TW201000430A - Chemical compound used for organic thin film transistor and organic thin film transistor - Google Patents

Chemical compound used for organic thin film transistor and organic thin film transistor Download PDF

Info

Publication number
TW201000430A
TW201000430A TW098111808A TW98111808A TW201000430A TW 201000430 A TW201000430 A TW 201000430A TW 098111808 A TW098111808 A TW 098111808A TW 98111808 A TW98111808 A TW 98111808A TW 201000430 A TW201000430 A TW 201000430A
Authority
TW
Taiwan
Prior art keywords
group
carbon atoms
thin film
organic thin
film transistor
Prior art date
Application number
TW098111808A
Other languages
Chinese (zh)
Inventor
Yuki Nakano
Masatoshi Saito
Hiroaki Nakamura
Original Assignee
Idemitsu Kosan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co filed Critical Idemitsu Kosan Co
Publication of TW201000430A publication Critical patent/TW201000430A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • C07C15/54Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed containing a group with formula
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • C07C15/58Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • C07C15/60Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is an organic thin film transistor, which is provided with at least three terminals of a gate electrode, a source electrode, and a drain electrode, an insulating layer, and an organic semiconductor layer, on a substrate and controls an electric current between the source-drain electrodes by applying a voltage to the gate electrode. The organic semiconductor layer comprises a specific organic compound having an aromatic hydrocarbon group or a heteroaromatic ring group and an acetylene structure at the center. The organic thin film transistor emits light by making use of an electric current flowing between the source-drain electrodes and controls the emitting light by applying a voltage to the gate electrode. Further, a chemical compound suitable for the organic thin film transistor is disclosed.

Description

201000430 六、發明說明: C号务明戶斤屬支4标冷貞】 發明領域 用化合物&將其利用 本發明係有關於有機薄膜電晶體 於有機半導體層之有機薄膜電晶體。 【先前技斗时3 發明背景 薄膜電晶體(TFT)係廣泛被使用作為液晶表示裝置$ 之顯示用的開關元件。代表性之TFT的截面結構係顯示於 3圖。如該圖所示,代表性之TFT係於基板上依序具有門極 電極、絕緣體層、有機半導體層,而有機半導體層上具有 以預定間隔隔開形成的源極電極及汲極電極。有機半導 層係形成為通道區域,藉由施加至閘極電極的電壓,押制 源極電極與汲極電極之間流動的電流,藉此進行開關的動 作。201000430 VI. INSTRUCTION DESCRIPTION: No. C. The invention relates to an organic thin film transistor in which an organic thin film transistor is used in an organic semiconductor layer. [Prior Art 3] BACKGROUND OF THE INVENTION A thin film transistor (TFT) is widely used as a switching element for display of a liquid crystal display device $. The cross-sectional structure of a representative TFT is shown in Fig. 3. As shown in the figure, a typical TFT has a gate electrode, an insulator layer, and an organic semiconductor layer in this order, and the organic semiconductor layer has a source electrode and a drain electrode which are formed at predetermined intervals. The organic semiconducting layer is formed as a channel region, and a current flowing between the source electrode and the drain electrode is pressed by a voltage applied to the gate electrode, thereby performing a switching operation.

X在這種TFT係使用非晶質石夕或多結晶石夕來製作,1曰 是使用此種矽而用於TFT的製作之化學汽相沉積裝置係非 常昂貴的,且使用TFT之顯示裝置等之大型化有伴隨大幅增 加製造成本的問題點^ χ,將非晶詩或多結晶妙予以成 膜的製程是在非常高的溫度下進行,因此,可使用作為基 板之材料的種類非常有限’而有無法使用輕質的樹脂基板 等之問題。 為了解決此種問題,揭示了一種使用有機物來取代非 日曰貝矽或多結晶矽之TFT(以下,有略記為有機Tft之情 3 201000430 況)。作為以有機物來形成Tft之時所 經知道有真空蒸鍍法及塗布法等,而“用的成膜方法,已 可抑制製造成本的上昇,且可實現元=由5亥等成膜方法, 所需之製程溫度可在較低溫下進行。2大型化’成膜時 之材料的選擇上,有機TFT具有限制 在基板所使用X is produced by using an amorphous or a polycrystalline stone in such a TFT system, and a chemical vapor deposition apparatus using the germanium for the production of a TFT is very expensive, and a display device using the TFT is used. The enlargement of the size is accompanied by a problem of greatly increasing the manufacturing cost. The process of forming an amorphous poem or a polycrystalline film into a film is performed at a very high temperature, and therefore, the type of material that can be used as a substrate is very limited. 'There is a problem that a lightweight resin substrate cannot be used. In order to solve such a problem, a TFT in which an organic substance is used in place of a non-daily or a polycrystalline germanium (hereinafter, abbreviated as Organic Tft 3 201000430) is disclosed. When a Tft is formed from an organic material, a vacuum deposition method, a coating method, and the like are known, and the film formation method used can suppress an increase in the production cost, and a film formation method such as a film can be realized. The required process temperature can be carried out at a lower temperature. 2 Large-scale 'Selection of materials for film formation, organic TFTs have limitations on the substrate used

平夕的優點,有機TFT 的實用化是被_的,並發切許多的研究有機 作為使用於有機TFT之有機物半導體,作ς型FET(場 效電晶體)之材料,共軛系聚合物或噻吩等的多聚體 (multimeric complex)、金屬酞菁素化合物、稠五笨等的缩 合芳香族烴料於單-物質或與其他化合物^合物的狀 態下使用。又,作為η型FET之材料,已知有:例如,m,5,8_ 萘四曱酸酐(NTCDA)、11,11,12,12-四氰基萘_2,6_唾琳甲烷 (TCNNQD)、1,4,5,8-萘四羧基二亞胺或是氟化酞菁 (fluorinated phthalocyanine) ° 另一方面,同樣作為電氣傳導用的裝置,有機電致發 光(EL)元件。有機EL元件,一般是在l〇〇nm以下的超薄薄 膜的膜厚方向,施加105V/cm以上的強電場,而強制性地的 使電荷通過,相對於此,在有機TFT的情況中,藉由1〇5v/cm 以下的電場,有使電荷高速通過數μηι以上的距離之需要, 而有機物本身變成更加需要導電性。然而’習知的有機TFT 中’上述化合物的場效移動度小’應答速度慢,而作為電 晶體之高速應答性是有問題的。又,開關比亦小。 另’此處所言之開關比係指·將在施加閘極電壓時(開) 之源極與汲極間流通的電流’除以在未施加閘極電壓時(關) 201000430 之源極與汲極之間流動的電流所得之值,開電流係指通常 閘極電壓增加,源極與汲極間流動的電流為飽和時之電流 值(飽和電流)。 作為有機TFT之材料,有使用下列物質作為電晶體材料 之報告(非專利文獻1、2) ··具有複數個相結合之笨環的對― 聯四苯(para-quarterphenyl ; 4Ph)、對-聯五苯 (para-quinquephenyl; 5Ph)、對-聯六苯(para-sexiphenyl; 6Ph)。 然而’移動度低,且在元件製作時,若不加熱基板則有無 法顯示出電晶體特性之缺點。 又,專利文獻1中揭示了,一旦使用雙并苯基乙炔 (BiS(2-aCenyl)acetylene)作為電晶體材料,會顯示高的移動 度。但是,相較於經_素原子取代之苯,本文獻中,作為 化合物之合成原料所使用的經鹵素原子取代的萘、蒽、稠 四苯有較為昂貴的缺點。 [專利文獻 1 ] US 7,109,519 B2 [非專利文獻1] G. Horowitz等人作發表於合成金屬 (Synthetic Metals),41-43卷,1127 頁,1991 年 [非專利文獻2] D.J.Gundlach等人所發表於應用物理期 刊(Applied Physics Letter),71 卷,3853 頁,1997年The advantage of the organic eve, the practical application of the organic TFT is _, and a lot of research is organically used as an organic semiconductor for organic TFT, as a material of a ς-type FET (field effect transistor), a conjugated polymer or thiophene A condensed aromatic hydrocarbon material such as a multimeric complex, a metal phthalocyanine compound or a condensate is used in the state of a single substance or a compound of another compound. Further, as a material of the n-type FET, for example, m,5,8-naphthalene tetraphthalic anhydride (NTCDA), 11,11,12,12-tetracyanophthalene-2,6_salina methane (TCNNQD) is known. ), 1,4,5,8-naphthalene tetracarboxydiimide or fluorinated phthalocyanine. On the other hand, it is also used as an apparatus for electrical conduction, an organic electroluminescence (EL) element. In an organic EL device, a strong electric field of 105 V/cm or more is applied in a film thickness direction of an ultrathin film of 10 nm or less, and a charge is forcibly passed. In the case of an organic TFT, With an electric field of 1 〇 5 v/cm or less, there is a need to allow a charge to pass through a distance of several μm or more at a high speed, and the organic substance itself becomes more conductive. However, in the conventional organic TFT, the above-mentioned compound has a small field effect mobility, and the response speed is slow, and high-speed responsiveness as a transistor is problematic. Also, the switch ratio is also small. In addition, the switch ratio referred to here refers to the current flowing between the source and the drain when the gate voltage is applied (open) divided by the source and the voltage when the gate voltage is not applied (off) 201000430 The value obtained by the current flowing between the poles, the open current is the current value at which the gate voltage is increased, and the current flowing between the source and the drain is saturated (saturation current). As a material of the organic TFT, there are reports using the following materials as the crystal material (Non-Patent Documents 1 and 2). · Para-quarter phenyl (4Ph) having a plurality of combinations of stupid rings, and - Para-quinquephenyl (5Ph), para-sexiphenyl (6Ph). However, the degree of mobility is low, and it is not possible to exhibit the characteristics of the transistor if the substrate is not heated during the fabrication of the device. Further, Patent Document 1 discloses that once BiS(2-aCenyl)acetylene is used as the transistor material, high mobility is exhibited. However, in the present literature, the halogen atom-substituted naphthalene, anthracene, and fused tetraphenyl which are used as a raw material for the synthesis of the compound are disadvantageous in comparison with the benzene substituted by the _ atom. [Patent Document 1] US 7,109,519 B2 [Non-Patent Document 1] G. Horowitz et al., published in Synthetic Metals, Vol. 41-43, p. 1127, 1991 [Non-Patent Document 2] DJGundlach et al. Published in Applied Physics Letter, Vol. 71, page 3853, 1997

C發明内容;J 發明概要 本發明係為了解決前述課題而作成者,因此目的是提 供一種有機薄膜電晶體用化合物,該化合物之原料容易取 得,而可藉由一般的合成法進行合成,因此製造費用低廉, 5 201000430 且本發明的目的亦提供-種有機薄膜電晶體,—旦使用該 化合物作騎機半導體層,糾有高叙應答速度(驅動速 度)。 發明之揭示 本發明者等係為達前述目的而致力於研究之結果發 現.在有機薄㈣晶體之有機半導體層上,藉由使用下述 式⑴所表不之可簡易且低價合成之有機薄膜電晶體用化合 物’可使應答速度(驅動速度)高速化,而完成了本發明。 即’本發明係具有下述式⑴之結構的有機薄膜電晶體 用化合物。 [化學式1] X令Α「ι⑴ 式⑴中’ X係表不下述式(2)〜⑷的3種結構之任一者。 [化學式2]C. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a compound for an organic thin film transistor which is easily obtained by a general synthesis method and can be produced by a general synthesis method. Low cost, 5 201000430 and the object of the present invention also provides an organic thin film transistor, which is used as a rider semiconductor layer to correct the high response speed (drive speed). Disclosure of the Invention The present inventors have found that, in order to achieve the above object, the organic semiconductor layer of the organic thin (tetra) crystal can be synthesized simply and inexpensively by using the following formula (1). The compound for a thin film transistor can speed up the response speed (driving speed), and completed the present invention. Namely, the present invention is a compound for an organic thin film transistor having a structure of the following formula (1). [Chemical Formula 1] X Α "ι (1) In the formula (1), the X system does not have any of the three structures of the following formulas (2) to (4). [Chemical Formula 2]

式中,Ar〗係碳數6〜60之芳香族烴基或碳數丨〜6〇之芳香 族雜環基’或是具有該料香《經過2彻上連結而得之 結構的基團,該等各基亦可具有取代基。 式中,R1〜R5係各自為氫原子、鹵素原子、碳數〗〜3〇 之烷基、碳數1〜30之齒烷基、碳數1〜30之烷氧基、碳數〗〜3〇 之函院氧基 '碳數丨〜3G之㈣基、碳數卜歡㈣硫基、 201000430 碳數1〜30之烷基胺基、碳數2〜60之二烷基胺基(烷基亦可相 互結合而形成含有tl原子之環結構)、碳·數1〜3 0之烧硫酿 基、碳數1〜30之鹵烷硫醯基;碳數6〜60之芳香族烴基、碳 數3~60之芳香族雜環基、具有該等芳香族基經過2環以上連 結而得之結構的基團;碳數3〜20之烷矽基、碳數5〜60之烷 矽乙炔基(alkylsilyl acetylenic group)或氰基,該等各基亦可 具有取代基。 式中,R6〜R15係各自為氫原子、鹵素原子、碳數1〜3〇 之烷基、碳數1〜30之鹵烷基、碳數1〜30之烷氧基、碳數1〜3〇 之鹵烷氧基、碳數1~30之烷硫基、碳數1〜30之_烷硫基、 碳數卜30之烷基胺基、碳數2〜60之二烷基胺基(烷基亦可相 互結合而形成含有氮原子之環結構)、碳數1〜30之烷硫醯 基、礙數1〜30之鹵烧硫酸基、碳數6〜60之芳香族烴基、碳 數3~60之芳香族雜環基、亦可具有經取代之碳數3〜20之院 石夕基、石厌數5〜60之烧秒乙快基(alkylsilyl acetylenic group) 或氰基,該等各基亦可具有取代基,或者亦可藉由相鄰基 相互結合而形成:破數6〜60之芳香族烴基、碳數3〜6〇之芳 香族雜環基v或破·數6〜60之飽和環狀結構。 又’本發明係提供一種有機薄膜電晶體,其至少於基 板上設有:閘極電極、源極電極及及極電極之3端子、絕緣 體層以及有機半導體層’且藉由施加電壓至閘極電極,來 控制源極與汲極之間的電流,前述有機薄膜電晶體中,前 述有機半導體層係包含具有前述式(1)之結構的有機化合 物。 201000430 又,本發明係提供一種有機薄膜發光電晶體,其之有 機薄膜電晶體中,利用源極與汲極間流動之電流而發光, 且藉由施加電壓至閘極電極來控制發光。 關於本發明之有機薄膜電晶體用化合物係容易取得, 且因可藉由一般的合成法進行合成,因此可在低廉的製造 費用下合成。一旦使用此化合物作為有機半導體層,則可 提供具有高速之應答速度(驅動速度)的有薄膜電晶體。 圖式簡單說明 第1圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第2圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第3圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。。 第4圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第5圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第6圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第7圖係顯示本發明之實施例中有機薄膜電晶體的元 件結構之一例示圖。 第8圖(1)〜(4)係顯示具有電洞注入性電極與電子輸送 性電極之源極電極及汲極電極的製造步驟的圖式。 201000430 〜Γ圖係_示實施例6中所得之本發明的有機薄臈發光 -电日日體之發光光譜之圖式。 【實施冷式】 較佳實施例之詳細說明 貫施發明之最佳形態 本心月之有機薄膜電晶體用化合物係具有下述式⑴之 [化學式3] 前述式⑴中,Ari係碳數6〜60之芳香族烴基或碳數卜⑹ 之芳香族雜環基,或是具有該等芳香族基經過2環以上連結 而得之結構,該等各基亦可具有取代基。 前述式(1)中,八^較佳是經取代或無取代之碳數6〜6〇 的芳香族烴基。 前述式(1)中,人巧較佳是經取代或無取代之碳數 1〜60 的芳香族雜環基。In the formula, Ar is an aromatic hydrocarbon group having 6 to 60 carbon atoms or an aromatic heterocyclic group having a carbon number of 〇6 to 6 or a group having a structure obtained by linking 2 ingots. Each group may have a substituent. In the formula, R1 to R5 are each a hydrogen atom, a halogen atom, an alkyl group having a carbon number of 〜3〇, a dentate group having a carbon number of 1 to 30, an alkoxy group having a carbon number of 1 to 30, and a carbon number of 〜3.函 函 函 氧基 氧基 氧基 氧基 氧基 氧基 氧基 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 It may also be combined to form a ring structure containing tl atoms), a sulfur-burning ketone group having a carbon number of 1 to 30, a haloalkylthio group having a carbon number of 1 to 30, an aromatic hydrocarbon group having a carbon number of 6 to 60, and carbon. a group of 3 to 60 aromatic heterocyclic groups, a group having a structure in which the aromatic groups are bonded via 2 or more rings; an alkylene group having 3 to 20 carbon atoms; and an alkynyl acetylene group having 5 to 60 carbon atoms; (alkylsilyl acetylenic group) or cyano group, these groups may also have a substituent. In the formula, R6 to R15 are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and a carbon number of 1 to 3; a haloalkoxy group, an alkylthio group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, an alkylamino group having a carbon number of 30, and a dialkylamino group having 2 to 60 carbon atoms ( The alkyl groups may be bonded to each other to form a ring structure containing a nitrogen atom, an alkylthio group having 1 to 30 carbon atoms, a halogenated sulfuric acid group having a hindrance of 1 to 30, an aromatic hydrocarbon group having 6 to 60 carbon atoms, and a carbon number. An aromatic heterocyclic group of 3 to 60, which may have a substituted alkyl group of 3 to 20, an alkylsilyl acetylenic group or a cyano group, or a cyano group. Each group may have a substituent or may be formed by bonding adjacent groups to each other: an aromatic hydrocarbon group having a number of 6 to 60, an aromatic heterocyclic group having a carbon number of 3 to 6 Å, or a broken number of 6 to 6 60 saturated ring structure. Further, the present invention provides an organic thin film transistor which is provided on at least a substrate: a gate electrode, a source electrode, and a terminal of a terminal electrode, an insulator layer, and an organic semiconductor layer' and by applying a voltage to the gate The electrode controls the current between the source and the drain. In the organic thin film transistor, the organic semiconductor layer contains an organic compound having the structure of the above formula (1). Further, the present invention provides an organic thin film light-emitting transistor in which an organic thin film transistor emits light by a current flowing between a source and a drain, and emits light by applying a voltage to a gate electrode. The compound for an organic thin film transistor of the present invention is easily obtained, and since it can be synthesized by a general synthesis method, it can be synthesized at a low production cost. Once this compound is used as the organic semiconductor layer, a thin film transistor having a high-speed response speed (driving speed) can be provided. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an example of the structure of an element of an organic thin film transistor of the present invention. Fig. 2 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 3 is a view showing an example of the element structure of the organic thin film transistor of the present invention. . Fig. 4 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 5 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 6 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 7 is a view showing an example of the element structure of the organic thin film transistor in the embodiment of the present invention. Fig. 8 (1) to (4) are views showing a manufacturing procedure of a source electrode and a drain electrode having a hole injecting electrode and an electron transporting electrode. 201000430 Γ 系 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS BEST MODE FOR CARRYING OUT THE INVENTION The compound for organic thin film transistor of the present invention has the following formula (1) [Chemical Formula 3] In the above formula (1), the Ari carbon number is 6 An aromatic hydrocarbon group of ~60 or an aromatic heterocyclic group of carbon number (6), or a structure obtained by linking these aromatic groups via two or more rings, and each of these groups may have a substituent. In the above formula (1), VIII is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 6 Å carbon atoms. In the above formula (1), a substituted or unsubstituted aromatic heterocyclic group having 1 to 60 carbon atoms is preferred.

