TW200952007A - Energy cell package - Google Patents

Energy cell package Download PDF

Info

Publication number
TW200952007A
TW200952007A TW97120470A TW97120470A TW200952007A TW 200952007 A TW200952007 A TW 200952007A TW 97120470 A TW97120470 A TW 97120470A TW 97120470 A TW97120470 A TW 97120470A TW 200952007 A TW200952007 A TW 200952007A
Authority
TW
Taiwan
Prior art keywords
energy storage
metal substrate
conductive electrode
substrate
storage element
Prior art date
Application number
TW97120470A
Other languages
Chinese (zh)
Inventor
Chien-Chiang Chan
Original Assignee
Chien-Chiang Chan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien-Chiang Chan filed Critical Chien-Chiang Chan
Priority to TW97120470A priority Critical patent/TW200952007A/en
Priority to JP2008254564A priority patent/JP2009295955A/en
Publication of TW200952007A publication Critical patent/TW200952007A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

An energy cell package includes an energy cell, a first metal substrate, a second metal substrate, and an insulating layer. The energy cell is placed in between the first metal substrate and the second metal substrate. The first metal substrate parallels the upper surface of the energy cell and has a side extending outward the energy cell as a first electrode. The second metal substrate parallels the bottom surface of the energy cell and has side extending to the opposite direction of the first metal substrate and outward the energy cell as a second electrode. The insulating layer is packaged outside the energy cell, first metal substrate and second metal substrate such that the first electrode and second electrode are exposed. The energy cell is sandwiched in between the first electrode and second electrode.

