TW201002826A - Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site - Google Patents

Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site Download PDF

Info

Publication number
TW201002826A
TW201002826A TW097125715A TW97125715A TW201002826A TW 201002826 A TW201002826 A TW 201002826A TW 097125715 A TW097125715 A TW 097125715A TW 97125715 A TW97125715 A TW 97125715A TW 201002826 A TW201002826 A TW 201002826A
Authority
TW
Taiwan
Prior art keywords
variant
nucleotide
primer
complementary
specific
Prior art date
Application number
TW097125715A
Other languages
Chinese (zh)
Other versions
TWI361835B (en
Inventor
Wei-Yuan Chow
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW097125715A priority Critical patent/TWI361835B/en
Publication of TW201002826A publication Critical patent/TW201002826A/en
Application granted granted Critical
Publication of TWI361835B publication Critical patent/TWI361835B/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a quantitative method for assaying the expression ratio between alleles differed by a single nucleotide polymorphism. The present invention also provides a quantitative method for assaying the expression ratio between alleles differed by a single nucleotide polymorphism.

Description

201002826 九、發明說明: 【發明所屬之技術領域】 本發明係制㈣定量聚合酶連鎖反應定量分析帶有單—核多型 性之變異型表現比率的方法。 【先前技術】 生殖細胞突變及體細胞突變會造成許多人類疾病。專一性㈣酸變 異’如突變、插人、缺失及其他轉換,可作為許多疾病(包括某些癌 症)的參考性指標。例如BRCA基因的突變已知為乳癌特徵之一,p53 細胞週期調節基因的突變則與許多癌症有關連,尤其是大腸直腸癌。 Sidmnsky etal·已提出專一性變異也許可用於分子篩檢分析,而作為某 些癌症初期檢測的基礎(Science, 1992, 256: 102- 105)。因此,如今分 子篩檢分析已發展到可用於偵測某些變異是否已經發生,並進一步確 認受測者是否為該變異相關疾病之高危險群。 核糖核酸(RNA)編輯(editing)意指核糖核酸分子上特定位點的修飾, 包括核苷酸的插入、缺失、置換及變形。像是選擇性脫氨腺核苷(A 到I)及選擇性脫氨胞嘧啶(C到U)這樣的RNA編輯,會造成後生 動物(metazoan)核轉錄及基因體去氧核糖核酸(DNA)間的序列差 異(B.L. Bass, RNA editing by adenosine deaminases that act on RNA,201002826 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a method for quantitatively analyzing a ratio of expression of a variant having a single-nuclear polymorphism by quantitative polymerase chain reaction. [Prior Art] Germ cell mutations and somatic mutations cause many human diseases. Specificity (4) acid variability, such as mutations, insertions, deletions, and other transformations, can serve as a reference indicator for many diseases, including certain cancers. For example, mutations in the BRCA gene are known to be one of the features of breast cancer, and mutations in the p53 cell cycle regulatory gene are associated with many cancers, particularly colorectal cancer. Sidmnsky et al. have suggested that specific mutations may be used for molecular screening analysis as a basis for early detection of certain cancers (Science, 1992, 256: 102-105). Therefore, molecular screening assays have now evolved to detect whether certain mutations have occurred and to further confirm whether the subject is at high risk for the mutation-related disease. Ribonucleic acid (RNA) editing refers to the modification of specific sites on a ribonucleic acid molecule, including insertions, deletions, substitutions, and deformations of nucleotides. RNA editing such as selective deamin nucleoside (A to I) and selective deamination cytosine (C to U) can cause metazoan nuclear transcription and genomic DNA (DNA) BL Bass, RNA editing by adenosine deaminases that act on RNA,

Annu. Rev. Biochem. 71, 2002, 817-46; J.E. Wedekind, G.S. Dance, M.P. Sowden, and H.C. Smith, Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business, 5 201002826Annu. Rev. Biochem. 71, 2002, 817-46; J.E. Wedekind, G.S. Dance, M.P. Sowden, and H.C. Smith, Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business, 5 201002826

Trends Genet” 2003, 19: 207-16)。許多含蛋白質編碼的抓八(這些蛋白 質包含有神經傳導物受器、離子通道、D型肝炎病毒之外殼蛋白、以 及可催化RNA編輯(A到I)的其中一個酵素^^而以等等)在特定位Trends Genet" 2003, 19: 207-16). Many protein-containing captures (these proteins contain neurotransmitter receptors, ion channels, coat proteins of hepatitis D virus, and catalyzable RNA editing (A to I) ) one of the enzymes ^^ and so on) in a specific position

點被以 A 到 I 編輯修飾(P.H. Seeburg,M. Higuchi,and R. Sprengel, RNA editing of brain glutamate receptor channels: mechanism and phvsiologv Brain Res. Brain Res. Rev., 1998, 26: 217-29; S.M., Rueter, TR Dawsf^ and R.B. Emeson, Regulation of alternative splicing by RNA editing,The dots were modified with A to I edits (PH Seeburg, M. Higuchi, and R. Sprengel, RNA editing of brain glutamate receptor channels: mechanism and phvsiologv Brain Res. Brain Res. Rev., 1998, 26: 217-29; SM , Rueter, TR Dawsf^ and RB Emeson, Regulation of alternative splicing by RNA editing,

Nature,1999, 399: 75-80)。因為I會被認作G,前述轉錄體的⑽八編 輯會影響别息RNA (pre-mRNA)的剪接(Spiicing)以及之後所轉Nature, 1999, 399: 75-80). Since I will be recognized as G, the (10) eight edits of the aforementioned transcript will affect the splicing of the pre-mRNA and the subsequent splicing.

譯出的序列。RNA的A到I編輯常常並不完全,造成特定位點上為A 或I(G)的異質RNA共存現象’並產生具有不同特性的蛋白質異構物。 A到I編輯也修飾非編碼區及微RNA (micro-RNA)的前驅物,並影 響這些 RNA 的產出及活性(W. Yang, T.P. Chendrimada, Q. Wang,M.The sequence that was translated. The A to I editing of RNA is often incomplete, resulting in a heterogeneous RNA coexistence of A or I(G) at a particular site' and producing protein isomers with different properties. A to I editors also modify non-coding regions and microRNA precursors and affect the production and activity of these RNAs (W. Yang, T.P. Chendrimada, Q. Wang, M.

Higuchi, P.H. Seeburg, R. Shiekhattar, and K. Nishikura, Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol., 2006, 13: 13-21; Y. Kawahara B. Zinshteyn, P. Sethupathy, H. Iizasa, A.G Hatzigeorgiou, and K. Nishikura, Redirection of silencing targets by adenosine-to-inosine editing of miRNAs,Higuchi, PH Seeburg, R. Shiekhattar, and K. Nishikura, Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol., 2006, 13: 13-21; Y. Kawahara B. Zinshteyn , P. Sethupathy, H. Iizasa, AG Hatzigeorgiou, and K. Nishikura, Redirection of silencing targets by adenosine-to-inosine editing of miRNAs,

Science, 2007, 315: 1137-40)。RNA編輯的活躍性除了會受發育時期及 組織特異性影響,也會因為病理狀況而改變(S. Maas, Y. Kawahara, K.M. Tamburro, and K. Nishikura, A-to-I RNA Editing and Human Disease RNABiol.,2006, 3: 1-9)。 如今已發展出許多方法,可用於在反轉錄聚合酶連鎖反應(reverse transcript PCR (RT-PCR))中定量擴增子(amplicons)當中有多少比 例為被編輯過之轉錄體。例如序列分析法或含雙去氧核苷酸 6 201002826 (dideoxynucleotide )的有限引子延伸法(limited primer extension),就 被廣泛應用於定量測量RNA編輯效率(H.H. Schiffer, and S.F.Science, 2007, 315: 1137-40). The activity of RNA editing is not only affected by developmental stage and tissue specificity, but also by pathological conditions (S. Maas, Y. Kawahara, KM Tamburro, and K. Nishikura, A-to-I RNA Editing and Human Disease RNA Biol., 2006, 3: 1-9). A number of methods have been developed to quantify how many of the amplicons in the reverse transcript PCR (RT-PCR) are edited transcripts. For example, sequence analysis or the limited primer extension with double deoxynucleotide 6 201002826 (dideoxynucleotide) is widely used to quantitatively measure RNA editing efficiency (H.H. Schiffer, and S.F.