V 作為前述八1^之芳香族烴基的具體例,可舉例為:經取 代亦可之苯、萘、蒽、稠四苯' 稠五笨、菲、琪、聯伸三 苯、心環浠(corannulene)、蔻 、男葬 4申 — (hexabenzotriphenylene)、六苯蔻(hexabenzocoronene)、三 環戊二稀并三亞苯基(sumanene)等之殘基。 作為前述Ar!之芳香族雜環基的具體例,可舉例為:經 取代亦可之吡啶、吡嗪、喹啉、萘啶、苯并吡嗪、吩嗪、 二氮雜蒽(diazaanthracene)、。比啶并喹琳、嘧啶并喹唑琳 9 201000430 (pyrimidoquinazoline)、°比°秦惡淋、菲羅琳、°卡°坐、二笨 并嘆吩、嗟吩并嗟吩、二嚷吩并。塞吩、二苯并呋喃、苯并 二吱喃、二嗟二環戊二稀并苯(dithiaindacene)、二α塞茚并茚 (dithiaindenoindene)、二笨并石西吩(dibenzoselenophene)、二 砸二環戊二烯并苯(diselena-indacene)、二砸茚并節 (diselena-indenoindene)、二苯并°塞°各(dibenzosilole)、[1]苯 并噻吩并[3,2-b]苯并噻吩等之殘基。 前述ΑΓι之具有該等芳香族基經過2環以上連結而得之 結構是指,前述芳香族烴基、芳香族雜環基之具體例所舉 例者之組合,作為具體例,可舉例為:聯伸二苯、三聯伸 苯(terphenylene)、聯萘、聯蒽、笨基噻吩、噻吩基萘、嗟 吩基蒽、苯基萘、苯基蒽、吼啶基萘、。比咬基蒽、聯嘆吩、 三聯噻吩等之殘基。 前述式(1)中,八1^具有取代基亦可,較佳是具有選自下 列結構之基:苯、萘、蒽、稠四苯、稠五苯、菲、筷、。比 啶、吡嗪、喹啉、萘啶、苯并吡嗪、吩嗪、二氮雜蒽 (diazaanthracene)、吡啶并喹啉、嘧啶并喹唑啉、吡嗪喹噁 啉、菲羅啉、咔唑、二苯并噻吩、噻吩并噻吩、二噻吩并 °塞1%、[1]本并α塞吩并[3,2-b]苯并嗟吩、聯伸二笨、三聯伸 苯(terphenylene)、聯萘、聯蒽、笨基噻吩、噻吩基萘、噻 吩基恩、苯基萘、苯基蒽、。比啶基萘、„比啶基蒽、聯噻吩 及三聯噻吩。 作為前述ΑΓ12取代基,可舉列為:芳香族烴基、芳香 族雜壤基、烷基、烷氧基、芳氧基、芳硫基、烷氧基羰基、 10 201000430 胺基、南素原子、氰基、硝基、羥基、羧基等。 式(1)中,X係可表示為下述式(2)〜(4)之結構的任一者。 [化學式4]V, as a specific example of the above-mentioned aromatic hydrocarbon group, may be exemplified by substituted benzene, naphthalene, anthracene, fused tetraphenyl cresine, phenanthrene, phenanthrene, ternary triphenyl, and cornnulene. ), 蔻, male burial 4 - (hexabenzotriphenylene), hexabenzocoronene (hexabenzocoronene), tricyclopentadiene and triphenylene (sumanene) and other residues. Specific examples of the aromatic heterocyclic group of Ar! include, by way of substitution, pyridine, pyrazine, quinoline, naphthyridine, benzopyrazine, phenazine, diazaanthracene, . Bibiquinoline, pyrimidine and quinazoline 9 201000430 (pyrimidoquinazoline), ° ratio ° Qin Qinlin, Fei Luolin, ° card ° sit, two stupid and sighed, swearing and swearing, two orders. Diphene, dibenzofuran, benzodiazepine, dithiaindacene, dithiaindenoindene, dibenzoselenophene, diterpenoid Diselena-indacene, diselena-indenoindene, dibenzosilole, [1] benzothieno[3,2-b]benzo Residues of thiophene and the like. The structure in which the above-mentioned aromatic groups are linked by two or more rings is a combination of the specific examples of the aromatic hydrocarbon group and the aromatic heterocyclic group, and specific examples thereof include: Benzene, terphenylene, binaphthyl, hydrazine, phenylthiophene, thienylnaphthalene, fluorenyl hydrazine, phenylnaphthalene, phenylhydrazine, acridinylnaphthalene. Residues such as bite base, singer, triple thiophene, etc. In the above formula (1), the substituent may have a substituent, and preferably has a group selected from the group consisting of benzene, naphthalene, anthracene, fused tetraphenyl, pentacene, phenanthrene, chopsticks. Bipyridine, pyrazine, quinoline, naphthyridine, benzopyrazine, phenazine, diazaanthracene, pyridoquinoline, pyrimidoquinazoline, pyrazinquinoxaline, phenanthroline, anthracene Oxazole, dibenzothiophene, thienothiophene, dithiophene, 1%, [1] exemplified by α-seceno[3,2-b]benzophenone, extended di-phenyl, terphenylene , binaphthyl, hydrazine, thiophene, thienylnaphthalene, thiophene, phenylnaphthalene, phenyl hydrazine. Pyridylnaphthalene, „pyridinyl hydrazine, bithiophene, and terphenylthiophene. As the above hydrazine 12 substituent, it may be listed as an aromatic hydrocarbon group, an aromatic heterologous group, an alkyl group, an alkoxy group, an aryloxy group, or an aromatic group. Sulfur group, alkoxycarbonyl group, 10 201000430 amine group, south atom, cyano group, nitro group, hydroxyl group, carboxyl group, etc. In the formula (1), the X system can be represented by the following formulas (2) to (4). Any of the structures. [Chemical Formula 4]

式(2)〜(4)中,R1〜R5係各自為氫原子、鹵素原子、碳數 1〜30之烷基、碳數卜儿之齒烷基、碳數卜刈之烷氧基、碳 數1〜30之齒烷氧基、碳數1〜30之烷硫基、碳數1〜30之鹵烷 硫基、碳數1〜30之烷基胺基、碳數2〜60之二烷基胺基(烷基 亦可相互結合而形成含有氮原子之環結構)、碳數丨〜儿之烷 硫醯基、碳數1〜30之鹵烧硫醯基;碳數6〜60之芳香族烴基、 碳數3〜60之芳香族雜環基、具有該等芳香族基經過2環以上 連結而得之結構的基團;碳數3〜20之烧石夕基、破數5〜60之 / % 烷矽乙炔基(alkylsilyl acetylenic group)或氰基,該等各基亦 可具有取代基。 前述式(1)中’ R6〜R15係各自為氳原子、鹵素原子、碳 數1〜30之炫基、碳數1〜30之鹵烧基、碳數1〜3〇之烧氧基、 石炭數1〜30之鹵烧氧基、礙數1〜30之燒硫基、礙數1〜3〇之齒 烧硫基、碳數1〜30之烧基胺基、碳數2〜6〇之二烧基胺基(烧 基亦可相互結合而形成含有氮原子之環結構)、碳數丨〜3〇之 炫硫酿基、碳數1〜30之iS院硫酿基、碳數6〜60之芳香族烴 基、碳數3~60之芳香族雜環基、碳數3〜2〇之炫矽基、碳數 11 201000430 5〜60之烧石夕乙炔基(aikylsilyl acetylenic group)或氰基,該等 各基亦可具有取代基,又,R6〜r15之中,亦可藉由相鄰基 相互結合而形成礙數6〜60之芳香族烴基、碳數3〜60之芳香 族雜環基、或碳數6〜60之飽和環狀結構。 前述式(1)中,較佳是,R1〜係各自為氫原子、鹵素 原子、碳數1〜30之烷基、碳數5〜60之烷矽乙炔基(alkylsilyi acetylenic group)、碳數卜3〇之_烷基或氰基。 前述式(1)中,R6〜R15之中,較佳是至少鄰接的兩個基 相互連接形成碳數6〜60之芳香族烴基、或碳數3〜60之芳香 族雜環基。 又’本發明之有機薄膜電晶體用化合物係基本上顯示p 型(電洞傳導)及n型(電子傳導)之兩極性,藉由後述之源 極、没極電極之組合,雖可作為ρ型元件或是作為η型元件 進行驅動’但是前述式(1)中,藉由使用電子接受性之基作 為An上的取代基或是Ri〜Ris,降低最低未佔據軌道 (LUMO),可作用為n型半導體之機能。 作為電子接受性之基,較佳是:氫原子、齒素原子、 氰基、碳數1〜30之_烷基、碳數1〜30之鹵烷氧基、碳數1〜30 之齒烧硫酿基。又,藉由使用電子供給性之基作為R1〜R15 及An上的取代基’提升最高佔據軌道(Η〇Μ〇)等級,可作 用為Ρ型半導體之機能。作為電子供給性,較佳是:氫原子、 碳數1〜30之烷基、碳數1〜30之烷氧基、碳數1〜30之烷基胺 基、碳數2〜60之二烷基胺基(胺基亦可相互結合而形成含有 之氮原子的環結構)。 12 201000430 以下說明式(1)之R1〜R15所示之各基的具體例。 作為前述i素原子,可舉列為氟、氣、溴及碘原子。 作為前述烷基,可舉例為:曱基、乙基、丙基、異丙 基、η- 丁基、s- 丁基、異丁基、t- 丁基、η-戍基、η-己基、 η-庚基、η-辛基、η-壬基、η-癸基、η-十一基、η-十二基、 η-十三基、η-十四基、η-十五基、η-十六基、η-十七基、η- 十八基、η-十九基、η-二十烧基、η-二Η--烧基、η-二十二 炫基、η-二十三烧基、η-二十四烧基、η-二十五烧基、η-二 十六烧基、η-二十七炫>基、η-二十八烧基、η-二十九烧基、 η-三十院基等。 作為前述鹵烷基,可舉例為:例如,氯曱基、1-氣乙 基、2-氣乙基、2-氯異丁基、1,2-二氯乙基、1,3-二氯異丙 基、2,3-二氣-t-丁基、1,2,3-三氯丙基、溴甲基、1-溴乙基、 2-溴乙基、2-溴異丁基、1,2-二溴乙基、1,3-二溴異丙基、 2,3-二溴-t-丁基、1,2,3-三溴丙基、碘曱基、1-碘乙基、2-峨乙基、2-蛾異丁基、1,2-二破乙基、1,3-二鐵異丙基、2,3-二碘-t-丁基、1,2,3-三碘丙基、氟曱基、1-氟甲基、2-氟甲 基、2-氟異丁基、1,2-二氟乙基、二氟甲基、三氟甲基、五 氟乙基、全氟異丙基、全氟丁基、全氟環己基等。 前述烷氧基係表示為-OX1之基,作為X1之例,可舉例 為與前述烷基所説明者之相同的例子,前述il烷氧基係表 示為-OX2之基,作為X2之例,可舉例為與前述鹵烷基所説 明者之相同的例子。 前述烷硫基係表示為-SX1之基,作為X1之例,可舉例 13 201000430 為與刚基所說明者之相同的例子,前述祕硫基係表 不為sx之基’作為χ2^例,可舉例為與前述鹵烧基所說 明者之相同的例子。 月!述燒基胺基係表示為_ΝΗχΙ之基,三烧基胺基係表 不為ΝΧ χ之基,χ1及X3係可各自舉例為與前述炫基所說 明者之相同的例子。另,二絲胺基找基亦可相互結合 而形成含有氮原子之環結構,作為環結構,可舉例為例如, 咯α定、σ底α定等。 月〗述烷硫醯基係表示為-SC^X1之基,作為X1之例,可 舉例為與W述燒基所説明者之相同的例子,前述鹵院硫酿 基係表不為-S〇2X2之基,作為χ2之例,可舉例為與前述鹵 烷基所說明者之相同的例子。 作為前述芳香族烴基,可舉例為,例如,苯基、萘基、 二 ^第基、花基、并四笨基(tetracenyl)、稠五苯基 等。 為幻述方香族雜j哀基,可舉例為,例如,二σ塞吩并 苯基、笨并呋喃基、苯并噻吩基、喹啉基、咔唑基、二笨 并夫南基、二笨并售吩基、笨并噻二唑基等。 作為前述烷矽基,表示為_§ίχ1χ3χ4之基,χ1、X3及X4 係各自舉例為與前述烧基所説明者之相同的例子。 為4」述燒石夕乙炔基(alkylsilyl acetylenic group)係為 將月』述^夕基所示之基與伸乙炔基連接之基,可舉例為: 一甲基矽乙炔基、三乙基矽乙炔基、三異丙基矽乙炔基等。 ^ 5 _ν 、〜κ中’作為具有將碳數6〜60之芳香族烴基、及/ 14 201000430 或碳數3〜6 0之芳香族雜環基經過2環以上連結而得之結構 的基團,可舉例為與上述Ar1之相同的例子。 R6〜R15之中,作為相鄰基相互連結所形成之芳香族烴 基或芳香族雜環基,可舉例為與前述芳香族烴基、芳香族 雜環基所説明者之相同的例子。 作為前述飽和環狀結構,可舉例為:環丁基、環戊基、 環已基、1,4-二°惡院基(1,4-dioxanyl)等。 作為前述R1〜R15之取代基,可舉例為:芳香族烴基、 芳香族雜環基、烷基、烷氧基、芳氧基、芳硫基、烷氧基 羰基、胺基、i素原子、氰基、硝基、羥基、羧基等。 以下,列舉本發明之有機薄膜電晶體用化合物之具體 例,但本發明不應局限於此。 [化學式5] \ 15 201000430In the formulae (2) to (4), each of R1 to R5 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, a chiral alkyl group of a carbon number, an alkoxy group having a carbon number, and carbon. a 1 to 30-tooth alkoxy group, a C 1 to 30 alkylthio group, a C 1 to 30 haloalkylthio group, a C 1 to 30 alkylamino group, and a C 2 to 60 dioxane Amino groups (alkyl groups may also be bonded to each other to form a ring structure containing a nitrogen atom), a carbon number of oxathiol groups, a halogenated thiol group having a carbon number of 1 to 30, and a carbon number of 6 to 60 a hydrocarbon group, an aromatic heterocyclic group having 3 to 60 carbon atoms, a group having a structure in which the aromatic groups are bonded via two or more rings; a calcined carbon group having a carbon number of 3 to 20, and a number of 5 to 60 /% alkylsilyl acetylenic group or cyano group, these groups may also have a substituent. In the above formula (1), each of R6 to R15 is a halogen atom, a halogen atom, a condensed group having 1 to 30 carbon atoms, a halogen group having 1 to 30 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and charcoal. a halogenated alkoxy group having a number of 1 to 30, a sulfur-burning group having a hindrance of 1 to 30, a sulfur-burning sulfur group having a hindrance of 1 to 3 Å, an alkyl group having a carbon number of 1 to 30, and a carbon number of 2 to 6 Å. Dialkylamino group (the base can also be combined to form a ring structure containing a nitrogen atom), a sulphur-burning base having a carbon number of 丨~3〇, an iS institute sulfur-based base having a carbon number of 1 to 30, and a carbon number of 6~ 60 aromatic hydrocarbon group, carbon number 3 to 60 aromatic heterocyclic group, carbon number 3 to 2 fluorene fluorenyl group, carbon number 11 201000430 5~60 of aikylsilyl acetylenic group or cyano group Each of the groups may have a substituent. Further, among R6 to r15, an aromatic hydrocarbon group having an interference ratio of 6 to 60 and an aromatic heterocyclic ring having a carbon number of 3 to 60 may be formed by bonding adjacent groups to each other. a saturated or cyclic structure having a carbon number of 6 to 60. In the above formula (1), R1 to R are preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, an alkylsilyi acetylenic group having a carbon number of 5 to 60, or a carbon number. 3 〇 alkyl or cyano. In the above formula (1), among R6 to R15, at least two adjacent groups are preferably bonded to each other to form an aromatic hydrocarbon group having 6 to 60 carbon atoms or an aromatic heterocyclic group having 3 to 60 carbon atoms. Further, the compound for an organic thin film transistor of the present invention basically exhibits two polarities of p-type (hole conduction) and n-type (electron conduction), and can be used as ρ by a combination of source and electrodeless electrodes to be described later. The type element is driven as an n-type element. However, in the above formula (1), by using the electron accepting group as a substituent on An or Ri~Ris, the lowest unoccupied orbit (LUMO) is lowered, which is effective. It is the function of n-type semiconductors. The electron accepting group is preferably a hydrogen atom, a dentate atom, a cyano group, an alkyl group having 1 to 30 carbon atoms, a haloalkoxy group having 1 to 30 carbon atoms, and a tooth having a carbon number of 1 to 30. Sulfur brewing base. Further, by using the electron supply group as the substituent on R1 to R15 and An to raise the highest occupied orbital level, it can function as a germanium type semiconductor. The electron supply property is preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, or a dialkyl having 2 to 60 carbon atoms. Amino groups (amine groups may also be bonded to each other to form a ring structure containing a nitrogen atom). 12 201000430 Specific examples of the respective groups shown by R1 to R15 in the formula (1) will be described below. Examples of the i-electron atom include fluorine, gas, bromine and iodine atoms. As the alkyl group, a mercapto group, an ethyl group, a propyl group, an isopropyl group, an η-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, a η-fluorenyl group, an η-hexyl group, and the like are exemplified. Η-heptyl, η-octyl, η-fluorenyl, η-fluorenyl, η-undecyl, η-dodecyl, η-tridedecyl, η-tetradecyl, η-pentadecayl, Η-hexadecyl, η-heptadecyl, η-octadecyl, η-ninedecyl, η-twenthylene, η-dioxin-alkyl, η-twenthyl, η- Twenty-three burnt base, η- twenty-four burnt base, η- twenty-fifth burnt base, η-tifteen burntyl group, η-27 heptane > base, η-octadecyl burnt, η- Twenty-nine burning base, η-thirty yard base, etc. As the above haloalkyl group, for example, a chloromethyl group, a 1-oxyethyl group, a 2-oxyethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloro group can be exemplified. Isopropyl, 2,3-dioxa-t-butyl, 1,2,3-trichloropropyl, bromomethyl, 1-bromoethyl, 2-bromoethyl, 2-bromoisobutyl, 1,2-dibromoethyl, 1,3-dibromoisopropyl, 2,3-dibromo-t-butyl, 1,2,3-tribromopropyl, iodonyl, 1-iodoethyl Base, 2-decylethyl, 2-mothisobutyl, 1,2-diethylidene, 1,3-diironisopropyl, 2,3-diiodo-t-butyl, 1,2, 3-triiodopropyl, fluoromethyl, 1-fluoromethyl, 2-fluoromethyl, 2-fluoroisobutyl, 1,2-difluoroethyl, difluoromethyl, trifluoromethyl, five Fluoroethyl, perfluoroisopropyl, perfluorobutyl, perfluorocyclohexyl, and the like. The alkoxy group is represented by a group of -OX1, and examples of X1 include the same examples as those described for the alkyl group, and the il alkoxy group is represented by a group of -OX2, and as an example of X2, The same examples as those described for the above haloalkyl group can be exemplified. The alkylthio group is represented by the group of -SX1, and as an example of X1, 13 201000430 is the same example as that of the group, and the above-mentioned secret sulfur group is not the base of sx. The same examples as those described for the above-mentioned halogen group can be exemplified. The alkyl group is represented by a group of ΝΗχΙ, and the trialkyl group is not a base of ruthenium, and the oxime 1 and the group of X3 are each exemplified by the same examples as those described above. Further, the di-silmino group-finding group may be bonded to each other to form a ring structure containing a nitrogen atom, and examples of the ring structure include, for example, a ruthenium ruthenium, a ruthenium ruthenium, and the like. The alkyl sulfonium group is represented by the group of -SC^X1, and as an example of X1, the same example as the one described in the above-mentioned alkyl group can be exemplified, and the above-mentioned halogen sulphur base is not -S The group of 〇2X2, as an example of oxime 2, can be exemplified by the same examples as those described for the above haloalkyl group. The aromatic hydrocarbon group may, for example, be a phenyl group, a naphthyl group, a diphenyl group, a aryl group, a tetracenyl group or a condensed pentaphenyl group. For example, a di-sigma-phene-phenyl, a benzo-furanyl group, a benzothienyl group, a quinolyl group, a carbazolyl group, a dip-folfyl group, Two stupid and sold phenyl, stupid and thiadiazolyl and the like. The alkyl alkane group is represented by a group of _§ίχ1χ3χ4, and each of χ1, X3 and X4 is exemplified by the same examples as those described for the above-mentioned alkyl group. The alkylsilyl acetylenic group is a group in which the group represented by the group is bonded to an ethynyl group, and is exemplified by: monomethyl ethynyl group, triethyl hydrazine. Ethylene group, triisopropyl hydrazide group, and the like. ^5 _ν , κ κ ' as a group having a structure in which an aromatic hydrocarbon group having 6 to 60 carbon atoms and / 14 201000430 or an aromatic heterocyclic group having 3 to 60 carbon atoms are bonded via 2 rings or more The same example as the above Ar1 can be exemplified. Among the R6 to R15, the aromatic hydrocarbon group or the aromatic heterocyclic group which is formed by the adjacent groups being bonded to each other may be the same as those described for the aromatic hydrocarbon group or the aromatic heterocyclic group. The saturated cyclic structure may, for example, be a cyclobutyl group, a cyclopentyl group, a cyclohexyl group or a 1,4-dioxanyl group. Examples of the substituent of R1 to R15 include an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkyl group, an alkoxy group, an aryloxy group, an arylthio group, an alkoxycarbonyl group, an amine group, and an i atom. Cyano group, nitro group, hydroxyl group, carboxyl group and the like. Specific examples of the compound for an organic thin film transistor of the present invention are listed below, but the present invention is not limited thereto. [Chemical Formula 5] \ 15 201000430

