201003911 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種有機發光二極體顯示裝置及其製造 方法。 【先前技術】 有機發光二極體顯示裝置(Organic Light Emitting Diode,OLED) ’由於其擁有高亮度、反應速度快、輕薄短 小、全彩、視角範圍廣、不需要液晶顯示裝置式背光源以 及耗電1之優點’因此有逐漸取代扭曲向列(Twist Nematic, TN)與超扭曲向列(Super Twist Nematic,STN)液晶顯示裝 置之趨勢,而成為新一代可檇式資訊產品、手機、個人數 位助理(Personal Digital Assistant)以及筆記本電腦普遍使 用之顯示裝置。 有機發光二極體顯示裝置中之薄膜電晶體對顯示品質 具有關鍵影響,也一直係研究之重點。一般地,有機薄臈 電晶體與晶矽薄膜電晶體(Si-TFT)具有相似之結構,但有 機薄膜電晶體在半導體區域採用之係有機材質而不係矽。 而且利用有機導電材質作為通道層(Channel)之薄膜電晶 體可以在較低溫度之狀態下形成通道層,且其延展性也較 佳,所以,這種有機薄膜電晶體非常適合製造在可擾性之 塑膠基板上。如此,使用這種有機薄膜電晶體之有機發光 二極體利於製作出可擾性之有機顯示面板。 _明併參閱圖1,圖1係一種現有技術有機發光二極 體顯示裝置100之剖面示意圖。該有機發光二極體顯示裴 201003911 置100包括一基板101、一位於該基板1〇1上之第一閘極 112及第二閘極122、一覆蓋於該第一閘極112與第二閘極 ,I22上之介電絕緣層102、一位於該介電絕緣層1〇2上之第 一源極115與第一汲極116及第二源極125與第二汲極 126 位於該第一源極115及第一沒極116上之第一主動 層113、一位於該第二源極ι25及第二汲極ι26上之第二 主動層123、一位於該介電絕緣層102、該第一源極115、 該第一汲極116、該第二源極125、該第二汲極1%、該第 一主動層113及該第二主動層123上之鈍化層103、一位 於該鈍化層103上之陽極1〇4及絕緣層1〇5、及一位於該 陽極104與該絕緣層105上之有機發光層ι〇6及位於該有 機發光層106上之陰極1〇7。 該第一閘極112、該介電絕緣層102、該第一源極115、 該第一汲極116及該第一主動層113構成第一有機薄膜電 晶體12。該第二閘極122、該介電絕緣層102、該第二源 極125、該第二汲極126及該第二主動層123構成第二有 機薄膜電晶體13。該陽極104、該有機發光層1〇6及該陰 極107構成一有機發光二極體15。該第一汲極116通過一 第一接觸孔117電接觸該第二閘極122。該陽極1〇4通過 一第二接觸孔118電接觸該第二汲極126。 請參閱圖2,圖2係圖1所示有機發光二極體顯示裝 置100 —像素驅動電路等效示意圖。該驅動電路包 括一第一有機薄膜電晶體12、一第二有機薄膜電晶體13、 一存儲電容14、一有機發光二極體15、一掃描線110和一 201003911 資料線m。該第一有機薄膜電晶體 線m’其閘極連二= ,13之源極連接到_功率線(圖未示),該第 晶體13之汲極與該存儲電容14之另一端共同遠古 機發光二極體15之正極。該有機發光 ^ 接到該功率線。當該第一有機薄膜電晶體12打;之J = 該二機薄膜電晶體13之閘極並存儲於該 打名使件該功率線之電壓訊號傳輸到該有機發光二極體 將當該掃描線110之正電麼之掃描訊號 '日日體12關閉時,存儲於該存儲電容14之電壓 :I—=二 然而,由於該第一有機薄膜電晶體12與第二有機薄膜 ,晶體13在正電壓關閉時,其導電通道内殘存少量負電 何’使得該第-有機薄膜電晶體12與第二有機薄膜電晶體 13在關閉時’關閉不完全’引起漏電,使得 極體Μ產生亮度不穩定之問題。 一 【發明内容】 體顯有必要提供一種亮度穩定之有機發光二極 種有機發光二極體顯示裝置,其包括複數有機薄膜 201003911 電晶體,每一古4¾¾ j· 上之介電絕4==:括一閘極、-位於該間極 道層包括一摻雜層。。“電絕緣層上之通道層。該通 下步驟種裝置之製造方法,其包括以 之基板上形成電絕^基板上形成閘極;在包括閉極 通道声,H“電緣層’及在該介電絕緣層上形成-逋層該通道層包括一摻雜層。 下牛驟種:::光二極體顯示裝置之製造方法,其包括以 極^板基板’在該基板上形成閘極;在包括該閉 介電絕緣層;在該介電絕緣層上形成一 =層’在該主動層上形成—摻雜層;及在該摻雜層上形 成至少一源極與至少一汲極。 μ1 前技術,本發明之有機發光二極體顯示裝置 U造方法中,在該源極”及極與該主動層之間設置一 摻雜層’該摻雜層可以減小該賴電晶體之漏電流,使得 該有機發光二極體顯示裝置之亮度穩定。 【實施方式】 咕參閱圖3 ’圖3係本發明有機發光二極體顯示裝置 200剖面示意圖。該有機發光二極體顯示裝置2〇〇包括一 基板201、-位於該基板2〇)1上之第—閘極212及第二閉 極222、一覆蓋該第一閘極212及第二閘極222上之介電 絕緣層202、一位於該介電絕緣層2〇2上之第一源極215 與第一汲極216及第二源極225與第二汲極226、一位於 該第一源極215與第一汲極216上之第一換雜層217、一 201003911 位於該第二源極225與第二汲極226上之第二摻雜層 • 227、一位於該第一摻雜層217上之第一主動層213、一位 於該第二摻雜層227上之第二主動層223、一位於該介電 絕緣層202、該第一源極215與第一汲極216、該第二源極 225與該第二汲極226及該第一摻雜層217與該第二摻雜 層227上之鈍化層203、一位於該鈍化層2〇3上之陽極2〇4 與絕緣層205、一位於該陽極2〇4與該絕緣層2〇5上之有 機發光層206及位於該有機發光層2〇6上之陰極2〇7。 該第一摻雜層217及該第一主動層213構成第一通道 層22。該第二摻雜層227及該第二主動層223構成第二通 道層23。該第一閘極212、該介電絕緣層2〇2、該第一源 極215、該第一汲極216及該第一通道層22構成一有機薄 膜電晶體。該第二閘極222、該介電絕緣層202、該第二源 極225、該第二汲極226及該第二通道層23構成另一有機 薄臈電晶體。該陽極204、該有機發光層2〇6及該陰極2〇7 構成一有機發光二極體25。該第一汲極216通過形成於該 "電絕緣層202之第一接觸孔218電接觸該第二閘極 222。該陽極204通過形成於該鈍化層2〇3之第二接觸孔 219電接觸該第二汲極226。 該第一閘極212、該第一源極215及該第一汲極216 ,材質為金(Au),該第二閘極222、該第二源極225及該 第二汲極226之材質也為金(Au)。 μ 請一併參閱圖4至圖15,圖4至圖15係本發明 發光二極體顯示裴置2〇〇製造過程之示意圖。該有機發光 201003911 二極體顯示裝置 200之製造過程利用微影蝕刻 (Photolithography)及熱蒸鍍(Thermal Evaporater)方法完 ♦ 1成,其具體包括以下步驟: • (1)形成閘極層; 請一併參閱圖4,提供一基板201,該基板201可以係 一可擾性之塑膠基板,或可以係一透明玻璃基板。