Description

200952007 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種封裝結構,特別是有關於一種高 效能儲能元件的封裝結構。 【先前技術】 電能的儲存部件在我們w生活《中佔了重要的一部 分’例如用於電路巾的電容以及錄可攜式裝置的電池之 類的70件,電能儲存部件影響了電子裝置的執行效能以及 作業時間’而性能和可#性是每個設計所要求的。 在過去,備份電源的解決方案就是電池,主要是鉛酸 電池而現在有更多的選擇來滿足備份電源的需求 ,包括 鐘離子、鎳氫電池等先進的電池技術、㈣電池、太陽能 電池以及雙層電容等。 鋰離子、鎳氫電池和其它電池技術在提供可靠的能量 儲存解決方案上已取得很大進步。它們已在許多設計中得 到應用,並解決了以往的許多成本問題但仍面臨著與使 用鋁酸電池時一樣的問題,即所有這些技術都是基於化學 反應,匕們的使用壽命有限並受溫度的限制,而且對大電 流的需求也會直接影響它們的使用壽命。因此,這些電池 技術在持久性和可靠應用方面還面臨著一些挑戰。 超級電容,或者稱為電化學雙層電容(EDLC),與電解 電容相比,具有非常高的功率密度和實質的能量密度。在 過去幾年,這些元件已應用在消費電子、工業和汽車等許 6 200952007 多領域。如今,已有超級電容是功率密度高達2〇kw/kg的 超高功率元件,超級電容的尺寸非常緊湊(小的超級電容通 常只有郵票大小或者更小),但它們可儲存的能量比傳統電 容要高得多,大多數超級電容的容量用法拉(F)標定,通常 在1F到5,000F之間,而且放電速度可以很快也可以很慢。 它們的使用壽命非常長,可被設計成用於終端產品的整個 生命週期。 未來如超級電容及磁電容這類的高效能儲能元件會更 為廣泛地應用在許多領域上,因此,提出一種儲能元件的 封裝結構是有其實際需求。 【發明内容】 因此本發明之目的在於提供一種高效能儲能元件的封 裝結構。 依據本發明之一種實施例,本封裝結構包括儲能元 件、第一金屬基板、第二金屬基板、以及絕緣覆層。第一 金屬基板平行配置於儲能元件之上表面且第一金屬基板之 一側向外延伸至儲能元件之外以作為第一導電電極。第二 金屬基板平行配置於儲能元件之下表面且第二金屬基板之 一側以相對於第一金屬基板延伸之方向向外延伸至儲能元 件之外以作為第二導電電極。絕緣覆層包覆於儲能元件、 第一金屬基板、以及第二金屬基板外以使第一及第二導電 電極露出。儲能元件以三明治型式失於第一與第二金屬基 板之間。 200952007 【實施方式】 接下來請參照本發明較佳實施例的詳細說明,其中所 提到的範例會連同圖式一同進行說明。在任何可能的情況 下,圖式及說明中所使用的相同參考數標都代表了相同或 類似的部件。 此發明中的儲能元件是一種高效能的儲能元件,如超 級電容及磁電容等,小(微)型的電容可做到如郵票或者更小 的尺寸。第1A圖係螬示依照本發明第一個實施例的一種储 能元件封裝結構的側視剖面圖。此儲能元件封裝結構包括 儲能元件110、第一基板130、第二基板150、以及絕緣覆 層170。第一基板130及第二基板150是使用絕緣材質,儲 能元件110係以三明治型式夹在第一基板13〇及第二基板 150之間。第一基板13〇平行配置於儲能元件11〇之上表面 且長度大於儲能元件110,第一基板13〇之一側向外延伸至 儲能元件110之外’而另一側可與儲能元件11〇側邊切齊 或位於相近的位置。第一基板13〇與儲能元件11〇接觸面 锻有金屬層以作為第一導電電極185。 以類似於第一基板130的配置方式,第二基板150平 行配置於儲能元件11〇之下表面且長度大於儲能元件 110,第二基板150之一侧以相對於第一基板13〇延伸之方 向向外延伸至儲能元件11〇之外,而另一側可與儲能元件 U0側邊切齊或位於相近的位置,第二基板150與儲能元件 U0接觸面鍍有金屬層以作為第二導電電極195。除了露出 200952007 第導電電極185及第二導電電極195作為外部應用的電 極’絕緣覆層170包覆在儲能元件110、第一基板130、以 及第二基板150的外部,絕緣覆層17G的封裝型式係使第 _導電電極185及第二導電電極195露出作為外部應用的 電極並呈相向型式。200952007 IX. Description of the Invention: [Technical Field] The present invention relates to a package structure, and more particularly to a package structure for a high performance energy storage element. [Prior Art] The storage component of electric energy accounts for an important part of our life, such as the capacitance of the circuit towel and the battery of the portable device, and the electrical energy storage component affects the execution of the electronic device. Performance and job time' while performance and availability are required for each design. In the past, the backup power solution was a battery, mainly lead-acid batteries, and now there are more options to meet the needs of backup power, including advanced battery technology such as clock ions, nickel-metal hydride batteries, (four) batteries, solar cells and double Layer capacitance, etc. Lithium-ion, nickel-hydrogen batteries and other battery technologies have made great strides in providing reliable energy storage solutions. They have been used in many designs and have solved many of the cost problems of the past but still face the same problems as when using alumina batteries, ie all of these technologies are based on chemical reactions, their service life is limited and subject to temperature The limits, and the need for high currents, also directly affect their useful life. As a result, these battery technologies face some challenges in terms of durability and reliability. Supercapacitors, or electrochemical double layer capacitors (EDLC), have very high power densities and substantial energy densities compared to electrolytic capacitors. In the past few years, these components have been used in many fields, such as consumer electronics, industrial and automotive. Today, supercapacitors are ultra-high power components with power densities up to 2〇kw/kg. Supercapacitors are very compact (small supercapacitors are usually only stamp size or smaller), but they can store more energy than conventional capacitors. Too much higher, the capacity of most supercapacitors is calibrated (F), usually between 1F and 5,000F, and the discharge rate can be very fast or slow. They have a very long service life and can be designed for the entire life cycle of an end product. In the future, high-performance energy storage components such as supercapacitors and magnetic capacitors will be widely used in many fields. Therefore, there is a practical need for a package structure of energy storage components. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a package structure for a high efficiency energy storage component. According to an embodiment of the invention, the package structure includes an energy storage element, a first metal substrate, a second metal substrate, and an insulating coating. The first metal substrate is disposed in parallel on the upper surface of the energy storage element and one side of the first metal substrate extends outwardly beyond the energy storage element to serve as the first conductive electrode. The second metal substrate is disposed in parallel on the lower surface of the energy storage element and one side of the second metal substrate extends outwardly in a direction extending relative to the first metal substrate to the outside of the energy storage element as the second conductive electrode. The insulating coating is coated on the energy storage element, the first metal substrate, and the second metal substrate to expose the first and second conductive electrodes. The energy storage element is lost between the first and second metal substrates in a sandwich pattern. 200952007 [Embodiment] Reference is now made to the detailed description of the preferred embodiments of the invention, Wherever possible, the same reference numerals are used in the drawings and the description The energy storage component of this invention is a high-performance energy storage component such as a super capacitor and a magnetic capacitor, and a small (micro) type capacitor can be implemented as a stamp or a smaller size. Fig. 1A is a side sectional view showing an energy storage element package structure in accordance with a first embodiment of the present invention. The energy storage element package structure includes an energy storage element 110, a first substrate 130, a second substrate 150, and an insulating coating 170. The first substrate 130 and the second substrate 150 are made of an insulating material, and the energy storage element 110 is sandwiched between the first substrate 13A and the second substrate 150. The first substrate 13 〇 is disposed in parallel on the upper surface of the energy storage element 11 且 and has a length larger than the energy storage element 110 , and one side of the first substrate 13 向外 extends outward to the outside of the energy storage element 110 ′ while the other side can be stored The energy element 11 〇 is flanked or located at a similar position. The first substrate 13 is in contact with the energy storage element 11 〇 with a metal layer as the first conductive electrode 185. In a manner similar to the configuration of the first substrate 130, the second substrate 150 is disposed in parallel on the lower surface of the energy storage element 11 and has a length greater than the energy storage element 110. One side of the second substrate 150 extends in a direction relative to the first substrate 13 The direction of the second substrate 150 and the energy storage element U0 are plated with a metal layer to the outside of the energy storage element U0 and the other side is aligned with the energy storage element U0. As the second conductive electrode 195. In addition to exposing the 200952007 conductive electrode 185 and the second conductive electrode 195 as externally applied electrodes, the insulating coating 170 is coated on the outside of the energy storage element 110, the first substrate 130, and the second substrate 150, and the insulating coating 17G is packaged. The pattern exposes the first conductive electrode 185 and the second conductive electrode 195 as electrodes for external application and is in a facing pattern.