(20) 16 201000430 201000430(20) 16 201000430 201000430

18 20100043018 201000430

19 20100043019 201000430

(77) (78)(77) (78)

(87) 本發明之有機薄膜電晶體用化合物係可藉由已知的方 法合成,例如,以下述所示之菌頭偶合反應作為代表,使 20 201000430 用過渡金屬觸媒的偶合反應進行合成。 [化學式6](87) The compound for an organic thin film transistor of the present invention can be synthesized by a known method, for example, by a head-coupling reaction shown below, and 20 201000430 is synthesized by a coupling reaction of a transition metal catalyst. [Chemical Formula 6]

另,如電晶體之電子裝置中,藉由使用高純度之材料, 可得到場效移動度或者開關比高的裝置。因此,依據需求, 較佳是藉由管柱層析法、再結晶、蒸餾、昇華等方法進行 精製。較佳是重覆進行該等精製方法,或是藉由將複數的 方法予以組合,可提高純度。且,作為精製之最終步驟, 較佳是至少重覆兩次以上的昇華精製步驟。藉由使用該等 方法,較佳是使用以HPLC所測定之純度為90%以上之材 料,更佳是95%以上,特別佳是使用純度99%以上之材料, 藉此可提高有機薄膜電晶體之場效移動度及開關比,而發 揮出原本材料所持有的性能。 接著,說明關於本發明之有機薄膜電晶體的元件結構。 本發明之有機薄膜電晶體的元件結構係至少具有閘極 電極、源極電極及汲極電極之3端子、絕緣體層及有機半導 體層,藉由施加電壓至閘極電極來控制源極與汲極間的電 流之薄膜電晶體。且,有機半導體層之特徵在於含有上述 之本發明的有機薄膜電晶體用化合物。通常,有機薄膜電 晶體係設置在基板上。 電晶體之結構係非特別限定者,除了有機半導體層的 成分以外,只要是具有已知之元件結構者皆可。接著,藉 21 201000430 由圖式來說明有機薄膜電晶體之元件結構的具體例。 第1圖〜第4圖係顯示本發明之有機薄膜電晶體的元件 結構之一例示圖。 第1圖之有機薄膜電晶體1係於基板10上,具有互相以 預定間隔隔開而對向形成之源極電極11及汲極電極12。 且,形成有機半導體層13,以覆蓋源極電極11、汲極電極 12及源極電極11與汲極電極12之間的間隙,又,積層絕緣 體層14。在絕緣體層14之上部,且在源極電極11及汲極電 極12之間的間隙上,形成閘極電極15。 第2圖之有機薄膜電晶體2係於基板10上依序具有閘極 電極15及絕緣體層14,在絕緣體層14上,具有以預定間隔 隔開而形成的一對的源極電極11及汲極電極12,其上形成 有機半導體層13。 第3圖之有機薄膜電晶體3係於基板10上依序具有閘極 電極15、絕緣體層14及有機半導體層13,在有機半導體層 13上,具有以預定間隔隔開而形成之一對的源極電極11及 汲極電極12。 第4圖之有機薄膜電晶體4係於基板10上具有有機半導 體層13,在有機半導體層13上具有以預定間隔隔開而形成 之一對的源極電極11及汲極電極12。且,又依序具有絕緣 體層14及閘極電極15。 本發明之有機薄膜電晶體係具有場效電晶體(FET : Field Effect Transistor)的結構。如上述,依據電極之位置、 層之積層順序等有數種之結構。有機薄膜電晶體係具有: 22 201000430 有機半導體層(有機化合物層)、互相以預定間隔隔開而對向 形成之源極電極及汲極電極、各自與源極電極、汲極電極 以預定距離隔開而形成之閘極電極,藉由施加電壓至閘極 電極,來控制源極與汲極電極之間流動的電流。此處,源 極電極與汲極電極之間隔係取決於本發明之有機薄膜電晶 體的使用用途,通常是〇.lpm~lmm,較佳是Ιμιη〜ΙΟΟμιη, 更佳是5μηι〜ΙΟΟμηι。 有機薄膜電晶體有許多種之結構被提出來,本發明之 有機薄膜電晶體係藉由施加至閘極電極之電壓,來控制源 極電極與汲極電極之間流動的電流,藉此,只要發現具有 開關動作或放大等之效果的機構,並不應限定於上述之元 件結構。 例如,由產業技術總合研究所之吉田等人,在第49屆 應用物理學關係聯合演講會講演草稿集27a-M-3(2002年3 月)中所提出之上下接觸(top and bottom contact)型有機薄 膜電晶體(參照第5圖),或是由千葉大學之工藤等人,在電 氣學會論文誌118-A(1998)1440頁中所提出縱形之有機薄膜 電晶體(參照第6圖),具有如此之元件結構者亦可。 以下,說明關於有機薄膜電晶體之結構構件。 (有機半導體層) 本發明之有機薄膜電晶體中的有機半導體層係含有上 述之本發明的有機薄膜電晶體用化合物。有機半導體層之 膜厚係無特別的限制,但通常是〇.5nm~lμιη,較佳是 2nm〜250nm。 23 201000430 又,有機半導體層之形成方法並無特別的限制,可適 用已知之方法,例如:分子線蒸鍍法(MBE法)、真空蒸鍍 法、化學蒸鍍、將材料溶解於溶劑之溶液的浸潰法、旋轉 塗布法、鑄造法、棒塗布法、滚筒塗布法等之印刷、塗布 法及烘乾、電聚合、分子束蒸鍍、由溶液之自動組合(self assembly)、及上述方法之組合,藉此,以前述之有機半導 體層的材料來形成有機半導體層。 一旦提高有機半導體層之結晶性,因場效移動度提 升,使用由氣相成膜(蒸鑛,減:鍍等)的情況下,較佳是將成 膜中之基板溫度維持於高溫。該溫度較佳是50〜250°C,更 佳是70〜150°C。又,無論使用何種成膜方法,為能得到高 性能裝置,較佳是在成膜後實施退火。退火的溫度較佳是 50〜200°C,更佳是70〜200°C,退火的時間較佳是10分〜12 小時’更佳是1〜10小時。 本發明中,在有機半導體層中,使用1種的材料亦可, 使用複數材料之組合,或是使用稠五苯或噻吩寡聚物等之 已知的半導體,將複數之材料的混合薄膜或不同材料所形 成之複數層予以積層亦可。 (基板) 本發明之有機薄膜電晶體中的基板係擔任起支持有機 薄膜電晶體之結構的任務,作為其材料,除可使用玻璃之 外,亦可使用金屬氧化物或氮化物等之無機化合物、塑膠 薄膜(PET,PES,PC)或金屬基板、或該等複合體、或積層 體等。又,藉由基板以外的結構要素,可充份支持有機薄 24 201000430 膜電晶體之結構的情況下,亦可不使用基板。x,作 板之材料,多半使时(si)晶圓。該情况下’si本身可兼二 用為閘極電極及基板。又,亦可將&夕 <表面予以氧化,开; 成Si〇2活用作為絕緣層。此情況 v 的Si基板上,作為導線連接用 =板之閘極電極 層予以賴者。 料將AU等之金屬 (電極) 本發明之有機薄膜電晶體中,作為間極電極 減及極電極之材枓,只要 定,可使用··白金、金、銀、鎳 '鉻、 特:之限 钽、銦、鈀、銻、銖、銥、鋁、釕、 錫、銻鉛、 銻、氧化銦錫(IT〇)、轉雜氧化鋅、辞、、/ ^、氧化锡 石墨、銀膏及破膏、鐘、鈹、鈉、鎂、璃 猛、錯、錄、銳、納、鈉-钟合金、鎂、鋰、奴太' 物、鎂/銀混合物、職現合物、鎂/銦思合物=銅混合 混合物、鋰/鋁混合物等。 鋁/氧化鋁 作為前述電極之形成方法, 電子束紐、麟、轉電料、離讀、纽、 電着、無電鍍'旋轉塗布、印刷或喷墨等方、^ 需求’作為圖案化之方法’有下列方法:使又’依據 影法或光阻法(脉,,將上述之方 已知的光微 薄膜予以形成電極之方法、 ^之導電性 上的之埶轉印、噴黑等太々 ㈢田在鋁或鋼等之金屬落 方法。 “式,形成抗触層(吻_刻之 25Further, in an electronic device such as a transistor, a device having a high field effect mobility or a high switching ratio can be obtained by using a material of high purity. Therefore, depending on the demand, it is preferably purified by column chromatography, recrystallization, distillation, sublimation or the like. It is preferred to repeat the purification methods or to increase the purity by combining a plurality of methods. Further, as a final step of the purification, it is preferred to repeat the sublimation purification step at least twice or more. By using these methods, it is preferred to use a material having a purity of 90% or more as determined by HPLC, more preferably 95% or more, and particularly preferably a material having a purity of 99% or more, whereby the organic thin film transistor can be improved. The field effect mobility and switching ratio play the performance of the original material. Next, the element structure of the organic thin film transistor of the present invention will be described. The element structure of the organic thin film transistor of the present invention has at least three terminals of a gate electrode, a source electrode and a drain electrode, an insulator layer and an organic semiconductor layer, and the source and the drain are controlled by applying a voltage to the gate electrode. A thin film transistor between currents. Further, the organic semiconductor layer is characterized by containing the above compound for an organic thin film transistor of the present invention. Typically, an organic thin film crystal system is disposed on a substrate. The structure of the transistor is not particularly limited, and any member having a known element structure may be used in addition to the composition of the organic semiconductor layer. Next, a specific example of the element structure of the organic thin film transistor will be described by way of a drawing of 21 201000430. Fig. 1 to Fig. 4 are views showing an example of the element structure of the organic thin film transistor of the present invention. The organic thin film transistor 1 of Fig. 1 is formed on a substrate 10, and has a source electrode 11 and a drain electrode 12 which are opposed to each other at a predetermined interval. Further, the organic semiconductor layer 13 is formed to cover the gap between the source electrode 11, the drain electrode 12, and the source electrode 11 and the drain electrode 12, and to laminate the insulator layer 14. A gate electrode 15 is formed on the upper portion of the insulator layer 14 and at a gap between the source electrode 11 and the drain electrode 12. The organic thin film transistor 2 of Fig. 2 has a gate electrode 15 and an insulator layer 14 in this order on the substrate 10, and has a pair of source electrodes 11 and 形成 formed at predetermined intervals on the insulator layer 14. The electrode 12 has an organic semiconductor layer 13 formed thereon. The organic thin film transistor 3 of FIG. 3 has a gate electrode 15, an insulator layer 14, and an organic semiconductor layer 13 sequentially on the substrate 10. The organic semiconductor layer 13 is formed at a predetermined interval to form a pair. Source electrode 11 and drain electrode 12. The organic thin film transistor 4 of Fig. 4 has an organic semiconductor layer 13 on a substrate 10, and has a pair of source electrodes 11 and drain electrodes 12 formed at predetermined intervals on the organic semiconductor layer 13. Further, the insulator layer 14 and the gate electrode 15 are sequentially provided. The organic thin film electro-crystal system of the present invention has a structure of a field effect transistor (FET). As described above, there are several kinds of structures depending on the position of the electrodes, the order of lamination of the layers, and the like. The organic thin film electro-crystal system has: 22 201000430 an organic semiconductor layer (organic compound layer), a source electrode and a drain electrode which are opposed to each other at a predetermined interval, and each of which is separated from the source electrode and the drain electrode by a predetermined distance The open gate electrode controls the current flowing between the source and the drain electrode by applying a voltage to the gate electrode. Here, the distance between the source electrode and the drain electrode depends on the use of the organic thin film transistor of the present invention, and is usually lp.lpm~lmm, preferably Ιμηη~ΙΟΟμιη, more preferably 5μηι~ΙΟΟμηι. A variety of structures have been proposed for the organic thin film transistor. The organic thin film electromorphic system of the present invention controls the current flowing between the source electrode and the drain electrode by applying a voltage to the gate electrode, thereby It is found that the mechanism having the effect of switching operation or amplification is not limited to the above-described element structure. For example, Yoshida et al. of the Industrial Technology Research Institute, in the 49th Session of the Joint Symposium on Applied Physics, presented in the draft 27a-M-3 (March 2002). Top and bottom contact ) organic thin film transistor (see Figure 5), or the organic thin film transistor of the vertical shape proposed by Kudo et al., Chiba University, et al., 118-A (1998), page 1440 (see page 6) Figure), with such a component structure can also be. Hereinafter, the structural member of the organic thin film transistor will be described. (Organic semiconductor layer) The organic semiconductor layer in the organic thin film transistor of the present invention contains the above compound for an organic thin film transistor of the present invention. The film thickness of the organic semiconductor layer is not particularly limited, but is usually from 5 nm to 1 μm, preferably from 2 nm to 250 nm. 23 201000430 Further, the method for forming the organic semiconductor layer is not particularly limited, and a known method such as a molecular wire evaporation method (MBE method), a vacuum evaporation method, a chemical vapor deposition, or a solution in which a material is dissolved in a solvent can be applied. Printing, coating method and drying, electropolymerization, molecular beam evaporation, self-assembly by solution, and the like, by dipping method, spin coating method, casting method, bar coating method, roll coating method, etc. In combination, the organic semiconductor layer is formed of the material of the organic semiconductor layer described above. When the crystallinity of the organic semiconductor layer is increased, the field effect mobility is improved, and when a film is formed from a vapor phase (steaming, subtraction, plating, etc.), it is preferred to maintain the substrate temperature in the film formation at a high temperature. The temperature is preferably from 50 to 250 ° C, more preferably from 70 to 150 ° C. Further, regardless of the film formation method used, in order to obtain a high performance device, it is preferred to carry out annealing after film formation. The annealing temperature is preferably 50 to 200 ° C, more preferably 70 to 200 ° C, and the annealing time is preferably 10 minutes to 12 hours' more preferably 1 to 10 hours. In the present invention, a mixed film of a plurality of materials may be used in the organic semiconductor layer, using a combination of a plurality of materials, a combination of a plurality of materials, or a known semiconductor such as fused pentene or a thiophene oligomer. A plurality of layers formed of different materials may be laminated. (Substrate) The substrate in the organic thin film transistor of the present invention serves as a structure for supporting the structure of the organic thin film transistor, and as the material thereof, an inorganic compound such as a metal oxide or a nitride may be used in addition to glass. , plastic film (PET, PES, PC) or metal substrate, or such composites, or laminates. Further, when the structure of the organic thin film 24 201000430 can be sufficiently supported by structural elements other than the substrate, the substrate may not be used. x, the material of the board, mostly the time (si) wafer. In this case, the 'si itself can be used as both a gate electrode and a substrate. Further, the surface of &<lt; can be oxidized and opened; and Si 〇 2 can be used as an insulating layer. In this case, on the Si substrate, the gate electrode layer for the wire connection is used as the gate electrode layer. A metal (electrode) such as AU is used. In the organic thin film transistor of the present invention, as a material for the interelectrode electrode to be reduced to the electrode of the electrode, it is possible to use platinum, gold, silver, nickel, chromium, and the like. Limiting bismuth, indium, palladium, ruthenium, osmium, iridium, aluminum, lanthanum, tin, antimony, lead, antimony, indium tin oxide (IT〇), zinc oxide, rhodium, , / ^, tin oxide graphite, silver paste and Broken ointment, bell, sputum, sodium, magnesium, glass fierce, wrong, recorded, sharp, nano, sodium-bell alloy, magnesium, lithium, slavery, magnesium/silver mixture, occupational compound, magnesium/indium Compound = copper mixed mixture, lithium/aluminum mixture, and the like. Aluminum/aluminum is used as a method for forming the above-mentioned electrodes, such as electron beam, lining, electro-conducting material, reading, neon, electroless, electroless plating, spin coating, printing or inkjet, etc. 'There are the following methods: to make it again according to the shadow method or the photoresist method (pulse, the method of forming the electrode by the light microfilm known from the above, the transfer of the conductivity, the blackening, etc. 々 (3) The method of falling metal in aluminum or steel, etc. "Form, forming an anti-touch layer (kiss _ engraved 25