在該基 板201上沉積一第一金屬層208,該第一金屬層208之材 質為金;在該第一金屬層208上利用旋轉塗佈機(Spinner) 形成一第一光阻層301。以紫外光線配合光罩(Photomask) 對該第一光阻層301平行照射,用顯影劑(Developer)再對 該第一光阻層301進行顯影,從而可以在該第一光阻層301 上形成一預定圖案,對該第一金屬層208進行蝕刻 (Etching),並剝離(Lift-Off)剩餘之第一光阻層301,而形 成預定之第一閘極212及第二閘極222圖案,如圖5所示。 (2) 形成介電絕緣層及第一接觸孔; 請一併參閱圖6,利用化學氣相沉積(Chemical Phase Deposition,CVD)法將氮化石夕(SiNx)或(SiOx)沉積在具有該 第一閘極212及第二閘極222之基板201之整個表面,並 在其上形成一第二光阻層302,接著依次進行曝光、顯影、 蝕刻、剝離而形成該介電絕緣層202及該第一接觸孔218, 如圖7所示。 (3) 形成有機薄膜電晶體之源極及汲極; 請一併參閱圖8,在該介電絕緣層202上依次形成一 第二金屬層209及一第三光阻層303,利用光罩對準該第 11 201003911 三光阻層303上方,以紫外線平行照射該第三光阻層303, 再對該第三光阻層303進行顯影,以及對該第二金屬層209 • >進行蝕刻,並剝離剩餘之第三光阻層303形成如圖9所示 .“之第一源極215、第一汲極216、第二源極225及第二汲極 226 ° (4) 形成摻雜層及主動層; 請一併參閱圖1〇,在該第一源極215、第一汲極216、 第二源極225及第二汲極226上配合一遮罩304利用熱蒸 鍵(Thermal Evaporater)法依次形成該第一摻雜層217、該 第二摻雜層227、該第一主動層213及該第二主動層223。 該第一摻雜層217及該第二摻雜層227包括一低分子有機 材質,如:並五苯(pentacene),或者係一有機材質,例如: 聚三己基一硫二烯五環(Poly-3-hexylthiophene, P3HT)。 另,該第一摻雜層217及該第二摻雜層227還包括一微量 摻雜物質,如:三氧化鶴(Tungsten Trioxide)或者2,3,5,6-四 氟 -7,7f,8,8'- 四氰 二曱基 對苯醌 (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane) 〇 該 第一主動層213及該第二主動層223包括一低分子有機材 質,如:並五苯,或者係一有機材質,如:聚三己基一硫 二烯五環。 (5) 形成鈍化層及第二接觸孔; 請一併參閱圖11,接著沉積一層鈍化層203及第四光 阻層305,該鈍化層203之材質可以係二氧化矽(Si02)、 氮化矽(SiNx)其中一種。利用光罩對準該第四光阻層305 12 201003911 上方,以紫外線平行照射該第四光阻層305,再對該第四 光阻層305進行顯影,以及對該鈍化層203進行蝕刻,並 •‘剝離剩餘之第四光阻層305形成如圖12所示之第二接觸孔 ,219。 (6)形成有機發光二極體; 請一併參閱圖13,在該鈍化層203上沉積一第三金屬 層210及一第五光阻層306,該第三金屬層210之材質係 氧化銦錫(Indium Tin Oxide, ITO)或者氧化鋅錫(Indium Zinc Oxide, IZO)其中一種。利用光罩對準該第五光阻層 306上方,以紫外線平行照射該第五光阻層306,再對該第 五光阻層306進行顯影,以及對該第三金屬層210進行蝕 刻,並剝離剩餘之第五光阻層306形成如圖14所示之陽極 204 ° 接著,在該陽極204及該鈍化層203上形成一絕緣層 205,該絕緣層205之材質係壓克力樹脂(Aryclic Resin)或 聚醯亞氨(Poly imide)其中一種。配合光罩直接照射該絕緣 層205,利用剝離之方法去除該陽極204上之部份絕緣層 205如圖14所示。 然後,在該陽極204及該絕緣層205上依次沉積一有 機發光層206及陰極207如圖15所示。 相較於先前技術,本發明有機發光二極體顯示裝置 200之第一有機薄膜電晶體22及第二有機薄膜電晶體23 分別包括該第一摻雜層217及第二掺雜層227。該第一主 動層213及該第二主動層223之材質包括並五笨或聚三己 13 201003911 基石;il 一稀五環等有機極材質,該第一推雜層217及第- ' _7,7/,8,8’-四氰二甲基對苯醌。該第一有機薄膜電晶體22 •及第一有機薄膜電晶體23在正電壓關閉時,該第一摻雜層 217及第二摻雜層227可以提供微量之正電荷中和殘存於 導電通道内之負電荷,使得該第一有機薄膜電晶體22及第 二有機薄膜電晶體23關閉完全,減少漏電流之發生,從而 該有機發光二極體顯示裝置2〇〇亮度較穩定。 另’該第一摻雜層217及第二摻雜層227包括微量之 摻雜物質,如:三氧化鎢或者2,3,5,6-四氟_7,7,,8,8,-四氰 二甲基對苯醌,該第一摻雜層217及第二摻雜層227可以 分別降低該第一主動層213及第二主動層223與該第一源 極215、第一汲極216及第二源極225、第二汲極226之間 之接觸勢壘(Contact Barrier),減小了其之間之阻抗。 本發明之有機發光二極體顯示裝置不限於上述實施方 式所述,如,可以在該介電絕緣層2〇2上先形成該第一主 動層213及該第二主動層223,然後在該第一主動層213 及该第二主動層223上形成該一摻雜層217及該第二摻雜 層227,然後在該一摻雜層217及該第二摻雜層227上分 別开)成第一源極215、第一汲極216、第二源極225及第二 汲極226。 綜上所述,本發明確已符合發明專利之要件,妥依法 提出申請專利。惟,以上所述者僅係本發明之較佳實施方 式’本發明之範圍並不以上述實施方式爲限,舉凡熟悉本 14 201003911 ::===所作之等效修飾或 【圖式簡單說明】 二極體顯示裝置之剖面 圖1係一種先前技術有機發光 示意圖。 所示有機發光二極體顯示裝置一像素 電路等效示意圖 =3係本發明有機發光二極體顯示|置剖面示意圖。 圖4係形成第一金屬|及第一光阻層之示意圖。 圖5係形成第一閉極及第二間極之示意圖。 圖6係形成介電絕緣層及第二光阻層之示意圖。 圖7係形成第一接觸孔之示意圖。 圖8係形成第二金屬層及第三光阻層之示意圖。 極圖:係形成第—源極、第—沒極、第二源極及第二汲 不圖〇 =10係形成第-通道層及第二通道層之示意圖 圓11係形成鈍化層及第四光阻層之示意圖。 圖12係形成第二接觸孔之示意圖。 圖13係形成第三金屬層及第五光阻層之示意圖 圖14係形成絕緣層及陽極之示意圖。 圖b係形成有機發光層及陰極之示意圖。 