其中,第一導電電極185的線寬與第一基板13〇的寬 度相近,第二導電電極195的線寬與第二基板150的寬度 相近。第一導電電極185可作為外部應用的正電極,第二 導電電極195可作為外部應用的負電極,值得注意的是, 此正負電極係平面式電極。 第1B圖係繪示依照本發明第一個實施例的一種儲能 疋件封裝結構的俯視圖。俯視此封裝結構時僅可看到斜線 部分的絕緣覆層170、第二基板15〇、以及第一導電電極 185。 在其他可能的實施例中,第一基板13〇及第二基板15〇 可使用金屬材質,如此一來,第一基板13〇及第二基板15〇 與儲能元件110的接觸面不需鍍上金屬即可作為導電電極。 第2A圖係繪示依照本發明第二個實施例的一種儲能 元件封裝結構的側視剖面圖。此儲能元件封裝結構包括儲 能元件210、第一金屬基板230、第二金屬基板250、以及 絕緣覆層270(斜線部分)。儲能元件21〇係以三明治型式夾 在第一金屬基板230及第二金屬基板250之間。第一金屬 基板230平行配置於儲能元件21〇之上表面且長度大於儲 能元件210’第一金屬基板23〇之一側向外延伸至儲能元件 200952007 210之外以作為第一導電電極285,而另一侧可與儲能元件 210側邊切齊或位於相近的位置。 以類似於第一金屬基板230的配置方式,第二金屬基 板250平行配置於儲能元件210之下表面且長度大於儲能 元件210,第二金屬基板250之一側以相對於第一金屬基板 230延伸之方向向外延伸至儲能元件210之外以作為第二 導電電極295,而另一侧可與儲能元件210側邊切齊或位於 相近的位置。絕緣覆層270包覆在儲能元件210、第一金屬 基板230、以及第二金屬基板250的外部,絕緣覆層270 的封裝型式係使第一導電電極285及第二導電電極295露 出作為外部應用的電極並呈相背型式。 其中,第一導電電極285的線寬與第一金屬基板230 的寬度相近,第二導電電極295的線寬與第二金屬基板250 的寬度相近。第一導電電極285可作為外部應用的正電極, 第二導電電極295可作為外部應用的負電極,值得注意的 是,此正負電極係平面式電極。 第2B圖係繪示依照本發明第二個實施例的一種儲能 元件封裝結構的俯視圖俯視此封裝結構時僅可看到斜線 部分的絕緣覆層270以及第二導電電極295。 第3A圖係繪示依照本發明第三個實施例的一種儲能 元件封裝結構的側視剖面圖。此儲能元件封裝結構包括儲 能元件310、第一金屬基板330、第二金屬基板350、以及 絕緣覆層370。儲能元件310係以三明治型式夾在第一金屬 基板330及第二金屬基板350之間。第一金屬基板330平 200952007 行配置於儲能元件310之上表面且長度大於儲能元件 310’第一金屬基板330之一侧向外延伸至儲能元件31〇之 外以作為第一導電電極385,而另一側可與儲能元件31〇 側邊切齊或位於相近的位置。 以類似於第一金屬基板330的配置方式,第二金屬基 板350平行配置於儲能元件,之下表面且長度大於儲能 兀件310,第二金屬基板35〇之一侧向外延伸至儲能元件 310之外以作為第二導電電極395,而另一側可與儲能元样 310側邊切齊或位於相近的位置,第一金屬基板33〇及第二 金屬基板350是以相同方向向外延伸作為導電電極即位 於儲能元件310的同邊。絕緣覆層37〇包覆在儲能元件 310、第一金屬基板330、以及第二金屬基板35〇外以使第 -導電電極385及第二導電電極395露出作為外部應用的 電極並呈相背型式。 其中,第一導電電極385的線寬與第一金屬基板33〇 的寬度相近,第二導電電極395的線寬與第二金屬基板35〇 的寬度相近。第一導電電極385可作為外部應用的正電極, 第二導電電極395可作為外部應用的負電極,值得注意的 是,此正負電極係平面式電極。 第3B圖係繪示依照本發明第三個實施例的一種儲能 元件封裝結構的俯視圖。俯視此封裝結構時僅可看到斜線 部分的絕緣覆層370以及第二導電電極395。 本發明揭露高效能儲能元件如超級電容及磁電容的封 裝結構’亦可將數個儲能元件並聯,並聯的封裝結構可如 200952007 第4圖所示,包括儲能元件410、411、412、及413、第一 金屬基板450、第二金屬基板430、以及絕緣覆層(斜線部 分)。儲能元件410、411、412、及413係以三明治型式夾 在第一金屬基板450及第二金屬基板430之間。第一金屬 基板450平行配置於儲能元件410、411、412、及413的 上表面且長度大於該些儲能元件,第一金屬基板450之一 侧向外延伸至這些儲能元件之外以作為第一導電電極495。 以類似於第一金屬基板450的配置方式,第二金屬基 • 板430平行配置於該些儲能元件的下表面且長度大於該些 儲能元件,第二金屬基板430之一側以相同於第一金屬基 板450延伸之方向向外延伸至儲能元件之外以作為第二導 電電極485。絕緣覆層包覆儲能元件410、41卜412、及413、 第一金屬基板450、以及第二金屬基板430的外部,封裝包 覆的型式係使第一導電電極495及第二導電電極485露出 作為外部應用的電極並呈相背型式,且使儲能元件410、 411、412、及413之間以並聯方式連接》 〇 其中,第一導電電極495的線寬與第一金屬基板450 的寬度相近,第二導電電極485的線寬與第二金屬基板430 的寬度相近。第一導電電極495可作為外部應用的正電極, 第二導電電極485可作為外部應用的負電極,值得注意的 是,此正負電極係平面式電極。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技術者,在不脫離本發明之精 ,神和範圍内,當可作各種之更動與潤飾,因此本發明之保 12 200952007 護範圍當視後附之申請專利範圍所界定者為準β 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’所附圖式之詳細說明如下: 第1Α圖係繪示依照本發明第一個實施例的一種儲能 元件封裝結構的側視剖面圖。 第1B圖係繪示依照本發明第一個實施例的一種儲能 元件封裝結構的俯視圖。 第2A圖係繪示依照本發明第二個實施例的一種儲能 元件封裝結構的側視剖面圖。 第2B圖係繪示依照本發明第二個實施例的一種儲能 元件封裝結構的俯視圖。 第3A圖係繪示依照本發明第三個實施例的一種儲能 元件封裝結構的側視剖面圖。 第3B圖係繪示依照本發明第三個實施例的一種儲能 元件封裝結構的俯視圖。 第4圖係繪示依照本發明第四個實施例的一種儲能元 件封裝結構的側視剖面圖。 【主要元件符號說明】 110 :儲能元件 330 :第一金屬基板 130:第一基板 350:第二金屬基板 13 200952007 150 : 第二基板 170 : 絕緣覆層 185 : 第一導電電極 195 : 第二導電電極 210 : 儲能元件 230 : 第一金屬基板 250 : 第二金屬基板 270 : 絕緣覆層 285 : 第一導電電極 295 : 第二導電電極 310 :儲能元件 370 : 絕緣覆層 385 : 第一導電電極 395 : 第二導電電極 410 : 儲能元件 411 : 儲能元件 412 : 儲能元件 413 : 儲能元件 430 : 第二金屬基板 450 : 第一金屬基板 485 : 第二導電電極 495 :第一導電電極The line width of the first conductive electrode 185 is similar to the width of the first substrate 13 , and the line width of the second conductive electrode 195 is close to the width of the second substrate 150 . The first conductive electrode 185 can serve as a positive electrode for external applications, and the second conductive electrode 195 can serve as a negative electrode for external applications. It is noted that the positive and negative electrodes are planar electrodes. Fig. 1B is a plan view showing an energy storage element package structure in accordance with a first embodiment of the present invention. When viewed from this package structure, only the insulating coating 170 of the oblique portion, the second substrate 15A, and the first conductive electrode 185 can be seen. In other possible embodiments, the first substrate 13 and the second substrate 15 can be made of a metal material, so that the contact surfaces of the first substrate 13 and the second substrate 15 and the energy storage device 110 do not need to be plated. The upper metal acts as a conductive electrode. Fig. 2A is a side cross-sectional view showing an energy storage element package structure in accordance with a second embodiment of the present invention. The energy storage element package structure includes an energy storage element 210, a first metal substrate 230, a second metal substrate 250, and an insulating coating 270 (hatched portion). The energy storage element 21 is sandwiched between the first metal substrate 230 and the second metal