2U1UUU4JU 要可導通電流,— 的限制,較佳是〇2 错此所形成之電極的膜厚並無特別 只要在較佳 μ μηι ’更較是4nm〜300nm之範圍。 $之祀圍内^ 降。又,因骐厚不各、予蹲則電阻變高,而電壓不會下 有機半導體層等其^過厚而形成膜較不耗時,將保護層或 的情形而可估層予以積層之情況下,不會有不平整 本發明的表面平滑。 有機薄Β ^ 柘、閘極電極及其、” aa a中,作為源極電極、汲極電 電性材料之溶夜 ^成方法,較佳是使用含有上述之導 所形成之物,特別*!、墨水、分散液等之流動性電極材料 起、銅之金屬极粒:含具有導電性聚合物、或白金、金、 υι貝作為含有金屬微粒子之分散物,例如,雖亦可 使用已知之導電性膏等’但較佳是使用含有通常板子徑為 0.5nm〜50nm、lnm〜1〇1^之金屬微粒子的分散物。作為該 金屬微粒子之材料,可使用:例如,白金、金、鈑、鎳 给、銅、鐵、錫、銻鉛、钽、銦、鈀、銻、銖、銥 '鋁、 途了、鍺、翻、鶴、辞等。較佳是,使用分散物而形成電極 者,該分散物是使用主要為有機材料所形成之分散安定 剩,並且將該等之金屬微粒子分散於水或任意之有機溶劑 的分散介質中而形成者。作為此種金屬微粒子之分散物的 製造方法,可舉例為:氣體中蒸發法、濺鍍法、金屬蒸氣 合成法等之物理性生成法,或是膠體法、共沈澱法等之以 26 201000430 液相還原金屬離子而形成金居w t ,.a '屬彳政粒子之化學性生成法,較 住疋日本特開平11-76800號八如 *E 報、日本特開平11-80647號公 報、日本特開平1卜319538狀八Λ 啤八+ 祝公報、日本特開2000-239853 遽公報等所揭示之膠體法、 α ,, 日本特開2001-254185號公報、 曰本特開2〇01-53028號公耜、q丄 α丄 日本特開2001-35255號公報、 曰本特開2000-124157號公勒^丄 k、日本特開2000-123634號公報 專所記載之氣體中蒸發法戶 叮製造之金屬微粒子的分散物。 使用该專金屬微粒子分丑 .^ 政物,猎由直接噴墨法來圖案 匕亦可,或者是由塗覆膜進 堤仃微影或雷射剝蝕等而形成亦 可。又’亦可使用以凸版、The thickness of the electrode to be formed by the 2U1UUU4JU is preferably in the range of 4 nm to 300 nm, preferably φ2. Within the range of $. Further, since the thickness is not high, the electric resistance becomes high, and the voltage does not become thicker than the organic semiconductor layer, and the formation of the film is less time consuming, and the layer can be layered by the case of the protective layer. Underneath, there will be no unevenness of the surface of the present invention. The organic thin Β ^ 柘, the gate electrode and the "aa a, as a source electrode, the electrodepositive electro-chemical material of the dissolution method, preferably using the above-mentioned guide formed by the object, especially *! a fluid electrode material such as an ink or a dispersion, or a metal particle of copper: a conductive polymer or platinum, gold or yttrium as a dispersion containing metal fine particles, for example, a known conductive material may be used. It is preferable to use a dispersion containing metal fine particles having a normal plate diameter of 0.5 nm to 50 nm and 1 nm to 1 Å. As a material of the metal fine particles, for example, platinum, gold, rhodium, or the like can be used. Nickel, copper, iron, tin, antimony, lead, antimony, palladium, iridium, osmium, iridium, aluminum, trafic, sputum, turn, crane, reed, etc. It is preferred to use a dispersion to form an electrode, The dispersion is formed by using a dispersion stability mainly composed of an organic material, and dispersing the metal fine particles in a dispersion medium of water or an arbitrary organic solvent. As a method of producing such a dispersion of metal fine particles , for example: a physical formation method such as a vapor evaporation method, a sputtering method, or a metal vapor synthesis method, or a colloid method, a coprecipitation method, or the like, to reduce the metal ions in a liquid phase at 26 201000430 to form a gold-based wt, .a ' The chemical formation method of the particles is better than that of the Japanese special edition No. 11-76800, such as the Eighth*E newspaper, the Japanese special Kaiping 11-80647, the Japanese special Kaiping 1 319, 538, the gossip, the beer eight + the bun, and the Japanese special 2000-239853 胶 遽 遽 α α α α α α 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 The dispersion of metal fine particles produced by the evaporation method in the gas described in the special publication of the Japanese Patent Publication No. 2000-124157, JP-A-2000-123634. The use of the special metal particles to divide the ugly. The object can be patterned by direct inkjet method, or it can be formed by coating a film into a dynasty lithography or laser ablation.

凹版、平版、網版印刷等之印 Γ進行圖案化之方法。將前«㈣以成形,使溶劑乾 木之後,依據需要在10(TC〜3〇〇t,較佳是在15〇L〇C 1範圍内加熱成預定形狀,藉此使金屬微教子熱融合,而 形成具有目的形狀之電極圖案。 j,作為閘極電極、源極電極及汲極電極之材料,較 佳是藉由摻料而使用可提高導電率之已知的導電性聚合 物^如,村適當制:導紐料胺、料性聚料、 Y包1±聚塞吩(聚二氧乙基吩與聚苯乙歸項酸之錯合物 等)、聚二氧乙基。塞吩(PEDQT)與聚笨乙㈣酸之錯合物 等。藉由該等材料可降低源極電極與汲極電極之有機半導 體層間的接觸電阻。該等之形成方法亦可ϋ由喷墨法而圖 案化,亦可由塗覆膜進行微影或雷射剝蝕等而形成。又, ,吏用凸版凹版、平版 '網版印刷等印刷法進行圖案 化之方法。 27 201000430 、_是,形成源極電極及汲極電極之材料,前述例子 :車又佳疋與有機半導體層之接觸面的電性電阻較小者。此 t電陡電阻’即製造電流控餘置㈣應與場效移動度 U為了;^到杈大的移動度,儘可能小的電阻是必 要的此乃I取決於電極材料之工作函數與有機半導體 層之能階的大小關係。 以電極材料之工作函數(w)作為a,有機半導體層之離 子化位勢(Ip)作為b,有機半導體層之電子親和力⑽作為 c ’則以滿足以下之關係式為較佳。此處,a、b&c任一者 都是以真空位準為基準之正值。 P型有機薄膜電晶體的情況下,較佳是滿足b-a < 1.5eV (式⑴)’更佳是滿足b-a < l_〇ev。與有機半導體層之關係 中,若能維持上述關係,則能得到高性能的裝置,特別是, 儘可能選用電極材料之工作函數大者,較佳是工作函數 4.0eV以上,更佳是工作函數42eV以上者。金屬之工作函 數值,例如記載於化學便覽基礎編11-493頁(改訂3版曰本 化學會編丸善株式會杜發行1983年)者,可選自前述表所 列之具有4.OeV或其之以上之工作函數的有效金屬,高工作 函數金屬主要為:Ag(4_26, 4.52, 4.64, 4.74eV)、Al(4.06, 4.24, 4.41eV)、Au(5.1, 5.37, 5.47eV)、Be(4.98eV)、Bi(4.34eV)、 Cd(4.08eV)、Co(5.0eV)、Cu(4.65eV)、Fe(4.5, 4.67, 4.81eV)、 Ga(4.3eV)、Hg(4.4eV)、Ir(5.42, 5.76eV)、Mn(4.1eV)、Mo(4.53, 4.55,4.95eV)、Nb(4.02,4.36,4.87eV)、Ni(5.04, 5.22, 5.35eV)、Os(5.93eV)、Pb(4.25eV)、Pt(5.64eV)、Pd(5.55eV)、 28 201000430A method of patterning a stamp, a lithographic plate, a screen printing, or the like. After the former «(4) is shaped, the solvent is dried, and then heated to a predetermined shape in the range of 10 (TC~3〇〇t, preferably 15〇L〇C 1 as needed, thereby thermally fusion of the metal micro-teaching And forming an electrode pattern having a desired shape. j. As a material of the gate electrode, the source electrode, and the drain electrode, it is preferable to use a known conductive polymer capable of improving conductivity by doping. Appropriate system of the village: lead amine, material aggregate, Y package 1± polycetin (a complex of polydioxyethylphene and polyphenylethylene acid, etc.), polydioxyethyl a compound of PEDQT and a polystyrene (tetra) acid, etc. The contact resistance between the source electrode and the organic semiconductor layer of the gate electrode can be reduced by the materials. The formation method can also be performed by an inkjet method. The patterning can also be formed by lithography or laser ablation of the coating film. Further, the method of patterning is performed by a printing method such as letterpress gravure and lithographic screen printing. 27 201000430, _Yes, formation source The material of the electrode and the drain electrode, the foregoing example: the contact surface of the car and the organic semiconductor layer The electric resistance is smaller. This t electric steep resistance 'that is, the current control residual (4) should be related to the field effect mobility U; ^ to the large mobility, as small as possible, the resistance is necessary. The relationship between the working function of the electrode material and the energy level of the organic semiconductor layer. The working function (w) of the electrode material is taken as a, the ionization potential (Ip) of the organic semiconductor layer is taken as b, and the electron affinity of the organic semiconductor layer (10) is taken as It is preferable to satisfy the following relationship: c, any of a, b & c is a positive value based on the vacuum level. In the case of a P-type organic thin film transistor, it is preferable to satisfy Ba < 1.5eV (formula (1))' is better to satisfy ba < l_〇ev. In the relationship with the organic semiconductor layer, if the above relationship can be maintained, a high-performance device can be obtained, in particular, as much as possible The working function of the electrode material is preferably 4.0 eV or more, and more preferably the working function is 42 eV or more. The working function value of the metal is described, for example, in the Chemical Handbook Basics, 11-493 (Revised 3 version) Learn to compile a good model of the company will issue 1983 Any one of the active metals having a work function of 4.OeV or more listed in the above table, the high work function metals are mainly: Ag (4_26, 4.52, 4.64, 4.74 eV), Al (4.06, 4.24). , 4.41eV), Au (5.1, 5.37, 5.47eV), Be (4.98eV), Bi (4.34eV), Cd (4.08eV), Co (5.0eV), Cu (4.65eV), Fe (4.5, 4.67 , 4.81eV), Ga(4.3eV), Hg(4.4eV), Ir(5.42, 5.76eV), Mn(4.1eV), Mo(4.53, 4.55, 4.95eV), Nb(4.02, 4.36, 4.87eV) , Ni (5.04, 5.22, 5.35eV), Os (5.93eV), Pb (4.25eV), Pt (5.64eV), Pd (5.55eV), 28 201000430