【主要元件符號說明】 ,機發光二極體顯示裝置 第一通道層 215 216 200 第—源極 22 第一汲極 15 201003911 第二通道層 23 第一摻雜層 217 有機發光二極體 25 第一接觸孔 218 基板 201 第二接觸孔 219 介電絕緣層 202 第二閘極 222 絕緣層 203 第二主動層 223 陽極 204 第二源極 225 鈍化層 205 第二汲極 226 有機發光層 206 第二摻雜層 227 陰極 207 第一光阻層 301 第一金屬層 208 第二光阻層 302 第二金屬層 209 第三光阻層 303 第三金屬層 210 遮罩 304 第一閘極 212 第四光阻層 305 第一主動層 213 第五光阻層 306 16201003911 IX. Description of the Invention: [Technical Field] The present invention relates to an organic light emitting diode display device and a method of fabricating the same. [Prior Art] Organic Light Emitting Diode (OLED) 'Because of its high brightness, fast response, light and short, full color, wide viewing angle range, no need for liquid crystal display backlights and consumption The advantage of electricity 1 'There is a tendency to gradually replace the Twist Nematic (TN) and Super Twist Nematic (STN) liquid crystal display devices, and become a new generation of sturdy information products, mobile phones, personal digital Personal Digital Assistant and display devices commonly used in notebook computers. Thin film transistors in organic light-emitting diode display devices have a critical impact on display quality and have been the focus of research. Generally, the organic thin germanium transistor has a similar structure to the germanium thin film transistor (Si-TFT), but the organic thin film transistor is made of an organic material in the semiconductor region without being twisted. Moreover, the thin film transistor using the organic conductive material as the channel layer can form the channel layer at a lower temperature and has better ductility, so the organic thin film transistor is very suitable for manufacturing in the disturbing property. On the plastic substrate. Thus, the organic light-emitting diode using such an organic thin film transistor is advantageous in producing an organic display panel which is irritating. 1 and FIG. 1 is a schematic cross-sectional view of a prior art organic light emitting diode display device 100. The organic light emitting diode display unit 201003911 includes a substrate 101, a first gate 112 and a second gate 122 on the substrate 110, and a first gate 112 and a second gate. a first insulating layer 102 on the I22, a first source 115 and a first drain 116 and a second source 125 and a second drain 126 on the dielectric insulating layer 〇2 are located at the first a first active layer 113 on the source 115 and the first gate 116, a second active layer 123 on the second source ι25 and the second drain 126, a dielectric insulating layer 102, the first a source 115, the first drain 116, the second source 125, the second drain 1%, the passivation layer 103 on the first active layer 113 and the second active layer 123, and a passivation layer An anode 1 〇 4 and an insulating layer 1 〇 5 on the layer 103, and an organic luminescent layer ι 6 on the anode 104 and the insulating layer 105 and a cathode 1 〇 7 on the organic luminescent layer 106. The first gate 112, the dielectric insulating layer 102, the first source 115, the first drain 116, and the first active layer 113 constitute a first organic thin film transistor 12. The second gate 122, the dielectric insulating layer 102, the second source 125, the second drain 126 and the second active layer 123 constitute a second organic thin film transistor 13. The anode 104, the