substrate 250 in a sandwich type. The first metal substrate 230 is disposed in parallel on the upper surface of the energy storage element 21 且 and has a length greater than one side of the first metal substrate 23 储 of the energy storage element 210 ′ and extends outward to the energy storage element 200952007 210 as the first conductive electrode 285, and the other side may be aligned with or located at a side of the energy storage element 210. In a manner similar to the configuration of the first metal substrate 230, the second metal substrate 250 is disposed in parallel on the lower surface of the energy storage element 210 and has a length greater than the energy storage element 210, and one side of the second metal substrate 250 is opposite to the first metal substrate. The direction of extension 230 extends outwardly beyond the energy storage element 210 to serve as the second conductive electrode 295, while the other side may be aligned with or adjacent to the side of the energy storage element 210. The insulating coating 270 is coated on the outside of the energy storage element 210, the first metal substrate 230, and the second metal substrate 250. The package pattern of the insulating coating 270 exposes the first conductive electrode 285 and the second conductive electrode 295 as an external portion. The applied electrodes are in a phase-backed version. The line width of the first conductive electrode 285 is similar to the width of the first metal substrate 230, and the line width of the second conductive electrode 295 is close to the width of the second metal substrate 250. The first conductive electrode 285 can serve as a positive electrode for external applications, and the second conductive electrode 295 can serve as a negative electrode for external applications. It is noted that the positive and negative electrodes are planar electrodes. Fig. 2B is a plan view showing an energy storage device package structure according to a second embodiment of the present invention. The insulating coating 270 and the second conductive electrode 295 are only visible when the package structure is viewed. Figure 3A is a side cross-sectional view showing an energy storage device package structure in accordance with a third embodiment of the present invention. The energy storage element package structure includes an energy storage element 310, a first metal substrate 330, a second metal substrate 350, and an insulating coating 370. The energy storage element 310 is sandwiched between the first metal substrate 330 and the second metal substrate 350 in a sandwich type. The first metal substrate 330 is disposed on the upper surface of the energy storage element 310 and has a length greater than one side of the first metal substrate 330 of the energy storage element 310 ′ extending outward to the energy storage element 31 以 as the first conductive electrode 385, and the other side may be aligned with or located at a side of the energy storage element 31〇. In a manner similar to the configuration of the first metal substrate 330, the second metal substrate 350 is disposed in parallel on the energy storage element, the lower surface is longer than the energy storage element 310, and one side of the second metal substrate 35 extends outward to the reservoir. The energy source 310 is external to the second conductive electrode 395, and the other side is aligned with or adjacent to the side of the energy storage element 310. The first metal substrate 33 and the second metal substrate 350 are in the same direction. Extending outwardly as a conductive electrode is located on the same side of the energy storage element 310. The insulating coating 37 is wrapped around the energy storage element 310, the first metal substrate 330, and the second metal substrate 35 so that the first conductive electrode 385 and the second conductive electrode 395 are exposed as electrodes for external application and are opposite each other. Type. The line width of the first conductive electrode 385 is similar to the width of the first metal substrate 33, and the line width of the second conductive electrode 395 is close to the width of the second metal substrate 35A. The first conductive electrode 385 can serve as a positive electrode for external applications, and the second conductive electrode 395 can serve as a negative electrode for external applications. It is noted that the positive and negative electrodes are planar electrodes. Fig. 3B is a plan view showing an energy storage element package structure in accordance with a third embodiment of the present invention. When viewed from this package structure, only