Re(4.72eV)、Ru(4.71eV)、Sb(4.55,4.7eV)、Sn(4.42eV)、 Ta(4.0, 4.15, 4.8eV)、Ti(4.33eV)、V(4.3eV)、W(4.47, 4.63, 5.25eV)、Zr(4.05eV)。 其中,較佳是貴金屬(Ag、Au、Cu、Pt)、Ni、Co、Os、 Fe、Ga、Ir、Mn、Mo、Pd ' Re、Ru、V.、W。金屬以夕卜者, 較佳是ITO、聚苯胺或PEDOT : PSS(聚二氧乙基噻吩:聚 苯乙烯磺酸鹽)之類的導電性聚合物及碳。作為電極材料, 即使含有1種或是多種高工作函數之物質,只要工作函數滿 足前述式(I) ’並不特別受到限制。 η型有機薄膜電晶體的情況下,較佳是滿足a_c< 15ev (式(II)),更佳是滿足a-c < loev。與有機半導體層之間的 關係中’只要能維持上述關係,則可獲得高性能的裝置, 特別是’電極材料之工作函數是以儘可能選擇較小者為 佳,較佳是工作函數4.3eV以下者,更佳是工作函數3.7eV 以下者。 作為低工作函數金屬之具體例,例如記載於化學便覽 基礎編11-493頁(改訂3版日本化學會編丸善株式會社發 行1983年)者,可選自前述表所列之具有4 3ev或其之以下 之工作函數的有效金屬,可舉例為:Ag(4.26eV)、Al(4.06, 4.28eV)、Ba(2.52eV)、Ca(2.9eV)、Ce(2.9eV)、Cs(1.95eV)、 Er(2.97eV)、Eu(2.5eV)、Gd(3_leV)、Hf(3.9eV)、In(4_09eV)、 Κ(2·28)、La(3.5eV)、Li(2.93eV)、Mg(3.66eV)、Na(2.36eV)、 Nd(3.2eV)、Rb(4.25eV)、Sc(3.5eV)、Sm(2.7eV)、Ta(4.0、 4.15eV)、Y(3.1eV)、Yb(2.6eV)、Zn(3.63eV)等。其中,較 29 201000430 佳是Ba、Ca、Cs、Er、Eu、Gd Hf、K、La、Li、Mg、Na、Re (4.72 eV), Ru (4.71 eV), Sb (4.55, 4.7 eV), Sn (4.42 eV), Ta (4.0, 4.15, 4.8 eV), Ti (4.33 eV), V (4.3 eV), W ( 4.47, 4.63, 5.25eV), Zr (4.05eV). Among them, noble metals (Ag, Au, Cu, Pt), Ni, Co, Os, Fe, Ga, Ir, Mn, Mo, Pd'Re, Ru, V., W are preferable. The metal is preferably a conductive polymer such as ITO, polyaniline or PEDOT: PSS (polydioxyethylthiophene: polystyrenesulfonate) and carbon. As the electrode material, even if one or more kinds of substances having a high work function are contained, it is not particularly limited as long as the work function satisfies the above formula (I)'. In the case of the n-type organic thin film transistor, it is preferable to satisfy a_c < 15 ev (formula (II)), and it is more preferable to satisfy a-c < loev. In the relationship with the organic semiconductor layer, as long as the above relationship can be maintained, a high-performance device can be obtained, and in particular, the working function of the electrode material is preferably as small as possible, preferably a work function of 4.3 eV. Preferably, the following is a work function of 3.7 eV or less. As a specific example of the low work function metal, for example, it is described in pages 11-493 of the Chemical Handbook Basics (revised 3rd edition of the Japanese Chemical Society, Maruzen Co., Ltd. issued in 1983), and may be selected from the above table having 4 3ev or The effective metals of the following working functions are, for example, Ag (4.26 eV), Al (4.06, 4.28 eV), Ba (2.52 eV), Ca (2.9 eV), Ce (2.9 eV), Cs (1.95 eV). , Er (2.97eV), Eu (2.5eV), Gd (3_leV), Hf (3.9eV), In (4_09eV), Κ (2·28), La (3.5eV), Li (2.93eV), Mg ( 3.66eV), Na (2.36eV), Nd (3.2eV), Rb (4.25eV), Sc (3.5eV), Sm (2.7eV), Ta (4.0, 4.15eV), Y (3.1eV), Yb ( 2.6 eV), Zn (3.63 eV), and the like. Among them, compared with 29 201000430, Ba, Ca, Cs, Er, Eu, Gd Hf, K, La, Li, Mg, Na,

中的水分或氧氣接觸, 被覆空氣中安定的金屬(如Ag或Au之類的金屬)。被覆所需 的膜厚需要在1Gnnm上’膜厚愈厚雖可㈣金屬免於氧氣 或水所造成的劣化,但實際上,由提高生產性等之理由以 要工作函數滿足前述式(II),並 ,由於低工作函數金屬一旦與大氣 則容易劣化,依據需要,較佳是被 觀,較佳是Ιμιη以下。 本發明之有機薄膜電晶體中,例如,以提高注入效率 為目的,在有機半導體層與源極電極及汲極電極之間亦可 s史置緩衝層。作為緩衝層,對於η型有機薄膜電晶體較佳是 使用於有機EL之陰極之具有LiF、Li20、CsF、NaC03、KCl、 MgFrCaCO3等之鹼金屬、鹼土類金屬離子結合的化合物。 又’ Alq等有機EL中’亦可插入作為電子注入層、電子輸送 層所使用之化合物。 對於P型有機薄膜電晶體,較佳是FeCl3、TCNQ、 F4-TCNQ、HAT 等之氰基化合物、CFx 或 Ge〇2、Si〇2、Mo03、 V2O5、V〇2、\^2〇3、^ίηΟ、M!n3〇4、Zr〇2、λν〇3、Ti〇2、Iri2〇3、In contact with moisture or oxygen, it is coated with a stable metal in the air (such as a metal such as Ag or Au). The film thickness required for coating needs to be as thick as 1 Gnnm, although the thickness of the metal may be free from oxygen or water, but in practice, the work function satisfies the above formula (II) for reasons of improving productivity and the like. And, since the low work function metal is easily deteriorated once with the atmosphere, it is preferably viewed as needed, preferably Ιμηη or less. In the organic thin film transistor of the present invention, for example, for the purpose of improving the implantation efficiency, a buffer layer may be disposed between the organic semiconductor layer and the source electrode and the drain electrode. As the buffer layer, the n-type organic thin film transistor is preferably a compound having an alkali metal or an alkaline earth metal ion of LiF, Li20, CsF, NaC03, KCl, MgFrCaCO3 or the like which is used in the cathode of the organic EL. Further, a compound used as an electron injecting layer or an electron transporting layer may be inserted into an organic EL such as Alq. For the P-type organic thin film transistor, a cyano compound such as FeCl3, TCNQ, F4-TCNQ, HAT, etc., CFx or Ge〇2, Si〇2, Mo03, V2O5, V〇2, \^2〇3, ^ίηΟ, M!n3〇4, Zr〇2, λν〇3, Ti〇2, Iri2〇3,