Heinemann, A quantitative method to detect RNA editing events, Anal. Biochem., 1999, 276: 257-60; L.P. Keegan, J. Brindle, A. Gallo, A. Leroy, R.A. Reenan, and M.A. O'Connell, Tuning of RNA editing by ADAR is required in Drosophila, EMBO J., 2005, 24: 2183-93 )。然而這些方法成 本高且耗費人力,有時還需進行純系複製(cloning)或使用含放射線 之同位素。另一種方法為限制酵素分析法,可應用於當RNA編輯會改 變酵素上的辨認序列時(S_M. Belcher,and J.R. Howe, Characterization of RNA editing of the glutamate-receptor subunits GluR5 and GluR6 in granule cells during cerebellar development, Brain Res. Mol. Brain Res, 1997, 52: 130-8 ) ’然而此方法只能偵測限制酵素辨認序列上的j^a編 輯位點。此外,尚有其他方法可藉由偵測序列上一個或少數個核苷酸 差異來分析核酸’像是連接酶連鎖反應(ligase chain reaction (LCR))、 連接酶偵測反應、突變對偶基因專一性擴增聚合酶連鎖反應 (PCR-mutant allele specific amplification (PCR-MASA))(美國專利公 開號:US 2008/0075662)、以及單股構形多型性分析(single strand conformation polymorphism)等等。 【發明内容】 此處使用的術語『基關(allele)』包含不同的核魏麵,通常表示 某基因的另-個或其他多個型態;—對對偶基因可有兩種不同基因型 (alleles),其編碼的產物或功能在量與性質上會有所差異。 7 201002826 此處使用麟語『賴型(vafiants)』締不同基因型巾核料序列上 的變異,帶有或不帶有已知的功能差異。 此處使用的術語『3,端完全互補的複數核苷酸』表示所設計之募核荅 酸引子’其3端核苦酸除最3’端核苷酸外,可與不同變異型序列完 全互補。 此處使用的術語『造成不穩定的不互補核㈣』表示在原為互補之引 子序列中置換入一個或多於一個内部不互補核苷酸,破壞引子與模板 間鹼基配對之穩定度。 此處使用的術語『5’端完全互補的核苷酸序列』表示其最5,端序列 可與所有變異辦舰補。5’端完全互補雜鶴可緊鄰『造成不穩 定的不互讎賊』再接『3’端完全互獅複數㈣酸』或直接連接 『3’端完全互補的複數核苷酸』。 此處使用的術語『RNA編輯』表示藉由核苷酸的插入、缺失 '置換或 變形而在RNA分子特定位點上所作的修飾,其包含將腺㈣(A)脫 氨變成肌核苷(I)或將胞嘧啶(C)脫氨變成尿嘧啶(u)。 本發明提供了-個解且具成本效益的綠,藉由料—條具區別性 之引子,經由差別性擴增由不同基因型轉譯之變異型mRNA,達成定 量不同基因型(或被編輯及未被編輯_Α)所形成之混合核苷酸變異 201002826 型中某-變異型(或未被編輯的變異型奶〜的比例。此方法不需要 純系複製、或使關位素,同時節省人力及時間需求。 因此本發明提供了 一種定量分析具有不同單_核苦酸多型性之變異 型表現比率的方法,其包含: U)根據單-變異伽核紐相,設計—個變異型專—㈣丨子,其 3’端到5’端依序為一個3,端羥基變異型專一性核苷酸、3,端完全 互補的複數核苷酸、及5,端完全互補的複數核苷酸,其中變異型 專一性核苷酸源自已知的單一核苷酸多型性位點; (b) 使用兩種變異型都會黏著上的一般引子組合進行定量聚合酶連鎖 反應’以得到全部轉錄體分子數; (c) 使用一個變異型專一性引子及一般引子組合中的一個引子進行定 量聚合酶連鎖反應,以得到單一變異型轉錄體的分子數;及 (d) 將單一變異型轉錄體的分子數除以全部轉錄體分子數,以計算出 單一變異型的表現頻率。 在較佳實施例中’該聚合酶連鎖反應係使用賽巴格林染劑(SYBr Green)之定量聚合酶連鎖反應(quantitativePCR(qPCR))或使用鐵克 曼探針(TagMan)之即時聚合酶連鎖反應(realtime PCR)。 本發明之該方法可應用於微RNA檢測、基因表現、疾病分級(disease gradient)、癌症診斷或單一核皆酸多型性。 9 201002826 本發明進一步提供了一種定量分析具有不同單一核苷酸多型性之變異 型表現比率的方法,其包含: (a) 根據單一物種的核苷酸序列,設計一個變異型專一性引子其3, 端到5’端依序為一個3,端羥基變異型專一性核苷酸、一串3,端完 全互補的複數核苷酸、引子當中至少—個造成不穩定的不互補核 苷酸、及5’端完全互補的複數核苷酸,其中該不穩定的不互補核 苦酸對偶基因係選自3’端經基專一性核苷酸中的上游第3、4、5、 6或7核誓酸並做同類或異類置換(transiti〇n or transversion substitution ),其中變異型專一性核苷酸源自已知的單一核苷酸多 型性位點; (b) 使用兩種變異型都會黏著上的一般引子組合進行定量聚合酶連鎖 反應,以得到全部轉錄體分子數; (c) 使用一個變異型專一性引子及一般引子組合中的一個引子進行定 量聚合酶連鎖反應,以得到單一變異型轉錄體的分子數;及 (d) 將單一變異型轉錄體的分子數除以全部轉錄體分子數,以計算出 單一變異型的表現頻率。 在較佳實施例中,該『造成不穩定的不互補核苷酸』係位於變異蜇專 一性引子3’端核苷酸中的上游第3、4、5、6或7核苦酸。 在更佳實施例中,該『造成不穩定的不互補核苷酸』係位於變異蜇專 一性引子3,端核苷酸中的上游第4、5或6核苷酸。 201002826 在較佳實施射,該引子具有兩個『造成不穩定的*互補核苦酸』。 在更佳實施射,該引子具有—個『造成不穩定的不互補核苷酸』。 在較佳實施例中’該聚合酶連鎖反應係使用赛巴格林染劑(SYBR Green)之即時定量聚合酶連鎖反應或使用鐵克曼探針(TagMan)之 即時定量聚合酶連鎖反應。 本發明之方法可應用於微RNA檢測、基因表現、疾病分級(disease gradient)、癌症診斷或單一核苦酸多型性。 【實施方式】 本發明可能以不同的形式來實施,並不僅限於下列文中所提及的實例。 實施例1 : 材料與方法 為定量分析準備及擴增互補去氧核糖核酸(cDNA)模板 發育時期以28.5 °C下受精後小時(hpf, hour postfertilization)及受精後 天數(dpf,daypostfertilization)表示。在光週期開始後第15分鐘收集 斑馬魚ren_o)胚胎’並定義此時為〇 hpf。用RNeasy套組 (Qiagen )萃取出全部RNA並施加第1去氧核糖核酸酶(DNasel)。 接著用寡核苦酸T (oligo-d(T))及隨機六聚物(rand〇m hexamer)做 為引子,以Superscript III反轉錄酶(Invitrogene)反轉錄RNA (1到 201002826 5微克)。20微升的反應混合物中包含1微升的cDNA、20微微莫耳數 的引子、4種各200微莫耳濃度的去氧核甘三磷酸(dNTPs)、50毫莫 耳濃度的氣化鉀、10毫莫耳濃度PH=8.3的三羥甲基氨基曱烷-鹽酸緩 衝液(Tris-HCl)、1.5毫莫耳濃度的氯化鎂、及0.5單位高準確度的 KOD-plus DNA聚合酶(Toyobo )。當不需要純化RT-PCR擴增子時, 則減半試劑量及反應體積。讓反應進行35個循環(94°C 10秒、55-60 °C 20秒、68°C 1分鐘)’最後在68〇C擴展10分鐘。Heinemann, A quantitative method to detect RNA editing events, Anal. Biochem., 1999, 276: 257-60; LP Keegan, J. Brindle, A. Gallo, A. Leroy, RA Reenan, and MA O'Connell, Tuning of RNA editing by ADAR is required in Drosophila, EMBO J., 2005, 24: 2183-93). However, these methods are costly and labor intensive, and sometimes require cloning or the use of radioactive isotopes. Another method is to limit the enzyme assay, which can be applied when RNA editing changes the recognition sequence on the enzyme (S_M. Belcher, and JR Howe, Characterization of RNA editing of the glutamate-receptor subunits GluR5 and GluR6 in granule cells during cerebellar Development, Brain Res. Mol. Brain Res, 1997, 52: 130-8 ) 'However, this method can only detect j^a editing sites on the restriction enzyme recognition sequence. In addition, there are other methods for analyzing nucleic acids by detecting one or a few nucleotide differences in a sequence, such as a ligase chain reaction (LCR), a ligase detection reaction, and a mutant dual gene specificity. PCR-mutant allele specific amplification (PCR-MASA) (U.S. Patent Publication No. US 2008/0075662), and single strand conformation polymorphism and the like. SUMMARY OF THE INVENTION As used herein, the term "allele" encompasses different nuclear faces, usually representing another or a plurality of other types of a gene; - there may be two different genotypes for a dual gene ( Alleles), the products or functions encoded may vary in quantity and nature. 7 201002826 Here, the vaginal vafiants are used to mutate the sequence of different genotypes with or without known functional differences. The term "3, a fully complementary complex nucleotide" as used herein means that the designed nucleoside primer has a 'terminal 3 nucleotide, except for the most 3' nucleotide, which can be completely different from the different variant sequences. Complementary. The term "unstable non-complementary nucleus (IV)" as used herein means the substitution of one or more internal non-complementary nucleotides in a previously complementary primer sequence, disrupting the stability of base pairing between the primer and the template. The term "completely complementary nucleotide sequence at the 5' end" as used herein means that the most 5, the end sequence can be complemented by all variants. The fully complementary crane at the 5' end can be adjacent to the "unstable thief" and then the "3' end completely lion complex (four) acid or directly connected to the "3' end fully complementary complex nucleotides". The term "RNA editing" as used herein refers to a modification at a specific site of an RNA molecule by insertion, deletion, or deformation of a nucleotide comprising deamination of the gland (tetra) (A) to a nucleoside ( I) Deamination of cytosine (C) into uracil (u). The present invention provides a solution-based and cost-effective green, by differentially amplifying variant mRNAs translated from different genotypes by means of differential-inducible primers, to quantify different genotypes (or edited and Unmixed _Α) formed by the mixed nucleotide variation of the 201002826 type of a variant (or unedited variant milk ~ ratio. This method does not require pure replication, or to make the positional, while saving manpower And time requirements. The present invention therefore provides a method for quantitatively analyzing the performance ratio of variants having different mono-nucleic acid polymorphisms, comprising: U) designing a variant based on a single-variant gamma neophase - (iv) scorpion, its 3' to 5' end is a 3, a hydroxy-variant-specific nucleotide, a 3, a fully complementary complex nucleotide, and a 5, fully complementary complex nucleoside An acid in which a variant-specific nucleotide is derived from a known single nucleotide polymorphic site; (b) a quantitative polymerase chain reaction is performed using a combination of general primers on which both variants are attached to obtain the entire Number of transcript molecules; (c) Quantitative polymerase chain reaction using a primer in a variant specific primer and a general primer combination to obtain the number of molecules of a single variant transcript; and (d) dividing the number of molecules of a single variant transcript by the total number of transcripts The number of body molecules to calculate the frequency of performance of a single variant. In a preferred embodiment, the polymerase chain reaction is quantified by quantitative polymerase chain reaction (qPCR) using cybrin stain (SYBr Green) or instant polymerase chain using Tekman probe (TagMan). Reaction (realtime PCR). The method of the invention can be applied to microRNA detection, gene expression, disease gradient, cancer diagnosis or mononuclear acid polymorphism. 9 201002826 The present invention further provides a method for quantitatively analyzing a ratio of expression of variants having different single nucleotide polymorphisms, comprising: (a) designing a variant specific primer based on the nucleotide sequence of a single species 3, the end to the 5' end is a 3, a hydroxyl terminated variant specific nucleotide, a string of 3, a fully complementary complex nucleotide, at least one of the primers causes unstable non-complementary nucleotides And a fully complementary nucleotide at the 5' end, wherein the unstable non-complementary nucleotide acid dual gene is selected from upstream 3, 4, 5, 6 of the 3'-end nucleotide-specific nucleotide or 7 nuclear swearing and doing transgenic or transversion substitution, in which the variant specific nucleotide is derived from a known single nucleotide polymorphic site; (b) using two variants Quantitative polymerase chain reaction is performed on a combination of general primers to obtain the total number of transcript molecules; (c) Quantitative polymerase chain reaction is performed using a variant specific primer and a primer in a general primer combination to obtain a quantitative polymerase chain reaction. The number of molecules of a single transcript variant; and (d) the number of molecules of a single transcript variant molecules divided by the total number of transcripts, to calculate the frequency performance of a single variant. In a preferred embodiment, the "unstable non-complementary nucleotide" is located upstream of the 3, 4, 5, 6 or 7 nucleotides in the 3' nucleotide of the variant 蜇-specific primer. In a more preferred embodiment, the "unstable non-complementary nucleotide" is located at the 4th, 5th or 6th nucleotide upstream of the variant 蜇-specific primer 3, the terminal nucleotide. 201002826 In the preferred embodiment, the primer has two "constant unstable * complementary nuclear bitter acid". In a better implementation, the primer has a "non-complementary nucleotide that causes instability." In a preferred embodiment, the polymerase chain reaction is an instant quantitative polymerase chain reaction using Saibai Green stain (SYBR Green) or an instant quantitative polymerase chain reaction using a Tekman probe (TagMan). The method of the invention can be applied to microRNA detection, gene expression, disease gradient, cancer diagnosis or mononuclear acid polymorphism. [Embodiment] The present invention may be embodied in different forms and is not limited to the examples mentioned below. Example 1: Materials and Methods Preparation and amplification of a complementary deoxyribonucleic acid (cDNA) template for quantitative analysis The developmental period is expressed as the hour after fertilization (hpf, hour postfertilization) and the number of days after fertilization (dpf, day postfertilization) at 28.5 °C. The zebrafish ren_o) embryo was collected at the 15th minute after the start of the photoperiod and defined as 〇 hpf at this time. All RNA was extracted with the RNeasy kit (Qiagen) and the first deoxyribonuclease (DNasel) was applied. Next, oligonucleotides T (oligo-d(T)) and random hexamers (rand〇m hexamer) were used as primers, and RNA was reverse transcribed by Superscript III reverse transcriptase (Invitrogene) (1 to 201002826 5 μg). 20 microliters of reaction mixture containing 1 microliter of cDNA, 20 micromoles primer, 4 deoxyribonuphosphate (dNTPs) at a concentration of 200 micromoles, and potassium carbonate at 50 millimolar , 10 millimolar concentration PH=8.3 tris-hydroxymethylamino decane-hydrochloric acid buffer (Tris-HCl), 1.5 millimolar concentration of magnesium chloride, and 0.5 unit high accuracy KOD-plus DNA polymerase (Toyobo ). When purification of the RT-PCR amplicon is not required, the reagent amount and reaction volume are halved. The reaction was allowed to proceed for 35 cycles (94 ° C for 10 seconds, 55-60 ° C for 20 seconds, 68 ° C for 1 minute)' and finally extended at 68 ° C for 10 minutes.