the insulating coating 370 and the second conductive electrode 395 of the diagonal portion are visible. The invention discloses that a high-performance energy storage component such as a supercapacitor and a magnetic capacitor package structure can also connect a plurality of energy storage components in parallel, and the parallel package structure can be as shown in FIG. 4 of 200952007, including energy storage components 410, 411, 412. And 413, the first metal substrate 450, the second metal substrate 430, and the insulating coating (hatched portion). The energy storage elements 410, 411, 412, and 413 are sandwiched between the first metal substrate 450 and the second metal substrate 430. The first metal substrate 450 is disposed in parallel on the upper surfaces of the energy storage elements 410, 411, 412, and 413 and has a length greater than the energy storage elements. One side of the first metal substrate 450 extends outwardly to the energy storage elements. As the first conductive electrode 495. In a manner similar to the configuration of the first metal substrate 450, the second metal substrate 430 is disposed in parallel on the lower surface of the energy storage elements and has a length greater than the energy storage elements, and one side of the second metal substrate 430 is the same as The direction in which the first metal substrate 450 extends extends outward beyond the energy storage element to serve as the second conductive electrode 485. The insulating coating covers the outer portions of the energy storage elements 410, 41, 412, and 413, the first metal substrate 450, and the second metal substrate 430, and the package is coated with the first conductive electrode 495 and the second conductive electrode 485. Exposing the electrodes as external applications and in a phase-backed manner, and connecting the energy storage elements 410, 411, 412, and 413 in parallel, wherein the line width of the first conductive electrode 495 is different from that of the first metal substrate 450 The width of the second conductive electrode 485 is similar to the width of the second metal substrate 430. The first conductive electrode 495 can serve as a positive electrode for external applications, and the second conductive electrode 485 can serve as a negative electrode for external applications. It is noted that the positive and negative electrodes are planar electrodes. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and various modifications and refinements can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the patent application, which is defined by the scope of the patent application. The above-mentioned and other objects, features, advantages and embodiments of the present invention are more obvious. The detailed description of the drawings is as follows: Figure 1 is a side cross-sectional view showing an energy storage element package structure in accordance with a first embodiment of the present invention. Fig. 1B is a plan view showing an energy storage element package structure in accordance with a first embodiment of the present invention. Fig. 2A is a side cross-sectional view showing an energy storage element package structure in accordance with a second embodiment of the present invention. Fig. 2B is a plan view showing an energy storage device package structure in accordance with a second embodiment of the present invention. Figure 3A is a side cross-sectional view showing an energy storage device package structure in accordance with a third embodiment of the present invention. Fig. 3B is a plan view showing an energy storage element package structure in accordance with a third embodiment of the present invention. Figure 4 is a side cross-sectional view showing an energy storage element package structure in accordance with a fourth embodiment of the present invention. [Main component symbol description] 110 : Energy storage component 330 : First metal substrate 130 : First substrate 350 : Second metal substrate 13 200952007 150 : Second substrate 170 : Insulating coating 185 : First conductive electrode 195 : Second Conductive electrode 210: energy storage element 230: first metal substrate 250: second metal substrate 270: insulating coating 285: first conductive electrode 295: second conductive electrode 310: energy storage element 370: insulating coating 385: first Conductive electrode 395: second conductive electrode 410: energy storage element 411: energy storage element 412: energy storage element 413: energy storage element 430: second metal substrate 450: first metal substrate 485: second conductive electrode 495: first Conductive electrode