ZnO、NiO、Hf02、Ta2〇5、Re〇3、Pb02等之驗金屬、驗土 類金屬以外的金屬氧化物、ZnS、ZnSe等之無機化合物。該 等氧化物在多數情況下,會引起氧缺陷,此係適合於電洞 注入。且,TPD或NPD等之胺系化合物或CuPc等有機EL元 件中,亦可使用作為電洞注入層、電洞輸送層所使用之化 30 201000430 合物。又,較佳是上述之化合物二種類以上所形成者。 缓衝層係藉由降低載體的注入障壁來降低閾值電壓, 已知有可以低電壓驅動電晶體之效果,但吾人發現對於斜 於本發明之化合物不僅有低電壓效果而且有提高移動度之 效果。此乃是’於有機半導體與絕緣體層之界面上,存在 有載體卩£3陕,一旦施加閘極電壓引起載體注入時,剛開於 注入的載體雖使用來塞住陷味,但是藉由插入緩衝層,在 低電壓下陷阱被塞住,因此移動度提高。緩衝層只要薄薄 地存在於電極與有機半導體層之間即可,其厚度為 O.lnm〜30nm,較佳是〇.3nm〜20nm。 (絕緣體層) 本發明之有機薄膜電晶體中,作為絕緣體層之材料, 只要是可形成為具有電氣絕緣性之薄膜,並無特別之限 制,可使用金屬氧化物(含矽之氧化物)、金屬氮化物(含砂 之氮化物)、南分子、有機低分子等之在室溫下電性電阻率 為1 ODcm以上的材料’特別是’以相對電容率高的無機氧 化物皮膜為較佳。 作為無機氧化物,可舉例為:氧化矽、氧化鋁、氧化 組、氧化鈦、氧化錫、氧化鈒、鈦酸鋇認、錯酸鈦酸鋇(barium zirconate titanate)、錯酸鈦酸錯(lead zirconate titanate)、鈦 酸鉛鑭、鈦酸勰、鈦酸鋇、氟化鋇鎂、鑭氧化物、氟氧化 物、鎂氧化物、秘氧化物、鈦酸叙、銳氧化物、鈦酸懿絲、 组酸if级、五氧化组、组酸銳酸级、氧化紀(tri〇xide yttrium) 及此等之組合’較佳是氧化矽、氧化鋁、氧化鈕、氧化鈦。 31 201000430 又,氮化矽(Si3N4、SixNy(x、y>0))、氮化鋁等之無機 氣化物亦適合使用。 且’絕緣體層亦可藉由含有烷氧化物金屬之前驅物質 形成’其藉由將該前驅物質之溶液被覆於諸如基板之上, 再以包含熱處理之化學溶液處理之後,而形成絕緣體層。 作為前述烷氧化物金屬中的金屬,例如,過渡金屬、 鑭系凡素、或由主族元素所選出者,具體而言,可舉例為: 鋇(Ba)、鳃(Sr)、鈦(Ti) ' 鉍(Bi)、钽(Ta)、鍅石(Zr)、鐵(Fe)、 錄(Νι)、猛(Μη)、鉛(Pb)、鑭(La)、链(Li)、鈉(Na)、鉀⑹、 铷(Rb)、铯(Cs)、鍅(Fr)、鈹(Be)、鎂(Mg)、鈣(Ca)、鈮(Nb)、 鉈(T1)、水銀(Η§)、銅(Cu)、鈷(Co)、铑(Rh)、銃(Sc)及釔(Y) 等。又,作為前述烷氧化物金屬中的烷氧化物,可舉例為: 例如,含有甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇等 之醇類、由含有甲氧基乙醇、乙氧基乙醇、丙氧基乙醇、 丁氧基乙醇、戊氧基乙醇、庚氧基乙醇、曱氧基丙醇、乙 乳基丙醇、丙氧基丙醇、丁氧基丙醇、戊氧基丙醇、庚氧 基丙醇之烷氧醇類等所衍生之物。 本考X月中 旦藉由上述之材料構成絕緣體層,絕緣 Μ中Ί易產生極化’可降低電晶體動作之臨界電 t又上述材料中,特別是一旦藉由Si3N4、SixNy、 (Υ>〇)等之氮化矽來形成絕緣體層,則更容易產生 乏層(depleuon layer),可進—步降低電晶體動作之臨界電 壓。 作為使用有機化合物之絕緣體層,可使用聚醯亞胺、 32 201000430 聚醯胺、聚酯、聚丙烯酸、光自由基聚合系、光陽離子聚 合系之光硬化性樹脂、含有丙烯腈成份之共聚物、聚乙烯 苯紛、聚乙晞醇、紛酸樹脂及氰乙基t二葡萄糖(cyanoethyl pullulan)等。 其他,加入於蠟、聚乙烯、聚氯平、聚對苯二曱酸乙 二酯、聚縮甲醛、聚氣乙烯、聚偏二敗乙烯、聚曱基丙烯 酸曱酯、聚砜、聚碳酸酯、聚醯亞胺氰乙基聚三葡萄糖 (polyimidocyanoethyl pullulan)、聚(乙細本盼)(PVP)、聚(甲 基丙烯酸甲酯)(PMMA)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚 烯烴、聚丙烯醯胺、聚(丙烯酸)、酚醛樹脂、可溶酚醛樹脂、 聚醯亞胺、聚茬(polyxylylene)、環氧樹脂之中,具有聚三 葡萄糖等之高介電係數的高分子材料亦可使用之。 作為用於絕緣體層之有機化合物材料、高分子材料, 特別佳者為具有撥水性之材料。藉由使用具有撥水性之材 料,可抑制絕緣體層與有機半導體層之間的交互作用,有 機半導體係利用原本具有的凝聚性而提高有機半導體層之 結晶性,而可提升裝置性能。作為該等材料之例,可舉例 為.Yasuda專人發表於jpn. j. Appl· phys. Vol. 42 (2003) pp_66M-66l8中所έ己載的聚對茗(p〇iy_p_Xyiyiene)衍生物或 是Jan〇s Veres等人發表於Chem. Mater.,Vol· 16 (2004) ρρ· 4543-4555所記載者。 又’使用如第1圖及第4圖所示之頂閘極結構之時,_ 旦使用此種有機化合物作為崎縣之材料,麟於有機 半導體層所造成的損害變小而可成膜,而為有效的方法。 33 201000430 、則述絕緣體層,使用複數之前述的無機或有機化合物 材料之混合層亦可,該等複數之前述的無機或有機化合物 材料㈣層結構體亦可。此情況下,依據需要藉由浪合或 積層阿”電係數之材料與具有撥水性之材料,亦可控制裝 置之性能。 又,别述絕緣體層亦可含有陽極氧化膜、或該陽極氧 ^膜作為其之結構。陽極氧化麟、以㈣孔處理者為佳。 陽極氧化膜係、可藉由將可陽極氧化之金属經由已知方法進 行陽極氧化來形成。作為可陽極氧化處理之金屬玎舉例為 鋁或鈕,對於陽極氧化處理之方法並無特別之限制,可使 用已知之方法。藉由進行陽極氧化處理,可形成氧化被覆 膜。作為使用於陽極氧化處理之電解液,只要是玎形成多 孔質氧化皮膜者任何電解液都可以使用,一般使用硫酸、 磷酸、蓚酸、鉻酸、硼酸、胺磺酸、苯磺酸等或是組合2種 以上之該等酸的混合酸或其等酸之鹽。陽極氧化之處理條 件係因所使用之電解液而有各種的變化而無法一概而論, —般適當的範圍為:電解液之濃度為卜肋質量。/。、電解液 之溫度為5〜70°C、電流密度為〇·5〜6〇A/cm2、電壓為卜100 伏特、電解時間為10秒〜5分。較佳之陽極氧化處理為使用 硫酸“粦酸或石朋酸之水溶液作為電解液,卩直流電流處理 之方法,但亦可使用交流電流。該等酸之濃度較佳為Μ 質量%,在電解液之溫度為20〜5(rc、電流密度:、 〇·5〜20A/Cm2下,進行20〜25〇秒的電解處理為較佳。又:、、、 作為絕緣體層之厚度,由於層之厚度太薄則會造成扩 34 201000430 加於有機半導體之實際電壓變大,雖可降低裝置本身的驅 動電壓、閾電壓,但因反而會造成源極與閘極之間的漏電 流變大,而有選擇適當膜厚之必要,通常是1 Onm〜5 μιη,較 佳是50nm〜2μιη,更佳是lOOnm〜Ιμηι。 又,前述絕緣體層與有機半導體層之間亦可施以任何 之配向處理。作為其之較佳例,在絕緣體層表面施以撥水 化處理等,來降低絕緣體層與有機半導體層之間的交互作 用,提高有機半導體層之結晶性的方法,具體而言,可舉 例為:在液相或氣相狀態下,使石夕烧偶合劑(例如,六甲基 二矽氮烷、三氣十八烷基矽烷、三氯曱基矽氮烷、或是烷 磷酸、烷磺酸、烷羧酸等之自組裝的配向膜材料)與絕緣膜 表面接觸而形成自組裝的膜之後,施以適當的乾燥處理之 方法。又,如使用於液晶配向一般,在絕緣膜表面設置以 聚醯亞胺等所構成之膜,在其之表面進行刷毛處理之方法 亦為佳。 作為前述絕緣體層之形成方法,依據材料可舉例使 用:真空蒸鐘法、分子線遙晶成長法、成團離子線束法、 低能量離子束法、離子鑛法、化學汽相沉積法、滅鍵法、 曰本特開平11-61406號公報、日本特開平11-133205號公報、 曰本特開2000-121804號公報、日本特開2000-147209號公報、 曰本特開2000-185362號公報所記載之常壓電漿法等乾製 程或是又喷敷法、旋轉塗布法、鍍敷法、浸鍍法、鑄膜法、 滾筒塗布法、棒塗布法、鑄膜塗布法(die coating)等之塗布 的方法、藉由印刷或喷墨等之圖案化的方法等的溼製程。 35 201000430 溼製程係可使用:依據需要使用界面活性劑等之分散補助 劑,將無機氧化物之微粒子分散於任意之有機溶劑或水的 溶液,予以塗布、乾燥之方法,或是將氧化物前驅體、例 如,烷氧化物體之溶液予以塗布、乾燥之所謂的溶膠-凝膠 法。 作為本發明之有機薄膜電晶體的形成方法,可藉由非 特定之已知方法,但是順從所欲之元件結構,一旦使基板 置入、閘極電極形成、絕緣體層形成、有機半導體層形成、 源極電極形成、汲極電極形成之前的一連串的元件製造步 驥完全不與大氣接觸而形成,由不會因與大氣接觸而造成 因可防止大氣中的水分或氧氣等所造成之元件性能的障 礙,而為較佳。萬一,在不得不與大氣接觸一次的情況下, 較佳是,有機半導體層成膜之後的步驟係定為完全不與大 氣接觸之步驟,在緊接於有機半導體層成膜之前,藉由紫 外線照射、紫外線/臭氧照射、氧氣電漿、氬電漿等,將積 層有機半導體層之面(例如,元件的情況下,在絕緣層上積 層有一部份的源極電極、汲極電極之表面)予以清淨化、活 性化之後,再積層有機半導體層。又,p型TFT材料之中, 也有一旦與大氣接觸,因吸附有氧氣等之原因而提升性能 者,因此依材料而可適當地與大氣接觸。 且,考量到例如,含於大氣中之氧氣、水等對於有機 半導體層之影響,亦可在有機電晶體元件之外周面的全部 或一部份上形成氣體障壁層。作用形成氣體障壁層之材 料,可使用該領域中常用之物,可舉例為:例如,聚乙烯 36 201000430 醇、乙烯-乙烯醇共聚物、聚氣乙烯、聚二氯亞乙烯、聚三 氟氯乙烯等。且,亦可使用前述絕緣體層所示例之具有絕 緣性之無機物。 本發明中可提供:利用源極電極與汲極電極間流動的 電流而發光,藉由施加電壓至閘極電極來控制發光之有機 薄膜發光電晶體。即,可使用有機薄膜電晶體作為發光元 件(有機EL)。由於可統合控制發光之電晶體與發光元件, 藉由顯示器的口徑比之提升或製作製程的簡易化而使降低 成本成為可能,帶給實用上很大的益處。使用作為有機發 光電晶體之時,有必要從源極電極、汲極電極的一邊注入 電洞,從另一邊注入電子,為提升發光性能,以滿足以下 條件者為較佳。 本發明之有機薄膜發光電晶體中,為提升電洞的注入 性,較佳是,源極電極及汲極電極之至少一者為電洞注入 性電極。電洞注入電極係含有上述工作函數為4.2eV以上之 物質的電極。另,電洞注入電極之工作函數的上限為,例 如 7.0eV。 又,為了提升電子之注入性,較佳是,源極電極及汲 極電極之至少一者為電子注入性電極。電子注入性電極係 含有上述工作函數為4_3eV以下之物質的電極。另,電子注 入電極之工作函數的下限為,例如1.8eV。 更佳是,有機薄膜發光電晶體係具備有:源極電極及 汲極電極之一者為電洞注入性之電極,且另一者為電子注 入性之電極。 37 201000430 又,為提升電洞之注入性,較佳是,源極電極及汲極 電極之至少一者之電極與有機半導體層之間,插入有電洞 注入層。電洞注入層,可舉例為:使用作為有機EL元件中 的電洞注入材料、電洞輸送材料之胺系材料。 又,為提升電子之注入性,較佳是,源極電極及汲極 電極之至少一電極與有機半導體層之間,插入有電子注入 性層。與電洞相同,電子注入層可使用用於有機EL元件之 電子注入材料 更佳是,有機薄膜發光電晶體具備有··源極電極及汲 極電極之一者的電極具有電洞注入層,且另一者的電極具 有電子注入層。 [實施例] 接著,藉由實施例更進一步詳細說明本發明。 合成例1(化合物(46)之合成) 藉由以下方式合成化合物(46)。合成路徑顯示於下。 [化學式7]Metals such as ZnO, NiO, Hf02, Ta2〇5, Re〇3, and Pb02, metal oxides other than metal-based metals, and inorganic compounds such as ZnS and ZnSe. In most cases, these oxides cause oxygen defects, which are suitable for hole injection. Further, in an organic EL element such as TPD or NPD or an organic EL element such as CuPc, a compound used as a hole injection layer or a hole transport layer may be used. Further, it is preferred to form two or more kinds of the above compounds. The buffer layer lowers the threshold voltage by lowering the injection barrier of the carrier, and it is known that the effect of driving the transistor at a low voltage is known, but it has been found that the compound having the effect of the present invention has not only a low voltage effect but also an effect of improving mobility. . This is because at the interface between the organic semiconductor and the insulator layer, there is a carrier ,3, and once the gate voltage is applied to cause the carrier to be implanted, the carrier just opened to the implant is used to plug the trap, but by inserting The buffer layer is trapped at a low voltage, so the mobility is improved. The buffer layer may be present between the electrode and the organic semiconductor layer in a thin layer, and has a thickness of 0.1 nm to 30 nm, preferably 〇3 nm to 20 nm. (Insulator Layer) The material of the insulating layer of the organic thin film transistor of the present invention is not particularly limited as long as it can be formed into an electrically insulating film, and a metal oxide (oxide containing cerium) can be used. A metal nitride (sand-containing nitride), a south molecule, an organic low molecule, etc., which have an electrical resistivity of 1 ODcm or more at room temperature, are particularly preferably an inorganic oxide film having a relatively high permittivity. . As the inorganic oxide, for example, cerium oxide, aluminum oxide, oxidation group, titanium oxide, tin oxide, cerium oxide, barium titanate, barium zirconate titanate, and acid acid titanate (lead) Zirconate titanate), lead titanate tantalum, barium titanate, barium titanate, barium magnesium fluoride, barium oxide, oxyfluoride, magnesium oxide, secret oxide, titanic acid, sharp oxide, barium titanate The group acid grade, the pentoxide group, the group acidity grade, the strontium (tri〇xide yttrium) and the combination of these are preferably cerium oxide, aluminum oxide, oxidation button, titanium oxide. 31 201000430 Further, inorganic oxides such as tantalum nitride (Si3N4, SixNy (x, y> 0)), and aluminum nitride are also suitable. And the 'insulator layer may also be formed by a precursor material containing an alkoxide metal' which is formed by coating a solution of the precursor substance on, for example, a substrate, and then treating it with a chemical solution containing a heat treatment to form an insulator layer. As the metal in the alkoxide metal, for example, a transition metal, an actinosteroid, or a member selected from a main group element, specifically, for example, barium (Ba), strontium (Sr), and titanium (Ti) ) '铋(Bi), 钽(Ta), vermiculite (Zr), iron (Fe), recorded (Νι), 猛 (Μη), lead (Pb), lanthanum (La), chain (Li), sodium ( Na), potassium (6), strontium (Rb), strontium (Cs), strontium (Fr), strontium (Be), magnesium (Mg), calcium (Ca), strontium (Nb), strontium (T1), mercury (Η§ ), copper (Cu), cobalt (Co), rhodium (Rh), antimony (Sc), and antimony (Y). Further, examples of the alkoxide in the alkoxide metal include, for example, an alcohol containing methanol, ethanol, propanol, isopropanol, butanol or isobutanol, and methoxyethanol. Ethoxyethanol, propoxyethanol, butoxyethanol, pentyloxyethanol, heptoxyethanol, decyloxypropanol, ethyl lactylpropanol, propoxypropanol, butoxypropanol, pentane A substance derived from an oxypropanol, an alkoxy alcohol of heptyloxypropanol or the like. In the X-month of the test, the insulator layer is formed by the above-mentioned materials, and the polarization in the insulating crucible is easily generated, which can reduce the critical electric resistance of the transistor operation, especially in the above materials, especially once by Si3N4, SixNy, (Υ> When a tantalum nitride is formed to form an insulator layer, a depleuon layer is more likely to be generated, and the threshold voltage of the transistor operation can be further reduced. As the insulator layer using an organic compound, polyimine, 32 201000430 polyamide, polyester, polyacrylic acid, photoradical polymerization, photocationic polymerization photocurable resin, copolymer containing acrylonitrile can be used. , polyvinyl benzene, polyethylene glycol, acid resin and cyanoethyl pullulan (cyanoethyl pullulan). Others, added to wax, polyethylene, polychloroprene, polyethylene terephthalate, polyformal, polyethylene, polypyridyl ethylene, polydecyl acrylate, polysulfone, polycarbonate , polyimidocyanoethyl pullulan, poly(ethyl benzoate) (PVP), poly(methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene ( PS), polyolefin, polypropylene decylamine, poly(acrylic acid), phenolic resin, resole phenolic resin, polyimine, polyxylylene, epoxy resin, high dielectric of polytriglucose, etc. A polymer material having a coefficient can also be used. As the organic compound material or polymer material used for the insulator layer, a material having water repellency is particularly preferable. By using a material having water repellency, the interaction between the insulator layer and the organic semiconductor layer can be suppressed, and the organic semiconductor system can improve the crystallinity of the organic semiconductor layer by utilizing the original cohesiveness, thereby improving the device performance. As an example of such materials, for example, a Yasuda expert published in jpn. j. Appl. phys. Vol. 42 (2003) pp_66M-66l8 contains a polypyrene (p〇iy_p_Xyiyiene) derivative or Jan〇s Veres et al., published in Chem. Mater., Vol. 16 (2004) ρρ·4543-4555. Further, when the top gate structure shown in Figs. 1 and 4 is used, the organic compound is used as the material of the Saki Prefecture, and the damage caused by the organic semiconductor layer is reduced to form a film. And an effective method. 33 201000430 The insulator layer may be a mixed layer of a plurality of inorganic or organic compound materials as described above, and the plurality of inorganic or organic compound material (four) layer structures may be used. In this case, the material of the apparatus can be controlled by the material of the electric coefficient and the material having the water repellency as needed. Further, the insulator layer may also contain an anodized film or the anode anodic film. As the structure thereof, it is preferable to use an anodized lining or a (iv) hole. The anodized film system can be formed by anodizing a metal which can be anodized by a known method. The method of the anodizing treatment is not particularly limited, and a known method can be used. An oxidized coating film can be formed by performing anodizing treatment. As an electrolytic solution used for anodizing, as long as it is ruthenium Any electrolyte solution can be used to form a porous oxide film, and generally, sulfuric acid, phosphoric acid, citric acid, chromic acid, boric acid, amine sulfonic acid, benzenesulfonic acid or the like, or a mixed acid of two or more of these acids or the like is used. Acid salt. The treatment conditions for anodization are various due to various changes in the electrolyte used, and the general suitable range is: electrolyte The concentration is the mass of the rib. The temperature of the electrolyte is 5 to 70 ° C, the current density is 〇·5~6〇A/cm2, the voltage is 100 volts, and the electrolysis time is 10 seconds to 5 minutes. Preferably, the anodizing treatment is a method of treating a direct current using an aqueous solution of sulfuric acid or tannic acid as an electrolytic solution, but an alternating current can also be used. The concentration of the acid is preferably Μ% by mass, and it is preferred to carry out electrolytic treatment for 20 to 25 sec under the temperature of the electrolyte of 20 to 5 (rc, current density: 〇 5 to 20 A/cm 2 ). Also:,,, as the thickness of the insulator layer, the thickness of the layer is too thin, which will cause the expansion. 201000430 The actual voltage applied to the organic semiconductor becomes larger, although the driving voltage and threshold voltage of the device itself can be reduced, but it will cause The leakage current between the source and the gate becomes large, and the necessity of selecting an appropriate film thickness is usually 1 Onm to 5 μm, preferably 50 nm to 2 μm, more preferably 100 nm to Ιμηι. Further, the foregoing insulator layer and Any alignment treatment may be applied between the organic semiconductor layers. As a preferred example, a water repellency treatment is applied to the surface of the insulator layer to reduce the interaction between the insulator layer and the organic semiconductor layer, and to improve the organic semiconductor. The method for crystallizing the layer, specifically, for example, in the liquid phase or in the gas phase, the sulphur coupling agent (for example, hexamethyldioxane, tristearyl decane, three) Chloroquinone decazane, or A self-assembled alignment film material of phosphoric acid, an alkanesulfonic acid, an alkanecarboxylic acid or the like is brought into contact with the surface of the insulating film to form a self-assembled film, and then subjected to an appropriate drying treatment. Further, if it is used for liquid crystal alignment, It is preferable to provide a film made of polyimide or the like on the surface of the insulating film, and a method of performing a bristle treatment on the surface thereof. As a method of forming the insulator layer, a vacuum vaporization method or a molecular line can be used as an example. Crystal growth method, agglomerated ion beam method, low-energy ion beam method, ion ore method, chemical vapor deposition method, de-bonding method, 曰本特开平11-61406, Japanese Patent Laid-Open No. 11-133205, 曰Dry process such as the normal-electrode slurry method described in JP-A-2000-147209, JP-A-2000-185362, or JP-A-2000-185362, or a spray coating method, a spin coating method, or a plating method A wet process such as a coating method, a immersion plating method, a casting method, a roll coating method, a bar coating method, a die coating method, or the like, a method of patterning by printing or inkjet, or the like. 35 201000430 Wet It can be used: a dispersion aid of a surfactant or the like is used, a fine particle of an inorganic oxide is dispersed in a solution of any organic solvent or water, coated or dried, or an oxide precursor, for example, A so-called sol-gel method in which a solution of an alkoxide body is applied and dried. As a method of forming the organic thin film transistor of the present invention, it can be by a non-specific known method, but conforms to the desired element structure once A series of device manufacturing steps before substrate formation, gate electrode formation, insulator layer formation, organic semiconductor layer formation, source electrode formation, and gate electrode formation are not formed in contact with the atmosphere at all, and are not in contact with the atmosphere. It is preferable because it can prevent the performance of the element due to moisture or oxygen in the atmosphere. In the case where it is necessary to contact the atmosphere once, it is preferred that the step after the film formation of the organic semiconductor layer is a step of not contacting the atmosphere at all, immediately before the film formation of the organic semiconductor layer, by Ultraviolet irradiation, ultraviolet/ozone irradiation, oxygen plasma, argon plasma, etc., the surface of the organic semiconductor layer is laminated (for example, in the case of an element, a portion of the surface of the source electrode and the drain electrode is laminated on the insulating layer) After the purification and activation, the organic semiconductor layer is laminated. Further, among the p-type TFT materials, if the oxygen is adsorbed by contact with the atmosphere, the performance may be improved. Therefore, the material may be appropriately brought into contact with the atmosphere depending on the material. Further, considering, for example, the influence of oxygen, water or the like contained in the atmosphere on the organic semiconductor layer, a gas barrier layer may be formed on all or a part of the outer peripheral surface of the organic transistor element. For the material forming the gas barrier layer, materials commonly used in the field can be used, for example, polyethylene 36 201000430 alcohol, ethylene-vinyl alcohol copolymer, polyethylene, polydivinylidene, polychlorotrifluorochloride Ethylene and the like. Further, an insulating inorganic substance as exemplified in the above insulator layer may be used. In the present invention, it is possible to provide an organic thin film light-emitting transistor which emits light by applying a voltage to a gate electrode by applying a current flowing between a source electrode and a drain electrode. That is, an organic thin film transistor can be used as the light-emitting element (organic EL). Since the light-emitting transistor and the light-emitting element can be integrated and controlled, it is possible to reduce the cost by increasing the aperture ratio of the display or simplifying the manufacturing process, which brings great practical benefits. When it is used as an organic photoelectric crystal, it is necessary to inject a hole from one side of the source electrode and the drain electrode and inject electrons from the other side, and it is preferable to improve the light-emitting performance to satisfy the following conditions. In the organic thin film light-emitting transistor of the present invention, in order to improve the injection property of the hole, it is preferable that at least one of the source electrode and the drain electrode is a hole injecting electrode. The hole injection electrode contains an electrode having a working function of 4.2 eV or more. In addition, the upper limit of the working function of the hole injection electrode is, for example, 7.0 eV. Further, in order to improve the injectability of electrons, it is preferable that at least one of the source electrode and the anode electrode is an electron injecting electrode. The electron injecting electrode is an electrode containing a substance having a working function of 4 to 3 eV or less. Further, the lower limit of the work function of the electron injection electrode is, for example, 1.8 eV. More preferably, the organic thin film light-emitting electric crystal system includes one of a source electrode and a drain electrode, and is an electrode for injecting electrons, and the other is an electrode for electron injection. 37 201000430 Further, in order to improve the injectability of the hole, it is preferable that a hole injection layer is interposed between the electrode of at least one of the source electrode and the drain electrode and the organic semiconductor layer. The hole injection layer can be exemplified by using an amine-based material which is a hole injecting material and a hole transporting material in the organic EL element. Further, in order to improve the injectability of electrons, it is preferable that an electron injecting layer is interposed between at least one of the source electrode and the drain electrode and the organic semiconductor layer. Similarly to the hole, the electron injecting layer can preferably use an electron injecting material for the organic EL element, and the organic thin film emitting transistor has a hole in which the electrode of one of the source electrode and the drain electrode has a hole injection layer. And the other electrode has an electron injection layer. [Examples] Next, the present invention will be described in further detail by way of examples. Synthesis Example 1 (Synthesis of Compound (46)) Compound (46) was synthesized in the following manner. The synthetic path is shown below. [Chemical Formula 7]