分別源自外顯子(exons) 10及12之正義及反義序列的A1引子(SEQ ID NO 1: 5’-GGAATGGCATGGTTGGAGAACTGG-3’)及 A2 引子 (SEQ ID NO 2: 5’-ACACCACCAACTATACGGCCAGACAA-3’)被使 用來擴增 之訊息 RNA ( W.-H. Lin, Wu,C.-H, Chen,Y.-C. andA1 primer (SEQ ID NO: 5'-GGAATGGCATGGTTGGAGAACTGG-3') derived from the sense and antisense sequences of exons 10 and 12, respectively, and A2 primer (SEQ ID NO 2: 5'-ACACCACCAACTATACGGCCAGACAA-3) ') is used to amplify the message RNA ( W.-H. Lin, Wu, C.-H, Chen, Y.-C. and

Chow, W.-Y., Embryonic expression of zebrafish AMPA receptor genes: zygotic gria2a expression initiates at the midblastula transition. Brain Res.Chow, W.-Y., Embryonic expression of zebrafish AMPA receptor genes: zygotic gria2a expression initiates at the midblastula transition. Brain Res.

1110 (2006) 46-54)。包含斑馬魚鉀鹽鎂礬(kainite)受器次單位上Y/C 位點(即gWMa)的互補DNA則使用K1引子(SEQ ID NO 3: 5’-AGCTGATCTTGCAGTGGCGC-3’)及 K2 引子(SEQ ID NO 4: 5 ’-GGCCGTGTAGGAGGAGATGATG-3 ’)來擴增。PCR 擴增子以 2 % 的洋菜膠體電泳進行分離並用Geneclean (BiolOl)純化。這裡有另— 種方法是用2 %低熔點洋菜膠體電泳(SeaPlaque,Bio Whittaker· Molecular Applications)來分離PCR擴增子’將之切割清洗後便可用 於即時定量聚合酶連鎖反應分析,而不需要再作進一步純化。進行即 12 201002826 時定董聚合鱗鎖反應讀前先將RT_PCR擴增子獅。從純化擴增 子或直接由膠體切割出之未純化擴增子所得出之jy^A編輯頻率結果 相似,只有小於2%的差異(資料未顯示)。 純系複製及準備控制組的DNA模板 先將PCR擴增子純系複製到pGEMTeasy (Promega)載體上,接著用1110 (2006) 46-54). The complementary DNA containing the Y/C site (ie gWMa) on the zebrafish kainite receptor subunit uses the K1 primer (SEQ ID NO 3: 5'-AGCTGATCTTGCAGTGGCGC-3') and the K2 primer (SEQ) ID NO 4: 5 '-GGCCGTGTAGGAGGAGATGATG-3 ') to amplify. The PCR amplicons were separated by 2% gelatin electrophoresis and purified by Geneclean (BiolOl). Here's another way to use a 2% low melting point gelatin gel electrophoresis (SeaPlaque, Bio Whittaker Molecular Applications) to isolate PCR amplicons, which can be used for real-time quantitative polymerase chain reaction analysis without cutting and washing. Further purification is required. When the 12th 201002826 is performed, the fixed-polymerized scale lock reaction is first read by RT_PCR to amplify the lion. The results of the jy^A editing frequency obtained from the purified amplicon or the unpurified amplicon directly cleaved by the colloid were similar, with only a difference of less than 2% (data not shown). DNA template for the pure line replication and preparation control group First copy the PCR amplicon pure line to the pGEMTeasy (Promega) vector, followed by