Claims (1)

200952007 十、申請專利範圍: 1. 一種高效能儲能元件的封裝結構,包含: 一儲能元件’具有一上表面及一下表面; 一第一金屬基板,平行配置於該儲能元件之該上表 面,且該第一金屬基板之一側向外延伸至該儲能元件之外 以作為一第一導電電極; 一第二金屬基板,平行配置於該儲能元件之該下表 面,且該第二金屬基板之一侧以相對於該第一金屬基板延 伸之方向向外延伸至該儲能元件之外以作為一第二導電電 極;以及 一絕緣覆層,包覆於該儲能元件、該第一金屬基板、 以及該第二金屬基板外以使該第一導電電極及該第二導電 電極露出; 其中該儲能元件以三明治型式夾於該第一金屬基板與 該第二金屬基板之間。 2. 如申請專利範圍第1項所述之高效能儲能元件的封 裝結構,其中該第一導電電極之線寬與該第一金屬基板之 寬度相近,該第二導電電極之線寬與該第二金屬基板之寬 度相近。 3.如申請專利範圍第2項所述之高效能儲能元件的封 裝結構’其中該絕緣覆層包覆於該儲能元件、該第一金屬 15 200952007 基板、以及該第二金屬基板外以使該第一導電電極及該第 二導電電極露出並相向。 4.如申請專利範圍第2項所述之高效能儲能元件的封 裝結構,其中該絕緣覆層包覆於該儲能元件、該第一金屬 基板、以及該第二金屬基板外以使該第一導電電極及該第 二導電電極露出並相背。200952007 X. Patent application scope: 1. A package structure for high-performance energy storage components, comprising: an energy storage component 'having an upper surface and a lower surface; a first metal substrate disposed parallel to the energy storage component a surface, and one side of the first metal substrate extends outwardly to the outside of the energy storage element to serve as a first conductive electrode; a second metal substrate is disposed in parallel on the lower surface of the energy storage element, and the first One side of the two metal substrate extends outward in a direction extending relative to the first metal substrate to the outside of the energy storage element as a second conductive electrode; and an insulating coating is coated on the energy storage element, The first metal substrate and the second metal substrate are externally exposed to expose the first conductive electrode and the second conductive electrode; wherein the energy storage device is sandwiched between the first metal substrate and the second metal substrate . 2. The package structure of the high-performance energy storage device according to claim 1, wherein a line width of the first conductive electrode is close to a width of the first metal substrate, and a line width of the second conductive electrode is The width of the second metal substrate is similar. 3. The package structure of the high-performance energy storage element according to claim 2, wherein the insulating coating is coated on the energy storage element, the first metal 15 200952007 substrate, and the second metal substrate The first conductive electrode and the second conductive electrode are exposed and opposed to each other. 4. The package structure of the high-performance energy storage element according to claim 2, wherein the insulating coating is coated on the energy storage element, the first metal substrate, and the second metal substrate to enable the The first conductive electrode and the second conductive electrode are exposed and opposite each other. 5. —種高效能儲能元件的封裝結構,包含: 一儲能元件’具有一上表面及一下表面; 一第一基板,平行配置於該儲能元件之該上表面,且 該第一基板之一側向外延伸至該儲能元件之外,該第一基 板與該儲能元件接觸面鍍有金屬以作為一第一導電電極 一第二基板,平行配置於該儲能元件之該下表面,且 該第二基板之一側以相對於該第一基板延伸之方向向外延 伸至該儲能元件之外’該第二基板與該儲能元件接觸面錢 有金屬以作為一第二導電電極;以及 -絕緣覆層’包覆於該儲能元件、該第一基板、以及 該第二基板外以使該第-導電電極及該第二導電電極露出 基板與該第 其中該儲能元件以三明治型式夾於該第一 一基板之間。 6·如申請專職圍第5項所狀高效㈣能元件的封 200952007 裝結構,其中該第一導電電極之線寬與該第一基板之寬度 相近,該第二導電電極之線寬與該第二基板之寬度相近。 7. —種高效能儲能元件的封裝結構,包含: 一儲能元件’具有一上表面及一下表面; 一第一金屬基板’平行配置於該儲能元件之該上表 面,且該第一金屬基板之一侧向外延伸至該儲能元件之外 以作為一第一導電電極; ® 一第二金屬基板’平行配置於該儲能元件之該下表 面,且該第二金屬基板之一側以相同於該第一金屬基板延 伸之方向向外延伸至該儲能元件之外以作為一第二導電電 極;以及 一絕緣覆層,包覆於該儲能元件、該第一金屬基板、 以及該第二金屬基板外以使該第一導電電極及該第二導電 電極露出並相背; 其中該儲能元件以三明治型式夾於該第一金屬基板及 Φ 該第二金屬基板之間。 如中請專利範圍第7項所述之高效能㈣元件的封 裝結構,其中該第一導電電極之線寬與該第一金屬基板之 寬度相近,該第二導電電極之線寬與該第二金屬基板之寬 度相近。 . 9. 一種高效能儲能元件的封裝結構,包含: 17 200952007 複數個儲能元件,每一該些儲能元件具有一上表面及 一下表面; 一第一金屬基板,平行配置於該些儲能元件之該些上 表面’且該第一金屬基板之一側向外延伸至該些儲能元件 之外以作為一第一導電電極; 一第二金屬基板,平行配置於該些儲能元件之該些下 ' 表面’且該第二金屬基板之一側以相同於該第一金屬基板 延伸之方向向外延伸至該些儲能元件之外以作為一第二導 # 電電極;以及 一絕緣覆層,包覆於該些儲能元件、該第一金屬基板、 以及該第二金屬基板外以使該第一導電電極及該第二導電 電極露出並相背,且使該些儲能元件之間以並聯連接; 其中該些儲能元件以三明治型式夾於該第一金屬基板 及該第二金屬基板之間。 10.如申請專利範圍第9項所述之高效能儲能元件的 ® 封裝結構,其中該第一導電電極之線寬與該第一金屬基板 之寬度相近,該第二導電電極之線寬與該第二金屬基板之 寬度相近。 