organic light-emitting layer 1〇6, and the cathode 107 constitute an organic light-emitting diode 15. The first drain 116 electrically contacts the second gate 122 through a first contact hole 117. The anode 1〇4 electrically contacts the second drain 126 through a second contact hole 118. Please refer to FIG. 2. FIG. 2 is an equivalent diagram of the pixel driving circuit of the organic light emitting diode display device 100 shown in FIG. The driving circuit comprises a first organic thin film transistor 12, a second organic thin film transistor 13, a storage capacitor 14, an organic light emitting diode 15, a scan line 110 and a 201003911 data line m. The first organic thin film transistor line m' has its gate connected to the second=, the source of 13 is connected to the _power line (not shown), and the drain of the first crystal 13 and the other end of the storage capacitor 14 are together with the ancient machine. The anode of the light-emitting diode 15 is used. The organic light emission ^ is connected to the power line. When the first organic thin film transistor 12 is hit; J = the gate of the second thin film transistor 13 and stored in the named device, the voltage signal of the power line is transmitted to the organic light emitting diode to be the scan The positive voltage of the line 110 is the scan signal 'the voltage stored in the storage capacitor 14 when the day body 12 is off: I—=2 However, due to the first organic thin film transistor 12 and the second organic film, the crystal 13 is When the positive voltage is turned off, a small amount of negative charge remains in the conductive path, so that the first organic thin film transistor 12 and the second organic thin film transistor 13 are 'closed incompletely' when it is turned off, causing leakage, which causes the brightness of the polar body to be unstable. The problem. [Summary of the Invention] It is necessary to provide a brightness-stable organic light-emitting diode type organic light-emitting diode display device comprising a plurality of organic thin films 201003911 transistors, each of which has a dielectric dielectric of 4 == : including a gate, - the interpolar layer includes a doped layer. . "The channel layer on the electrically insulating layer. The method for manufacturing the device according to the following steps comprises: forming a gate on the substrate formed on the substrate; in the case of including a closed channel sound, H "electrical layer" and Forming a germanium layer on the dielectric insulating layer The channel layer includes a doped layer. The invention relates to a method for manufacturing a photodiode display device, comprising: forming a gate on the substrate by using a substrate; forming a closed dielectric insulating layer; forming a dielectric insulating layer on the insulating layer a layer 'forming a doped layer on the active layer; and forming at least one source and at least one drain on the doped layer. In the method of fabricating an organic light-emitting diode display device of the present invention, a doping layer is