Bigdye 終止子系統(Bigdye terminator system (Applied Biosystems))定 序並確認步如2«和皮说2«上的A及G變異型。用適當的限制酵素將 帶有被編輯G及未編輯A變異型的質體切成線狀,並用酚(phen〇1) 或氯仿(chloroform)清洗。DNA濃度則用分光光度法測量。 定量聚合酶連鎖反應分析 使用賽巴格林農縮混合液(SYBR Green Master Mix)並依照其說明書 指示(Applied Biosystems)進行即時定量聚合酶連鎖反應(qpcR)。 使用引子設計軟體(PrimerEXpress (Applied Bi〇systems))設計引子對, 炫點溫度設為60°C,擴增子的長度保持在8〇到1〇〇個驗基的範圍内。 表一為即時定量聚合酶連鎖反應引子的序列。反應的總體積為1〇微 升’其中每個引子均為800毫微微莫耳數。使用pRISM 75〇〇™ 序列偵測系統(預設設定)測量Ct值。一開始在5〇 °C下2分鐘及95 °C下10分鐘,接著設定95 °C下1〇秒及6〇 〇c下〗分鐘並以此進行 45個循環。然而’反應通常在第30個循環前就達到高原期,35個循 玉衣的反應便以足夠。用反應後的解離分析(dissociati〇n analysis)確認 13 201002826 單一產物的擴增。樣本做二重複,最終結果為平均值。若二重複的樣 本彼此之間出現0.3 Ct值以上的差異,就重新再測量。 表1 本發明所使用之即時定量聚合酶連鎖反應引子的序列 引子 序列(5’-3’)a 用途b AU3 TCTTCCTCGTTAGCCGCTTC 的前置通用引子 AU4 CAAAGACCTTGGCGAAATATCG 的反置通用引子 A2Q1 CGAAATATCGCATCCCTGCT 未編輯形式的反置引子 KU3 TCCAAACCCTTCATGACGCT 的前置通用引子 KU4 CAGCACACAACTGACACCCAA 的反置通用引子 K2Y1 GCACACAACTGACACCCAAGT 未編輯形式gr汰2α的反置引子 K2Y2 CAGCACACAACTGACACTCAAGT 未編輯形式gr決2α的反置引子 K2Y3 CAGCACACAACTGACACTTAAGT 未編輯形式gr认2α的反置引子 K2Y4 CAGCACACAACTGACACCTAAGT 未編輯形式识认2«的反置引子 劃上底線處為造成不穩定的不互補的鹼基位置。單一鹼基變異型的位置 則用灰色背景標記。 引子的相對位置顯示於圖1B。 用qPCR測量RNA編輯頻率 藉由測量序列稀釋(series dilution)的線性質體DNA模板的ct值, 可建構出母個引子對的擴增效率(標準曲線)。在模擬實驗中,含A 和G變異型的DNA數量分別由通用引子所測定。接著將已知數量(預 期分子數)的A和G變異型以不同比率混合後,進行qpCR分析。為 了測定RNA編輯頻率,會先使用通用引子測定RT_pcR的產物數量, 14 201002826 所以每次qPCR分析都會使用約!微微克擴增子以使(^值 達到17左右。另外將同樣數量的RT_PCR擴增子以a專一性引子對 及通用引子對做定量。將Ct值代入標準曲線的公式,便可計算出A 變異型分子數和全部(A及G變異型)分子數。該方程式為l〇g[gn.fl2cc(A) 分子數]=-〇.314Ct+10.74、l〇g[gnii2a 分子數]=-0.3005Ct+10.655、 \og[grik2a(A)分子數]=-〇.297Ct+l5.72407、及 log[狀汝2α 分子 數]=_0.30178Ct+15.724。1- (Α變異型分子數/全部分子數)的值即為 RNA編輯頻率。 實施例2 : 以定量聚合酶連鎖反應測量編輯頻率 圖1所示為使用qPCR在特定位點測定RNA編輯頻率的步驟。藉由 RT-PCR擴增帶有被編輯位點的轉譯體。rt-PCR擴增子為A (未被編 輯)及G (已被編輯)變異型的混合物。跑完電泳後,切下包含RT_pcR 擴增子的洋菜條(圖1A)。藉由A及G變異型都會黏著上的通用引 子對來定量RT-PCR擴增子的數量,RT-PCR擴增子的A變異型則以 前置通用引子及A專一性反置引子來定量(圖1B)。將A專一性引 子的最3’端放在被編輯位置以差別性地擴增(定量)A及G變異型(圖 1B及表1)。 測量斑馬魚的Q/R位點及的Υ/C位點上RNA編輯頻率 的方法及引子已經被建立。比較A專一性引子對(AU3-A2Q1)的擴 15 201002826 增效率及通用引子對(AU3_AU4)在模板之八及〇變異型上的 擴增效率,可評估qPCR引子對的表現(圖2Α)。通用引子對及α專 一性引子對在完全互_ «模板上,表現邮目同的擴增效率其 中Α專-性引子對(祕Α2φ)在完全互補的Α變異型(未被編輯 的Q形式)上,比在不完全互補的G變異型(被編輯的R形式,圖2α) 上’效率高了 32倍(Λα=-5 )。 f 方面,八專—性引子對⑽3_Κ2Υ1)料以同樣效率擴增㈣2« 的Α變異型(未被編輯的γ形式)及G變異型(被編輯的c形式), 這表示-條只在3,端具有不·__ Κ2Υ1奸,其無法區別出 上為γ/e編輯的變異型(資料未顯示)。在Α專一性引子内部 置入不互補核苷酸(K2Y2、K2Y3及K2Y4,表1)。Κ2γ2、Κ2γ3及 Κ2Υ4在3’端上游數個核苷酸間距内包含丨或2個造成配對不穩定之 不互補核苷酸。用兩種濃度的模板來測試這些引子區別擴增皮说之 ^ Α及G變異型的能力(表2)。含内部不互補的a專一性引子擴增^认2(% 、 之A變異型的效率會比擴增0變異型的效率來的高。然而,相對於通 用引子(KU4)的擴增效率,含内部與A變異型部分不互補引子的擴 增效率會少上1-12倍(表2)。從通用引子對(KU3_KU4)及a專一 性引子對(KU3-K2Y1)所建立的標準曲線,可證實含内部不互補核苷 酸的K2Y4引子可以區別gr/^2a之A及G變異型(圖2B)。 16 201002826 表2内部不互補核苦酸對擴增㈣2β在Y/c位置上的a及g變異型的 影響 ~ (濃度a) KU4 A變異型(高) 15.12 G變異型(高) 15.16 A變異型(低) 19.81 G變異型(低) 19.82The Bigdye terminator system (Applied Biosystems) is sequenced and confirms the A and G variants on steps 2« and 皮说2«. The plastids with the edited G and unedited A variants were cut into linear lines with appropriate restriction enzymes and washed with phenol (phen〇1) or chloroform. The DNA concentration was measured spectrophotometrically. Quantitative polymerase chain reaction analysis An instant quantitative polymerase chain reaction (qpcR) was performed using SYBR Green Master Mix and in accordance with its instructions (Applied Biosystems). The primer pair was designed using PrimerEXpress (Applied Bi〇systems), the smear temperature was set to 60 ° C, and the length of the amplicon was kept within the range of 8 〇 to 1 验. Table 1 shows the sequence of the instant quantitative polymerase chain reaction primer. The total volume of the reaction was 1 〇 microliters, where each primer was 800 femtomol. The Ct value is measured using the pRISM 75〇〇TM Sequence Detection System (default setting). Initially, 2 minutes at 5 °C and 10 minutes at 95 °C, then set 1 hour at 95 °C and 6 minutes at 6 ° 〇c for 45 cycles. However, the reaction usually reaches the plateau period before the 30th cycle, and the reaction of 35 Jade clothes is sufficient. Amplification of 13 201002826 single product was confirmed by dissociation analysis after the reaction. The sample is repeated twice and the final result is the average. If the two replicated samples show a difference above 0.3 Ct, they are re-measured. Table 1 Sequence of the instant quantitative polymerase chain reaction primer used in the present invention (5'-3') a Use b AU3 TCTTCCTCGTTAGCCGCTTC Pre-general primer AU4 CAAAGACCTTGGCGAAATATCG Reverse general primer A2Q1 CGAAATATCGCATCCCTGCT Unedited form of reverse KU3 TCCAAACCCTTCATGACGCT pre-general introduction KU4 CAGCACACAACTGACACCCAA reverse general primer K2Y1 GCACACAACTGACACCCAAGT unedited form s 2α reverse primer K2Y2 CAGCACACAACTGACACTCAAGT unedited form gr 2α reversed introduction K2Y3 CAGCACACAACTGACACTTAAGT unedited form gr recognized 2α reverse The primer K2Y4 CAGCACACAACTGACACCTAAGT unedited form recognizes that the reverse index of 2« is drawn at the bottom line to cause unstable non-complementary base positions. The position of a single base variant is marked with a gray background. The relative position of the primers is shown in Figure 1B. Measurement of RNA editing frequency by qPCR The amplification efficiency (standard curve) of the parent primer pair can be constructed by measuring the ct value of the linear dilution DNA template of series dilution. In the simulation experiments, the amount of DNA containing the A and G variants was determined by universal primers, respectively. Next, a known amount (predicted number of molecules) of the A and G variants were mixed at different ratios, and qpCR analysis was performed. In order to determine the RNA editing frequency, the number of products of RT_pcR is first determined using a universal primer, 14 201002826 so every qPCR analysis will use about! The microgram amplicon is such that the value of the ^ is about 17. In addition, the same number of RT_PCR amplicons are quantified by a specific primer pair and a universal primer pair. By substituting the Ct value into the formula of the standard curve, A can be calculated. The number of variant molecules and the total number of molecules (A and G variants). The equation is l〇g[gn.fl2cc(A) number of molecules]=-〇.314Ct+10.74, l〇g[gnii2a number of molecules]=- 0.3005Ct+10.655, \og[grik2a(A) number of molecules]=-〇.297Ct+l5.72407, and log[number of 汝2α molecules]=_0.30178Ct+15.724. 1- (Α 分子 分子 分子 / The value of all molecular numbers is the RNA editing frequency.Example 2: Measurement of the editing frequency by quantitative polymerase chain reaction Figure 1 shows the procedure for determining the RNA editing frequency at a specific site using qPCR. The translational body with the edited site. The rt-PCR amplicon is a mixture of A (unedited) and G (edited) variants. After running the electrophoresis, the amaranth containing the RT_pcR amplicon is cut. Bars (Fig. 1A). The number of RT-PCR amplicons is quantified by the universal primer pairs on both the A and G variants, and the A variant of the RT-PCR amplicon is pre-positioned. Universal primers and A-specific inverted primers were quantified (Fig. 1B). The most 3' end of the A-specific primer was placed at the edited position to differentially amplify (quantify) the A and G variants (Figure 1B and Table). 1) The method and primer for measuring the RNA editing frequency of the Q/R site and the Υ/C site of zebrafish have been established. Compare the amplification of A-specific primer pair (AU3-A2Q1) 15 201002826 Efficiency and generality The amplification efficiency of the primer pair (AU3_AU4) on the octagonal and 〇 variants of the template can be used to evaluate the performance of the qPCR primer pair (Fig. 2Α). The universal primer pair and the α-specific primer pair are displayed on the complete __template. The same amplification efficiency, in which the Α-specific primer pair (secret 2φ) is in the fully complementary Α variant (unedited Q form) than the incompletely complementary G variant (edited R form, Figure 2α) The 'efficiency is 32 times higher (Λα=-5). In terms of f, the eight-specific primer pairs (10)3_Κ2Υ1) are amplified with the same efficiency (4) 2« Α variant (unedited γ form) and G Variant (edited c form), which means that the strip only has 3, the end has no __ Κ 2 Υ 1 trait, it can not be distinguished It is a variant on the γ / e editing (data not shown). Non-complementary nucleotides (K2Y2, K2Y3, and K2Y4, Table 1) were placed inside the Α-specific primer. Κ2γ2, Κ2γ3 and Κ2Υ4 contain 丨 or 2 non-complementary nucleotides which cause pairing instability within a few nucleotide intervals upstream of the 3' end. Two concentrations of template were used to test the ability of these primers to distinguish between the Α and G variants (Table 2). The specificity of the a-specific primers containing the internal non-complementary amplification 2 (%, the A variant is more efficient than the amplification 0 variant). However, compared to the amplification efficiency of the universal primer (KU4), The amplification efficiency of the non-complementary primers containing the internal and A variants is 1-12 times less (Table 2). The standard curve established from the universal primer pair (KU3_KU4) and the a-specific primer pair (KU3-K2Y1), It can be confirmed that the K2Y4 primer containing the internal non-complementary nucleotide can distinguish the A and G variants of gr/^2a (Fig. 2B). 16 201002826 Table 2 Internal non-complementary nucleotide acid to amplify (4) 2β at the Y/c position Effects of a and g variants ~ (concentration a) KU4 A variant (high) 15.12 G variant (high) 15.16 A variant (low) 19.81 G variant (low) 19.82