185. A package structure for a high-performance energy storage component, comprising: an energy storage component 'having an upper surface and a lower surface; a first substrate disposed in parallel on the upper surface of the energy storage component, and the first substrate One side of the first substrate extends outwardly from the energy storage element, and the contact surface of the first substrate and the energy storage element is plated with metal as a first conductive electrode and a second substrate, and is disposed in parallel under the energy storage element. a surface, and one side of the second substrate extends outward in a direction relative to the first substrate to the outside of the energy storage element, and the second substrate and the energy storage element are in contact with each other as a second a conductive electrode; and an insulating coating layer overlying the energy storage element, the first substrate, and the second substrate such that the first conductive electrode and the second conductive electrode expose the substrate and the first energy storage The component is sandwiched between the first substrates. 6) If the application of the high-efficiency (four) energy component of the fifth floor of the full-time enclosure is in the 200952007 package structure, wherein the line width of the first conductive electrode is close to the width of the first substrate, the line width of the second conductive electrode and the first The width of the two substrates is similar. 7. The package structure of a high-performance energy storage component, comprising: an energy storage component 'having an upper surface and a lower surface; a first metal substrate 'parallelly disposed on the upper surface of the energy storage component, and the first One side of the metal substrate extends outwardly to the outside of the energy storage element to serve as a first conductive electrode; a second metal substrate 'parallelly disposed on the lower surface of the energy storage element, and one of the second metal substrates a side extending outwardly from the energy storage element in a direction similar to the direction in which the first metal substrate extends to serve as a second conductive electrode; and an insulating coating covering the energy storage element, the first metal substrate, And the second metal substrate is disposed outside the first conductive electrode and the second conductive electrode; wherein the energy storage device is sandwiched between the first metal substrate and the second metal substrate. The package structure of the high-performance (four) component of the seventh aspect of the invention, wherein the line width of the first conductive electrode is similar to the width of the first metal substrate, and the line width of the second conductive electrode is different from the second The width of the metal substrate is similar. 9. A package structure for a high-performance energy storage component, comprising: 17 200952007 a plurality of energy storage components, each of the energy storage components having an upper surface and a lower surface; a first metal substrate disposed in parallel with the storage The upper surfaces of the first metal substrate extend outwardly from the one side of the first metal substrate to the other energy storage elements to serve as a first conductive electrode; and a second metal substrate is disposed in parallel to the energy storage elements And the lower surface of the second metal substrate extends outwardly to the outside of the energy storage elements in the same direction as the first metal substrate extends to serve as a second conductive electrode; An insulating coating covering the energy storage elements, the first metal substrate, and the second metal substrate to expose the first conductive electrode and the second conductive electrode and opposite each other, and to enable the energy storage The components are connected in parallel; wherein the energy storage components are sandwiched between the first metal substrate and the second metal substrate. 10. The package structure of the high-performance energy storage device according to claim 9, wherein a line width of the first conductive electrode is similar to a width of the first metal substrate, and a line width of the second conductive electrode is The width of the second metal substrate is similar. 18
TW97120470A 2008-06-02 2008-06-02 Energy cell package TW200952007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97120470A TW200952007A (en) 2008-06-02 2008-06-02 Energy cell package
JP2008254564A JP2009295955A (en) 2008-06-02 2008-09-30 High-performance electric storage element package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97120470A TW200952007A (en) 2008-06-02 2008-06-02 Energy cell package

