of claim 6, wherein the compound inhibits physiological activity of the lung epithelial cells by increasing cGMP and inhibiting Rh0-kinase activity in the lung epithelial cells. A method of preparing a pharmaceutical composition, wherein the pharmaceutical composition comprises a compound of 7-[2-[4-(2-chlorophenyl)piperazinyl]ethyl], 3-didecylxanthine. 12. The method of claim 5, wherein the pharmaceutical composition has an effect of inhibiting physiological activity of one of the lung epithelial cells, and the physiological activity is selected from the group consisting of - proliferative activity, a migration activity, and at least an inflammatory activity. one of them. The migration activity of the towel is a transfer activity of one of the cancer cells, as in the method of claim 12 of the patent application. The method of claim U, wherein the pharmaceutical composition further comprises a pharmaceutically effective carrier. 34
TW97127696A 2008-07-21 2008-07-21 Xanthine-based cyclic gmp-enhancing rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line TWI386206B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97127696A TWI386206B (en) 2008-07-21 2008-07-21 Xanthine-based cyclic gmp-enhancing rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97127696A TWI386206B (en) 2008-07-21 2008-07-21 Xanthine-based cyclic gmp-enhancing rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line

Publications (2)

Publication Number Publication Date
TW201004624A true TW201004624A (en) 2010-02-01
TWI386206B TWI386206B (en) 2013-02-21

Family

ID=44825952

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127696A TWI386206B (en) 2008-07-21 2008-07-21 Xanthine-based cyclic gmp-enhancing rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line

Country Status (1)

Country Link
TW (1) TWI386206B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161510A1 (en) * 2014-04-25 2015-10-29 Jansfat Biotechnology Co., Ltd. Saa derivative compound restores enos and inhibits oxidative stress-induced diseases in hypoxia

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200927131A (en) * 2007-12-28 2009-07-01 Jheng Huei Jhen Halogenated xanthine derivatives and precursors thereof for anti-cancer and anti-metastasis activity and preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161510A1 (en) * 2014-04-25 2015-10-29 Jansfat Biotechnology Co., Ltd. Saa derivative compound restores enos and inhibits oxidative stress-induced diseases in hypoxia

Also Published As

Publication number Publication date
TWI386206B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
TWI757228B (en) Muscular atrophy inhibitor with quercetin glycoside
KR101245604B1 (en) Corticosteroid compositions
Wang et al. LPS-induced indoleamine 2, 3-dioxygenase is regulated in an interferon-γ-independent manner by a JNK signaling pathway in primary murine microglia
KR102613204B1 (en) Medicines for the treatment of chronic seawater
RU2753523C2 (en) Improved therapeutic index of inhibitors against immune checkpoint using combination therapy including phy906 extract, scutellaria baicalensis georgi (s) extract or compound of such extracts
EP2222297A1 (en) Compositions and methods for inhibiting the activation of dsrna-dependent protein kinase and tumor growth inhibition
EP3723756A1 (en) Compounds for treatment of diseases related to dux4 expression
JP7121415B2 (en) COMPOSITIONS AND USE FOR ANTI-LIVER FIBROSIS CONTAINING SUMO INHIBITORS
CN112138024A (en) Method of treating severe forms of pulmonary hypertension
JP2022518944A (en) Dosing regimens and methods for the treatment of pulmonary arterial hypertension
EP3317290A1 (en) Compositions and methods for the treatment of viral infection
Park et al. Roflumilast ameliorates airway hyperresponsiveness caused by diet-induced obesity in a murine model
Lee et al. A novel pyrazolo [3, 4-d] pyrimidine induces heme oxygenase-1 and exerts anti-inflammatory and neuroprotective effects
TW200908973A (en) A medicament for treating fatty liver comprising cilostazol
TW201004624A (en) Xanthine-based cyclic GMP-enhancing Rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line
RU2712281C1 (en) Use of a derivative glutarimide to overcome resistance to steroids and therapy of diseases associated with aberrant signaling of interferon gamma
WO2016183915A1 (en) New use of a674563 in acute leukemia carrying flt3 mutant gene
US20100016329A1 (en) Xanthine-based cyclic gmp-enhancing rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line
WO2016065674A1 (en) Use of ibrutinib for flt3-itd mutational acute leukemia
WO2017031914A1 (en) Pharmaceutical composition of ibrutinib
Dubhashi et al. Early Trends to Show the Efficacy of Cordyceps militaris in Mild to Moderate COVID Inflammation
JP2011519925A (en) Inhibitory effect of nordihydroguaiaretic acid (NDGA) on IGF-1 receptor and androgen-dependent proliferation of LAPC-4 prostate cancer cells
WO2005055997A1 (en) Medicinal composition for treating and preventing inflammatory disease
US20230285347A1 (en) Preterm Labour with Prostaglandin E2 Receptor Agonists
US20230321016A1 (en) Combination therapy for treating cancer