Ct值 _K2Y2 K2Y3 T7.95 17.94 20-54 30.09 20.29 23.44 25.76 36.87 K2Y4 ΙόΤ" 22.87 20.47 28.13 尚濃度DNA的量約為低濃度DNA的5〇倍。 f 另外也使用含不_率A、G變異型的混合模板來評估a專—性引子 對的表現。將A變賤比例的估計值或齡轉換成編翻率(卜八 變異型分子數/全部分子數),再與在混合eDNAs中G變異型比例的 實際值做比赠t。鮮峨察健翻鋪示了職巾的線性關係 (r>0·98,圖3)。這些結果證實了對基因型(變異型)專一性引子,不 論其是否有内部不穩定不互補核苷酸,都可被設計來測定受試轉譯體 的表現頻率,其中雜譯體來自兩個具有單—核_差翻對偶基因 並具有可信賴之區別性。 qPCR分析的再現能力 藉由測量以同一批RNA分別進行6個獨立RT-PCR所得擴增子之a變異 型所佔比例(編輯頻率),來測試此方法的再現能力。從受精後24小 時胚胎萃取出之RNA中沿设2amRNA的編輯頻率平均值為4〇 9%,標 17 201002826 準差1.0/。’從受精後4小時胚胎萃取出之扣仏爾^的編輯頻率為 62.3士3.2% (平均值土標準差);從受精後%小時胚胎萃取出之奶漁 mRNA的Q/R Rna編輯頻率為9 i 2±〇 8%( n=3 )。這些結果證實了狀⑶ 方法具有高度可再現性。 實施例3 由qPCR所測定的RNA編輯頻率及引子延伸法所測定的rna編輯頻 率之比較 依照 Lin et al_ (W.-H. Lin,Wu, C.-H, Chen,Y.-C· and Chow, W.-Y.,Ct value _K2Y2 K2Y3 T7.95 17.94 20-54 30.09 20.29 23.44 25.76 36.87 K2Y4 ΙόΤ" 22.87 20.47 28.13 The amount of DNA at a constant concentration is about 5 times that of a low concentration of DNA. f Also use a mixed template with a non-rate A, G variant to evaluate the performance of the a-specific primer pair. The estimated value or age of the A change ratio is converted into the turn-up rate (the number of mutated molecules/the total number of molecules), and then compared with the actual value of the ratio of the G variants in the mixed eDNAs. The fresh 峨 翻 翻 翻 shows the linear relationship of the job towel (r > 0·98, Figure 3). These results confirm that genotype (variant) specific primers, whether or not they have internal unstable non-complementary nucleotides, can be designed to determine the frequency of expression of the tested translation, in which the interpreters come from two The single-nuclear-differenced dual-gene has a trustworthy distinction. Reproducibility of qPCR analysis The reproducibility of this method was tested by measuring the proportion (edit frequency) of a variant of the amplicon obtained by 6 independent RT-PCRs of the same batch of RNA. The average edit frequency of the 2a mRNA in the RNA extracted from the 24 hours after fertilization was 4〇 9%, and the standard 17 201002826 was 1.0/. 'The editing frequency of the devil's extract extracted from the embryos 4 hours after fertilization is 62.3 ± 3.2% (mean standard deviation); the Q/R Rna editing frequency of the milk-derived mRNA extracted from the embryos after the fertilization is 9 i 2 ± 〇 8% ( n = 3 ). These results confirm that the method (3) is highly reproducible. Example 3 Comparison of RNA editing frequency determined by qPCR and rna editing frequency determined by primer extension method According to Lin et al_ (W.-H. Lin, Wu, C.-H, Chen, Y.-C· and Chow, W.-Y.,