Publications (1)

Publication Number Publication Date
TW200952007A true TW200952007A (en) 2009-12-16

Family

ID=41543841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97120470A TW200952007A (en) 2008-06-02 2008-06-02 Energy cell package

Country Status (2)

Country Link
JP (1) JP2009295955A (en)
TW (1) TW200952007A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343681A (en) * 2001-05-11 2002-11-29 Meidensha Corp Electric double-layer capacitor
JP2004335832A (en) * 2003-05-09 2004-11-25 Nec Tokin Corp Electric double layer capacitor

Also Published As

Publication number Publication date
JP2009295955A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US6576365B1 (en) Ultra-thin electrochemical energy storage devices
KR101357470B1 (en) Electrode lead for secondary battery and secondary battery comprising the same
US9443663B2 (en) Electric double-layer capacitor
WO2005076298A1 (en) Solid electrolytic capacitor
JP5779387B2 (en) Electrochemical devices
US9537133B2 (en) Electric storage device and power source module
CN103383997B (en) Rechargeable battery
JP2002118036A (en) Electricity storage electronic component and composite electrode body
KR20150049261A (en) Secondary Battery and Manufacturing Method thereof
JP7049543B2 (en) Printed circuit board assembly and its manufacturing method
TW201006090A (en) Applied structure of energy storage device
JP2011009690A (en) Electrode for electric double layer capacitor, method of manufacturing the same, and electric double layer capacitor
KR101726110B1 (en) Electricity storage device and electricity storage module
US20100112438A1 (en) Energy cell package
TW200952007A (en) Energy cell package
WO2013100753A1 (en) Double-sided super capacitor and method for making the same
CN103794740A (en) Electrochemical device
JP5875129B2 (en) Electrochemical devices
CN114072946A (en) Battery with a battery cell
WO2018074133A1 (en) Secondary cell module
US20100109609A1 (en) Power supply module
CN101620937A (en) Packaging structure of high-efficiency energy storage component
KR101530129B1 (en) Ultracapacitor Module And The Manufacturing Method of it
TW201018039A (en) Energy storage module
CN211265276U (en) Stack type solid electrolytic capacitor