disposed between the source and the electrode and the active layer, and the doping layer can reduce the dielectric layer. Leakage current makes the brightness of the organic light emitting diode display device stable. [Embodiment] Referring to FIG. 3, FIG. 3 is a schematic cross-sectional view of an organic light emitting diode display device 200 of the present invention. The organic light emitting diode display device 2 The device includes a substrate 201, a first gate 212 and a second gate 222 on the substrate 2, and a dielectric insulating layer 202 covering the first gate 212 and the second gate 222. a first source 215 and a first drain 216 and a second source 225 and a second drain 226 on the dielectric insulating layer 2〇2, and a first source 215 and a first drain a first doping layer 217 on a second source 225 and a second doping layer 227 on the second drain electrode 226, and a first active layer on the first doping layer 217. 213, a second active layer 223 on the second doped layer 227, a first dielectric layer 202, the first a pole 215 and a first drain 216, the second source 225 and the second drain 226, and the passivation layer 203 on the first doped layer 217 and the second doped layer 227 are located on the passivation layer 2 An anode 2〇4 on the crucible 3 and an insulating layer 205, an organic light-emitting layer 206 on the anode 2〇4 and the insulating layer 2〇5, and a cathode 2〇7 on the organic light-emitting layer 2〇6. The first doped layer 217 and the first active layer 213 constitute a first channel layer 22. The second doped layer 227 and the second active layer 223 form a second channel layer 23. The first gate 212, the first gate 212 The first insulating layer 215, the first drain 216, and the first channel layer 22 constitute an organic thin film transistor. The second gate 222, the dielectric insulating layer 202, the first The second source 225, the second drain 226 and the second channel layer 23 constitute another organic thin germanium transistor. The anode 204, the organic light emitting layer 2〇6 and the cathode 2〇7 constitute an organic light emitting diode The first drain 216 is electrically contacted to the second gate 222 through a first contact hole 218 formed in the "electrical insulation layer 202. The anode 204 is formed in the passivation layer 2〇3 The second contact hole 219 is electrically connected to the second drain 226. The first gate 212, the first source 215 and the first drain 216 are made of gold (Au), and the second gate 222 is The material of the second source 225 and the second drain 226 is also gold (Au). μ Please refer to FIG. 4 to FIG. 15 together, and FIG. 4 to FIG. 15 show the LED display device of the present invention. A schematic diagram of a manufacturing process. The organic light emitting process of the organic light emitting device 2010039 is completed by a photolithography and a thermal evaporation method, which specifically includes the following steps: • (1) formation Gate layer; Referring to FIG. 4 together, a substrate 201 is provided. The substrate 201 can be a