Embryonic expression of zebrafish AMPA receptor genes: zygotic eria2 expression initiates at the midblastula transition. Brain Res. 1110 (2006) 46-54)的方法進行有限引子延伸,以測定扣之q/r編輯頻率。 簡言之,一個引子延伸反應包含末端有標誌的募核苷酸1〇微微莫 耳數、膠純化出的gnVi2ocPCR擴增子1〇〇毫微克、〇·3單位的克列諾 酵素(Klenow enzyme (Roche))、1毫莫耳濃度的雙去氧鳥苷三磷酸 (dideoxy-GTP)、以及均為0.1毫莫耳濃度的去氧胸苷三磷酸 (dTTP)、去氧胞苷三填酸(dCTP)和去氧腺苷三填酸(dATP)。將 編輯過及未被編輯過的變異型延伸產物(只具有一個差異核苦酸)以 8莫耳濃度的尿素/ 20%聚丙細酿胺凝膠電泳(PAGE, polyacrylamide gel electrophoresis)解析。使用自動放射照相術(autoradi〇graphy)及 UN-SCAN-IT gel™ 5.1版本軟體計算並定量編輯過及未被編輯過的變 異型延伸產物之強度。 18 201002826 用qPCR /則疋從胚胎咖八樣本擴增出的9個㈣^擴增子之⑽a編 輯頻率’並比較其引子延伸分析結果(圖4)…般來說,引子延伸所 測出的职八編輯解會繼高於qPCR所測㈣RNA編輯頻率。兩 種方法所稱RNA編輯辭的平均差異為3 ?%。當編輯頻率高 於9〇%時’平均差異則會低於2% (圖*,樣本π)。當q/r編輯頻率 在62-75%之間時’則會出現較高的平均差異(4.86%、n=6)(圖4, 樣本1-6 )。兩種方法所測得RNA編輯頻率間的效率相關性為〇 96。最 重要的疋,RNA編輯效率的等級次序(rank 〇rders)在兩種方法中都 樣(圖4 )也貫了 qpcR方法便如同引子延伸法一樣,可賴以用來 分析RNA編輯活動的變化。 使用含内部不敎不互補引子之qPCR並應用_量生物樣本中的 Y/C編輯頻率 應用qPCR方法來分析斑馬魚發育期間⑽μ在Y/c位點上的麵^ 編輯(圖5A )。受精後24小時,有約44.6°/。的gr/A:2ct mRNA被編輯(γ/c 位點上的C),且在受精後24-48小時間γ/c位點上的編輯有顯著增 加。受精後48小時γ/c編輯會達到54·4±5 45% (n=5),並在之後的 發育階段維持相對穩定。#汰2«擴增子也用直接序列分析來分析。定 序法為使用内部引子(SEQ ID NO 3: 5,AGCTCATCTTCeAarGCjeGC: 3’)將之膠純化RT_PCR擴增子用mgdye終止子系統定序 (Applied Biosystem) ’以估計γ/c位點上的咖八編輯頻率。圖5B為 19 201002826 兩個具代表性的圖。與qPCR分析結果相一致,源自腦中擴增子的G 與A峰值比例會南於党精後24小時胚胎的g與A峰值比例(圖5B)。 本發明的内容敘述與實施例均揭示詳細,得使任何熟習此技藝者能夠製 造及使用本發明,即使其中有各種不同的改變、修飾、及進步之處,仍 應視為不脫離本發明之精神及範圍。 任何熟習此技藝者均能從本發明中獲得足夠認知,以實行發明標的、 達成目標、並獲得本發明中所提及或隱含之好處。其中熟習此技藝者 將可能進行修飾或做其他應用,這些修飾已包含在本發明之精神中並 於申請專利範圍中被定義。 【圖式簡單說明】 圖-為核糖猶(RNA)編醜率之聚合酶連鎖反應定量分析的流程 圖。A·聚合酶連鎖反應定量分析的步驟。B :聚合酶連鎖反應引子的 相對位置。箭頭所指為定量聚合酶連鎖反應(qPCR)引子的黏著點。 圖二顯示A專—㈣子對及—般引子對的擴增效率。八:以㈣模板 (template)所建立的標準曲線。B :以钟2M莫板所建立的標準曲線。 實線與虛線分別表示A#-性引子對(空心三角形)及—般引子對(實 心圓形)在A及G變異模板上的擴增效率。 圖三顯示職RNA祕頻率與實測rna崎鱗_ 。腿編 20 201002826 輯頻率可從qPCR分析結果計算得出(實_率),並將之%製於圖上 與A及G變異型的已知比率(預期解)做比較^實_示預期⑽a 編輯頻率與實測RNA編輯頻率間有線性關係。虛_顯示出預期的線 性關係。 圖四為qPCR所得RNA、編輯頻率與有限引子擴增分析所得咖八編輯 頻率之比較結果。實<讀與空心條分別表示qPCR糾子擴增法所得 发n_a2a在Q/R位點的RNA編輯頻率。 圖五顯示斑馬魚發育期間g成:2α於Y/c上的咖八編輯。(A) qPCR分 析所得到的γ/c編輯頻率。結果值為平均值±標準差。除了受精後72 小時和成魚大腦獨立樣品數為三之外,其餘時之樣品數皆為五以上。發 月時期以受精後小時(hpf,hour postfertilization)及受精後天數(dpf,day postfertilization)表示。統計分析使用學生氏丨檢定。星號表示與受精後 24小時的RNA編輯頻率比起來有明顯差異(p<〇 〇5)。(B)代表性的序 列分析圖譜。 21 201002826 【序列表】 <110> 國立清華大學 <120> 一種定量分析特定位點上核苷酸多型性轉錄的方法 <130> 0744-NTHU-US <160> 13 <170〉 Patentln version 3.4 <210> <211> 1 24 ^ <212> DNA <213> 斑馬魚(Danio rerio ) <220> <221> primer—bind <222> ⑴"(24) <400> 1 ggaatggcat ggttggagaa ctgg 24 <210〉 ξ 2 \ <2Π> 26 <212> DNA <213> 斑馬魚(Danio rerio ) <220> <221> primer—bind <222> ⑴"(26) <400> 2 acaccaccaa ctatacggcc agacaa 26 l 201002826The method of Embryonic expression of zebrafish AMPA receptor genes: zygotic eria2 expression initiates at the midblastula transition. Brain Res. 1110 (2006) 46-54) performs a finite primer extension to determine the q/r editing frequency of the buckle. Briefly, an primer extension reaction consists of a 1 〇 micromolar number with a labeled nucleotide at the end, a gnVi2ocPCR amplicon purified by gel, 1 〇〇 nanogram, and 3 units of Klenow enzyme (Klenow enzyme). (Roche)), 1 mM concentration of dideoxy-GTP, and deoxythymidine triphosphate (dTTP), deoxycytidine tri-acid, both at 0.1 millimolar (dCTP) and deoxyadenosine tri-acid (dATP). The edited and unedited variant extension products (having only one differential nucleotide acid) were resolved at 8 molar concentrations of urea/20% polyacrylamide gel electrophoresis. The intensity of the modified and unedited variant extension products was calculated and quantified using autoradiography and UN-SCAN-IT gelTM version 5.1 software. 18 201002826 Using qPCR / 疋 9 9 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎 胚胎The eighth edition of the editorial meeting will be higher than the q editing (four) RNA editing frequency. The average difference in RNA editing terms between the two methods is 3%. When the editing frequency is higher than 9〇%, the average difference will be less than 2% (Fig.*, sample π). A higher average difference (4.86%, n=6) occurs when the q/r editing frequency is between 62-75% (Figure 4, samples 1-6). The efficiency correlation between the RNA editing frequencies measured by the two methods is 〇 96. Most importantly, the rank order of RNA editing efficiency (rank 〇rders) is the same in both methods (Fig. 4). The qpcR method is the same as the primer extension method, which can be used to analyze changes in RNA editing activities. . Using qPCR with internal non-non-complementary primers and applying Y/C editing frequency in Quantitative Biological Samples qPCR method was used to analyze the surface editing of zebrafish development (10) μ at the Y/c locus (Fig. 5A). 24 hours after fertilization, there is about 44.6 ° /. The gr/A:2ct mRNA was edited (C at the γ/c site) and there was a significant increase in editing at the γ/c site 24-48 hours after fertilization. The γ/c edit reached 54.4±5 45% (n=5) 48 hours after fertilization and remained relatively stable during the subsequent developmental phase. The #2' amplicon was also analyzed by direct sequence analysis. The sequencing method used an internal primer (SEQ ID NO 3: 5, AGCTCATCTTCeAarGCjeGC: 3') to purify the RT_PCR amplicon with mgdye termination subsystem sequencing (Applied Biosystem) to estimate the coffee at the γ/c site. Eight editing frequencies. Figure 5B is a representative diagram of 19 201002826. Consistent with the results of the qPCR analysis, the ratio of G to A peaks derived from amplicons in the brain would be souther than the ratio of g to A peaks at 24 hours after the party sperm (Fig. 5B). The present invention has been described in detail with reference to the embodiments of the present invention, and the invention may be Spirit and scope. Any person skilled in the art can obtain sufficient knowledge from the present invention to carry out the subject matter of the invention, achieve the object, and obtain the benefits mentioned or implied in the invention. Those skilled in the art will be able to make modifications or other applications which are included in the spirit of the invention and are defined in the scope of the claims. [Simple illustration of the diagram] Figure - is a flow chart for the quantitative analysis of the polymerase chain reaction of riboseuclear (RNA) ugly rate. A. Steps for quantitative analysis of polymerase chain reaction. B: Relative position of the polymerase chain reaction primer. The arrow is referred to as the adhesion point of the quantitative polymerase chain reaction (qPCR) primer. Figure 2 shows the amplification efficiency of the A-(4) subpair and the general primer pair. Eight: The standard curve established by (4) template. B: The standard curve established by the clock 2M board. The solid line and the dotted line indicate the amplification efficiency of the A#-sex pair (open triangle) and the general pair (solid circle) on the A and G variant templates, respectively. Figure 3 shows the frequency of the occupational RNA and the measured rna scales _. Legs 20 201002826 The frequency can be calculated from the qPCR analysis results (real _ rate), and the % is plotted on the graph and compared with the known ratio of the A and G variants (expected solution) ^ _ shows the expected (10)a There is a linear relationship between the editing frequency and the measured RNA editing frequency. Virtual _ shows the expected linear relationship. Figure 4 shows the comparison between the RNA obtained by qPCR, the editing frequency and the editing frequency of the limited primer analysis. The real <read and open bars represent the RNA editing frequency of the n-a2a at the Q/R site, respectively, obtained by the qPCR entanglement amplification method. Figure 5 shows the edit of ge in the development of zebrafish: 2α on Y/c. (A) qPCR analysis of the obtained γ/c editing frequency. The result values are mean ± standard deviation. Except for 72 hours after fertilization and three independent samples of adult fish brain, the number of samples in the rest was more than five. The month of the month is expressed as the hour after fertilization (hpf, hour postfertilization) and the number of days after fertilization (dpf, day postfertilization). Statistical analysis was performed using Student's 丨 test. The asterisk indicates a significant difference from the 24 hour RNA editing frequency after fertilization (p<〇 〇 5). (B) Representative sequence analysis map. 21 201002826 [Sequence List] <110> National Tsinghua University <120> A method for quantitatively analyzing nucleotide polymorphic transcription at a specific site <130> 0744-NTHU-US <160> 13 <170 〉 Patentln version 3.4 <210><211> 1 24 ^ <212> DNA <213> Zebrafish (Danio rerio) <220><221> primer-bind <222>(1)"(24)<400> 1 ggaatggcat ggttggagaa ctgg 24 <210> ξ 2 \ <2Π> 26 <212> DNA <213> Zebrafish (Danio rerio) <220><221> primer-bind <222>;(1)"(26)<400> 2 acaccaccaa ctatacggcc agacaa 26 l 201002826