(46) 300毫升之三頸燒瓶中,置入4-溴-P-四苯基3.00g (8.87mmol)、四(三苯膦)!巴 0.513g(0.443mmol)、姨化亞銅 (I) 0.169g(0.886mmol),進行氬取代。於此加入三乙胺22 毫升、2-乙炔基萘3.09g(26.6mmol),在氬雾圍下,進行9 38 201000430 小時的加熱回流。藉由二氯曱烧、甲醇,將過濾反應液戶彳 得之固體予以洗淨,得到化合物(46) 2.36g(5.77mmol,產率 65%)。 藉由9〇MHz W-NMR及FD-MS(場致脫附質譜分析)之 測定,確認為目的物。FD-MS之測定結果顯示於下。 FD-MS理論計算為C48H30S2 = 378,發現m/z=378 (Μ+ 9 100)。 又,在26〇°C下將本化合物予以昇華精製。藉由昇華精 製所得之化合物(46)的純度為99.5%。 另,合成例1中,使用於FD-MS之測定之裝置及測定條 件顯示於下。 <FD-MS 測定> 裝置:HX11〇(曰本電子社製) 條件:加速電壓8kv 掃描範圍 實施例1(有機薄膜電晶體之製造) 藉由以下之順序,製造第7圖所示之有機薄膜電晶體。 首先’藉由中性洗劑、純水、丙酮及乙醇將玻璃基板1〇各 進行30分鐘的超音波洗淨之後,以濺鍍法成膜4〇nm的金 (An) ’來製作閘極電極15。接著,將該基板1〇設定於熱化 學 >飞相 >儿積裝置之成膜部。另一方面,在原料之蒸發部上 设置有培養皿’培養皿置入有絕緣體層原料,聚對二甲笨 衍生物[聚對二曱基苯(Parylene)](商品名;diX-C ’第三化 成杜製)250mg。藉由真空泵,對熱化學汽相沉積裝置進行 39 201000430 抽真空,減壓至5Pa之後’將蒸發部加熱至⑽七,聚合部 加熱至680 C ,並置放2小時,在閘極電極15上形成厚度丨^^ 之絕緣體層14 ° 接著,將基板設置於真空蒸鍍裝置(ULVAC社製, ΕΧ-4〇0)内,在絕緣體層上,以0.05nm/s的蒸鍍速度,將化 合物(46)成膜為50mn膜厚之有機半導體層13。接著,透過 金屬遮罩,而將金成膜至50ι nm之臈厚,藉此形成間隔(通道 長L)為7細’且互相不接續之源極電極n及沒極電㈣。 此時,源極電極與汲極電極之寬(通道寬w)係成膜為▲, 以製作有機薄膜電晶體3。 V。"w --TV V \ 厂甲J 拽 --------機溥膜電晶體的閘極 電極,施加電壓至源極該極通。此情況 下%洞被誘導至有機半導體層之通道領域⑽極與沒極 '、)而作動作P型電晶體。其結果,電流飽和區的源極與 2電極之間的電流開關比為3x1q5。又,藉由下述式㈧ 鼻出電洞之場效移動度μ係6xi〇-2cm2/Vs。 ^-(W/2L) . 〇μ . (Vg-Vt)2 (a) —A· 通道乒 Id係源極與汲極之間的電流,W係通道寬,L係 值電^極絕緣體層之單位面積之電容,%係閘極閾 ^ ,VG係閘極電壓。 只&^]2(有機薄膜電晶體之製造) 化合物1有機半導體層之材料,除了使用化合物(28)來取代 膜電晶^6。)之外’藉由與實施例1相同的方式,製作有機薄 關於所得之有機薄骐電晶體,藉由與實施例^目 40 201000430 同的方式,以-40V之閘極電壓VG來驅動p型電晶體。測定源 極與汲極電極間之電流的開關比,電洞之場效移動度μ之計 算結果係顯示於表1。 實施例3 (有機薄膜電晶體之製造) 作為有機半導體層之材料,除了使用化合物(61)來取代 化合物(46)之外,藉由與實施例1相同的方式,製作有機薄 膜電晶體。關於所得之有機薄膜電晶體,藉由與實施例1相 同的方式,以-40V之閘極電壓VG來驅動ρ型電晶體。測定源 極與汲極電極間之電流的開關比,電洞之場效移動度μ之計 算結果係顯示於表1。 實施例4(有機薄膜電晶體之製造) 作為有機半導體層之材料,除了使用化合物(62)來取代 化合物(46)之外,藉由與實施例1相同的方式,製作有機薄 膜電晶體。關於所得之有機薄膜電晶體,藉由與實施例1相 同的方式,以-40V之閘極電壓VG來驅動ρ型電晶體。測定源 極與汲極電極間之電流的開關比,電洞之場效移動度μ之計 算結果係顯示於表1。 實施例5 (有機薄膜電晶體之製造) 作為有機半導體層之材料,除了使用化合物(86)來取代 化合物(46)之外,藉由與實施例1相同的方式,製作有機薄 膜電晶體。關於所得之有機薄膜電晶體,藉由與實施例1相 同的方式,以-40V之閘極電壓VG來驅動ρ型電晶體。測定源 極與汲極電極間之電流的開關比,電洞之場效移動度μ之計 算結果係顯示於表1。 41 201000430 比較例1 (有機薄膜電晶體之製造) 作為有機半導體層之材料,除了使用對-聯六苯(比較化 合物1,下記為6Ph)來取代化合物(46)之外,藉由與實施例1 相同的方式,製作有機薄膜電晶體。關於所得之有機薄膜 電晶體,藉由與實施例1相同的方式,以-40V之閘極電壓VG 來驅動p型電晶體。測定源極與汲極電極間之電流的開關 比,電洞之場效移動度μ之計算結果係顯示於表1。 比較例2(有機薄膜電晶體之製造) 作為有機半導體層之材料,除了使用二蒽基乙炔 (bisanthracenyl acetylene,表示為比較化合物2,下記為ΒΑΑ) 來取代化合物(46)之外,藉由與實施例1相同的方式,製作 有機薄膜電晶體。關於所得之有機薄膜電晶體,藉由與實 施例1相同的方式,以-40V之閘極電壓VG來驅動p型電晶 體。測定源極與汲極電極間之電流的開關比,電洞之場效 移動度μ之計算結果係顯示於表1。 [表1] 有機半導體層 之化合物種類 電晶體之種類 場效移動 度(cm2/Vs) 開關比 實施例1 (46) P型 6xl〇·2 5χ105 實施例2 (28) P型 3xl0'2 3χ105 實施例3 (61) P型 2χ10'2 2χ105 實施例4 (62) P型 3χ1〇·2 4χ105 實施例5 (86) P型 2χ1〇·2 3χ105 比較例1 6Ph P型 6χ10'6 2χ102 比較例2 BAA P型 9χ1〇·3 2χ104 [化學式8] 42 201000430(46) In a 300 ml three-necked flask, 4-bromo-P-tetraphenyl 3.00 g (8.87 mmol) and tetrakis(triphenylphosphine) were placed! 0.513 g (0.443 mmol) and cuprous copper (I) 0.169 g (0.886 mmol) were subjected to argon substitution. Hereto, 22 ml of triethylamine and 3.09 g (26.6 mmol) of 2-ethynylnaphthalene were added, and under reflux of argon, 9 38 201000430 hours of heating was refluxed. The solid obtained by filtration of the reaction mixture was washed with chlorobenzene and methanol to give the compound (46) 2.36 g (5.77 mmol, yield 65%). The object was confirmed by measurement by 9 〇 MHz W-NMR and FD-MS (field-induced desorption mass spectrometry). The measurement results of FD-MS are shown below. The theoretical calculation of FD-MS is C48H30S2 = 378, and m/z = 378 (Μ + 9 100) is found. Further, the compound was sublimed and purified at 26 °C. The compound (46) obtained by sublimation purification had a purity of 99.5%. Further, in Synthesis Example 1, the apparatus and measurement conditions used for the measurement of FD-MS are shown below. <FD-MS measurement> Apparatus: HX11(R) (manufactured by Sakamoto Electronics Co., Ltd.) Condition: Accelerating voltage: 8 kV Scanning range Example 1 (manufacturing of organic thin film transistor) By the following procedure, the manufacturing method shown in Fig. 7 was produced. Organic thin film transistor. First, the glass substrate was ultrasonically washed for 30 minutes by a neutral detergent, pure water, acetone, and ethanol, and then a gold (An) ' of 4 〇 nm was formed by sputtering to form a gate. Electrode 15. Next, the substrate 1〇 was set in the film formation portion of the thermal chemical > fly phase > On the other hand, a petri dish is placed on the evaporation portion of the raw material. The petri dish is filled with an insulator layer material, and a polyparaphenylene derivative [Parylene] (trade name; diX-C ' The third chemical formation of Du) 250mg. The hot chemical vapor deposition apparatus was vacuumed by a vacuum pump 39 201000430, and after depressurization to 5 Pa, the evaporation section was heated to (10) seven, the polymerization section was heated to 680 C, and placed for 2 hours to form on the gate electrode 15. Insulator layer 14° having a thickness of ^^^ Next, the substrate was placed in a vacuum vapor deposition apparatus (manufactured by ULVAC, ΕΧ-4〇0), and the compound was applied to the insulator layer at a deposition rate of 0.05 nm/s. 46) An organic semiconductor layer 13 having a film thickness of 50 nm is formed. Next, through the metal mask, gold is formed to a thickness of 50 ι nm, thereby forming a source electrode n and a non-polarity (four) having a spacing (channel length L) of 7 Å and not continuing. At this time, the width of the source electrode and the drain electrode (channel width w) was ▲ to form an organic thin film transistor 3. V. "w --TV V \厂甲J 拽 -------- The gate electrode of the 溥 film transistor, the voltage is applied to the source. In this case, the % hole is induced into the channel region (10) of the organic semiconductor layer (10) and the poleless ',) to act as a P-type transistor. As a result, the current-to-switch ratio between the source and the 2 electrode of the current saturation region is 3x1q5. Further, the field effect mobility μ of the nose outlet hole is 6xi〇-2cm2/Vs by the following formula (8). ^-(W/2L) . 〇μ . (Vg-Vt)2 (a) —A· Channel ping Id source current between the source and the drain, W system channel width, L system value electrode insulator layer The capacitance per unit area, % is the gate threshold ^, VG system gate voltage. Only &^]2 (manufacture of organic thin film transistor) The material of the compound 1 organic semiconductor layer was replaced by the compound (28) instead of the film electrocrystal. In the same manner as in the first embodiment, an organic thin tantalum transistor obtained by thinning is produced, and in the same manner as in the embodiment 40 201000430, the gate voltage VG of -40 V is used to drive p. Type transistor. The switching ratio of the current between the source and the drain electrode was measured, and the calculation results of the field effect mobility μ of the hole are shown in Table 1. (Example 3) (Production of Organic Thin Film Transistor) An organic thin film transistor was produced in the same manner as in Example 1 except that the compound (61) was used instead of the compound (46). With respect to the obtained organic thin film transistor, a p-type transistor was driven at a gate voltage VG of -40 V in the same manner as in the first embodiment. The switching ratio of the current between the source and the drain electrode was measured, and the calculation results of the field effect mobility μ of the hole are shown in Table 1. Example 4 (Production of Organic Thin Film Transistor) As a material of the organic semiconductor layer, an organic thin film transistor was produced in the same manner as in Example 1 except that the compound (62) was used instead of the compound (46). With respect to the obtained organic thin film transistor, a p-type transistor was driven at a gate voltage VG of -40 V in the same manner as in the first embodiment. The switching ratio of the current between the source and the drain electrode was measured, and the calculation results of the field effect mobility μ of the hole are shown in Table 1. Example 5 (Production of Organic Thin Film Transistor) As a material of the organic semiconductor layer, an organic thin film transistor was produced in the same manner as in Example 1 except that the compound (86) was used instead of the compound (46). With respect to the obtained organic thin film transistor, a p-type transistor was driven at a gate voltage VG of -40 V in the same manner as in the first embodiment. The switching ratio of the current between the source and the drain electrode was measured, and the calculation results of the field effect mobility μ of the hole are shown in Table 1. 41 201000430 Comparative Example 1 (Production of Organic Thin Film Transistor) As a material of the organic semiconductor layer, in addition to the use of p-biphenylbenzene (Comparative Compound 1, hereinafter referred to as 6Ph) in place of the compound (46), 1 In the same way, an organic thin film transistor was fabricated. With respect to the obtained organic thin film transistor, a p-type transistor was driven at a gate voltage VG of -40 V in the same manner as in the first embodiment. The switching ratio of the current between the source and the drain electrode was measured, and the calculation results of the field effect mobility μ of the hole are shown in Table 1. Comparative Example 2 (Production of Organic Thin Film Transistor) As a material of the organic semiconductor layer, in place of the compound (46), in place of the compound (46), except that bisanthracenyl acetylene (hereinafter referred to as Comparative Compound 2, hereinafter referred to as ΒΑΑ) was used. In the same manner as in Example 1, an organic thin film transistor was produced. With respect to the obtained organic thin film transistor, a p-type electric crystal was driven at a gate voltage VG of -40 V in the same manner as in the first embodiment. The switching ratio of the current between the source and the drain electrode was measured, and the calculation results of the field effect mobility μ of the hole are shown in Table 1. [Table 1] Compound type of organic semiconductor layer Type of field effect mobility (cm2/Vs) Switching ratio Example 1 (46) P type 6xl〇·2 5χ105 Example 2 (28) P type 3xl0'2 3χ105 Example 3 (61) P type 2χ10'2 2χ105 Example 4 (62) P type 3χ1〇·2 4χ105 Example 5 (86) P type 2χ1〇·2 3χ105 Comparative example 1 6Ph P type 6χ10'6 2χ102 Comparative example 2 BAA P type 9χ1〇·3 2χ104 [Chemical Formula 8] 42 201000430

(28)(28)

η::有機薄膜發光電晶體之製造)η::Manufacture of organic thin film light-emitting transistors)

-出j ^下之順序’製造有機薄膜發光電晶體。首先, 曰…、氧化去’將Si基板(P型比電阻⑴⑽兼作為閘極電極) 予以氧化’在基板上製作3 〇〇nm之熱氧化膜來作為絕 緣體層。i,藉由乾式料,將在基板的另―面上成膜之 Sl〇2膜完全去除之後,II由雜法將鉻成膜為2〇nm之膜 厚,又’藉由濺鍍’於其之上將金(Au)成膜為10011111之膜厚, 來作為閘極電極。藉由中性洗劑、純水、丙酮及乙醇將該 基板各進行30分鐘的超音波洗淨。 接著,設置於真空蒸鍍裝置(ULVAC社製,EX-900), 在絕緣體層(Si〇2)上’以0 05nm/s之蒸鍍速度,將前述化合 43 201000430 物(46)成膜為lOOnm膜厚之有機半導體發光層。 接著,將具财電驗Μ電極(Au)#;電子輸送性電 極陶之源極電極政極電極,形成如第_所示者。 具體的言’如與上述相同者,設置通道長75隅、通道 寬5mm之金屬遮罩2卜將製膜成為有機半導體發光層之基 板2〇,以相對於蒸發源傾斜45度之狀態,透過遮罩,將金 22成膜為5Gnm之膜厚(第8圖⑴(2))。接著,將基板观相 反方向傾斜45度之狀態,將鎂23蒸鍵成⑽⑽之膜厚(第8 圖(3))。藉此,具備有電洞注入性電極2取顺電子輸送性 電極23(Mg)之源極電極及祕電極細相互不接續的方式 形成,以製作有機薄膜發光電晶體(第8圖(4))。 -旦施加-100V至源極與汲極之間,且施加巧麟至閑 極電極,則會得雜ed/m2之藍色發光。發光光譜顯示於第 9圖。 產業上利用性 如以上之詳細説明,本發明之有機薄犋電晶體,藉由 使用具有高電子移動度之特定結構的化合物作為有機半導 體層之材料,使應答速度(驅動速度)高速,而且開關比大, 而為高性能之電晶體,亦可利用作為可發光之有機薄膜發 光電晶體。 本說明書所記載之文獻内容全部援用於此。 【圖式簡單說明】 第1圖係顯示本發明之有機薄膜電晶體的元件結構之 —例示圖。 44 201000430 第2圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第3圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。。 第4圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第5圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第6圖係顯示本發明之有機薄膜電晶體的元件結構之 一例示圖。 第7圖係顯示本發明之實施例中有機薄膜電晶體的元 件結構之一例示圖。 第8圖(1)〜(4)係顯不具有電洞注入性電極與電子輸送 性電極之源極電極及汲極電極的製造步驟的圖式。 第9圖係顯示實施例6中所得之本發明的有機薄膜發光 電晶體之發光光譜之圖式。 【主要元件符號說明】 13.. .有機半導體層 14.. .絕緣體層 15.. .閘極電極 20.. .基板 21.. .金屬遮罩 22.. .電洞注入性電極(金) 23.. .電子輸送性電極(鎂) 1.. .有機薄膜電晶體 2.. .有機薄膜電晶體 3.. .有機薄膜電晶體 4.. .有機薄膜電晶體 10.. .基板 11.. .源極電極 12…汲極電極 45- The order of j ^ is made to manufacture an organic thin film light-emitting transistor. First, the Si substrate (P-type specific resistance (1) (10) also serves as a gate electrode) is oxidized. A thermal oxide film of 3 〇〇 nm is formed on the substrate as an insulator layer. i, after the S1〇2 film formed on the other side of the substrate is completely removed by the dry material, II is formed by the hetero-method filming into a film thickness of 2 〇nm, and by 'sputtering' On the upper side, gold (Au) is formed into a film thickness of 10011111 to serve as a gate electrode. The substrate was subjected to ultrasonic cleaning for 30 minutes by a neutral detergent, pure water, acetone, and ethanol. Then, it was set in a vacuum vapor deposition apparatus (EX-900, manufactured by ULVAC Co., Ltd.), and the compound 43 (2010) was formed into a film at a vapor deposition rate of 0 05 nm/s on the insulator layer (Si 2 ). An organic semiconductor light-emitting layer having a thickness of 100 nm. Next, the electrode electrode of the source electrode (Au)#; the electrode of the electron transporting electrode is formed as shown in the first paragraph. Specifically, as in the above, a metal mask having a channel length of 75 Å and a channel width of 5 mm is provided, and the substrate 2 is formed into an organic semiconductor light-emitting layer, and is slanted by 45 degrees with respect to the evaporation source. In the mask, gold 22 is formed into a film thickness of 5 Gnm (Fig. 8 (1) (2)). Next, the substrate was tilted by 45 degrees in the opposite direction, and the magnesium 23 was steamed to have a film thickness of (10) (10) (Fig. 8 (3)). In this way, the source electrode and the secret electrode including the electron-transporting electrode 23 (Mg) having the hole injecting electrode 2 are formed so as to be thin, so as to form an organic thin film light-emitting transistor (Fig. 8 (4) ). Once -100V is applied between the source and the drain, and the Qiaolin to the free electrode is applied, the blue light of the ed/m2 is obtained. The luminescence spectrum is shown in Fig. 9. Industrial Applicability As described in detail above, the organic thin tantalum transistor of the present invention has a high response speed (driving speed) by using a compound having a specific structure having a high electron mobility as a material of the organic semiconductor layer, and the switch A large-sized, high-performance transistor can also be used as a light-emitting organic thin film light-emitting transistor. The contents of the documents described in this specification are all incorporated herein by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an example of the structure of an element of an organic thin film transistor of the present invention. 44 201000430 Fig. 2 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 3 is a view showing an example of the element structure of the organic thin film transistor of the present invention. . Fig. 4 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 5 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 6 is a view showing an example of the element structure of the organic thin film transistor of the present invention. Fig. 7 is a view showing an example of the element structure of the organic thin film transistor in the embodiment of the present invention. Fig. 8 (1) to (4) show patterns of manufacturing steps of the source electrode and the drain electrode of the electron injecting electrode and the electron transporting electrode. Fig. 9 is a view showing the luminescence spectrum of the organic thin film luminescent transistor of the present invention obtained in Example 6. [Description of main component symbols] 13.. Organic semiconductor layer 14.. Insulator layer 15.. Gate electrode 20.. Substrate 21.. Metal mask 22.. Hole injection electrode (Gold) 23.. Electron transporting electrode (magnesium) 1.. Organic thin film transistor 2. Organic thin film transistor 3. Organic thin film transistor 4. Organic thin film transistor 10.. . Source electrode 12...汲 electrode 45