plastic substrate that can be disturbed or can be a transparent glass substrate. A first metal layer 208 is deposited on the substrate 201. The first metal layer 208 is made of gold. A first photoresist layer 301 is formed on the first metal layer 208 by a spinner. The first photoresist layer 301 is irradiated in parallel with a UV light in cooperation with a photomask, and the first photoresist layer 301 is further developed by a developer (Developer) to form a first photoresist layer 301. Etching the first metal layer 208 and lifting-off the remaining first photoresist layer 301 to form a predetermined pattern of the first gate 212 and the second gate 222. As shown in Figure 5. (2) forming a dielectric insulating layer and a first contact hole; please refer to FIG. 6 to deposit a nitride phase (SiNx) or (SiOx) by using a chemical phase deposition (CVD) method. a second photoresist layer 302 is formed on the entire surface of the substrate 201 of the gate 212 and the second gate 222, and then sequentially exposed, developed, etched, and stripped to form the dielectric insulating layer 202 and the The first contact hole 218 is as shown in FIG. (3) forming a source and a drain of the organic thin film transistor; as shown in FIG. 8, a second metal layer 209 and a third photoresist layer 303 are sequentially formed on the dielectric insulating layer 202, and the photomask is used. Aligning the third photoresist layer 303 on the 11th 201003911, irradiating the third photoresist layer 303 in parallel with ultraviolet rays, developing the third photoresist layer 303, and etching the second metal layer 209. And stripping the remaining third photoresist layer 303 to form a doped layer as shown in FIG. 9. "The first source 215, the first drain 216, the second source 225, and the second drain 226 ° (4) And the active layer; please refer to FIG. 1 , together with a mask 304 on the first source 215, the first drain 216, the second source 225 and the second drain 226, using a thermal evaporating button (Thermal Evaporater) The first doped layer 217, the second doped layer 227, the first active layer 213, and the second active layer 223 are formed in sequence. The first doped layer 217 and the second doped layer 227 include A low molecular organic material, such as: pentacene, or an organic material, such as: polytrihexyl monothiol pentacyclic (Poly-3- Hexylthiophene, P3HT). The first doped layer 217 and the second doped layer 227 further comprise a trace dopant such as Tungsten Trioxide or 2,3,5,6-tetrafluoroethylene. -7,7f,8,8'-tetracyanoquinone quinone (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane) 〇 the first active layer 213 and the second The active layer 223 comprises a low molecular organic material such as pentacene or an organic material such as polytrihexyl monothiol pentacycle. (5) forming a passivation layer and a second contact hole; 11 , a passivation layer 203 and a fourth photoresist layer 305 are deposited, and the material of the passivation layer 203 may be one of cerium oxide (SiO 2 ) and lanthanum nitride (SiNx). The fourth light is aligned by using a photomask. Above the resist layer 305 12 201003911, the fourth photoresist layer 305 is irradiated with ultraviolet rays in parallel, the fourth photoresist layer 305 is developed, and the passivation layer 203 is etched, and the remaining fourth photoresist is removed. The layer 305 forms a second contact hole as shown in FIG. 12, 219. (6) forming an organic light emitting diode; please refer to FIG. 13 together, in the passivation layer 2 A third metal layer 210 and a fifth photoresist layer 306 are deposited on the 03, and the material of the third metal layer 210 is one of Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO). . Aligning the fifth photoresist layer 306 with a mask, irradiating the fifth photoresist layer 306 with ultraviolet rays, developing the fifth photoresist layer 306, and etching the third metal layer 210, and The remaining fifth photoresist layer 306 is formed to form an anode 204° as shown in FIG. 14. Next, an insulating layer 205 is formed on the anode 204 and the passivation layer 203. The insulating layer 205 is made of acrylic resin (Aryclic). Resin) or one of Poly imide. The insulating layer 205 is directly irradiated with the mask, and a portion of the insulating layer 205 on the anode 204 is removed by lift-off as shown in FIG. Then, an organic light-emitting layer 206 and a cathode 207 are sequentially deposited on the anode 204 and the insulating layer 205 as shown in FIG. Compared with the prior art, the first organic thin film transistor 22 and the second organic thin film transistor 23 of the organic light emitting diode display device 200 of the present invention respectively include the first doped layer 217 and the second doped layer 227. The material of the first active layer 213 and the second active layer 223 includes a base material such as a smuggling or polytrimium 13 201003911; an organic pole material such as il and a five-ring ring, the first doping layer 217 and the first ' _7, 7/,8,8'-tetracyanodimethyl p-benzoquinone. When the first organic thin film transistor 22 and the first organic thin film transistor 23 are turned off, the first doped layer 217 and the second doped layer 227 can provide a small amount of positive charge and remain in the conductive channel. The negative charge causes the first organic thin film transistor 22 and the second organic thin film transistor 23 to be completely turned off, thereby reducing the occurrence of leakage current, so that the brightness of the organic light emitting diode display device 2 is relatively stable. In addition, the first doped layer 217 and the second doped layer 227 include a trace amount of dopants such as: tungsten trioxide or 2,3,5,6-tetrafluoro-7,7,8,8,- The first doped layer 217 and the second doped layer 227 may respectively lower the first active layer 213 and the second active layer 223 and the first source 215 and the first drain The contact barrier between the 216 and the second source 225 and the second drain 226 reduces the impedance between them. The organic light emitting