<210> 3 <211> 20 <212> DNA <213> 斑馬魚(Daniorerio) <220> <221〉primer—bind <222> (1)..(20) / \ <400> 3 agctgatctt gcagtggcgc<210> 3 <211> 20 <212> DNA <213> Zebrafish (Daniorerio) <220><221>primer-bind<222> (1)..(20) / \ &lt ;400> 3 agctgatctt gcagtggcgc

<210> 4 <211> 22 <212> DNA <213> 斑馬魚(Danio rerio ) <220> <221> primer bind <222> (1)..(22) <400> 4 ggccgtgtag gaggagatga tg<210> 4 <211> 22 <212> DNA <213> Zebrafish (Danio rerio) <220><221> primer bind <222> (1)..(22) <400>; 4 ggccgtgtag gaggagatga tg

<210〉 5 <211〉 20 <2I2> DNA <213> 斑馬魚(Danio rerio ) <220〉 <221> primer—bind 201002826 <222> (1)..(20) <400〉 5 tcttcctcgt tagccgcttc<210> 5 <211> 20 <2I2> DNA <213> Zebrafish (Danio rerio) <220> <221> primer-bind 201002826 <222> (1)..(20) <;400> 5 tcttcctcgt tagccgcttc

<210> 6 <211> 22 <212> DNA 〆' <213> 斑馬魚(Danio rerio) <220> <221〉 primer—bind <222> (1)..(22) <400〉 6 caaagacctt ggcgaaatat eg<210> 6 <211> 22 <212> DNA 〆' <213> Zebrafish (Danio rerio) <220><221><221> primer-bind <222> (1)..(22) <400〉 6 caaagacctt ggcgaaatat eg

<210〉 7 <211> 20 <212> DNA <213> 斑馬魚(Danio rerio ) <220〉 <221〉primer—bind <222> (1)..(20) <400〉 7 egaaatateg catccctgct <210〉 8 <211> 20<210> 7 <211> 20 <212> DNA <213> Zebrafish (Danio rerio) <220> <221>primer-bind <222> (1).. (20) < 400〉 7 egaaatateg catccctgct <210〉 8 <211> 20

DNA <212> 201002826DNA <212> 201002826

<213> 斑馬魚(Danio rerio) <220> <221> primer—bind<222> (1)..(20) <400> 8 tccaaaccct tcatgacgct <210> 9 <211> 21 <212> DNA <213> 斑馬魚(Danio rerio ) <220> <221〉primer—bind<222> (1)..(21) <400> 9 cagcacacaa ctgacaccca a <210> 10 <211> 21 <212> DNA <213> 斑馬魚(Danio rerio ) <220> <221> primer—bind<222> (1)..(21) <400> 10 gcacacaact gacacccaag t 20 21 21 4 201002826 <210> 11 <211〉 23 <212> DNA <213> 人工序列 <220〉 <223> 修飾自斑馬魚(Danio rerio ) <220> <221> primer—bind <222> (1)..(23) <400> 11 cagcacacaa ctgacactca agt 23 <210> 12 <211> 23 <212> DNA <213> 人工序列 f <220> <223> 修飾自斑馬魚(Danio rerio ) <220> <221> primer bind <222〉 (1)-(23) <400〉 12 cagcacacaa ctgacactta agt 23 <210〉 13 5 201002826 <211> 23 <212〉 DNA <213> 人工序列 <220> <223> 修倚自斑馬魚(Danio rerio) <220〉 <221> primer bind <222> (1)-(23) f <400〉 13 cagcacacaa ctgacaccta agt 23 .1' t. vy 6<213> Zebrafish (Danio rerio) <220><221>primer-bind<222> (1)..(20) <400> 8 tccaaaccct tcatgacgct <210> 9 <211> 21 <;212> DNA <213> Zebrafish (Danio rerio) <220><221>primer-bind<222> (1)..(21) <400> 9 cagcacacaa ctgacaccca a <210> 10 <;211> 21 <212> DNA <213> Zebrafish (Danio rerio) <220><221>primer-bind<222> (1)..(21) <400> 10 gcacacaact gacacccaag t 20 21 21 4 201002826 <210> 11 <211> 23 <212> DNA <213> Artificial sequence <220><223> Modified from zebrafish (Danio rerio) <220><221> primer -bind <222> (1)..(23) <400> 11 cagcacacaa ctgacactca agt 23 <210> 12 <211> 23 <212> DNA <213> Artificial sequence f <220>;223> Modified from zebrafish (Danio rerio) <220><221> primer bind <222> (1)-(23) <400> 12 cagcacacaa ctgacactta agt 23 <210〉 13 5 201002826 <211> 23 <212> DNA <213> Artificial sequence <220><223> Dependent from zebrafish (Danio rerio) <220> <221> primer bind <222> (1)-(23) f <400> 13 cagcacacaa ctgacaccta agt 23 .1' t. vy 6

Claims (1)