Claims (1)

201000430 七、申請專利範圍: 1. 一種有機薄膜電晶體用化合物,具有下述式(1)之結構: [化學式1] Χ^^-ΑΙΊ (1) 式中,X係表示下述式(2)〜(4)所示之任一基; Ar!係碳數6〜60之芳香族烴基、碳數1〜60之芳香族雜環 基、或具有該等芳香族基經過2環以上連結而得之結構的基 團,該等各基亦可具有取代基; [化學式2]201000430 VII. Patent application scope: 1. A compound for an organic thin film transistor having the structure of the following formula (1): [Chemical Formula 1] Χ^^-ΑΙΊ (1) wherein X represents the following formula (2) Any one of the groups shown in the above-mentioned (4); Ar! is an aromatic hydrocarbon group having 6 to 60 carbon atoms; an aromatic heterocyclic group having 1 to 60 carbon atoms; or having such an aromatic group linked via 2 or more rings; a group having a structure, wherein each of the groups may have a substituent; [Chemical Formula 2] 之烷基、碳數1〜30之鹵烷基、碳數1〜30之烷氧基、碳數1〜30 之鹵烷氧基、碳數1〜30之烷硫基、碳數1〜30之i烷硫基、 碳數1〜30之烷基胺基、碳數2〜60之二烷基胺基(烷基亦可相 互結合而形成含有氮原子之環結構)、碳數1〜30之烷硫醯 基、碳數1〜30之鹵烷硫醯基;碳數6〜60之芳香族烴基、碳 數3〜60之芳香族雜環基、具有該等芳香族基經過2環以上連 結而得之結構的基團;碳數3〜20之烷矽基、碳數5〜60之烷 石夕乙炔基(alkylsilyl acetylenic group)或氰基,該等各基亦可 具有取代基; R6〜R15係各自為氫原子、鹵素原子、碳數1〜30之烷基、 46 201000430 碳數1〜30之鹵烷基、碳數1〜30之烷氧基、碳數1~30之鹵烷 氧基、碳數1〜30之烷硫基、碳數1〜30之i烷硫基、碳數1〜3〇 之烷基胺基、碳數2〜60之二烷基胺基(烷基亦可相互結合而 形成含有氮原子之環結構)、碳數1〜30之烷硫醯基、碳數 1〜30之鹵烷硫醯基、碳數6〜60之芳香族烴基、碳數3〜60之 芳香族雜環基、碳數3〜20之烷矽基、碳數5〜60之烷矽乙块 基(alkylsilyl acetylenic group)或氰基,該等各基亦可具有取 代基’又,亦可為藉由相鄰基相互連結而形成之碳數6〜 之芳香族烴基、碳數3〜60之芳香族雜環基或碳數6~60之飽 和環狀結構)。 2.如申請專利範圍第1項之有機薄膜電晶體用化合物,於 前述式(1)中’ Ar!係經取代或無取代之碳數6〜6〇之芳香 族烴基。 3.如申請專利範圍第丨項之有機薄膜電晶體用化合物,於 前述式(1)中,An係經取代或無取代之碳數卜6〇之芳香 族雜環基。 个如申請專利範圍第1項之有機薄膜電晶體用化合物,於 前述式(1)中,ΑΓι係將經取代或無取代之碳數6〜6〇之芳 香族煙基、及/或經取代或無取代之碳數丨〜6〇之芳香族雜 環基經過2環以上連結而得的結構。 用化合物,於 。比嗪、喹啉、An alkyl group, a haloalkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a haloalkoxy group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, and a carbon number of 1 to 30 i alkylthio group, alkylamino group having 1 to 30 carbon atoms, dialkylamino group having 2 to 60 carbon atoms (alkyl groups may be bonded to each other to form a ring structure containing a nitrogen atom), and carbon number is 1 to 30. An alkylthio group, a halogen alkylthio group having 1 to 30 carbon atoms; an aromatic hydrocarbon group having 6 to 60 carbon atoms; an aromatic heterocyclic group having 3 to 60 carbon atoms; a group having a structure obtained by linking; an alkylene group having 3 to 20 carbon atoms; an alkylsilyl acetylenic group having a carbon number of 5 to 60; or a cyano group, wherein each of the groups may have a substituent; Each of R15 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms, 46 201000430, a haloalkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and a halogen having 1 to 30 carbon atoms. An oxy group, an alkylthio group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 3 carbon atoms, and a dialkylamino group having 2 to 60 carbon atoms (alkyl group) Can also be combined with each other to form a ring structure containing a nitrogen atom), carbon number 1 to 3 Alkanethiol group of 0, haloalkyl sulfonyl group having 1 to 30 carbon atoms, aromatic hydrocarbon group having 6 to 60 carbon atoms, aromatic heterocyclic group having 3 to 60 carbon atoms, alkyl alkane group having 3 to 20 carbon atoms And an alkylsilyl acetylenic group or a cyano group having a carbon number of 5 to 60, and each of the groups may have a substituent 'or a carbon number of 6 to be formed by linking adjacent groups to each other. An aromatic hydrocarbon group, an aromatic heterocyclic group having 3 to 60 carbon atoms or a saturated cyclic structure having a carbon number of 6 to 60). 2. The compound for an organic thin film transistor according to the first aspect of the invention, wherein in the above formula (1), the 'Ar! is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 6 carbon atoms. 3. The compound for an organic thin film transistor according to the scope of the invention, wherein in the above formula (1), An is a substituted or unsubstituted carbon number of an aromatic heterocyclic group. A compound for an organic thin film transistor according to the first aspect of the invention, wherein in the above formula (1), the oxime is a substituted or unsubstituted aromatic group having 6 to 6 carbon atoms, and/or substituted Or an unsubstituted carbon number 丨~6〇 of an aromatic heterocyclic group obtained by linking two or more rings. Use the compound, in . Bisazine, quinoline, 、吩嗪、二氮雜蒽 如申請專利範圍第1項之有機薄膜電晶體用化合物 前述式(1)中, 構之基:苯、I 47 201000430 (diazaanthracene)、。比11定并啥琳、σ密咬并啥嗤琳、。比嗪口i: 嗔琳、菲羅琳、味嗤、二笨并。塞吩、。塞吩并。塞吩、二養 吩并噻吩、[1]苯并噻吩并[3,2-b]苯并噻吩、聯伸二苯、 三聯伸苯(terphenylene)、聯萘、聯蒽、苯基σ塞吩、π塞吩 基萘、噻吩基I、苯基萘、苯基蒽、D比啶基萘、σ比啶基 蒽、聯噻吩及三聯噻吩。 6. 如申請專利範圍第1項之有機薄膜電晶體用化合物,於 前述式(1)中,R1〜R15係各自為氫原子、鹵素原子、碳數 1〜30之烧基、碳數5〜60之烧石夕乙快基(alkylsilyl acetylenic group)、石炭數1〜30之鹵烧基或氰基。 7. 如申請專利範圍第1項之有機薄膜電晶體用化合物,於 前述式(1)中,R6〜R15之中至少鄰接的兩個基相互連結形 成碳數6〜60之芳香族烴基、或碳數3〜60之芳香族雜環 基。 8. —種有機薄膜電晶體,其具有閘極電極、源極電極及汲 極電極之3端子、絕緣體層以及有機半導體層,且藉由 施加電壓至閘極電極,來控制源極與汲極之間的電流, 前述有機薄膜電晶體中,前述有機半導體層包含如申請 專利範圍第1〜7項中任一項之有機薄膜電晶體用化合 物。 9. 如申請專利範圍第8項之有機薄膜電晶體,其利用前述 源極電極與汲極電極之間流動的電流而發光,藉由施加 電壓至閘極電極來控制發光。 10. 如申請專利範圍第9項之有機薄膜電晶體,其中,源極 48 201000430 電極與汲極電極之其中之一者為工作函數4_2eV以上之 物質所構成,另一者為工作函數4.3eV以下之物質所構 成。 11.如申請專利範圍第8項之有機薄膜電晶體,其中,源極 電極及汲極電極與有機半導體層之間具有緩衝層。 49, phenazine, diazepine, and the compound for an organic thin film transistor according to the first aspect of the patent application. In the above formula (1), the group is: benzene, I 47 201000430 (diazaanthracene). Compared with 11 and Lin Lin, σ close bite and Yu Lin. Biazine mouth i: 嗔琳, 菲罗琳, miso, and two stupid. Sai,. The plug is ok. Cephthophene, diphenanthrinothiophene, [1] benzothieno[3,2-b]benzothiophene, terphenyldiphenyl, terphenylene, binaphthyl, hydrazine, phenyl sigma, Πsecenylnaphthalene, thienyl I, phenylnaphthalene, phenylhydrazine, D-pyridylnaphthalene, σ-pyridylhydrazine, bithiophene, and tert-thiophene. 6. The compound for an organic thin film transistor according to the first aspect of the invention, wherein in the above formula (1), each of R1 to R15 is a hydrogen atom, a halogen atom, a carbon number of 1 to 30, and a carbon number of 5~ 60 alkylsilyl acetylenic group, a charcoal number of 1 to 30 halogenated or cyano group. 7. The compound for an organic thin film transistor according to the first aspect of the invention, wherein in the above formula (1), at least two adjacent groups of R6 to R15 are bonded to each other to form an aromatic hydrocarbon group having 6 to 60 carbon atoms, or An aromatic heterocyclic group having 3 to 60 carbon atoms. 8. An organic thin film transistor having a gate electrode, a source electrode, and a drain terminal, an insulator layer, and an organic semiconductor layer, and controlling the source and the drain by applying a voltage to the gate electrode In the organic thin film transistor, the organic thin film comprises the compound for an organic thin film transistor according to any one of claims 1 to 7. 9. The organic thin film transistor of claim 8, wherein the light is emitted by a current flowing between the source electrode and the drain electrode, and the light is controlled by applying a voltage to the gate electrode. 10. The organic thin film transistor according to claim 9 wherein the source 48 201000430 one of the electrode and the drain electrode is composed of a substance having a working function of 4_2 eV or more, and the other is a working function of 4.3 eV or less. The composition of matter. 11. The organic thin film transistor of claim 8, wherein a buffer layer is provided between the source electrode and the drain electrode and the organic semiconductor layer. 49
TW098111808A 2008-04-10 2009-04-09 Chemical compound used for organic thin film transistor and organic thin film transistor TW201000430A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102493 2008-04-10

Publications (1)

Publication Number Publication Date
TW201000430A true TW201000430A (en) 2010-01-01

Family

ID=41161854

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098111808A TW201000430A (en) 2008-04-10 2009-04-09 Chemical compound used for organic thin film transistor and organic thin film transistor

Country Status (3)

Country Link
JP (1) JP5452476B2 (en)
TW (1) TW201000430A (en)
WO (1) WO2009125721A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563989B2 (en) 2011-12-15 2013-10-22 Au Optronics Corporation Light emitting device with an electrode having an dual metal alloy
CN103429705A (en) * 2011-03-24 2013-12-04 默克专利股份有限公司 Compounds having a C-C-triple bond

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254100B1 (en) * 2010-12-31 2013-04-12 경상대학교산학협력단 Novel organic semiconductor and Organic thin film transistor using the same
JP2013033823A (en) * 2011-08-01 2013-02-14 National Institute Of Advanced Industrial & Technology Organic semiconductor material
TWI535726B (en) 2012-09-10 2016-06-01 迪愛生股份有限公司 Benzothieno benzothiophene derivative, an organic semiconductor material and organic transistor
US9868905B2 (en) 2012-09-21 2018-01-16 Merck Patent Gmbh Compounds having a C—C triple bond and use thereof in liquid-crystal mixtures
WO2018199258A1 (en) * 2017-04-26 2018-11-01 国立大学法人九州大学 Electrode, structure and method for manufacturing same, connection structure, and element in which said electrode is used
JP6355288B1 (en) * 2017-04-26 2018-07-11 国立大学法人九州大学 Electrode, structure and manufacturing method thereof, connection structure, and element using the electrode

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186225B2 (en) * 1991-10-02 2001-07-11 セイコーエプソン株式会社 Tolan derivative, liquid crystal composition containing the same, and liquid crystal display device using the same
JP3187101B2 (en) * 1991-11-20 2001-07-11 旭硝子株式会社 Tetrafluorobenzene derivative compound, liquid crystal composition, and liquid crystal display device
JPH10289786A (en) * 1997-04-14 1998-10-27 Toyo Ink Mfg Co Ltd Organic electroluminescent element material and organic electroluminescent element using the same
JP2004224710A (en) * 2003-01-21 2004-08-12 Mitsui Chemicals Inc Optical recording medium and arylacetylene compound
US7651787B2 (en) * 2003-02-19 2010-01-26 Lg Display Co., Ltd. Organic electroluminescent device
US7800103B2 (en) * 2004-12-02 2010-09-21 Konica Minolta Holdings, Inc. Organic thin film transistor material, organic thin film transistor, field-effect transistor, switching element, organic semiconductor material and organic semiconductor film
US20060234084A1 (en) * 2005-04-19 2006-10-19 Eastman Kodak Company OLED device with improved luminescent layer
JP4873478B2 (en) * 2005-11-25 2012-02-08 独立行政法人産業技術総合研究所 Conjugated transparent polymer material
WO2007105473A1 (en) * 2006-03-10 2007-09-20 Konica Minolta Holdings, Inc. Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
JP5157079B2 (en) * 2006-04-19 2013-03-06 コニカミノルタホールディングス株式会社 Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
JP2007311609A (en) * 2006-05-19 2007-11-29 Konica Minolta Holdings Inc Material, film, and device for organic semiconductor and organic thin-film transistor
WO2007145293A1 (en) * 2006-06-16 2007-12-21 Asahi Glass Company, Limited Novel fluorine-containing aromatic compounds, organic semiconductor materials, and organic this film devices
JP2008004725A (en) * 2006-06-22 2008-01-10 Konica Minolta Holdings Inc Material, film, and device of organic semiconductor and organic thin film transistor
JP2008078279A (en) * 2006-09-20 2008-04-03 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
WO2008044695A1 (en) * 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
JP2008103464A (en) * 2006-10-18 2008-05-01 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic thin film transistor
JP2008251575A (en) * 2007-03-29 2008-10-16 Konica Minolta Holdings Inc Process for fabricating organic thin-film transistor, and organic thin-film transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429705A (en) * 2011-03-24 2013-12-04 默克专利股份有限公司 Compounds having a C-C-triple bond
TWI642652B (en) * 2011-03-24 2018-12-01 馬克專利公司 Compounds containing a c-c triple bond
US8563989B2 (en) 2011-12-15 2013-10-22 Au Optronics Corporation Light emitting device with an electrode having an dual metal alloy

Also Published As

Publication number Publication date
WO2009125721A1 (en) 2009-10-15
JP5452476B2 (en) 2014-03-26
JPWO2009125721A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5337490B2 (en) Organic thin film transistor and organic thin film light emitting transistor
JP5368797B2 (en) Organic thin film transistor device and organic thin film light emitting transistor
JP5299807B2 (en) Benzodithiophene derivative, organic thin film transistor and organic thin film light emitting transistor using the same
TW201014006A (en) Compound for organic thin film transistor and organic thin film transistor using the same
WO2008059817A1 (en) Organic thin film transistor and organic thin film light-emitting transistor
WO2008069061A1 (en) Organic thin film transistor and organic thin film light emitting transistor
TW201016639A (en) Compound for organic thin film transistor and organic thin film transistor using the same
TW201016637A (en) Compound for organic thin film transistor and organic thin film transistor using same
TW201000430A (en) Chemical compound used for organic thin film transistor and organic thin film transistor
TWI423341B (en) Organic thin film transistor and organic thin film emitting transistor
JP5308164B2 (en) Organic thin film transistor and organic thin film light emitting transistor
JP5528330B2 (en) Compound for organic thin film transistor and organic thin film transistor using the same
JP5452475B2 (en) Compound for organic thin film transistor and organic thin film transistor using the same
JP5329404B2 (en) Organic thin film transistor and organic thin film light emitting transistor
JP2010275239A (en) New condensed aromatic ring compound and organic thin film transistor using the same
TWI424599B (en) Organic thin film transistor and organic thin film emitting transistor