diode display device of the present invention is not limited to the above embodiments. For example, the first active layer 213 and the second active layer 223 may be formed on the dielectric insulating layer 2〇2, and then The doped layer 217 and the second doped layer 227 are formed on the first active layer 213 and the second active layer 223, and then respectively formed on the doped layer 217 and the second doped layer 227. The first source 215, the first drain 216, the second source 225, and the second drain 226. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only for the preferred embodiment of the present invention. The scope of the present invention is not limited to the above embodiments, and is familiar with the equivalent modification or the simple description of the description of the 2010 201003911::=== A cross-sectional view of a diode display device is a schematic diagram of a prior art organic light-emitting device. A schematic diagram of a pixel circuit of the organic light-emitting diode display device shown in the figure = 3 is a schematic view showing the organic light-emitting diode of the present invention. 4 is a schematic view showing the formation of the first metal|and the first photoresist layer. Figure 5 is a schematic diagram showing the formation of a first closed pole and a second interpole. 6 is a schematic view showing the formation of a dielectric insulating layer and a second photoresist layer. Figure 7 is a schematic view showing the formation of a first contact hole. FIG. 8 is a schematic view showing the formation of the second metal layer and the third photoresist layer. Polar diagram: forming a first source, a first pole, a second pole, a second source, and a second pole, and the second layer is a schematic layer of the first channel layer and the second channel layer, forming a passivation layer and a fourth Schematic diagram of the photoresist layer. Figure 12 is a schematic view showing the formation of a second contact hole. Figure 13 is a schematic view showing the formation of a third metal layer and a fifth photoresist layer. Figure 14 is a schematic view showing the formation of an insulating layer and an anode. Figure b is a schematic view showing the formation of an organic light-emitting layer and a cathode. [Description of main component symbols], the first channel layer of the light-emitting diode display device 215 216 200 first-source 22 first drain 15 201003911 second channel layer 23 first doped layer 217 organic light-emitting diode 25 A contact hole 218 substrate 201 second contact hole 219 dielectric insulating layer 202 second gate 222 insulating layer 203 second active layer 223 anode 204 second source 225 passivation layer 205 second drain 226 organic light emitting layer 206 second Doped layer 227 cathode 207 first photoresist layer 301 first metal layer 208 second photoresist layer 302 second metal layer 209 third photoresist layer 303 third metal layer 210 mask 304 first gate 212 fourth light Resistor layer 305 first active layer 213 fifth photoresist layer 306 16