201002826 十、申請專利範圍: 1. 一種疋I分析具有不同單一核苷酸多型性之變異型表現比率的方法其包 含·· < U)根據單—變異型的核苷酸序列,設計一個變異型專一性弓丨子,其3, 端到5’端依序為一個3,端羥基變異型專一性核苷酸、3,端完全互補 的複數核苷酸、及5,端完全互補的複數核苷酸,其中變異型專一性 核苦酸源自已知的單一核苷酸多型性位點; (b) 使用兩種變異型都會黏著上的一般引子組合進行定量聚合酶連鎖反 應’以得到全部轉錄體分子數; (c) 使用一個變異型專一性引子及一般引子組合中的一個引子進行定量 聚合酶連鎖反應,以得到單一變異型轉錄體的分子數;及 (d) 將單一變異型轉錄體的分子數除以全部轉錄體分子數,以計算出單 變異型的表現頻率。 2. 根據巾請專圍第1項所述之方法,其巾驟合酶連駭應係使用賽 巴格林_ (SYBR G_)之定量聚合啦鎖反應(quan細ve pCR (qPCR))或使用鐵克曼探針(TagMan)之定量聚合酶連鎖反應㈣_ PCR) 〇 3·根射料概Μ !黎叙綠,其麵用於微⑽錄測、基因表 現、疾病分、級(diseasegradient)、癌症診斷或單一核苦酸多型性。 4. -種定量分析具有不同單-料衫難之型表現比率的方法,其 201002826 包含: (a) 根據單一物種的核苷酸序列,設計一個變異型專一性引子,其3, 端到5’端依序為一個3’端羥基變異型專一性核苷酸、3,端完全互補 的複數核苷酸、至少一個造成不穩定的不互補核苷酸、及5,端完全 互補的複數核苷酸,其中該不互補核苷酸因係選自3,端羥基變異型 專一111 生核苷酸中的上游第3、4、5、6或7核苷酸並做同類或異類 置換(transition or transversion substitution),其中變異型專一性枝 苦酸源自已知的單一核苷酸多型性位點; (b) 使用兩個·购會黏合上的—般引子組合進行定量聚合酶連鎖反 應,以得到全部轉錄體分子數; (c) 使用-個變频專—性引子及—般引子組合巾的—则子進行定量 聚合酶連鎖反應,以得到單一變異型轉錄體的分子數;及 ⑷將單-變異贿錄體的分子數除时雜制分子數以計算出單 一變異型的表現頻率。 5. 根據心t專娜圍第4項所述之方法,其巾該造成*穩定的不互補核發 酸對偶基因係選自3,端變異型專一性核普酸令的上游第3、4、$、6或7 核苷酸。 6. 根據帽專利範圍第5項所述之方法,其中該造成*穩定的不互補核苦 酸係選自3’端祕變異型專-性㈣酸中的上游第4、5或6_酸。 201002826 7.根據申請專利範圍第4項所述之方法 的不互補核苷酸。 其中該引子具有兩個造成不穩定 8.根據申請專利範圍第7項所述之方法 的不互補核苷酸。 其中該引子具有造成一個不穩定 f 9.根射請專職_ 4項所述之方法,財驟合酶連瓶應係使用赛巴格林染劑(SYBR G腫)之定量聚合酶連鎖反應或使紐克曼探針 (TagMan)之即時聚合酶連鎖反應。 10.根據申请專利範圍第4項所述之方法,其係應用於微咖八檢測、基因 表現、疾病分級(disease gradient)、癌症診斷或單一核苷酸多型性。201002826 X. Patent application scope: 1. A method for analyzing the expression ratio of variants with different single nucleotide polymorphisms, including: · U) designing a nucleotide sequence based on single-variant Variant-specific scorpion scorpion, whose 3, end to 5' end is a 3, a hydroxy-variant-specific nucleotide, a 3, a fully complementary complex nucleotide, and a 5, fully complementary a complex nucleotide in which the variant specific nucleotide is derived from a known single nucleotide polymorphic site; (b) a quantitative polymerase chain reaction is performed using a combination of general primers that both variants are attached to. To obtain the total number of transcript molecules; (c) use a variant specific primer and a primer in a general primer combination to quantify the polymerase chain reaction to obtain the number of molecules of a single variant transcript; and (d) a single The number of molecules of the variant transcript is divided by the total number of transcript molecules to calculate the frequency of expression of the single variant. 2. According to the method described in item 1, the towel synthase should be used by the SYBR G_ quantitative polymerization reaction (quant ve pCR (qPCR)) or Quantitative polymerase chain reaction of Tekman probe (TagMan) (4) _ PCR) 〇 3 · Root shots Μ ! Li Xu green, its surface for micro (10) recording, gene expression, disease, grade (disease gradient), Cancer diagnosis or mononuclear acid polymorphism. 4. - Quantitative analysis of methods with different single-coating type performance ratios, 201002826 contains: (a) Designing a variant specificity primer based on the nucleotide sequence of a single species, 3, end to 5 'End-order is a 3'-terminal hydroxy variant-specific nucleotide, 3, a fully complementary complex nucleotide, at least one non-complementary nucleotide that causes instability, and a complex nucleus with 5, fully complementary Glycosyl acid, wherein the non-complementary nucleotide is selected from the 3, 4, 4, 5, 6 or 7 nucleotides upstream of the terminal hydroxyl-specific variant 111 nucleotide and is subjected to homologous or heterogeneous substitution (transition) Or transversion substitution), wherein the variant specificity is derived from a known single nucleotide polymorphic site; (b) quantitative polymerase chain reaction is performed using a combination of two primers To obtain the total number of transcript molecules; (c) use a variable frequency specific primer and a general primer combination to perform a quantitative polymerase chain reaction to obtain the number of molecules of a single variant transcript; and (4) The molecule of the single-mutation bribe The number of miscellaneous molecules is divided by the number to calculate the frequency of performance of the single variant. 5. According to the method described in item 4 of the heart tina na, the towel causes the * stable non-complementary nuclear acid duality gene line to be selected from the 3rd, 4th, upstream of the 3, end variant specific nuclear acid order. $, 6 or 7 nucleotides. 6. The method of claim 5, wherein the non-complementary nuclear acid causing *stability is selected from the upstream 4th, 5th or 6th acid in the 3' end-of-strain variant-specific (tetra) acid. . 201002826 7. Non-complementary nucleotides according to the method described in claim 4 of the patent application. Wherein the primer has two non-complementary nucleotides which cause instability 8. The method according to item 7 of the patent application. Among them, the primer has a method of causing an unstable f 9. root shot, please refer to the full-time _ 4 item, the enzyme synthase should be used in a quantitative polymerase chain reaction using cybrin dye (SYBR G swell) or Instant polymerase chain reaction of the Newman probe (TagMan). 10. The method according to claim 4, which is applied to micro-cafe detection, gene expression, disease gradient, cancer diagnosis or single nucleotide polymorphism.
TW097125715A 2008-07-08 2008-07-08 Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site TWI361835B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097125715A TWI361835B (en) 2008-07-08 2008-07-08 Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097125715A TWI361835B (en) 2008-07-08 2008-07-08 Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site

Publications (2)

Publication Number Publication Date
TW201002826A true TW201002826A (en) 2010-01-16
TWI361835B TWI361835B (en) 2012-04-11

Family

ID=44825300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097125715A TWI361835B (en) 2008-07-08 2008-07-08 Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site

Country Status (1)

Country Link
TW (1) TWI361835B (en)

Also Published As

Publication number Publication date
TWI361835B (en) 2012-04-11

Similar Documents

Publication Publication Date Title
Pritchard et al. MicroRNA profiling: approaches and considerations
EP3673081B1 (en) Accurate and massively parallel quantification of nucleic acid
EP2451973B1 (en) Method for differentiation of polynucleotide strands
JP7189401B2 (en) Methods for preparing cell-free nucleic acid molecules by in situ amplification
Mi et al. Circular RNA detection methods: A minireview
Ozsolak et al. Transcriptome profiling using single-molecule direct RNA sequencing
TR201807917T4 (en) Methods for determining the fraction of fetal nucleic acids in maternal samples.
Dedeoğlu High-throughput approaches for microRNA expression analysis
JP2022082574A (en) Preparation of nucleic acid libraries from rna and dna
US7824861B2 (en) Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site
EP2808387B1 (en) Oligonucleotide for hiv detection, hiv detection kit, and hiv detection method
Zeka et al. RT-qPCR-based quantification of small non-coding RNAs
CN110869515A (en) Sequencing method for genome rearrangement detection
Vanhauwaert et al. RT-qPCR gene expression analysis in zebrafish: Preanalytical precautions and use of expressed repetitive elements for normalization
Voss et al. Two‐Tailed RT‐qPCR for the Quantification of A‐to‐I‐Edited microRNA Isoforms
Liu et al. Gene point mutation information translation and detection: leveraging single base extension and CRISPR/Cas12a
Chen et al. A real-time PCR method for the quantitative analysis of RNA editing at specific sites
CN109576350B (en) Kit and method for simultaneously quantifying DNA and RNA and quality control method
TW201002826A (en) Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site
CN114787385A (en) Methods and systems for detecting nucleic acid modifications
Wang et al. One-step and highly sensitive quantification of fusion genes with isothermal amplification initiated by a fusion-site anchored stem-loop primer
Lynn et al. Molecular Diagnostic Methods
Van Goethem et al. MicroRNA expression analysis using small rna sequencing discovery and RT-qPCR-based validation
Brown et al. RNA sequencing with next-generation sequencing
WO2024039272A1 (en) Nucleic acid amplification

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees